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On the existence of extremal metrics for L%-norm of
scalar curvature on closed 3-manifolds

By

Shu-Cheng CHANG* and Jin-Tong Wu

Abstract

In this paper, based on Bochner formula, mass decay estimates and elliptic
Moser iteration, we show the global existence and asymptotic convergence of a
subsequence of solutions of Calabi flow on some closed 3-manifolds, and then
the existence of extermal metrics of L2-norm of scalar curvature functional on a
fixed conformal class is claimed. In particular, we may re-solve part of the
Yamabe conjecture on closed 3-manifolds.

1. Introduction

Let (M,g,) be a closed smooth n-manifold with a given conformal class [g,]
on M. Then the Euler-Lagrange equation of

wR*d
Ss(g)=f—i4, gelgo]

(_‘. mdw)' "n

is given by
(.1 AR—BR*+Br=0,

. . . IMde[l.
where du=dp,, A=A,, R is the scalar curvature with respect to the metric g,r = j, ¥

Mau
and f= 4? _41) . Now consider the negative gradient flow of Ss(g) on a given
n f—

conformal class [g,], that is, we consider the following initial value problem of
fourth order parabolic equation:

0A

—=AR—BR?*+ pr,

py BR*+Br
(1.2) g=e**gy; A(p,0)=Ao(p),

f mne"*odp, = I mAlo s
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where A:M x[0,00)—R is a smooth function and dp, is the volume element of g,.

When n=2', if the background metric g, has the constant Gaussian curvature,
P. Chrusciel ([Chru]) proved the long time existence and asymptotic convergence
of solutions of (1.3), and the first author generalized his results to any arbitrary
background metric g, and then re-solve the uniformization theorem for surfaces
([Ch3]). Furthermore, we also proved some partial results for the long time existence
of solutions of (1.3) when n=4 ([Ch2]).

When n=3, then = —4% and we will consider the following flow:

@=AR+1R2—1r,
ot 8 8
(1.3) g=e"go; Ap,0)=1o(p),

fase*odpg = [ ppadps .

Although (1.3) is at heart a parabolic equation, due to equivariance under the
group of difftomorphisms, which makes it highly degenerate. On the other hand,
Richard Hamilton’s original proof of short time existence of the Ricci flow was
involved and used the Nash-Moser inverse function theorem. Soon after, D. DeTurck
simplified short time existence proof by “breaking the symmetry” (which causes
difficulty in the directly applying standard theory) to prove short time existence
([De]). Then, by using the Deturck’s trick, which was done by the first author’s
previous work ([Ch5, Lemma 4]) in general case, short time existence of (1.3) follows
easily. We may also compare this to [LT].

In this paper, we will show the long-time existence and asymptotic convergence
of solutions of (1.3) on M? x [0,00).

Theorem 1.1. Let (M, g,) be a closed 3-manifold and A satisfy (1.3) on [0,T) with
A>—H

for the positive constant H which is independent of t. Then the solution of (1.3)
exists on M x[0,00).

Theorem 1.2. The same assumptions as in Theorem 1.1. Then there exists a
subsequence of solutions {€**“g,} of (1.3) on M x [0,00) which converges smoothly to
an extremal metric g ., i.e. its scalar curvature R, = R(g ) satisfying A R ++R% —4r
=0.

Now consider the Yamabe constant which is conformal invariant

O(M,go)= inf —d?)
##0 ([l o)

a2
'For n=2, we consider the so-called Calabi flow 6_=AR only.
t
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0
where Eg ()= [|IVol’duo+3[Rop>dp, -
As consequences of Theorem 1.1, we have

Theorem 1.3. If (M, g,) is a closed 3-manifold with Q <0, and let A satisfy (1.3)
on [0,T). Then the solution of (1.3) exists on M x [0,00).

Theorem 1.4. If (M, g,) is conformal equivalent to the standard sphere (S3,g,),
and let 4 satisfy (1.3) on [0,T). Then, up to conformal transformations (Lemma 3.1),
the solution of (1.3) exists on M x [0,00).

As consequences of Theorem 1.2, we have

Theorem 1.5. If (M,g,) is a closed 3-manifold with Q <0. Then there exists a
subsequence of solutions {g(1)} of (1.3) on M x[0,00) which converges smoothly to an
extremal metric g, ie. its scalar curvature R = R(g,) satisfying A R +3iR2% —4ir,,
=0.

Theorem 1.6. If (M,g,) is conformal equivalent to the standard sphere
(S3,8,). Then, up to conformal transformations, there exists a subsequence of solutions
{g(0} of (1.3) on M x[0,00) which converges smoothly to an extremal metric g,

Remark 1.1. 1. The same assumptions as in Theorems 1.5. and 1.6. If R is
constant, then we re-solve the Yamabe problem on closed 3-Manifolds. Otherwise,
we get a nontrivial extremal metric of L2-norm of scalar curvature on (M?3,[g,]).

[RZdu . \3 . . .

2. fR,< fT , then R is constant. In particular, if R <0, then R,
He

is constant.

One may think the problem here to be more difficult compare the second order
parabolic equations, due to a lack of the maximum principle for fourth order
parabolic equations. Then in order to estimate the C°-bound, we will apply the
elliptic Moser iteration method ([Ch1], [G]). However, we should point out that
Theorem 2.4 is the starting point for applying the Moser iterations as in section 3.

We briefly describe the methods used in our proofs. In section 2, we will derive
the key estimate of equation (1.3) from the Bochner formula (Theorem 2.4). In
section 3, based on [Ch2], [Chru] and [G], we obtain the Harnack estimate for
the equation (1.3). Then we have the C°-bound and the higher order W, ,-estimates
of the solution for (1.3), which imply the long-time existence of solutions of (1.3).

In section 4, in fact we have the uniformly lower bound ([G]) for the solution
A of (1.3) plus the mass decay formula (Theorem 2.4), which implies the uniformly
bounds on all higher-order derivatives. Then we are able to prove the convergence
of the solution of (1.3).
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2. The mass decay estimates

In this section, based on the Bochner formula and bound of energy Ss(g), we
will derive the so-called mass decay estimate of equation (1.3) as in Theorem 2.4.

For g=e**go, Ry=R,,, we have the following formulae for (1.2):

0
@.1) R=R,=e" Ry — 21— 1)AoA—(n— 1) — 2|VAP).
0 0
(222 AR=e"*(AoR+(n—2)KVR, V1)), where Ag=A, , A=A,.
3) du=e"dp,, where duo=dp,,, du=dy,.
a 2
24) = du=n(AR—BR+ fridy.
(2.5) J du= J e"*dy, =J e"*odp, = J du .
M M M M

From now on, C denotes a generic constant which may vary from line to
line. Then we have

Lemma 2.1. Under the flow (1.3), for t>1t,, we have

j deullsj R%dul,,.
M M

Proof.
EJ R%du
dt Jy
oo 15
=—-8| (AR+-R*—-r)’dp.
M 8 8
Thus
ﬁj R%du<0.
dt Ju

Corollary 2.2. Under the flow (1.3), we have

j R?du<C(Ry, o),
M



Extremal metrics for L*-norm of scalar curvature 439

Jor 0<t< 0.
Firstly, from Proposition 2.1 of [G], we have

Lemma 2.3. For ge[g,], say g=e*’g,. If [ du<V and {,, R*du<p?, for some
positive constants V, B. Then?, for 0<a

j e*R%du, < C(a, B, V) + Clat, B, V)f e*du, .
M

M

We will postpone its proof until the end of the section.

Theorem 2.4. (i) For any background metric g,, under the flow (1.3), we have
d
—J e*dpo <Iy(B.g0)+1, (ﬁ,go)J e*dy, .
dt )y M
(i) For any background metric g,, under the flow (1.3), we have
d 0 11
—j eduy<I, + 13J ey — I4f e PNVt du,, S<a<—

where the positive constants I, are independent of t.

Remark 2.1. We will show the long time existence of solution of (1.3) in the
next section based on (i) of Theorem 2.4, and show the convergence based on the (ii)
of Theorem 2.4.

Proof. Compute

1d

oA 1
- aAd — at)._d < aAAR+_R2d .
wdi Me Ho JMe EY Ho fMe ( 3 )dpo

Firstly, we will estimate the term [, e**ARdu,. Since, for n=3, we have
0
R=e"Y(Ry—4A;A—2|VA]?),

0 0
AR=e"2A,R+(VR,V1).

Integrating by parts, it follows

It may work only for a subsequence {z}.
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e** ARdy,

o o
= | e« XA R+ (VR VAD)du,
(2.6) M 0
=| (x—3)e* ' R(AgA+ (o —2)|VA*)du,
JM
r

0 0
=| (@=3)e™ PRy —4Agd— 2V AoA+ (o —2)|VAID) o -

JM

Now let f=e* then
0 0
IVA2=y=2 2V f12,
0
Aod=y W (f T Ao =/ T2IVSP).
This and (2.6) imply

22
e“* ARdy,
a—3Jum

a=4 a—4
=YJ Rof lefdllo"'(“—z_V)J Rof >
M M

2du,

2.7

*du,

—4J 5 of)zdﬂo+2)’_2(2?—1)(a—2—V)J
M

M

0
+2y” of IVf Pdpg.

Again from integrating by parts and the Bochner-Lichnerowicz formula
1 0 V] 0 0 V] 0
5A0|Vf|2 =V +<VL VA >+ Rico( VLV ),

we have ([Ch2])

0
a=—4 _
J 17 AV S Pdpg
M

2 3 +4 o
—t 1 f ! f S g
32y+4—a
2y
2Vz P A
32y+4 aJJ VSVl =33 24 J

From this and (2.7), one obtains

2

V—J ¢**ARdy,
M

o—
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=vJ‘ RO uy4

42zx 4y-3
3 2y—4

+4[M_ 1:|
Ja—2y—4) M

4 e O
_+§v"2(a2—(2y+7)a+3y2+8y+9)J f v4‘4|Vf|“du0.

M

B 0
! ofd#o“‘(“—z—)’)J Rof y4_2|Vf|2d;40

420: 4y-3

0 o
J S5 Isz *duo 2 4I S5 2 Rico(V 1.V fduo

of )2d#0

(i) If we choose

a=4; y=—1.
Then
a2 —Q2y+7a+3y*+8y+9=0
and
J e**ARdy,
M
0
—f Rof~ IAofdﬂo"':‘]J Rof VS 1Pdu,
M M
0
—6 J SV 2, +2J S A N
M M
o o
- 6J S 72Rico(VL VS )du, .
M
But

3|%2f|2 > (A0 /)

One has, for f=e*
4]
f e‘“ARdﬂOS —J ROf_lAOfd”°+3J Rof—2|vf|2dl‘0
M M M
0 o]
-6 J S 2Rico(V LV f)du,
M

0 0
- J Ro(—AoA+IVAP)dpo+3 j RoIVAI2du,
M

M
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0
+ C(go)f IVAPdp,
M

0
< f RoAoAdug+C| |VAPdu,.
M M
But
0
R=e 2 Ry —4AgA—2|V?).
It follows that
1 sip, | 19
RoAoAdpo = |Ro(—-€**R+- Ry —_|VA*)du,
M 4 4 2

1 1 1 0
= ZJth)dﬂo - ZJ;-’ **RRodpo— EJRowllzdﬂo

0
<C+ Cje‘duo + CJdeu+ C|IVA|%du,
0
<C+ CJIVllzdpo .
On the other hand
0
2 Jvlvfﬂzd#o = JRodﬂo - Je 2 Rdp,

<C+ Cje‘duo+ kazdu
<C.

All these imply

1d 4 j 1 lj
- dpo< | e**(AR+-R)du,<C+-| e**R%dp,.
adi Jue Ho Me ( 8 )dpo 8 Me Ho

From this estimate and Lemma 2.3, we can conclude the estimate in (i).
(i) If we choose

1
=2 and so f=e%‘.

Then
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4200—4y—3 4205
= =— <

- = 0
Ja—2y—4 3a-—5

and

4 16 55
gy'z(az—(2y+7)a+3y2+8y+9)=?(a2—8a+z-)<0,

1
for 5<a<11/2. But Ayf= A(,e%‘1 =§e%“(R0 —e?*R), and from Young’s inequality, all

these imply

0
J e* ARdu,<C ;J ey + C, J e YNV 2du,
M M

M
V]
+ Cé(f e~ 2)1Rd#0 +J eaARZdu()) — C"‘f e(a_4)l|V/1|4d#° s
M M M

where C;=C{g,). Again Young’s inequality implies

1d
- e““‘afuosj~

odt)y M

< CJ e(a—4)1d#0 + C(I el 2"Rdu0+f ea).deuO>
M M M

0
_ fe(a_4)A|Vl|4d#0
M

eHAR+ %Rz)duo
(2.8)

ccve]

M

0
e*R%*duy— CJ e YNV *dp,

M

for S<a<11/2. From this estimate and Lemma 2.3, we can also conclude the
estimate in (ii).
This completes the proof.

Now, from the comparison theorem of ordinary differential equations, we have
the following:

Corollary 2.5. Under the flow (1.3),
() For any background metric g, then

J e**duy <é(ty)e’ 1),
M

for e(ty)= Ie“dl‘oL::o .

(i) For any background metric g,, we have, for 5<a <t
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f edug <e(to)eX 1),
M
Sfor g(t0)=je"‘du0|,=,o.
Proof. (i) Let é(f)={ye**du,, then from (i) of Theorem 2.4
d
—e(t) <I,e(¢).
dte( )<1,e(?)
Consider m(t)=2(f)—e(t,), then m(t,)=0 and
d _
Em(t) <Im(t)+1,e(t,).

From comparison theorem of ordinary differential equation, we get
m(f)<e(to)e 0 —1).

This implies (i).
(i)) The same method as in (i) also implies the inequality in (ii).
This implies the corollary.

Now we will give the proof of Lemma 2.3. Given xeM, inspired by [CY], we
define the mass

m(x)=mass of x=lim lim supj edu, .
p=0 =T JB(x,p)

Remark 2.2. A4 point xeM will have large mass m(x) if e* concentrates at
x. However, if m(x) is small enough, e* will be bounded in a small neighborhood of x.

Indeed, from Proposition 2.1 of [G]. We have

Lemma 2.6. The same assumptions as in Lemma 2.3, Given xeM, either
(@)
m(x)=0
or
(ii)
A
m(x)>=2

Bé
where A is the Sobolev constant with respect to g,.

Then
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Lemma 2.7. The same assumptions as in Lemma 2.3, either

(i)

2.9 max A< C(Jd,u, Jdeu>
M

or
(ii) there is a nonempty finite set T={p,,---,p,} and a subsequence {1;} such that,
given a compact set KccM=M-Z,

(2.10) max A< C(K, Jdu, JR%’u) .
K

Moreover, w=Ilim sup,_ r4 which is defined on M and

w< CV,P)

Proof of Lemma 2.3. It is trivial for 0<a <3, for simplicity, we do for a=4.
We may assume Z={p}, then

A
m(p)zﬁ—g.

Now

J e“deuo:J e*R%du
M

M

= j e*R%*du+ J‘ e*R%du
M\B(p.p) B(p.p)

SC(_[ dey)+J e*Rdy,
M B(p.p)

where p will be determined later.
On the other hand, since

A
lim lim supJ e“duOZ—g,
p=0 =T B(x,p) ﬁ
but
f R%du<p?,
M
It follows that
2ﬁ8 421

0
(Rog—4A A —2IVIP2 < e
Ay
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at p for ¢; sufficed close to T. Otherwise, for small enough p'>0

0 2 8
ﬂzzj de,uzf e“(RO—4A0/1—2|VA|2)2du02£ e du,>2p%
B(p,p') B(p.p')

0 JB(p,p")

This leads to a contradiction. Then for small enough p again, one obtains
0
J e’R%du =J (Ro—4AA—2|VAH)2du, < C(B. Ao) e**du,.
B(p,p) B(p,p) B(p,p)

This completes the proof of Lemma 2.3.

3. A priori estimates and long time existence

In this section, following [Ch1], [G] and Theorem 2.4, we will have the
C%bound as in Lemma 3.2. Then, based on [Ch2] and [Chru], one can get the
bounds on all W,, norms as in Lemma 3.3. All these together will imply the
long-time existence of solutions of (1.3).

Let (M, g,) be a closed 3-manifold with the background metric g, at t=0. One
has ([G])

Lemma 3.1. Let (M,g,) be a closed 3-manifold with Q<0. For gelg,], say
g=e*g,. If [ du<V and [y R*du<p?, for some positive constants V, B, then there
exists H=H(V,B) such that

(* A>—H.

(*) holds also, up to the conformal group, for (M.g,) is conformal equivalent to
the standard sphere. That is, there exist conformal transformations ¢, of M such
that, if o}g,=e**g,, then (*) holds for 1.

Now we are ready to prove the Theorems 1.1, 1.3 and 1.4.
Since

0
R=e"?*Ry—e 2 (4AoA+2|VAP),
and
A 1 22 A
—Age s‘—‘le R—Ryle.
That is, for f=e*>0, b=%|e2?R— R,/ >0, we have

3.1) —Aof<bf.
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Then, from Corollary 2.5
bel?

for some g>3. More precisely,
8 8
J bsdu,<C fle“R [5dpe + C(R,)
M

=C J ¢S*|R|Sdu+ C(R,)

1 L gs . \i
(3.2 < C( J (e?l)sdu>5( J(IRIE)Edu)S +C(R,)
1 4
< C(je‘dy>5< ﬁRlzdu)s +C(Ry)

SC'(go’ I/,ﬁa T)

But
(3.3) J S[duy= f e**du, < C.
M M

All together with (3.1), (3.2), (3.3), and Moser iteration ([Chl, Theorem 3.3],
[G]), this leads

supeA< C

on M.
Then we have the C°-bound of solution of (1.3) as the following:

Lemma 3.2. Suppose 2 satisfies the hypotheses of Theorem 1.1, there exists a
constant C=C(H,K, Ay, go, T), such that

"A'"LW(M)Sca
Vte[0,7). Moreover, we have

”'{(t)" W2 < C’
for te[0,T).

Proof. Since

J R?%du<C,
M
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SO
f e Ry —e 3A,er)du, <C.
M
But| 4] .- <C, it follows

J (Aoe%)zduo <C
M
This implies
i
||e2 || Wa.2 < C’

and from Sobolev imbedding theorem W, ,c W, ¢ for n=3, we have

“)'”Wz,z < C

This completes the proof.

For higher order estimates, it is straightforward, we refer to [Chru] and [Ch2]
for details.

Lemma 3.3. ([Chru, Proposition 4.1.]). The same assumptions as in the previous
lemma. There exists a constant C=C(|Aollw, ,, 80, T), I=2 such that

0
IV'A(p, ), <C,
Vte[0,7).

Then Theorem 1.1 follows.
Furthermore, by applying Lemma 3.1, we prove the Theorem 1.3 and 1.4.

4. Asymptotic convergence to an extremal metric

In the previous sections, we show the following bound:
je‘“duo < Ce“

and the C°-bound

4.1 sup |A(p, ) <AT), 0<t<T.

peM.

Then we have the long time existence of solution of (1.3).
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However, at the previous steps, the C(7) as in (4.1) may blow up as t— o0, and
then a solution of

Q=AR+1R2—1r
ot 8 8

need not converge to a solution of
1 1
AR+-R?>——_r=0.
8 8
In this section, we will show the uniformly bound on ((T) and ||4|w,,. Then
there exists a subsequence of solutions of (1.3) converges to an extremal metric.

From now on, the constant C will denote the universal constant which is
independent of ¢, for te[0,00] and may vary from line to line.

Lemma 4.1. The same assumptions as in Theorem 1.2, then
J e X (Aye3)2dpy < C.
M
Proof. Since [ R?*du<C, we have
_a A, A,
e Y Ry—e 2Aqe2)’dpuy, < C.
M

But 1> — C, this completes the proof.

Lemma 4.2. The same assumptions as in Theorem 1.2, we have

0
f AV 2du, < C.
M
Proof. We compute
0 0 2
f e‘lVllzduo=4J IVe2|*dp,
M M
= —4J e%Aoe%duo
M

< CJ e3duy + CJ e 2‘(Aoe%)2duo
M M

<C.
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Lemma 4.3. Under the fiow (1.3), if
A>—H

for all 0<t<oo. Then

0
f IVAI*dpo < C(K. go)
M

and
f e**dyu, < (K, go)
M

for all 0<t< 0.

Proof. As in Lemma 2.7, we have two cases. For the case (i) of Lemma 2.7,
we are done.
Case (ii) of Lemma 2.7: From

0 0 0
ZJ |V1|3dHoSJ e‘lVilzdu0+J e \VA*du,
M M M
and the previous lemma, in order to show the fist part of Lemma 4.3, it suffices
to control

0
J e YVA|*du,<C.
M

By passing a subsequence {¢;}, we may assume IZ={p}#¢, then from Lemma
27, A<C on M\B,, for B,=B(p,p). On the other hand, from (ii) of Theorem 2.4,
we have

0 11
gf e“‘duos12+l3f e“ldu0—14j e MV dy,, S<a<—.
dt ) u M M 2
This implies

0
ij e*du,<I,+ 13J e**duy + I_,,J ey, — I4J e~ MY 4du,
dt)m M\B, B,

B,

o
e**duy,— LJ e VA *du, .

B,

SC(a)+I3J

B,

Thus, from the same method as in Lemma 2.3, for small enough p>0,
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on B, Otherwise

d
—j e*du,<C— Iaj e**du, .
dt)y B,

It follows that we have the uniformly bound of {5 e**du,, 5<a <% This leads
to a contradiction for X #¢.
Hence

0 (o] 0
J e"‘lVlI‘du(,:J e'*lVll“duo+J e }|VA|*du,
M M\B,

B,

0
4.2) sJ e"lVll‘duo+Cf e3du,
M\B, B,
0
<C+ J e A\VA*du, .
M\B,
But, since A<C on M\B,, we have

f (Aoe?)dto < C
M\B,
and
j (e%)zduosC.
M
One has
e%e Wi,

on M\B, and then standard Sobolev imbedding theorem implies

i
e2e W, ¢

on M\B,. That is

0 0 A
J 2!\ VA|*duy = J |Ve2|*du, < C.
M\B,

M\B,

On the other hand, A> —C. Thus

0 0
j e MVA|*du, < CJ e |\VA|*du, < C.
M\B,

M\B,
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Then, from (4.2)
o 0
J e \Vil*duy, < C+J e YVA*duy, < C.
M M\B,

This completes the proof of the first part of the Lemma.
From this, [, e**du,<C and 1> —C, one can have

1A=, ,<C.

Hence from Moser’s inequality
J e**dpy < C'exp(C | A=A, )< C
M
and then

J\ e4ldﬂ0 < C
M

for0<t;<co0. Thisand the following theorem lead to X =¢. This is a contradiction.

Then the same methods as in the previous section, we have the uniformly
bound on all W, , norms.
Now we have the following main result of this section:

Theorem 4.4. The same assumptions as in Theorem 1.2. Then there exists a
subsequence {t;} such that

R->R,,
as t;—oo with
1 1
AR, +-R% ——r =0,
8 8

where 1, is a constant such that r={y R*du/[y du—r, as t;— 0.

Proof. Since

1d 1
—22 | Rdu=| (AR+=(R*>—r)2dy,
8dt,[M a fM( §( ) du

then

J f(AR+1(R2—r))2dudt<w,
0o Jm 8
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and then there exists a subsequence {;} such that

J

1
f (AR+§(R2—r))2du|,j—>0 as ;- oo.
M
Now since [|4yx..<C for all 0<t;< o0, we have
1
J (AR+§(R2—r))2du0|,j—>0 as ;- oo.
M

On the other hand, from (2.3) and (2.5), we have

Fory

as t;— 0, for some constant r,.
Then the elliptic estimates and the interpolation inequalities yield

C>
R—-> R,

as t;—00 such that

1 1
AR, +-R% ——r_ =0.
8 8

Then Theorems 1.2, 1.5 and 1.6 follow.
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