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On the existence of extremal metrics for L2 -norm of
scalar curvature on closed 3-manifolds

By

Shu-Cheng CHANG*  a n d  Jin-Tong Wu

Abstract

In  this paper, based on  Bochner formula, mass decay estimates and elliptic
Moser iteration, we show the global existence and asymptotic convergence of a
subsequence of solutions of Calabi flow on some closed 3-manifolds, and then
the existence of extermal metrics of L2 -norm of scalar curvature functional on a
fixed conformal class is claimed. In particular, we may re-solve part of the
Yamabe conjecture on closed 3-manifolds.

1. Introduction

Let (M, go) be a  closed smooth n-manifold with a  given conformal class [g o]
on M .  Then the Euler-Lagrange equation of

Im R 2dit
Ss(g)— 4 ' g E  Egd

(fMdf01

is given by

(1.1) AR —  f3R2 + fir =0,

where clti= eltig , A = Ag , R is the scalar curvature with respect to the metric g,r =
f  m R 2

m cly
n— 4

and  fi = . Now consider the  negative gradient flow o f  Ss(g) o n  a  given
4(n — 1)

conformal class [g o] ,  th a t  is , we consider the  following initial value problem of
fourth order parabolic equation:

at = A R  fiR2 + fir,

(1.2) g =e 2Âgo ; 2(p,0)= .10(p),
m „e"V il o = 1M4L0,
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where 2:M x [0,00)-4? is a  smooth function and dtto  i s  the volume element of go .
When n=2 1, if the background metric go  has the constant Gaussian curvature,

P. Chrukiel ([Chru]) proved the long time existence and asymptotic convergence
of solutions of (1.3), and the first author generalized his results to any arbitrary
background metric g o a n d  then re-solve the uniformization theorem for surfaces
([C h3]). Furthermore, we also proved some partial results for the long time existence
of solutions of (1.3) when n =4  ([Ch2]).

When n = 3, then 13 = 1 ,-  and we will consider the following flow:

= AR +-
1 

- -
1

r,
01 8 8

(1.3) g e2Ag. 0 ; 1(p, Adp),

fM3e3 2 ° 4 0 =  M340 •

Although (1.3) is at heart a  parabolic equation, due to equivariance under the
group of diffeomorphisms, which makes it highly degenerate. O n the other hand,
Richard Hamilton's original proof of short tim e existence of the Ricci flow was
involved and used the Nash-Moser inverse function theorem. Soon after, D. DeTurck
simplified short tim e existence proof by "breaking the  symmetry" (which causes
difficulty in  th e  directly applying standard theory) to prove short time existence
([D e]). Then, by using the Deturck's trick, which was done by the first author's
previous work ([Ch5, Lemma 4]) in general case, short time existence of (1.3) follows
easily. W e  m a y  a lso  compare this to [LT].

In this paper, we will show the long-time existence and asymptotic convergence
of solutions of (1.3) on M 3 x [0,00).

Theorem 1.1. Let (M, go ) be a closed 3-manifold and 2 satisfy (1.3) on [0,7) with

2> — H

for the positiv e constant H  which is independent o f  t. T hen the solution of  (1.3)
exists on M x [0,00).

Theorem 1.2. The same assumptions as  in  Theorem 1.1. Then there ex ists a
subsequence of solutions 

le ,2 ,1 ( t )g 0 l
 o f  (1.3) on M x [0,00) which converges smoothly to

an extremal metric g, i.e. its scalar curvature R = R (g op) satisfying A œ i?.+ A r
=0.

Now consider the Yamabe constant which is conformal invariant

E
Q(M,g0 )= inf 

g ° ( ( p )

( 1149 16 4 0 ) 3

02
'F o r  n=2, we consider the so-called Calabi flow —=AR only.

at
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where Eg o ((P)= SIV912 4 0 +k-SR o cedn o .
As consequences of Theorem 1.1, we have

Theorem 1.3. If  (M,g 0 ) is a closed 3-manifold with Q <0, and let A  satisfy (1.3)
on [0,7). Then the solution of  (1.3) exists on M x[0,co).

Theorem 1.4. If  (M,g o ) is conformal equivalent to the standard sphere (S 3 , - ),
and let A  satisfy (1.3) on [0,7). Then, up to conformal transformations (Lemma 3.1),
the solution of  (1.3) ex ists on M x [0,0o).

As consequences of Theorem 1.2, we have

Theorem 1.5. If  (M,g 0 ) is a closed 3-manifold with Q < 0 .  Then there exists a
subsequence of solutions {g(t)} of  (1.3) on M x [0,co) which converges smoothly to an
extremal metric g o„ i.e. its scalar curvature R .= R (g.) satisf y ing A .R .+ kR 2.- -k r
=0.

Theorem 1.6. I f  (M,g 0 ) is conf orm al equiv alen t to  the  s tandard  sphere
(S 3 , ). T h e n , up to conformal transformations, there exists a subsequence of solutions
{g(t)} of  (1.3) on M x[0,00) which converges smoothly  to an  extremal metric g ..

Remark 1.1. 1. The same assumptions as in Theorems 1.5. and  1 .6 . If R .  is
constant, then we re-solve the Yamabe problem on closed 3-M anifolds. Otherwise,
we get a  nontrivial extremal metric of L 2-norm of scalar curvature on ( M 3 , [g0 ]).

1 1 R 2 d "
- i2. I f , then R oo is  constant. In particular, if R .<0 , then R .

f dp .
is constant.

One may think the problem here to be more difficult compare the second order
parabolic equations, d u e  t o  a  lack  of the m axim um  principle fo r  fourth order
parabolic equations. Then in  order to estimate the C ° -bound, we will apply the
elliptic Moser iteration method ([Chi], [G]). However, we should point out that
Theorem 2.4 is the starting point for applying the Moser iterations as in section 3.

We briefly describe the methods used in our proofs. In section 2, we will derive
the  key estimate of equation (1.3) from the Bochner formula (Theorem  2.4). In
section 3, based on  [C h2], [C hru] and  [G ], we obtain the Harnack estimate for
the equation (1.3). Then we have the C°-bound and the higher order Wk ,2 -estimates
of the solution for (1.3), which imply the long-time existence of solutions of (1.3).

In section 4, in fact we have the uniformly lower bound ([G]) for the solution
A of (1.3) plus the mass decay formula (Theorem 2.4), which implies the uniformly
bounds on all higher-order derivatives. Then we are able to prove the convergence
of the solution of (1.3).
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2. The mass decay estimates

In  this section, based on  the  Bochner formula and bound of energy Ss(g), we
will derive the so-called mass decay estimate of equation (1.3) as in  Theorem 2.4.

For g =e "g o , R o =R g o , we have the following formulae for (1.2):

0
(2.1) R = Rg = e 2 A (R0 —2(n — 1)A0 —(n —1)(n — 2)IV )12).

o o
(2.2) AR = e N A ,R  +(n—  2)<VR, VA» where Ao = Ago , A = Ag

(2.3) dtt=e").40, where dmo = dpg 0  , di/ = dtig

0
(2.4) —dtt=n(AR-13R2 + fir)dtt.

at

(2.5) dtt= f e"d1.1 0 =1 en 4 dtto =  d p o .
L

From  now  o n , C  denotes a  generic constant which m ay vary from  line to
line. Then we have

Lemma 2.1. Under the flow (1.3), f o r t to , we have

fm R 2dtti, R241,0.

Proof

d

d

t

f

mR 

2 

dit

= — 8 f (AR + —
1

R2 — —
1

r)2dp.
m 8 8

Thus

R 2 d p < 0 .

di m

Corollary 2.2. Under the flow (1 3), we have
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f o r 0<t<oo.

Firstly, from Proposition 2.1 of [G], we have

Lemma 2 .3 .  For ge[g o ], say g=e 2 A go . If and fm  R 2 d1u /32 , for some
positive constants V , 13. T h e n 2 , f o r 0<a

f fm e"R 2 dtto C (a, fi, V)+ C(a, /3, V )  e"dtio .
m

We will postpone its proof until the end of the section.

Theorem 2 .4 .  (i) For any background metric go , under the flow (1.3), we have

d  f  m e"dito-<lo(Ago)+ Ii(fl>go)f m e"dito •dt

(ii) For any  background metric g o , under the f low  (1.3), we have

—
d  

e"dli o <  + 13 e"dtt o - 4)ÀIV 214 du
dt m , o 5 < a  <

11
2

where the positive constants L  are independent of  t.

Remark 2.1. W e will show  the long tim e ex istence of  solution of  (1.3) in the
next section based on (i) of  Theorem 2.4, and show the convergence based on the (ii)
of  Theorem 2.4.

Pro o f . Compute

1 d 1- e " d i i 0 =  e"— ditoe " ( A R +  - Ridlito •ad t  m a t 8

Firstly, we will estimate the term Sm e"ARdil o . Since, for n=3 , we have

o
R =e - 2 AR 0 -4A 0 /1-21Val 2 ),

o o
AR = e  2 4 0R + <VR, V A »

Integrating by parts, it follows

2 It may work only for a subsequence
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im e"ARdtt o

0 0

= f  d—  2 )A(A0 R + <VR, V A* 11143

o

JM=  (a — 3)e(a - 2 /?(A,„/ + (a — 2 )1\7 2 12)40

= (x —3)e(' - 4 )À (Ro — 4A0 2- 21V)12 )(40 A+ (a — 2)1VAI2 )40•

Now let f = e ,  then

IV212 r 2lVf 12,

o
L 0A

( f  A of  — f f1 2 ).

This and (2.6) imply

Y
2

ea 'ARcitioa -3
0

—=y1. R o t y4  I  Ao fdp o +(a +2 — y)f R of
4

œ Y lVfl2410
(2.7) o

—4I f a 2 (A0f ) 2 4 0 + 2y - 2 (2y — 1)(a — 2—  Y/f Y  4 1Vf 14 40

0
+2T- 1 (4y +3-20

)

f Y 4  3 A0f 1Vf 1240 •

Again from integrating by parts and the Bochner-Lichnerowicz formula

1 0 0 0 0 0 0
- A0 IVfI 2 =IV 2 f1 2 + <V fV &0f> + Rico (V f V f),

we have ([Ch2])

J —4
o

3 A0AV/12 4
m

0
2 y

4 3 Y  + 4 4

3 2 y  + 4 —  a  f l  Y 2 (A0f) 240 +
3 Y

f Y
m

4 IVf1440

2 y

32y +4 -2 y o o
f a  Y 4  R ic (V f)dtio •

-

y

4

 2 IV2f 1240 32y +4_ j„,, 0,f„,,
From  this and (2.7), one obtains

Y2e " A R d [ t o
a -3  A ,

(2.6)

2
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o
= y  Rory 4  i Aofclito +(ac —2— 'Of R o t- -‘ 2 1Vf1 2 dil0

0 o4  2cx 4 y 3  f  4_ 2iv0  20 4 0  43 2,00C:24;:43 jrmr ; 4  2 RiC0(Vf VPdtto3 ot_2y —4 iv/

+4
[ 20c-4y-3 i l f  r;

m. 
4  200f)2(itio

3(ot-2y-4) 

4• y 2(oc 2 +7)0c+3y2 + 8 y  + 9 ) 1
3

(i) If we choose

a=4; y= — l.

Then

a2 —(2y+7)a+3y 2 +8y+9=0

Le" ARdkto

= Rof-lAofdito + 3f R0f - 2 1Vf 2 dl2 0

—6  f - 2 1\7 2 f12 4 0 +21  f - 2 00.1)2 d,uo1 

0 0
—61I 2 Ric0 (Vf Vf)dtio •

o
31v2 f12

 ( A0f)2 .

One has, for f = e '

e4 1 ARd,u0 ._ Rof-lAofdp0+31 R o f  - 2 Ivf 12 40

0 0
—6f f  - 2  Rico (V f,V f)d,u0

0
— f R0(— Ad, +IV 2l2 )dp0 + 3JR0lV212d/-t0

and

But
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+ gg-0)1 1v212 410

f R o A0 /14 0  + Cf IV212 4 o .
But

o
R 2 A(R0  4A 0 2-2IV Al 2 ).

It follows that

RoA0,,d,i0=fRo(_-e"R+-1R0--11V° ) 12 )dilo4 4 2

- - 1 R014 2 citio= —1 jRciZtio — —1 fe2 ''RRodtio14 4 2

<C+Cfe l dpo +Cf/edi.t+CfV/11 2 dflo

c+ cfivAl2 40

O n the other hand

2 11V,112 40=fRodito — fe 2 A Rdtto

< 

C+ C fe Adtto + C jR 2 dtt

<C.

All these imply

1  d  f  
e

4 ,

40 e4 R + -1 R2 )di10 .C+-1 f  e41R 2 410 .
4dt m J M 88  m

From this estimate and Lemma 2.3, we can conclude the estimate in (i).
(ii) If we choose

1
and s o  f = OA.

Then
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4 2a -4y - 34 2 - 5
 <0

3 - 2 y - 4 3  a - 5

and

55
-
4

y  2(a2 - (2y + 7)a + 3y2 + 8y + 9) =  1
6

(a2 -  8a + --)< 0,
3 3 4

for 5 <a<11/2. But Aof =A0eI2=-
1
eV(R o - e 2 1 /?), and from Young's inequality, all

8
these imply

fm

e"ARdtt o < C i  m e(a- 4 ) 1 d,u0 + C2' e (" - 4 ) 2 IV Al 2 4 0

0
+ C e(œ 2 ) 1 Rdtt0 eOE2R2dlio)-C4' e(Œ- 4 ) 2 1V214 dpo ,

where Ci =C;(g o ). Again Young's inequality implies

1
-
1

—
d

a dt fm
 eOE2dtio _<_f eOE2(A R + -R 2 )4 ,

8

< Cf 0 '  4 )A dtio +  C (f e (Œ-  2 )2  Rdpo  + f e" 2 R2 4 0 )

-  C f  e (Œ-  4 )2 IV

+ Cfe R2 d,i0 _ C f  e ( `̀ -  4 ) 2 1' ',1.14 dito
M I M

for 5< a< 11/2. From this estimate and Lemma 2.3, we can also conclude the
estimate in (ii).

This completes the proof.

Now, from the comparison theorem of ordinary differential equations, we have
the following:

Corollary 2.5. Under the f low  (1.3),
(i) For any  background metric g o , then

Le42dtto<J(to)eh(`-`°),

for e(10)=fe
4A

dtt0lt=to-
(ii) For any  background metric g o , w e have, for 5<a<1-2-1

(2.8)
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Le"dit o <e(t o ) e " -  to) ,

for e(t o )= je"dfilolt = to .

Pro o f . (i) Let ê(t)=S m e"dp o , then from (i) of Theorem 2.4

— è(t) I A t).
dt

Consider m(t)=F.(t)—e(t o ), then m(t0 )=0  and

—
d

m(t) i m(t)+ I A t 0 ).
dt

From comparison theorem of ordinary differential equation, we get

m(t)< 0 )(e1 i(t to ) — 1).

This implies (i).
(ii) The same method as in  (i) also implies the inequality in (ii).
This implies the corollary.

Now we will give the proof of Lemma 2.3. Given xEM, inspired by [CY], we
define the mass

m(x)= mass of x= lim lim sup
p B (x ,p)

Remark 2.2. A  point x eM  w ill hav e large m ass  m (x )  if  e  concentrates at
x. However, if m(x) is small enough, e' will be bounded in a small neighborhood of x.

Indeed, from Proposition 2.1 of [G ] .  We have

Lemma 2.6. The same assumptions as in Lemma 2.3, Given xeM, either

Or

where A o  i s  the Sobolev constant with respect to g o .

Then



Extrema! metrics f o r L 2 -norm of  scalar curvature 445

Lem m a 2.7. The same assumptions as in  Lemma 2.3, either
(i)

(2.9) max A  C(fdp, f led,u)

or
(ii) there is a nonempty f inite set E={p i ,—•,pk } and a subsequence {ti }  such that,

given a com pact se t K c  M = M  —E,

(2.10) max A  41C, 14 112 2 4 ) .

Moreover, w= lim supt _ T A which is defined on M  and

w_C(V,13).

Proof  of  Lemma 2.3. It is  trivial for 0<oc<3, for simplicity, we do for 04=4.
W e may assume E={p}, then

A 0

in(P)- -
136

e 4AR 24 0 = f e zi e d i t

m

IV I\B(p,p) 

eA R 2 dit+ f i3 (p ,p ) e'R2dit

LÇC(f R 2 d,u)+ e'R2d1.1,
M B(P.P)

where p  will be determined later.
O n the other hand, since

lim lirn sup Ie 3 A c l i t o >
A ,

—
p-.0 t-.°T B(x,p)

but

fm R 2 dit_<_.#2 ,

It follows that
o

(R0 -4,64-21V11 2)2 <
2 fl8

e "
Ao

Now

SM
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at p  for ti  sufficed close to  T. Otherwise, for small enough p' >0

13 2 R2dii= o 2138

e-A(R0-4A0/1, - 2 1V/112 )24o e'clito>2#2.A
B(13 ,13 ') P ') P i  0 B(p,p')

This leads to a  contradiction. Then for small enough p  again, one obtains

f 122( R o -  440 A-21\7212 )24 0  C(/3, A  0 ) fm p , p )
e

4 ..I.

C12 11
. .

0 .

a(P ,P ) B(P,P)

This completes the proof of Lemma 2.3.

3. A priori estimates and long time existence

In  th is  section, follow ing [C hi], [G ]  a n d  Theorem 2.4, w e w ill have the
C° -bound as in  Lemma 3.2. Then, based o n  [Ch2] and [Chru], one can get the
bounds o n  a l l  W k , 2  norm s a s  in  Lemma 3.3. All these together will imply the
long-time existence of solutions of (1.3).

Let (M,g 0 ) be a closed 3-manifold with the background metric g o a t  1= 0 .  One
has ([G])

Lemma 3.1. L et (M,g 0 ) be a  closed 3-manifold w ith Q < O .  For ge[g o ], say
g =e 'g o . I f  a n d  f ,  R 2 dp<13 2 , f or some positive constants V, 13, then there
exists H=H(V,[3) such that

(*)
A > -H .

(*) holds also, up to the conformal group, for (M,g0 ) is conformal equivalent to
the standard sphere . T hat is, there exist conformal transformations (p i  o f  M  such
that, if  e g t =e 2 7 g 0 ,  then (*) holds for

Now we are ready to prove the Theorems 1.1, 1.3 and  1.4.
Since

o
R = e - 2 A R 0 - e - N4A 0 A+21V212 ),

and

-40eA <-
1

1e2 A R -R  1
4

That is, for f =e '>0 , b =lle 'R  - R o l >0, we have

(3.1)
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Then, from Corollary 2.5

beLq

for some q > 4 . M ore precisely,

8Wito C JIe22R r
8

dt10 + ORO

= C f e l l e d / I  +

(3.2) < C (f (eF) 5 0/p) 5 (1(1Riss)idtlY  + C(R 0)

_C(fe 2cli.t) (fIRI 2 dp) +C(Ro)

C(go V , 13, T).

But

(3.3) f  24 0 =  e nd ito . C .

All together with (3.1), (3.2), (3.3), and  Moser iteration ([Chi, Theorem 3.3],
[G]), this leads

supeyt<C

on M.
Then we have the C

°
-bound of solution of (1.3) as the following:

Lemma 3 .2 .  Suppose A satisfies the hypotheses of  Theorem 1.1, there exists a
constant C= C(H, K, ) o , g0 , T), such that

11211L00( m)

Vte[O,T). Moreover, we have

114011W2 , 2c .

for te[0,7).

Pro o f . Since

L R 2 d ,u< c,
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SO

f.
A A

e - A (R o —e - It‘ o e ) 2 4 / 0 <C.

But II Ili,- C, it follows

.f.

(4042dpio<C.

This implies

116411w2,2-C,

and from Sobolev imbedding theorem W2 ,2 C W1 ,6  for n =3 , we have

112 11w2,2-- C.

This completes the proof.

For higher order estimates, it is straightforward, we refer to [Chru] and [Ch2]
for details.

Lemma 3.3. ([Chru, Proposition 4.1.]). The same assumptions as in the previous
lemma. There exists a constant C= (Ill 2011 w2.2 , g 0 , T ), such that

V te[O,T).

Then Theorem 1.1 follows.
Furthermore, by applying Lemma 3.1, we prove the Theorem 1.3 and 1.4.

4. Asymptotic convergence to an extremal metric

In  the  previous sections, we show the following bound:

e o —  
c<L,e

and the Ce -bound

(4.1) sup I/14p, C(T), 0 < t <T.
pott

Then we have the long time existence of solution of (1.3).
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However, at the previous steps, the C(7) as in (4.1) may blow up as t-*co, and
then a solution of

OA 1  2  1

ôt
=AR-ki/2

need not converge to  a solution of

A R +  R 2 - -
1

r=0.
8 8

In this section, we will show the uniformly bound on C(7) and IIAII • Then
there exists a  subsequence of solutions of (1.3) converges to  an  extremal metric.

From  now on, the constant C will denote the  universal constant which is
independent of t, for te[0,co] and may vary from line to line.

Lemma 4.1. The same assumptions as in Theorem 1.2, then

AL 2e-  2 (A0 e-2)2

dito C.

P ro o f  Since Im R 2 c/ii<C, we have

SM e- 2 (Ro - e - 16,0 e1)2 clito _ C.

But .1.> -C ,  this completes the proof.

Lemma 4.2. The same assumptions as in Theorem 1.2, we have

i'

e2 IVAI 2 c1120 C.
M

P ro o f  We compute

'

0 C O
i A

eA lVAI2 dtto = 4 f IVO 2d liom 
m

=  -4  e lA oeldpoI
m

<C f e 3 A ci1t0 + C e-2A(A0e1)2cipto

< C.
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Lemma 4.3. Under the flow (1.3), if

—H

f o r all 0 < t < œ .  Then

o

IV1 13 c112 0 C(Kg0)

i e"410 C(K,g0)m  

f o r all 0 <t< co.

Pro o f . As in Lemma 2.7, we have two cases. For the case (i) of Lemma 2.7,
we are done.

Case (ii) of Lemma 2.7: From

.IVAI34 0e ' l V A l 2 4 0 + J e IVAl 4 d1Lo '

and the previous lemma, in  order to show the fist part of Lemma 4.3, it suffices
to control

SM
o

elV2I 4 dtto C .

By passing a  subsequence { ti }, we may assume I =  {p} 0 0 ,  then from Lemma
2.7, C on M\B p , for B p = B (p,p). On the other hand, from (ii) of Theorem 2.4,
we have

—
d  

e"dp o  / 2  +  / 3 e"dp 0 —I4  e ("-  4 )2  IVAI 4 C1110 , 5 <a < L
1

.

d t  m J M JM2

This implies

d
—  e "d p 1 l 2 + /3 e"dpo+ 1 3 e " d p o — I4J e(Œ - 4 )AlvAl 4 d,u0

dt M M \ B p Bp B,,

0
COO+ / 3 fe " d p o —/4 1  e (Œ-  4 )1 1V/114 4o .

B p B , ,

Thus, from the same method as in Lemma 2.3, for small enough p>0,

21
IV Al4

14

SM
and
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on B .  Otherwise

—
d  

f  e d p 0 C— 1 3  f  e" duo .
d t  , Bp

It follows that we have the uniformly bound of 1B , e 2 dit o  ,  5 < a  < .  This leads
to  a contradiction for E#0.

Hence

I o o o
me - À 1V214 dpo = elVAI4dito+ e l V 1 I 4 dito

M \ B p B p

o
(4.2) <  f e - À 1V214 dtto +  C f e3 1 dit o

M\Bp B p

< C + e l v 2 i4 dii0
IM \ B p

0

But, since ,I.. .0  on  M \B p , we have

f (A0e1)2 c/yo <C
M\B p

and

L(e1)2duo<C.

One has
A

e2  6  W 2 ,2

on M \B p  a n d  then standard Sobolev imbedding theorem implies

A
erf E W1,6

on M \B p . That is

0 Ae2AlvA1440= Il4d/.10 .. C.I
0

M\Bp IVe
M O  p

O n the other hand, 2> — C . Thus

o o
e - 2 1V214 du c , C e2AIV21440 C.

fM\B p M \ B  p
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Then, from (4.2)

f
o

 C + el ;  /114 4 0  C .
M  111\Bp

This completes the proof of the first part of the Lemma.
From this, fm e"dp o <C  and A> —C, o n e  can have

Hence from Moser's inequality

Le4 ( ' )dpo < C'exp(C" a —7 11 w 3) C

and then

im e"dp o <C

for 0 < ti < c o .  This and the following theorem lead to E= 4). This is a contradiction.

Then th e  same methods a s  in  th e  previous section, we have the  uniformly
bound on all Wk , 2  norms.

Now we have the following main result of this section:

Theorem 4.4. The same assumptions as in  Theorem 1.2. Then there exists a
subsequence {t i }  such that

as t.— co with

A R  
+ ! R

. = 0
"  8 8

where r a constant such that r= f m  R 2 dpIlm  du— r  as

P ro o f  Since

1 d
dt j m R2d

f i r =  I
m  (AR + 1 (R2 — 0)248 8

then

1JO

 fm (A R+(R2— r))2dpdt<co,
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and then there exists a  subsequence { such that

L(AR + —(R2 — r))2 dpi t i 0  a s  t • .

Now since II 2 11wk.2 C for all 0 < ti  < oo, we have

f m (AR + (R 2 — r))2 dp0 lt1 —■ 0 a s  t • —> oo.,

On the other hand, from (2.3) and (2.5), we have

r oo

as co, for some constant r ço .
Then the elliptic estimates and the interpolation inequalities yield

as t.— ccoo such that

1 1A R  +—R2  - - r  =O.
c° 8 8  c°

Then Theorems 1.2, 1.5 and  1.6 follow.
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