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Singularities of multiplicative p-closed vector
fields and global 1-forms of Zariski surfaces

By

Masayuki HIROKADO

Abstract

We consider quotient surfaces by p-closed rational vector fields. First we
show that singularities on the quotient surfaces by multiplicative p-closed vector
fields are tonic singularities. Then we proceed to studying global properties of
Zariski surfaces. W e see that non-trivial global 1-forms a re  related to some
linear system s with b a se  p o in ts . W e also give exam ples of Zariski surfaces
admitting non-closed regular 1-forms.

O. Introduction

Let 6 be a rational vector field on a smooth surface S defined over an algebraically
closed field k of characteristic p >0. W e say that 6 is p-closed if 0" = 0(6 is satisfied with
some rational function a e  k (S ) . Much attention has been drawn to such vector fields
because of the fact that they induce quotient surfaces in the following w a y . F o r
an affine open covering S = u Spec A  a p-closed rational vector field 6 induces the
invariant ring := fa € A i l5(a) = 0} and form the quotient surface as V:= uSpec  .
It is then easy to see that V is normal, and since A contains AlP)  := taPiae A i l, the
quotient map g: S V  factors the relative Frobenius morphism of S:

g
S V—> S ( - 1 1 .

In  this paper, there are  two topics we are in terested  in . The first one is  on
the singularities which appear on the quotient surface V. W e prove that if the
p-closed rational vector field 6 satisfies certain condition, the singularities o f  V  are
toric singularities (Theorem 2.3). In  general, many non-rational singularities can
appea r o n  V  a n d  w e  d o  n o t  s e e  a n y  effective w ays to  understand  the ir
n a tu re . However, under the condition th a t  V  admits only toric singularities, it is
fairly easy to study the global as well as local properties of the quotient surface. We
expect that the applications of this criterion are not only to be limited to the ones
treated in  this paper.
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The second topic is on  Zariski surfaces (for the definition, see §I). It follows
from the famous theorem by P . Deligne and L . Illusie tha t if  a  smooth projective
surface X  defined over k  lifts t o  W2 (k) the ring of W itt vectors of length two, the
Hodge spectral sequence of X  degenerates at E 1 -term. S o  ou r a im  is  to  observe the
degeneration of the Hodge spectral sequence of Zariski surfaces. In  Theorem 3.1,
we obtain a  criterion fo r a  Zariski surface X  to satisfy H

°
( )= 0  and H 1 (9 x ) =0

involving certain linear systems with b a se  p o in ts . I t  tu rn s  o u t  that there exist
examples admitting non-closed global 1-forms (Example 3.6). Consequently, such
surfaces do not lift t o  W2 (k) n o r  W.

In the final section we see that the Rudakov-Shafarevich theorem for K3 surfaces
in p = 2  can be shown as an application of Corollary 3.3.

Finally  I w ould like to  express my sincere gratitude to Professor Toshiyuki
Katsura for his advice and constant encouragement.

1. Preliminaries

The following notation is used in  this paper.

:the prime field of characteristic p.
:an algebraically closed field of characteristic p.

W,W(k) :the ring of W itt vectors over k.
X :a smooth projective surface defined over k.

: the structure sheaf of X.
MX,q :the maximal ideal of the local ring e x ,q  w ith  qeX .
dR ik , d x :  the universal derivations o f  a  k-algebra R , a n d  o f  a  su r fa c e  X

respectively.
q(X) :the  dimension of the Albanese variety Alb(X) associated to X .  We

have the inequality: q(X)_11 1 (0 x ).
S eT x 0 k (X ) :a p-closed ra tional vector field, i.e., 6 P=a6  w ith  so m e  aek(X ).
p:E e — P 1 :  a  Hirzebruch surface associated to th e  rank two locally free sheaf

(9,, 06,,i(e) on P ' with If e> 1, the unique negative section is
denoted by C c,.

The relative Frobenius morphisms of X  (for the definition, see [19 ) are denoted by

F F
••• X (+1 ) X •••,

For two p-closed rational vector fields 6, , 6, on X, we say that 6 , is equivalent
t o  62  ( 6 , - 6 2 )  i f  there  exists a  non-zero  rational function f  e k (X )  such that
6 ,=f 6 2 . Note that 6 1 a n d  6 2  determine the same quotient surface if 6 , - 6 2 .
W e  s a y  th a t  a  su rface  X  i s  supersingular i f  114(X, Q1)  ( 1 0 p )  is spanned by
algebraic cycles, i.e., p(X )=b 2 (X).
W e say  tha t a surface X  is  a  Zariski surface if it  is  d o m in a ted  b y  fa  w ith  a
purely inseparable rational mapping of degree p.
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2. Singularities by multiplicative p- closed vector fields

In this section, we study p-closed rational vector fields of multiplicative type. Let
S  b e  a sm ooth surface, and (5e Ts Ok (S ) b e  a p-closed rational vector field on
S. Fix a point q e S and we denote its image on the quotient surface by (V,4), i.e.,

quotient by 6
(S, q) —>( V , 4).

By choosing an appropriate representative, we can assume th a t  6  is given by
(5=001ax +O3l3y  with local coordinates x, y in es ,q ,  and regular functions 4,
without a common factor. Then it is known that (V,4) is a singular point of V if
and only if 4), tfr ems ,q . In this case, q e S is called a singular point of the p-closed
rational vector field (5.

Definition 2.1. Let (5 be  a p-closed rational vector field expressed as above.
i) For a singular point q e S  of 6, if there exists a unit a e O L satisfying 6P=a5,
then we say that (5 has a singularity of multiplicative type a t q e S.
ii) The multiplicity of 6 at q e S is defined as multqb := dimk( s ,q /(4), 0). This definition
is independent of the choices of the local coordinates x, y.

Proposition 2.2. i)  We have:

6 is smooth at qe S  if  and only if  multq6 = O.
6 has a singular point of multiplicative type at q  if  and only if  multq6 = 1.

ii) L et D be a W eil divisor on V , then pD is a Cartier div isor. In particular, (V ,4)
is Q-factorial. The exceptional curves in  its resolution consist o f  rational curves
(possibly singular) and any component does not form a loop.

iii) If  p= 2, (V, 4) is a hypersurface singularity.

The proof can be found, for example, in [1], [3], [6] and [1 6 ] . The following
theorem shows tha t the singularity on the quotient surface by a p-closed rational
vector field of multiplicative type is a toric singularity.

Theorem  2.3. Suppose that a p-closed rational vector f ie ld  6  o n  a smooth
surface S has a singular point of multiplicative type at (S,q). Then there exist formal
parameters x, ye (9 5 ,, such that the singularity on the quotient surface (V, 4) is expressed
as

a a
k[[x ,y]]', 6  =x  — + — , = 1, 2, • • •,p —1).

0x ay

This is a toric singularity of type f,(1,
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k[[x,y]]' = k[[x 'yi I 0, i+ Aj O  modp]].

Indeed, this is a  rational singularity an d  th e  exceptional divisor of  the m inim al
resolution consists of  smooth rational curves whose weighted dual graph is given by

(—c11) —( — d2)— • • • (—ds ).

T he integers d i > 2 , (i =1,•••,  )  are  giv en by  th e  continued fractional expansion:

1
P  — d  
A—

d2

1

 

P ro o f  TheThe first part is well-known, see, for example, [1], [ 1 6 ] .  For the second
p a r t ,  le t t in g  n1 , n 2 b e  Z-basis, w e  h a v e  t h e  Z-modules N :=Zn 1 +Z n 2 ,
N ':=Z n i +Z((p—A)n i +pn 2 ), M := Homz (N ,Z) a n d  M ':= H om ,(N ',Z ). Consider
the fan A consisting of all the faces of the cone

a :=R>0n1+R>0((P — A)n1+Pn2).

Then the  m ap of fans (N', A) --+ (N, A) determines a  purely inseparable morphism:
(cf. [14])

Spec k [M ' n a y ] Spec k[M  nay].

By choosing appropriate local parameters x , y ,  th is  morphism is described as

Spec k[x,y] --+ Spec k[x iyi I i,j i + A j 0 m odp].

In particular, the equality k[x, k[xiyi I i,j 0, i + A j 0  m o d p ] with (5 = xa/ax
+ Ay0 I Oy  fo llo w s  fro m  t h e  o b v io u s  inclusion k[x ,y ]' D k [xy i +Aj

O m o d p ]  a s  w ell a s  th e  equality o f the  quo tien t f ie ld s  and  the  normality
of these two rings. The description of the m inim al resolution o f the  singularity
follows from the general theory of toric varieties.

Remarks 2.4. i)  By using the criterion in  [1 ], the singularity on the quotient
surface is Gorenstein (i.e., a  rational double point) if and only if A= p —1.
ii) A p-closed rational vector field is often identified with a  1-foliation 2 q

which is a  saturated invertible subsheaf of the tangent bundle Ts locally generated
by (5. Since its cokernel Ts 12  is  torsion free, it is expressed a s  /z .iit with some
invertible sheaf it and  an  ideal sheaf defining an effective zero cycle Z .  Then •5
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having a singular point (resp. singular point of multiplicative type) at x e S is equivalent
to the condition x e supp Z (resp. the zero cycle Z  being reduced at x). In particular,
the following equality holds: Eq, s  multqb = c2 (/z ).
iii) Consider a  blowing-up 7r: S -  --4S  a t  a  singular po in t q e S  o f  a  1-foliation

T .  Then the local generator ô of this 1-foliation is regular along the exceptional
curve of the first kind E:=7r - '(q). Suppose that n*,5 vanishes along E with degree
r 0), then we have an equality: E 4E ,Em ul ter *S=mult gb - (r 2 + r - 1).

Corollary 2.5. T he singularities of  the quotients by p-closed vector fields of
multiplicative type are classified into (p+ 1)/2 cases if  3, whereas into a unique
case if  p= 2. For example, the exceptional curves o f  their minimal resolutions for

17 are given by the following:

p = 2,

(2=1)

p = 3 ,

(2=1) (-  3 )

(1= 2)o  - o

P= 5 ,
(1=1) (-5 )

(2= 2, 3) ( - 3)- o

(2=4)o - o - o - o

P = 7 ,
(2=1) (-7 )

(2= 2, 4) ( - 4)- o

(2= 3, 5) ( - 3)- o -o

(2= 6)o - o - o - o - o -  o

P= 11 ,

(2=1) (-11)

(2= 2, 6) ( - 6)- o

(2= 3, 4) ( - 4)- ( - 3)

(2=7, 8)o - o - ( -  3) -  o

(2= 5, 9) ( - 3 ) - o - o - o - o

(2= 10)o - o - o - o - o - o - o - o - o - o
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p=13,

(2=1) (-13)

(A= 2, 7) (-7)— o

(A= 3, 9) (-5)— o— o

(A= 4, 10) ( — 4)—o—o—o

(A= 5, 8) (-3)—(-3)—o

(2=6, 11)( —  3)— o —o —o —o —o

(2=12) o—o—o—o—o—o—o—o—o—o—o—o

p=17,

(2=1) (-17)

(A= 2, 9) (-9)—o

(A= 3, 6) (-6)— (-3)

(A= 4, 13) ( — 5)—o—o—o

(1=5,7) (-4)— o— (-3)

(2=10, 12)o — ( —  4)—o —o

(2=11,14) o—(-3)—o—o—o—o

(A= 8, 15) ( — 3)—o—o—o—o—o—o—o

(1=16) o—o—o—o—o—o—o—o—o—o—o—o—o—o—o—o

where (— b) stands for a smooth rational curve whose self-intersection number is — b. In
particular, the one with self-intersection number —2 is denoted by o.

Proposition 2 .6  (Canonical Resolution in  p = 2 ) .  Suppose p = 2 ,  then  the
singularities of a 1-foliation g  Ts  can be resolved by a succession of  blowing-ups
at singular points of  this 1-foliation.

P ro o f  Suppose that y  is locally generated by a vector field 6=01ax +illa lay
with x,y local coordinates in Cs ,q , and 0,0 e m s ,, have no common factor. Letting
it b e  a  blowing-up at q eS , we see by local computation that n*6 vanishes along
the exceptional curve E:=it - 1 (q) with degree r m in fv E(0),vE (0)} —1, where vE  is
the valuation associated to E .  W e claim that r> 1  holds in p = 2 .  First we note
that if 6 is of multiplicative type (i.e., mult,6=1), we see r= 1  by local computation
(cf. Theorem 2.3). S o  it su ffices  to  show  r > 1  in non-multiplicative case (i.e.,
mult4 6 > 2 ) .  Suppose r = 0 .  T hen  w ithou t lo ss  o f  genera lity  w e m ay assume
0Ong,,,I . B y  a n  appropria te  coordinate  change, w e  c a n  fu r th e r  assum e 6
=y018x+tlialay with 1// entL . On the other hand, we have the assumption 62=0(6
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for some a e m s ,q . This induces the equality ika/Ox+i5(0)010y=ci(y010x+ifralay),
which contradicts the assumption çli (y). Thus we have r>  1  and the desired result
follows from the equality in  Remark 2.4, iii).

The following lemma will be needed later.

Lemma 2.7. Set R := 0, i + Aj 0  m o d  p ] ,  an d  le t n : X  Spec R  be
the m inim al resolution. T h e n  th e  1-forms cl,m (xP)IxP, c i g i l A Y P V Y P

 a r e  regular
outside the singular point at the origin. These 1-forms pulled-back by n have a pole
of degree 1 along the exceptional curve E:= n - 1 (0), and satisfy the equality:

A n * (
 x "

dnik(x P )) =  n *  ( d R / k U P ) ) .

P YP

P ro o f  The last equality follows immediately from dR ik (xP'yP( P- ")=0 , since
x'yP - 1  is an element of R .  Let E,,•••,E, be irreducible components of the exceptional
divisor E  su ch  th a t (Ei - Ei+ ,)= 1  for i= 1, • ..,s— 1  (cf. Theorem  2.3). Then an
elementary argument on the intersection numbers shows tha t the equalities

n*div(xP)=pC+ E aiEi , n*div (y P)=pC ' + E bi E,

hold with ai , b . ; integers (1 bi<p) and some effective divisors C, C ' on X  such
that (C- E 1)=(C' • Es) = 1 .  T h e n  th e  d e s ire d  re su lt  c a n  b e  o b ta in e d  b y  local
computation.

3 . Applications to  Zariski surfaces

It was shown by Nygaard [12] that any global 1-forms are closed for a smooth
projective surface X with the Hodge-Witt cohomology H 2 (X, W P)  finitely generated
over W . H ere, we study global 1-forms of Zariski surfaces.

Let S  be a  smooth projective rational surface, Ts be a  1-foliation which
induces the normal quotient surface g : S  V. The minimal resolution of singularities
of V is denoted by n: X  - 4  V.

X

S - ' V  - +  S " )

By identifying S  and S ( ' ) a s  abstract varieties, we obtain the  invertible sheaf
2 2 -  o n  hence AT*Y - 1  and F*..T - 1  are induced on V and S  respectively. In
particular, the pull-back by the Frobenius map satisfies

Our main theorem is:
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Theorem 3.1. We assum e that the 1-foliation 2 ' admits only singularities of
multiplicative ty pe . L et Iz  (resp. 12) be the defining ideal of the singular points Sing . r
in S (resp. Sing V in V ) with the reduced struc ture . Consider the natural inclusion:
H o

(Iz 5if
- 1 ) H o ( 1 g  * y -  1 )  H O ( I z y - ) Then we have the following:

i) I f  H ° (1z 2) - 1 )= 0  is satisfied, then H 1((Ox )=0  holds,
ii) We have an equality H v g * .r-  _ H o ( x ) ,
iii) There exists an ex act sequence

dx
O -+ H °(Iz -r - 1) -+ I -P(0x) -+ 1-1°(L-21).

In particular, if  H ° (I,...?- 1 ) =0  and H ° (S2s )0 0  are satisfied, all the global 1-forms
of  X  are not closed by dx .

P r o o f  i)  Let .11 be the 1-foliation on V corresponding to the purely inseparable
map g :  v ,s ( - 1 ). Then the exact sequence

0 —) Ts  —■ 1z g *Jt —> 0

is induced on  S  (cf. [5]). By taking its dual, we have

(3-A) 0 —) g*./11 - 1 f l s —) O.

Considering th e  universal derivation ds :Cs —*Sls ,  w e ob ta in  an  exac t sequence:

0 —) v  —) g *Cs  g  *(I

From  the surjection:

W (g *Os IOv )-÷11 1((9,) - 4 0,

we see that 111((Ov )=0  holds under the hypothesis H 0(/z .99 -  ')= O . R eca ll th a t V
has only rational singularities, so 111(e x )=0  follows immediately.

ii) We have the following exact sequence o n  Vo := V\ Sing V:

(3-B) 0 — 1 --+n vo , ,4 1 - 1 ,  0,

from which the long exact sequence is induced (g*y - i is an invertible sheaf on V)

0  H o( v 9 k -  1 )  HO( vo Q v ) HO( vo  , ./N-  1).

W e  s e e  th a t  th e  last te rm  vanishes since  H°(g*.II - 1 ) q  Hip (1l5) = 0  holds by
(3 -A ). S o  th e  natural inclusion 1--P(X,12x ) V o  , H°( v,g *Y - 1 ) suggests
that we need to look closely at the elements of in v ,g * ..r - 1). Hereafter, we shall
show that a local generator of g*Y - 1 0 c v ,-4 in  (3-B) has a pole of degree one along
the exceptional curve E:=7c'(4) on the minimal resolution.

At each singular point qe S  of the 1-foliation there exists a local generator
1 which can be expressd as 6=x010x+.1yaley  for some formal coordinates x,ye6s,q
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and  A e F ; (Theorem 2.3). Then by looking at the exact sequence (3-A) locally:

c.o x dx +.
0 -+ Cos ,q(ilydx—xdy)—> d3s,,axeC9s,,dy 6.9s,qydy - . 0 .

we see that /z ®CF)s ,q (x,y) and Y - 1  is generated by dxlx, dyly with the relation
A4x1x=dyly. Applying the same argument on S ( - 1 ) , we can take formal coordinates
x', y ' of &s ( _1),q with x'=xP, y' = yP such that g*.99- 1 06 v  is generated at a singular
p o in t  e Sing V by

d-
lk ((g ex') d

6' d k  (
g-  *

A  '
9v .d  —   —  -  

v
' .

)

g x g*y' ) .

T h e  ra tionality  o f  th is  s in g u la r ity  sa y s  n*mv ,,-i :•—'62x ( — Z ), w h ere  Z  is the
fundamental cycle which, in our case, coincides with the reduced exceptional divisor
E=- 7r -  1 (4). Then using Lemma 2.7, we deduce the equality H ° (Slx ) =HAI2g*.29 - 1 ).

iii) Take an affine covering V= u Ui so that g*.29- 1  in  (3-B) is generated locally
by 1k *coi I coi e Os( _ 1)0k(S 1 -  1 ))1 with the transition functions {k *Ow  I (h i e 0 :(u „," }
such that g*(01=(g*o i )  1g*wi . Then an  element (Pe H°(i2 g*2 - 1 ) is represented
by {0 1e12(9u ,} such that = g 4 4 ,  and the corresponding global regular 1-form
is given by { & *w1}  w ith (/),:eco i =okig *coi e ho(S2v ). Its  image by di , is given by
(dv 0 i)Ak*co i =(dv 4); ) Ak*co; eH ° (W ) .  It follows from the exact suquence (3-B) that
this 2-form is zero if and only if (dy cki)ek*..99 - 1 0k(V) for all i. Hereafter, we shall
study when this condition is satisfied.

ds
Consider the composition map Iz  -4fls 4 2 - 1, which sends an element te l,

to  5(t)eI,..r - i  (cf. 3-A ). Taking the direct image F * a n d  tensoring with .. 2 - 1  o n
s ( - 1 ) , we have the following diagram with the exact row:

 F *1 ,0 Y - 1

1F*dsI F  *6

0 —> -1 )0Y -1 4 F *S2s 0 2 '  —* F a z a ,r -  1 )0  -

Here, we have two equalities:

H°(/„.r - 1 )'- ker(F* ds :H ° (/z 2 ' -P)),

H ° (/2,r 2  - ker(F * (5: H ° (/ 2 ' " )  H V Z -99 P  1 )).

Taking these into account, we obtain the exact sequence:

ds
0 -4  IP (4 5 1  — >  ir (h g *2 - 1) ,11°(g*./11 - 1 0 Y - P).

T h en  th e  desired result follow s because w e know  from  (3-B) that d g  * 1= 0
holds if and only if dy

4
i eg*2 - i0k(V) is satisfied.
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Lemma 3.2. Let X be a smooth projective surface with H 1( 0 , ) = 0 .  If H ° (S2x ) = 0
is satisf ied, then the Hodge spectral sequence of  X  degenerates at E l -term  and the
crystalline cohomology 11c

2
rys(X  W ) is torsion free.

P ro o f  By the Serre duality, we have H = H2(f2x ) = 0, then the degeneration
of the Hodge spectral sequence follows trivially from the Hodge diagram of X .  The
last assertion is a  consequence of the following exact sequence (cf. [2]):

0 I I clrys (X 1 W )0 w k  H r") ,(X1k) TorT(H X/ W),k) O.

Corollary 3.3 (cf. [8]). Let Y  q  Ts  be a 1-foliation on a smooth rational surface
S  adm itting singularities of  multiplicative type and X  be  a  sm ooth m odel of the
quotient surface of  S  by  this 1-foliation. The ideal sheaves 4, 17 are defined as in
Theorem 3.1.
i) If  (K5 0 2 )-1  i s  ample, then we have H '( & ) = 0.
ii) Suppose S  P 2 o r Ee a  Hirzebruch surface. If  If  is satisf ied and 2 ' - 1

 is
ample, then H ° (fl5 )=0 holds.

P ro o f  i )  Consider the exact sequence (3-A):

0  Ks ® Iz Y 0.

Then we have the inclusion:

H ° (.(z .r H  (Ks ® Y ).

Since (K5 ® 2 ' ) - 1  i s  ample, we deduce 11 1(K5 O 2 ) = 0  b y  th e  Kodaira vanishing
theorem (cf. [6, Theorem 1.6, pp. 125]) and get the desired assertion by Theorem 3.1.

ii) F irst consider th e  c a s e  S'•=P2 . Suppose th a t  IP (h r..T  -1 ), which is
introduced in Theorem 3.1, is non-zero . We take a non-zero element and denote its
corresponding divisor by D .  Then, by Lemma 3.4 undermentioned, it is possible
to choose a  divisor D o f ro m  1-1° (/z 2 -1 0 4 .21(— 1)) such that D o a n d  g*D  have
no components in common. Then because of the hypothesis, we have the inequality
(g *D D0 ) pc 2 (1.

z ). Therefore (g *D • D0 )— pc2(12 ) = p(Y  • —  3 p  0 holds.
However this is obviously a contradiction to  the ampleness of 2 ' -1 .

For the second case Xe , suppose that w e can take a non-zero divisor D
from H v g * y - '). Then choose a  divisor D o f ro m  H ° (15 Y - 1 (8)K,-;(— f )) such
that D o a n d  g *D have no components in  common. (Here a  fiber of p  is denoted
by f )  Then because of the hypothesis, we have the inequality (g *D • IV> pc 2 (Iz ).
Therefore (g *D • D0 )— pc 2 (l z )-= p(Y  • (9(f)) —  4p 0 holds. However this is again a
contradiction to  the ampleness of

Lemma 3.4. L e t  Y  b e  an  invertible sheaf  and lz  b e  an  ideal sheaf  as in
Corollary 3.3, ii). T h e n  w e  have

I f S e , then dim H ° (15 ..99 -1 0 K E
-1 0(90 —f))__ 2 and the associated linear system
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is f ree of fixed components.
ii) I f  S P 2,  then I n I z 5I -1 0 K 10 0 2 ( - 1 ) )  has dimension three and this linear
system is f ree  of fixed components.

P ro o f  T o prove i), we recall [7 ] th a t the exact sequence 0 — > p*S2pi — 0 fk
S2E 4 ,,, 0  splits if  and  only if p  divides e. Then consider the exact sequence

0  H ° (p*Slp i® KZ '( —f))-4 H ° (SIE OKZ'(— f))-411 ° (00f )).

H e r e  w e  c a n  c h e c k  tha t d im  H ° (ck @ K E
-: (— f))> 2  a n d  a  is n o t  a  z e ro

m a p .  L etting  F  b e  a  p r im e  d iv iso r, w e  see  tha t d im  1-P(S)E .OKE
-;(— f —  F))

< dim 1-1° (2E.OKE
-. 1( — f)). Then the following diagram is obtained by (3-A):

0 -4 H A s1,.® rz ( — f —n) H
°
(/z 2  1 K Z  1

 (  —f — F)) H i (2 '( — f - 1 ))

11°A .  0 Kt- . 1( —J)) 1-1°(IzY -1 KZ 1( —f)) Hi ( r— f)).

Here H 1(2 ( —f))= H 1(2'( —f — F))= 0 follows from the Kodaira vanishing theorem.
Therefore the inequality dim HA/z 1t' -1 0K E

-1 ( —f — F))< dim H A /z 29- 01 IQ :, 1(

holds for any prime divisor F.
The assertion ii) can be verified similarly using the following exact sequences:

0 —0 S2,,2(2) (9p2(1) 3 Cp2(2) --0 0,

0 —0 K p 2  29(2) --0 51,2(2) 4  lz .T -  1(2) 0 .

Thus we conclude the proof of Lemma 3.4.

Remarks 3.5. (i) If p = 2, the assumption g If  is automatically satisfied. In
other characteristics, it is equivalent to 6  a local generator of being expressed
locally as 6=x010x+yOlay  for some formal parameters x, y  at each point of Z.
(ii) By Corollary 3.3, it can be observed that all the  examples of Zariski surfaces
given in  [8, Section 3], except th e  ones induced by A3 i n  p = 3, d o  n o t  have
non-trivial regular 1-form s. If we drop the assumption g I f  in case p > 3, the
assertion is not necessarily true. I n  t h e  following, we present examples of Zariski
surfaces admitting non-closed regular 1-forms.
(iii) F o r  a  K3 surface X, the non-existence of regular vector fields (equivalently
H ° ())=  O ) was proved by Rudakov-Shafarevich. W e claim  that it is possible to
show this fact in p= 2 from Corollary 3.3. This will be explained in the next section.

Exam ple 3.6. Consider a  p-closed rational vector field 6  o n  the  projective
space P 2 = Proj k[X 0 , X I , X 2]  given by
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a a
= (x" — x) — ,1(y"P — y)—

x ay

a  (X V  X 1) + (Ay'r + (1 2 )x P -
Y-pn- 1 Y 11  ,

aX ay
where {1, 2, • •.,p— 1} and (X0 , , 1)=(1,Y1 xi). T h e n  a
1-foliation is induced on P 2  with .2 9 p 2(—  p n + 1) which admits only singularities
of multiplicative type, and it gives the diagram (3-1). Since 2' - 1 -  is ample, H 1(0,1=0
follows from Corollary 3.3. Then unless i) A=1, or ii) p> 3, (2,n)=(2, 1), consider
an element in H ° (/z ep,(p(pn —1))) given by

1
(xP"—XY — 1 0)P n  —y)— 

 p n ( p  +  1 )  +  p
XPI(1 — XI '

 1 ) —
 2 (yr — X Pi n y  1).

x

Checking the action by S, we see that this element comes from f r (h r . . r  - 1 ). T h u s ,
by Theorem 3.1, the resolution of the quotient surface X  has a non-zero regular
1-form which is not closed by dx .

Remark 3.7. Whether a Zariski surface X admits non-closed regular 1-forms
or not seem s to  be a very subtle question. Unfortunately, the existence of such
1-forms are not well reflected on invariants such as KI/c 2 (X ) .  In p =3, for example,
the Zariski surface X  with A=2, n> 2  in Example 3.6 turns out to  b e  a minimal
surface of general type and the invariant Ki/c 2 (X ) ranges 7/41 <K1/c 2 (X)<2/3
(cf. [8]).

On the other hand, the Zariski surfaces induced by the above p-closed rational
vector field with (p, .1) = (3, 1) and n> 2 are also studied in (loc. cit.). T h e  minimal
surfaces tu rn  out to  b e  of general type without a non-zero regular 1-form and
satisfy 1/23 <KI/c 2 (X )<  1. In both cases, the Miyaoka-Yau inequality is satisfied.

4 .  The Rudakov- Shafarevich theorem in p =2

In this section, we give a proof of the Rudakov-Shafarevich theorem in p= 2
as an application of the results in the previous section. To prove the fundamental
theorem H ° (Tx ) = 0 for a K3 surface X in characteristic p, they first show that there
exists an elliptic fibration on any supersingular K3 surface, which plays the essential
role. However, their proof for the case p = 2 is very complicated and we show that
it is possible to simplify it by using a quasi-elliptic fibration on a supersingular K3
surface X .  Here we use the term supersingular K3 surface in the sense of Shioda.

Theorem 4.1 (Rudakov-Shafarevich [16]). L et X  be a  K3 surf ace . Then we
have H°(T,)=0.

Lem m a 4.2. A ny supersingular K3 surface in p =  2  can be obtained as the
minimal resolution of the quotient surface of P 2  by  a 1-foliation admitting singularities
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of  multiplicative type.

P r o o f  A supersingular K3 surface X in p=2 with the Artin invariant 1 < c o <6
(resp. 7  o-

0 1 0 )  h a s  a  quasi-elliptic fibration f : X —■ P ' with five degenerate fibers
of type It (resp. twenty degenerate fibers of type III). This follows from ([17], §4)
in case 7 _<_(1-

0 ,_ 10, and from ([16], §5) in case a 0 =5,6. T h e  remaining case, i.e.,
1 . 0-

0 f o l lo w s  f r o m  the examples in ([8], §5) and the uniqueness of NS(X) for
each 0-

0 . S ee  a lso  ([17], pp . 149). T hen  consider the saturation of the natural
exact sequence:

0 - 4f*Op1(2E 0  + A) —■ Çx 1t/tor. —> 0,

where E 0 i s  the line of cusps, A  is an effective divisor in  fibers (resp. A = 0 ) .  The
last term is expressed as 1-22 (0 ,,/tor. Iz (f *S)p1(2E0 +A)) -  I  w i th  a n  ideal sheaf /,
defining a  z e ro  c y c le . H ow ever, by com puting th e  C h e rn  num bers, w e have
c2(/z )= 0 .  Therefore th e  d u a l exact sequence induces a  smooth 1-foliation on
X .  This indicates that the  normalization of the fiber product S:=(X x , P 1( " ) -

is  a  smooth rational surface and the P-fibration S  P l ( + 1 ) has tw enty  disjoint
(-1)-curves in its singular fibers. By contracting them , we obtain a Hirzebruch
surface with a  1-foliation admitting multiplicative singularities (cf. [20]). Moreover,
it  is  possible to choose 21 disjoint (-1)-curves on S, and  by Remark 2.4, ii), we
obtain a birational morphism to  P 2  w ith  the required property.

Proof o f  Theorem 4.1. By the  previous lemma, we h a v e  a  smooth rational
surface S with the diagram:

X
p.i., flat, degree 2

contraction of disjoint ( — 1)— curves 1

p2

 

minimal resolution

' V.

 

Since  V  adm its on ly  ra tiona l doub le  po in ts , the  1-foliation 2  corresponding
to  g  satisfies ( 9 ,2 ( —  3 ) ,  ( c f .  th e  canonical bundle form ula [16, §2 Corollary
1]). T h u s b y  C o ro lla ry  3 .3  in  th e  previous section, w e obtain H ° (1 x )= 0  for a
supersingular K3 surface X .  Then the desired assertion for a K3 surface follows
from [16, §2 Theorem 5].

Remark 4.3. Two alternative proofs of the Rudakov-Shafarevich theorem are
presented by N . Nygaard and W . Lang using the Hodge-Witt cohomologies ([11],
[13]).
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