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On some related non homogeneous
3D Boltzmann models in the non cutoff case

By

Radjesvarane A LE X A N D R E

Abstract

W e study some issues concerning the existence of w eak solutions for two
Boltzmann like equations :  a  Modified Boltzmann model and the Boltzmann
Dirac model. The analysis of the collision operators rests on suitable decom-
positions. These are also provided for the Generalised Boltzmann operator.
This study is performed without assuming Grad's angular cutoff hypothesis on
the cross sections.

1. Introduction

In this work, we wish to show that the method introduced in  our previous papers
[Alel, ..., 6] yields definite results on such issues as the existence, regularity ..., when
looking  to  som e re la ted  3D  Boltzmann models, fo r  w hich G rad 's  usual cutoff
hypothesis on the collision kernel B fails to be true.
More precisely, the models studied in this paper are non homogeneous ones, that is
they also depend on the position variable x (via the free streaming operator) and the
collision operators involved herein cannot be splitted into the usual gain and loss
terms, in  view of the high singularity of the collision cross sections.
For the  sake o f simplicity, we shall only consider 3D cases, although as already
mentionned in [Alel, 5], the computations could be extended to other dimensions.
once one knows the (more or less) explicit expressions for the cross-sections.
To explain our purpose, let us recall that the usual Boltzmann equation consists in
looking for a solution f = f (t,x ,v) where t (the time) is in R+ , x(the position) in R3 ,
v(the velocity) in  123 , of the following non linear partial differential equation

aif ( t,x ,o+ v .V  (t,x ,v )= ,f ),
(1.1)

(0,x,v)= f 0 (x,v).

Here f o = f o (x ,v ) is a  given initial datum, and Q is the so called collision operator
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and acts on the variable y as

(1.2)

,f )(v )-- -SSs dv,d(ot f(v ')f — f (Of (v i)1B(Iv — vil,

 

( V -  VI)

I V ' 6)

 

and y' are the post collisional velocities, which can be parametrised by w G S 2 ,
unit sphere of le, as

(1.3) y ' = y - F ( y i — y , c 0 ) ( 0 ,  1 / 1= v , — (y i —y,c0)w.

Here B  is the given cross-section depending on the variables as pointed by (1.2). The
physical meaning of all the above quantities is by now standard and may be found
for instance in [ArBe, Cer, CIP, Gui].
Most of the mathematical works on (1.1) have been done under the so called Grad's
angular cutoff hypothesis, which roughly means that

(1.4) w—>B(.,.) /-1(S2),

see also more precisely [Cer].
Let us mention that one main feature shared by the models considered herein consists
in  that we shall never use the concept of renormalised solutions of DiPerna and
Lions [DiLil, 2, Liol].
This concept of solutions can be avoided for at least three models, which have a
"clear" physical meaning : the Modified Boltzmann equation (MB) [CIP, DiLi], the
Generalised Boltzmann equation (GB) [BePo, ArBe] and the Dirac Boltzmann model
(D B) [D ol]. The mathematical theory is nearly clear for these models and again it
has been done for cross sections B  such as (1.4), or less ...
The natural next step is therefore to ask for what happens if (1.4) fails to hold. That
this question is indeed natural (physically) can be explained by turning to [Cer, Gui,
Uka], where we are told that (1.4) never holds, at least for interaction potentials of
the form  1/rs(s>2). Indeed, in this case, B  is close to

(1.5) B(Iv—vd, (   1 ) -  

— v11 w ) = I v  v i lY

       

where the critical exponents are defined by

(1.6) s - 5 s - 1 - 1  
Y=  Y ( s ) =  s — 1' v =  v ( s ) =  s - 1 .

For such B , most o f the  mathematical results are concerned with the  non  linear
homogeneous account of (1.1), see for instance [Ark 1, 2, Gou, Vil 1], and regularity
results are also proven to be true by [Des] in 2D cases and again in the homogeneous
framework. In [Alel, 2, 3], we provide different decompositions of Q containing a
principal part which may be thought as elliptic, and we apply this to various issues
in [A 1e4, 5]. Problem (1.1) is still outside this scope, with the aim at getting the
existence of global solutions for general initial data, satisfying the  usual entropic
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bounds. Indeed, the renormalisation method of D i Perna and Lions seems hard to
fit, but not impossible, in view of the pdo like operators appearing in  our previous
w orks. In fact, we have been able [A1e6] to define renormalised solutions and thus
to  ge t r id e  o f  th e  assumption of average com pacity of [L io3], but I  have only
succeeded in  show ing that lim its o f  such solutions are upper solutions (though
formally, they are exact ones).
Note that the issue is similar to Landau's equation [Vi12], whose global solutions are
unknown, in  spite of the  regularity results based o n  th e  entropy dissipation rate
estimates [Lio2].
The aim of this work is to study the three above mentionned models, that is (in the
order) (MB), (DB) and (GB).
Before introducing these ones, we would like to make some comments on some less
known m odels. One such example is studied by [DeGo].
To begin with, we have shown [A1e2] that under (1.5) and (1.6), one could assume
that the collision kernel B  takes the following form

(1.7) V — V i  )_   v - v'"
v' - vl' •

  

T h e  difference between (1.7) and (1.5) corresponds t o  a  cutoff cross section.
Subsequently, we shall always assume the form (1.7)-(1.6). In  fact, we shall even
m ake a  cutoff in  velocity, bu t for the  m om ent, le t us keep this assumption. In
addition, see [A1e2], we have show n that th e  operator Q  m ay be w ritten (in  a
somehow simplified form) as

(1.8)
('  2 d h  

Q (f ,f ) (v )S S  Ih r2  d a6 s , h =o f f  (v —  h )f  ( a  V) —  f (v)f  (a+ v— W a r ' .

where (.5'„h=0 denotes the Dirac measure over the surface {a.h=0}.
Next, if we want some more accessible mathematical models, one may first mollify
this measure. The simplest way is to change it by 1, and also replace Ice r ' '  by I, so
that we get

(1.9) ,f  ) (v )={ S c f a} { Ss f (v )  dh }

This operator, not only leads to a very simple model, but also in connection with (1.
1), yields LP estimates. Note that up to  constants, one has

(1.9') , f  )(v )= d } ( — ) 2 ( f ) ( v ) .

If we want to keep the weight la 1Y+ '', one obtains

f (v ) T/ (v) Q ,Af ,f)(v )=6. 4 f (a + 01a1Y + ' da}{S .1d h } -
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(1.10) —  f  ( v )  S 
f (a+ v —  MIcy 7 "— f (a- f- O lar" 

R i  RI Ihly+2

that is also

,f)(v)= —  { Sic , f (a+ v ) l a r 'd œ } ( —  ,A)' ( f ) ( v )+

+ f (v)( — 60 ' 2 1 {SR 1 f 01a17+ derf(v).

Next, if we want something nearest to the Dirac mass, we can approch it by a smooth
function ... Finally, a last mathematical model can be obtained by changing in (1.8)
f (a ± v) and f (a+  v — h) by their mean value.
In this paper, we shall not analyse these mathematical models, although they could
be of interest. Nevertheless, one such study is provided by [DeGo] in one dimension.
Turning now to our objective, we modify assumption (1.7) as follows

(1.12) B ( 1v— vi l, (   V -  VI)

1 v.- v 1 ' ) olvi-v'l)

 

where 0 belongs to . i a n d  is null for small values. This hypothesis simplifies many
of the computations displayed in this paper, but should be weakened by looking for
moments estimates, something that we skip completely in  this paper ....
Let us begin with the Modified Boltzmann model, see [CIE, D iL i]. In this case, the
collision operator is given by

1 (1.13) Qmb(f ,f)(v).= 
1 -I-S fd v

, f ) ( v ) .

We will study it in Section IL Even if the physical meaning of (1.13) is not clear, we
include it in order to introduce some earlier ideas and to make the paper self-content.
Next, we introduce (Section III) the collision operator for the Boltzmann Dirac
model [Dol], (we set E= 1 with respect to this paper)

(1.14) QbAf /f ) ( V )
=  52V ida )V 11 ( 1) ( 1  — f ) — ff (1 — f ) ( 1

 — f

again with B as in (1.12).
Then, for the Generalised Boltzmann operator (Section IV) studied by [BePo], we
make some simplifications with respect to that paper. Let R >0, and P =P ( r) ,I rl<
R, a  measurable function such that

(1.15) O<P- ._<.P(r)<P + <co.

Now, as in the primitive variables, see (1.2) and (1.3), the corresponding operator Qg b
acts on both variables (x,v) as
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('Rr r
QR 17 ( f , f ) (X I V )=- )R dr i v o , s t clvidcolf (x,v')f (x+ rco,v■) —

(1.16) —f  (x,v)f (x--1-rco,v,))B(.,.)P(r),

w ith B still given by (1.12). As it is w ell know n, w e note th a t if P =
recovers the usual Boltzmann operator.
Our aim  is then  to  analyse the non hom ogeneous equation

(P) Ja if ( t ,x ,o +v .v x f  (t,x ,v )=  Q  (f f),

f (0,x,v)= fo(x,v),

then one

where the operator is one choice am ong the above operators.
These are dealt w ith in Sections II to  V respectively. However, we only provide the
decompositions associated with Q0  in Section V, leaving out any other questions.
To make the paper worth reading, I will recall the framework of this Section in each
of the fo llow ing  ones. I also use freely some results provided by my earlier papers,
for which readers are referred to (in order to  lim it the typesetting time spent herein
...) . Clearly, many issues are not dealt w ith  herein . Let us mention unicity, moment
estimates, trends to  equilibrium , existence in other functional spaces, other models
such as the Povzner's one [Mor, Pov] ... There are also other m ethods which m ay
prove more interesting, as for instance non linear semi-groups [Lun] (and references
there in ). A ll th is  is  le ft for future research.

Acknowledgements. I w o u ld  lik e  to  th a n k  Nicola Bellom o for sending me
several of h is  p a p e rs . As usual, I had m any discussions w ith  Kamal Hamdache.

2. Problem (MB)

This Section is devoted to the modified Boltzmann m odel as introduced in Section
I. Recall that

(2.1) B(1v—v11,
1.) -1.11 I v — v't"' 

7/1) ,

  

where 0 belongs ,s3 + , is  nu ll for sm all values, and

(2.2) s - 5  
Y ( s ) =  s - 1'

s 1 
')=v ( 5 ) = s -1 .

The modified collision operator is given as

(2.3) Q.bCf ,f)(v)= 
1 +1

1 

f d v  
QU' ,f)(v),

where Q denotes the usual collision operator as given (1.2) of Section I.
W e are interested in the following problem
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a,f (t,x ,o+ v.Vxf  (t,x ,v)=Qmb(f ,f  ),
(MB)

f (0,x,v)= fo(x,v),

where tE (0 ,T ), T > 0  fixed, xE12 3 , vE R 3 , and  fo is the initial datum satisfying the
usual entropic bounds, that is

(z) SSfo(i + lx12-1- 10+11og f o l)dxdv< co.

W e will follow the easiest way to deal with (M B), and we will not focus on  any
questions of unicity
First, let us recall the following result from [Ale2], assuming in the sequel that f
0, f  regular and satisfies the usual entropic bounds

Lemma 2.1. W ith the above notations (2.1) -(2.3), the operator Q„,b w rites as

Q.b( f ,f)= Vnb(f ,f)+ Vmb(f ,f ),

where

f  )(v) -=
1 ± S v f d v

S
i r

doef (a + v )0(1a1)1S (a).D ,r(f )(v ),

and

QL (f  f  )(v )= C  ( v )
1+Sfdv SR

da0(1a1)1S(a).D,1' 1(f)(cr+ v),
v 

where C. is a constant depending on s, 0 denotes function 0 multiplied by a power
of  a ,  and S (a ) is the projection over the hyperplane through 0 and orthogonal
to a.

Next, we simplify the expression of the operator Q2,o b  a s  follows

Lemma 2.2. W ith the notations of  Lemma 2.1, one has

Vmb(f f )(v)= 1
-_4f1 )

v),d v SRadkf (k)K(Iv— ki),

where IK(lul) C„.

P ro o f  In  view o f Lemma 2.1, all am ounts to  compute, see also our papers
[Ale]

Sieda0(lothlS(a).D,V V)(a +0=
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(2.4) =Skf(k)S4e-i4(k-le-1*(6),

where we have settled

(2.5) Ifr( )=S 0(1a1)1S(a).4r i e .

Then, since *  is decreasing of any order wrt 6 (as B E A )

(2.6) Siedat9(1a1)1S(a).Ak 1 ) ( a  v)= f (k)K(Ik — v1),

with

(2.7) K  u1).= See- `4 ( u ) lk(6)161' - ',

which directly leads to the Lemma.

From Lemma 2.2, one deduces easily the

Lemma 2.3. W ith the above notations

11Q2..4 f

IIQL(f,f) — Vnb(9,9)11a —91L.

In particuliar, Q,b ( f , f )  has good functional properties, whereas we need to work a
little more over Q,n

1 b (f,f ). For this purpose, we will follow [A1e2, 6], setting the

Definition 2.1. L e t u s  write

Vmb(f f )= , f )+ Ql(f , f

Vt!b(f f )= a t,x(v,D,)(1)(v),

1 +
1
u Si e daf (t,x,a)j(la —  v1) xdœ—  v) A 41)1(cr — v)AEr l

O b ( f  f )  1 ± 1 U S I e d a f
 (t,x,a+ v)x(la A D ,i) j(iable r A D )(v),

where x: —40,1], supported in [0,1], smooth, =1 f o r t 2/3 and  x(t)=1—x(t).

A s in  the  above papers, one has

Lemma 2.4. W ith the  above notations, one has
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I a'vn a 'ci t.x < +161r ",

II V 1,(f ,f  )IL< c Ilf II a.
N ow , w e can introduce our definition of solutions for the (M D ) m odel, following
earlier notations

Theorem 2.1. Under the assumption (X ), there exists a  weak solution f  of
(M D ), that is f satisfies

suptE(0,T)SS f [1+10 +1x1110g f] dxdv C

the entropy dissipation rate

So
T S„S,S,S.113_* . t f t f; f f i ) lo g f  < CT ,

and f  satisfies in distribution sense

a  (t ,x,v)± v.\7 f
 (t ,x ,c)= f  )+ Q 1L ( f  f  )+ ,f ) ,

f (0,x,v)= fo(x,v).
Furthermore, there is weak stability  of  such solutions.

In  view of the previous statements on  the  operator Qmb, this result follow s at once
from  [Lio3] and  the  approxim ated problem  considered by [D iLi], see also related
issues in Section III. However, we would like to end th is Section by showing how
one could deduce regularity results from the entropic dissipation rate estimate (stated
by Theorem 2.1), without resting on  [BoDd as done by [L io3]. In the following, we
let g=117 , p= f , so  tha t one starts from

(2.8) SoTSxSiSmi,,, 1 4-
B V

p
lg —  99 112 C T .

N ext, w e  p roceed  a s  fo llow s (n o te  th a t th e  d eco m p ositio n  in  [V il!]  is  s lig h tly
different). W rite first

(2.9) g  g  2=  (g g ±  (g  t 2 g 2 ) ( g 1

Then, consider the estimate (2.8) involving the second term  in  (2.9). W e claim that
it is  bounded . B y  the  usual change of variables, th is is equivalent to  show  that

'T
OS.TSvSu■Sr.,1± V

B  
f  f

Indeed, letting .B for the  1.h.s of (2.10), one has first

(2.10) C.
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(2.11) .B<S x
s u p v

t, St„S.B(f ;— J .])

   

an d  a s  1,„B ( f  f  1) is nothing else than the operator Q2 of [A1e6], it follows 53 <
C In view of this estimate, one deduces from (2.8)-(2.9)

(2.12) "SoTS1S,,S. 1 +B ' g '  g g 2  C T '

Next, we use the Carleman's representation as in  [Ale] to get from this

(2.13) ÇTÇ d h  
Jo J J ,J h j h r 2

0-1(t )  
 {g ( +  v  —  h ) g ( v  —  h ) —  g ( a +  v ) g ( v ) }

2
‹  C .

Setting

(2.14) j(z ,a)= g(a + z )g(z ),

and using the Parseval's relation with respect to  the variable v, one gets

CT(' ('  d h 0 dad) (2.15) 1,11(k,a)121e-ih.kio hIltlp+21 +  p
j2<  C ,

( j i  denotes the F-transform w.r.t to  the variable z ) that is also

T 0 dal) (2.16)
S
o 1 - p c'a )1

2Ik < C,

or, using previous notations

(2.17) ÇTÇ (lab(' 1/1(k,a)12 1S(a).kr i C .
Jx.../cr p k

We claim that

(2.18) Sol 1+1 p Sk[S,,, 0 doe1)111(k ,a)11kr 2 1 2 C.
Indeed, letting .4 for the left hand side of (2.18), one has

j 4 = SToSx ld -p S [Sk (k ( a ) .k l ' I  • '2 I1 2
IS(œ).kr -2-1

which, using Cauchy-Scharwz inequality with respect to  the variable a  gives

.54<C T C 1O d a l ) i f ( k , a ) M S ( œ ) . k l - 1 - x)01.r 1 p )k (i.

(2.19) x (la I) lk
IS(a).1c1 - 1 )•

But
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1 < C ,11cl' S 0(61) Is (k).otl'dal) Is(a).kr

by assumptions on  0 (note also that 0< v —1<2). Therefore, it follows from (2.19)
that

(2.20) .54 CS:Sx1+1
 p SIO (la1)1.11(k 5œ)121S(a)-kl ' - 1

and the right hand side of (2.20) is bounded in view of (2.17), obtaining (2.18). From
this, it follows

(2.21) SoTS,,
i

k ikr 0 dabf l (k ,a)12 C  .

Note that 1/1(k,a)1 is up to dilatation in a the modulus of the Wigner transform of
g  (and thus bounded in  L2k,a nL -k , ) .  Finally, we obtain

(2.22) 1
1
( T * L2((0, T) X12.1; H " 2 I (W))..1 + p

Note that this result improves o n  [L io 3 ]. Furthermore, one advantage is that this
scheme of proof adapts to completely different collision operators. Let us note that
we did not deduce regularity with respect to  the variables (x,v), see Section III for
related results. However, it should be possible to get some results by looking to a
renormalised form of the problem. Finally note that we asked for a somehow weaker
formulation of solutions than possible, in that we can use instead the stronger notion
of H-solutions as in troduced  by  [V ila  This is done in the next Section for model
(BD).

3. Problem (BD)

This Section is  devo ted  to  the B oltzm ann-D irac m odel. A s previously, let us
introduce the notations to be used herein.
We consider for f = f (v), the (BD) collision operator acting on the variable v as
follows

(3.1) bd(f f )( v) SR, S d v 1 d w ff 7 . ( 1—1 f )(l — f i )  ff 1(1 —  .1)0 — f  ■)) B (—).

W e have used the classical notations of kinetic theory, and

(3.2) (   —  

v — v 
Ce) ) 0 (  v  1 / 1) I TvT_Cv

17 1 , ,±

 

where 0 belongs .0 + , is  n u ll for sm all values, and

s — 5 s+ I 
y =  Y ( s ) =  s—  1 ' y =  Y ( s ) =  s — 1(3.3)

L ater on, w e shall comment about possible weakenings on 0, and in particuliar
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allow for 0==-  1. As in the former Section, the main advantage is to make easier some
"classical" pdo analysis.
Among other issues, we want to solve the (BD) equation

a if (t,x,o+ v.v xf (t,x,v)= Qnd(f I ) ,
(BD)

f (0,x,v)= fo(x,v),

in  whole phase space.
First, let us recall quickly the known facts on problem (BD) in the cutoff case [Dol ].
To fix the ideas, let for n 1 , x ,(t)  1 for 0 elsewhere and

/  iv — 1/1  \(3.4) -13"(—)=B(—)xAlvi_vi ).

Clearly, for any fixed nEN, it belongs to L ' .  Then consider the following (cutoff
type) problem

{

a tf (t,x,v)+ v.V xf (t,x,v)=  Q 4f ,f ) ,

f  (o,x ,v )= f o (x,v),

where QL denotes the BD operator with the cross section B" of (3.4). Naturally f
= f-  ...
Dolbeault [Dol] has shown that under the following natural assumption on f o

(3.5) 0  f ( )
. . 1 a.e, SSie r. , , f0(x,v){1+10 +1x1 2 - Hlog fo1}<oe,

(of course, last p a rt is superfluous), then there exists an unique solution  f '  to
problem (BD") satisfying

(3.6) f  "EL - (1I+ X R IX R ) ,  0_-< f  "_< 1 a.e,

with f '  absolutely continuous with respect to  t  and

f  "E C ° (R +  ; L I (R 3, X R ) ),
(3.7)

SSR,_ f  n(t,x,v)dxdv=SS R ,  f o (x,v)dxdv, V  t E11 ± ,

(t,x,v)—>f "(t,x,v)1 0 E  O R +  ; OW X R30),

SSRoxi'(t,x ,v )10dxdv=SSR I.,fo (x ,v )10dxdv,

(BD")

(3.8)
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(t,x,v) — * f "(t,x,Y)1x1 2 E O R + ; L'(R, X lev)),
(3.9)

f  "(t,x ,v)lx —  tvPdxdv=S S  f0(x ,v )Ix1 2 dxdv,

W ith the notations

(3.10) s(u)=u log u+(l— u)log(1— u),

e(f)(t,x ,v )= .÷1. SE . Ss , dv,d(off 'f;(1— f )(1— f ,)— ff 1(1— f ')(1 — f;)} X

(3.11) Xlo g{ ff f i
l

(  _1 7 1,;)
(
(
1
1
 —11? B  "(.,.),

one has also the following entropic type estimates

(3.12) SSR1., If" log f "i(t,x,v)dxdv C f0(X,V)(1 V 12 + 1.X12 )C/XdV,

(3.13) s(f ") ; LAE X R30 ) ,  e(f ") L' (12+  X R6, ) ,

w ith the estim ate, for a.e positive t

(3.14) SSR1.,,s(f ")(t,x,v)+SSS e(f ")(s,x,v)=SS s(f 0 )(x,v).o R6x.„

The m ain  point is  to  note, a lthough it is im portant in  the  proofs by [Dol], that all
these bounds d o  not involve the  L ' norm  o f  B".
N ow  w hat can  w e d o  to  get (suitable) w eak so lu tio n s o f the  no n  cutoff problem
(BD) ?  One idea w ould be to pass to the lim it as n— co directly in  problem  (BD"),
in  view of the  above uniform  bounds (3.6) to  (3.14).
H ow ever, w hile this m ethod is suitable fo r the  hom ogeneous problem s, see [Goo,
Vil 1], it breaks dow n for the non homogeneous ones, since we have to  account for
the products involving functions of the variable x .  T he m ethod choosen hereafter
will need some compactness and for this purpose, the entropic rate bound, that is (3.
11) with the non cutoff kernel, is essential as shown in  [Lio3], see also[A1e3], in the
pure Boltzmann case.
Therefore, instead of the  problem  ( BD"), w e introduce th e  follow ing modification

n, m l

(BD;',)
a tf '(t ,x ,v )+ f m i urn = V b 'd ( f  f

- f  0 ,x,Y)= f o (x,y).

First, we shall fix m I ,  p a s s  t o  the  lim it as n— >œ, then send The problem
(B D ,)  is  one  m ethod fo r achieving th e  entropic dissipation  bound , and  note  for
instance the w ork o f  [Ale5] in  the  pure  homogeneous B oltzm ann case. A lso  note



(3.16) SSR, f'„'i (t,x,v)dxdv=SS m f o (x,v)dxdv, V tER+ ,

{ f',, E O R + ; L I CICX IC)),
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that one could change — A, by ( — A )' w ith  a  suitable a, in  fact a < 
s -

1

 l  
whose

advantage is clear, in view of some com putations [A1e2]. However, we do not insist
o n  this point.
Next, following [Dol], one has

Lemma 3.1. For f o satisfy ing (3.5), there ex ists an unique solution f ' ,  of
problem  (BD,), w ith the  uniform bounds

(3.15) f ,e 1 , - (R +  X R3,,,X a.e,

with f ,  absolutely continuous with respect to t  and

(t,x,v)—> f O R + ; L 1(1CX 1C)),
(3.17)

SSe„ f ':,,(t,x,v)1v1 2 dxdv=SS. ex,, f0(x,v)Ivi 2 dxdv,

(t,x,v)—> f ,x  ,v )Ix i 2G O R +  ; L' XR 30),
(3.18)

SS f — tv 2 dxdv-55 f0(X,V)1X1 2 dXdV.

(3.19) SSR ,„ u l f  log f(t,x,v)dxdv c  +55m , f0(x,v)(1v12 +1x12 )dxdv ,

an d  f o r almost every t >0

Mi SOS S RLIVvirl2dXdV+

+5o
t55

KI 55 dvidcoff 'f ;( 1 — f ) ( 1 — fi) — ff1( 1 —  f ')(1 —  f ) I x

x i o g f  f 1;0 — f C(3.20) , }/3"(..) -

i f  ,(1 - 1- )(1 — f i ) "

where we set f = f ,  to simplify.

N ote that from the  first part o f (3.20) and  usual argum ents, one has, at least
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(3.21) SOSSR1,1V,13(f„)12dxdv C,

for all flE OR).
Now, as a preliminary step, we want to send n to co, while keeping m fixed. Note
then, w e fall into the non cutoff BD operator and therefore, we must first define
suitable weak solutions for problem (BD,,,). One way is to proceed as in [Ark2, Gou,

Definition 3.1. W e say g  is an H-solution of problem (BD,,,) i f  g  satisfies (3.
15) to (3.20), without the index n and  thus in the non cutof f  case, with B  such as
in the beginning of  this S ection, and if  g satisfies in gY sense

a t g (t,x ,v )+  v .V g (t,x ,v )—  
1  

P is =  Q b d (g,g),
(BD,„)

g(0,x,v)-= fo(x,v).

Let us note that Qbd(g,g), with g such as (3.15) to  (3.20), is well defined. Indeed

Lemma 3.2. A ssume that g satisfies (3.15) to (3.20), where Q b d  is given by (3.
1), (3.2) and  (3.3). Then one has

Qbd (g,g)EL 2 (0,T)X.IC; H  ' 2  I  (R 3
) ),

and m ore precisely

1<Qm (9,g); q5>I C110110(0,T)X In; H ( R ) ) '

with C  a constant only depending on the above uniform bounds, an d  not on n.

P ro o f  Using th e  above entropic estimate, note th a t  g  satisfies (since g  is
bouded)

(3.22) So)Sle—SRt, S v ,dv idcot.V .9;(1— g)(1-0— gg,(1— g)(1-0} 21(.,.)<C.

Next, for smooth 0

<Q bd (g,g); 0>= — ST
o SSR I ) R1 Ss z dv i dco{g' g' 1(1—  g)(1 —  gi )—

o} dtdxdv .

We have used the classical symmetries associated with the operator Q  b d -

using (3.22), we find

(3.23) < Q b d ( g 'g )  ; g6 >1 C {SoT SSRJRt, 5v, 13
 ( —

)I
'
 Ç b 1 2 }2 '

Using the same computations as in [Ale21, one may write

Therefore,



{a tf  (t,x ,v )±  v .V .J,(t,x ,v ) - -
17,A J.-= Q bA f  m >f  .) ,

(B IY )

f  ( 0 , x  , y ) =  f  0 ( x  , v ) .
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{.}=S
TÇÇ 2 d h  

)Jid,„ JR1lhlv+2SE0,{0(x,v—h)— qS(X,V)} 2 0(labdoz

C
S 2 d h  

OSSE,„Scle+2 fcgx ,v
—  h)—  0(x,v)} 2 dvdxdt

<ciT SSR 1{1 2(x,4)12 14•1'- 'd6},
by classical results, see for instance [Stel, 2] and as 0< y —1<2. Therefore, we have
shown

(3.24) Qba(9, ; (i) C II cbIlLNO,T)X121; H Y  (R )) '

Note tha t Q  b d  is also well defined o n  C 2 functions, with suitable decay estimates.
Now, let us turn to the sequence m  fixed, of solutions of problem (B M ) as given
by Lemma 3.1, that is

In  view of Lemma 3.2 and all previous estimates, one has the  following uniform
bound, with respect to  n

(3.25) Q W , , f  ,); CIRO 0(0 ,T )X R . 3 , (WV

Recalling that m  is fixed for the m om ent, and using (3.20) and  [Lio2, 3], this is
enough to conclude that the sequence f f  a, is strongly compact in Li'((0, T) X 12 ),
for any 1 .<p<0 0 , and we let f m  b e  a  limit point.
Obviously, it satisfies estimates (3.15) to  (3.20), with B  turned to B  as results from
the above strong convergence and Fatou's lemma.
In conclusion, we prove

Theorem 3.1. Under the assumption (3.5) on f o ,  there exists an H-solution f„,
o f  problem (BD„,) that is satisfy ing in  weak sense

(BD„,)
{ 1a tf ,„(t,x,v)-f- v.V xf„,(t,x,v) - -

77,1 A v f .:---  Qbd(f ., f .),

.f .( 0 ,x ,v ) -=f  0 (x  ,y ) ,

see Definition 3.1 an d  Lemma 3.2, and the following bounds

(3.26) f„ ,cr'(R +  X  R X R),a . e ,
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f (R± ; R )),
(3.26)' SSzu f m (t,x,v)dxdv=SS z u  f o (x ,v)dxdv, V  t E R + ,

(t,x ,v) — >f,(t,x,v)IvI 2 E L:"(R ±  ; L't.R1X  R 30),
(3.27)

SSR1„ f  .(t,x ,v)IvI 2 d x d v S S i n ,  f 0(X ,V )IV 1 2 dX dV ,

(t,x,v)—>f„,(t,x,v)1x1 2 E L'° (R ±  ; X R )),
(3.28)

SSmi.(t,x,v)lx— tvi 2dxdv55 R L , f 0 (X,V)1X12dXdV.

(3.29) SSR„ 1fm log fmkt,x ,v)dxdv + SSz ,  fAX,V)(1 V12 + 1X(2 )C1XdV,

and for alm ost every  t ()

1  ç'çç
m JoJJR Vv i/fm  12 dxdv+

(3.30) X lo g f1
f ,(1 —,f ) (1 — f i )

} 13(..)<C .
— f

where we set f = f , ,  to simplify.

Having at our disposal a sequence {fm }m  of H  solutions of problem  (BD m ), (possibly
non unique), we want to pass to the li mit as m— >œ, so that we loose the compactify-

1 ing properties of the  viscosity term —

However, as shown in the pure Boltzmann case, see [A1e3, Li°3], we will see that the
entropy dissipation rate bound, that is the uniform estimate in  m of the second term
o f  th e  le f t  h a n d  s id e  o f  (3.30), lead s to  so m e  regu la rity  a n d  compactness. The
following are m odelled on  the  steps of Section II.
Omitting the index m  in  the  remainder, we start from the  estimate ( T>0 fixed)

(3.31) SoTSS.1.Ssz,Btrf 4 1 — f  )(1 — f ) — f f ,(1 — f')(1 —f Ç)} 2 c ,

that w e w rite as follows
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(3.32) SoTSSRo s,B V;(1 —  f — f )+ f (1 —  f ')( f f  0 1 2 C .

Using the (classical) change of variables (v,v,)-- )(v',v',), one gets also

(3.33) SoT SS.1)E,SszBtni — f w — f")+f"(i — f)(f i— f ) } 2 < C

From (3.32) and (3.33), we get finally the following estimate

TCC C C
30  ) )R 6x.,,)121,)V, f fiV■}(f' — f )+

(3.34) + {(1— f")f + (I
—

 f )11(f — fi)1 2 ‹ C.

Next, we make the change of, variables due to  Carleman [Car], and provided by
[Ale!, 2 , Wen] to get, where we still use the notations f  ' ,  f  f  and f ' this time for
f  (v —  h), f  (a+ v ), f  (v ) and f  (a+ v —  h) respectively,

SoTSSRo„,,SR3.1h2cli'l-1'S Eo.,, 0 02 1)14 1 —  f VI+ (1 — f ANT — f )+

(3.35) +41 —  f  1)f  + ( l — f )f '}(f ;— f ,)I 2 dadv dx dt C .

W e keep the sam e notations as in our previous papers, in particuliar E co denotes
the hyperplane through 0  and orthogonal to h.
In view of the properties of function O, we can use Jensen's inequality with respect
to  the variable a  to get

crcc 1 IF('
)onid,u)mIhr2ILJE0„ oda1)1{(1 — f)fi+ (l — P f l i ( f "  f  )+

(3.36) +1 (l f  ' ) f  +(I —  f ) f ' 1 [ S  0 dal)(f ■ — f  1)12 dhdvdxdt < C.

Recall the notations, and in particuliar that f  and f ' do not depend on a. N ext, we
want to show the estimate

(3.37)
CTCC I 

JR1,IhI 2E o , h  (I al){(1 — f ).1. + (1 — f r).1. 312 (f' — f  ) 2 dhdvdxdt < C.

In view of (3.36), it is enough to show
(3.38)

cT c I 
io

c

 ..be Jic 1111' +2 10 — FV - F( 1 — f ) [} 2[L o d a l ) ( f — fi)1 2dvdxdr < c.

The left hand side of (3.38), denoted by B hereafter, reads as
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B  C S os u p { ( 1 — f )2 f 2}SR I SR1 11111,+2 X

X ISE0., 0 ( i a b t ( a  + v) — f  (a + v — h)} da1 2 .

If one denotes

1 3 (''''rz )—SEoi (a+ z) (Ial)da,

-and b y  
1

 i ts  Fourier transform with respect to  the first variable, we are led to

B < CS sup{(1 —  f ) 2f 2}Sta Sm i h I lv+2  f i e (
v ,  
 ihh)_ (v_ h, )} 2

Jo

which, using Parseval's relation, leads to

B < CS sup{(1 — f ) 2 f 2 ISR i  h i
1

v+20 RI
'(k, 2

{
e ih.k 1}2

  

Shifting h= rco in polar coordinates, one gets also

B  CS sup{(1—f )2f2}S I -ii i (k,c0/12 1k.wr i •0 RI R

Now, recalling that S(co) denotes the orthogonal projection over E0,,, one obtains

-1 1(k,c0)=I(k) -0- ( IS(0).k1),

and therefore

B < C S0 Sioup{(1 —  f ) 2 f (Or<

As the estimate (3.38) holds true, we arrive at the final estimate (3.37). Next, since

(1 — f ■)f 1+ ( 1 — P f■ > ( 1 — f

one gets

CT 

n
cc 

RORI. I h
R .

l '  & ,„  0  (IaI)(1 —  f (a + v))f (a+v)1 2 X

(3.39) X If (v— h)— f (v)12 dvdxdt < C.
We want to work this estimate. For this purpose, let us set

(3.40) g(z)={l—  f (z)} f (z),

so that the term inside estimate (3.39) is {g(ce+v)f (v—h)—f (v)g(a+v)}, that we
write as
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(3.41)
{.}= 9 (a + v — h )f (v — h) —  f (v)g(cr+ v)+ f  ( v —  h ) { g ( a  v ) —  g(cy v  h ) }  .

The second term of (3.41) may be estimated as above (for B ), so that we are led to
the estimate

SOT S SRI 11 11' + 2 SE (icel){9(a+ v— h)f (v— h)—

 

(3.42) f  (v )g(a+v ))dal 2 dxdt._< C.

Setting

(3.43) j(z,+ 111 ) = I SEo., 0(1o11) g (a +z ) f f  (z),

the estimate (3.42) reads as

(3.44) SoTSRISRIlh11"+2 SRI

 

)
2
dvdxdt:<  C,

   

which again using Parseval's relation leads to

(3.45) S0T 1RI S RI I h r 2 SR),
lk k - 112 dkdxdt C .

 

Using again polar coordinates in  h= rco, one gets

c o e - 2
(3.46) I j i (k,G))1

2 So d r drdkdxdt_C  ,

and from previous computations, we finally have

(3.47) SO S SRI S 1P(k,co)12 11(

Using again ... Jensen's inequality in variable co leads to

S RO SI SRi

(3.48) SO T  SRI SRI Sv P (k ,6011 c.cor d co
2
dxdt C .

    

Let us compute the term inside the term 1.1. We obtain

j i (k,(0)1k.col dco=

= 0SR; {S (1 a 1)g( a + 7)}f (Z)e - d " lk.601 I

„ -1  =S S -
R
 0  (1 a1 )9 (a  z )f (z )e ' { S lk .6)1 2 d62)}ô S■ô, = 0
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-1
=  C,  S 0 (Iœi)9(cr -  F z)f (z)e S (a).kr 210 RI

CsSRIS,40(1a1).9(a+ z)f (z)e - 'k . zla A lf1' 21

W ith  th is expression, tu rn in g  to  (3.48) and  u sing  Parseval's inequality for the
variable k, we find

(3.48)'4 ,̀,,(f )(V )E  L2 ((0, T) X 111 X R1),

where 4 !. ,  is the operator given by (up to unimportant constants)

(3.49) *,:x(f )(v)-S R i ajSdat9(1a1)9(ced -  z)la A k r 2 I f

is nothing else than the adjoint of the operator

(3:50) t,,,(f)(v) 5R119 (1a1)9(a+ Ola A DI  2 (f )(v ),

see for instance our previous papers.
If there were no time and space dependence, one could deduce, exactly as in [Ale 1],
and for non trivial f ,  th a t  the symbol o f  .4 satisfies, fo r a ll  vEI -1, n being any
bounded open set of 123„

(3.51) klerl)g(a+V)la A  k r 2I C K 1 k 1 '21 e(labg(a),

-

and therefore f  E H  
v 
2

I 
 (R3 ). But unfortunatly (!) and as in  Section II, w e must

account for these variables, so at this point, we just state the result obtained (which
could be interesting by itself)

Lemma 3.3. I f  f satisfies the above bounds, and in particuliar the entropic
estimate (3.31), then

(3.52) 7,.(f )(V)E L 2 ((0 ,T )X

where the operators 4 . a n d  .4 x  are  given by (3.49) an d  (3.50) respectively, with
q(ce) (1— f (cr))f ( a).

Remark 3.1. I n  th e  above com putations, there is som e k ind of  W inger
transform involved therein.

Remark 3.2. A s in any  Sections o f  the paper, the cutoff  (in velocity function)
0, o r 0, .... reduces the computations.
O f  course, it is lik ely  that the same results will hold true in the general case, see
Section I , by putting enough m om ents in the entropy dissipation rate bound, so as
to use Jensen's inequality.
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For instance, we have used the f act that the m easure 0(61) has f inite mass (over
Eo,n ). In the general case where 0(61)=-1, see also the examples in [A le!], then 0
(1a1)=Ice  and the entropy dissipation rate bound reads as, forgetting variables
(t,x) (with obvious notations)

(3.53)
R SR

12hdi,h+ 2  

 SE . da larv. ..dv< C .

R ecall v+ y > 0 .  Next, letting 6 > l ,  the use of Jensen's inequality yields

(3.54) 2dh 
Sid Jilt Clia la r l  I -12 di)  C,

( 1 ±1a12)T

 

and one may proceed as earlier. In fact, it is even simplier from  (3.53) to note that
it is bigger than our estimate with O.

As said previously, the uneasiness is to keep track of the variables (t,x ).
Recall that our main intention is to prove the compactness of the sequence { f , , , }

 o f
H -solutions of problem  (B a n ). A lthough  it shou ld  be  possible to  a d a p t the
arguments of [Lio3], note that we have to work out the computations from [BoDe]
in the Boltzmann Dirac case. Instead, we provide a direct method, following exactly
Section II, which 1 believe will prove usefull for different collision operators. At this
point, let us say that we have'nt looked for optimal estimates below ....
Starting from (3.47), let us first deal with the case 0< y —1< I  that is s >3.
We claim that

(3.55) 05,,5k[5„Lii (k —

Indeed, letting 6 for the left hand side of (3.55), one has

(3.56) 6=5ol5k[5JP(k,c0)11k. r2I 2 1 2

and by Cauchy-Scharwz inequality in  co

C Sx  k [S,11 1(k ,(0)121k .(011 5 I 1.
k

11(1' 6 '

is integrable over S 2 , we deduce that 6 is bounded in view ofSince CO — >

(3.47) and thus (3.55) is proven.
Next, from (3.55), we use again Jensen's inequality in  co (as for (3.47) to  (3.48)), and
finally we obtain

Lemma 3.4. If  f satisfies the above bounds, and in particuliar the entropic
estimate (3.31), with the assumption s>3(0< y —  I <  ) then
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{5R2 d o e  (lab  (a + v)} f (v)E L 2 ((0 , T)X ; H  ' 2  I (WO).

In the case 2 < s  3, note that one has (3.47) with the weight 11c.w changed to I
k.col" 2 ... , and therefore, proceeding as above, we get

Lemma 3.5. If  f satisfies the above bounds, and in particu liar the entropic
estimate (3.31), with the assumption 2< s 3 (0< v—  2< 1) then

v 21-{Si n cla 0 (1a1)9(a+ v)If (v)E  L 2((0, T) X R ;  H (IC)).

In  view o f  [Lio2, 3], th e  Lemmas 3.4 a n d  3.5 are  enough to  conclude that the
sequence {f„,} of H-solutions of problem (BD,,,) is strongly compact in any L ((0, T)
X R6

x ,v ), 1 .<P<OE)  •
We finally obtain the following existence theorem for the (initial !) problem (BD).
Note we can pass to the limit in Q b d  by "symmetrising" classically the inner integral.

Theorem 3.2. Under the assumption (3.5) on f o ,  there exists an H-solution f
o f  problem (B D), that is satisfy ing in  weak sense

(BD)
{ a i f  + v .V  =  Q b d (  f

f (0,x,v)-= fo,

see also Definition 3.1 and  Lemma 3.2, and the following bounds

0 f< 1 a .e , f E L '(R +  ; L I (IC X  k )),

(3.57) SSRI f (t,x ,v)dxdv= SS R1 f  0 (x ,v )dx d v , V  t R +  ,

(3.58) SSm,„ f (t,x,v)dxdvflv1 2 +1x— vt12 1 SS f  0(x ,v)flxI 2 + vI 2 Adv,

(3.59) Siel.,) f  log f  i ( t ,x ,y )d x d v  C  +SS f  0(X 1V)(1 1 ) 12 +1X12 )C1XdV ,

SOSSRI Sle, S dv Idcot 41 —  f )(1 —  f  — ff1(1 — f ')(1 — f  ;)1 Xv v S L

(3.60) X log{ fy ;(1— f)(1— fi)} 13,..,.) <C.• _ .r.) kfR I )( 1 —

It also satisf ies the conclusions of  L em m a 3.4 an d  Lemma 3.5.

Having provided an entropic solution satisfying some "regularity" in the variable y,
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we want to bootstrap this information on all variables (t,x ,v ), at least in (x ,v ). One
instance of this is the compactness of sequences of entropic solutions, as shown by
P.L. Lions [Lio2, 3]. Another one is the fact that the velocity averages off has some
regularity in ( t ,x ) . Let us show how we can use this. In the sequel, we will simplify
our study by assuming that s> 3, so that one may use Lemma 3.4.
In  view of Lemma 3.2, using [DiLi2, DiLiMe], one has for a ll ik E Z (R )

(3.61) f (t,x,v)ifr(v)dv - 11+-1-
2

1- 12 ((0 ,T )XR 3
x ).

Therefore, in view of the above bounds, one has also

(3.62)

p * {S R I O oel)(1 —  f (cY))f (a))da}S w f (l,x ,v )ik (v )dv EH 1+  12((0,T)Xlex),

where p is a smooth function of the variables ( t ,x ) . Next, let (note that we use the
same letter g  ...)

(3.63) g(t,x,v) p*{S . ; 64 dcr110 — f  (c r ))f (ce )d a f(v )f (t,x ,v )* (v ),

where cb ( R ) , omitting cutoff in the variables (t,x )... , and if we denote
fo r  th e  d u a l variables of (t,x ,v ) respectively, then from [D iLi2, D iLiMe], the
information (3.62) can be translated into, where 0 denotes the Fourier transform in
all variables

(3.64) (1 +1.7.12+1k12),+  120EL - (1e4 ; L 2(RX11))•

According to the Lemma 3.4, one has (g  there is (l — f  )f ....)

(3.65) + i 2 ) 2 ' 0 E  L 2( R 34 ; r(x X W)).

In  particuliar, one has also

(3.66) +1r12±1k12)';'V
(l +1612) g E O R 3 6 ;  L 2 ( R , . .X 1 2 1 ) ) .

6

for a ll d>3/4, and finally

(3.67) {(1+1612) v21
±(1+12..12+1 01+„_2_,  ;

( 1 +1612/6g E
, 1 1Since for all p > l ,  a , b>0, one has where— (a -i)P-k (b17)P >a p I,

P  P
one deduces from (3.67) that

(3.68) (1 + 1 6 1 2 ) 2 ;  : ( 1 +  17
,

12 +  k 1 2 ) ,  
I  2p gE L 2 (R 36 ; L 2 (R , X R1))•

Setting

L 2(R 3  ; (x X lek ) ) .
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(3.69) g= in fl v  1 6 1 1  1
"2p p 1+   v -1  2 p ' J '

2
w hich is positive by choosing p  sufficiently close t o  1, we get finally

(3.70) (1+14. 12 +12-12 +1k12 ) f ig E L 2 ,

and therefore, we have arranged for

Theorem 3.3. For all q, l t ,  pEcJ, set

g ( t ,x ,v )= -- p  
{SR

 O (lab(1 — f  ( a ) ) f  ( a ) d a l c f i ( v ) f  ( t ,x , v ) f ( v ) .

where f  is the solution provided by Theorem 3.2, with s > 3 .  Then, one has

gE  IP (R ,X  R 3,X

where is  d e f in e d  as

=  in f  v
—  1 1 1  1.

2p p'
 ' 1 +  

 v - 1 2 p ' '
2

f o r all d > 3 /4 ,  p > l ,  such that 13>- 0.

Remark 3.3. In particu lia r, note that for all p > 0  small enough, one has g in
H 2(v) +pi )  1  6i-  p ( R  t X  R.3,> <R 3,), that is something which is close to H  4  .  For instance,

v -1 I  choosing 6 = 1 , then for 1 < p< 1 +  
1  ( v + 1 ) ( v - 1 )  

 , one obtains 13=2 v +2 2p p '
However this regularity result is likely not optim al. One m ay also w onder i f  Hfl
spaces are the good spaces, an d  i f  instead w e should not tak e som e k ind of
O rlicz's type spaces, see for instance [ P iS i ] .  Finally , it seems possible to deduce
(small) regularity on f  as in  [DeGo].

N o w  th a t w e  have  produced  H -so lu tions w ith  som e (partia l)  regularity, can w e
bootstrap this type of result ?
It seem s that w e cannot d o  this, since w e rested upon th e  entropic dissipation rate
b o u n d  a n d  u se d  "o n ly "  th e  n o n  lin ea r  p d e  ( th a t is  p ro b le m  (B D )) to  g e t  the
regularity of the  velocity averages.
So, we must turn to the pde, and notice (at this point) that the weak form of problem
(B D ) is not (or at least I d o  no t know ) well suited for (m icro) local ana lysis. This
is where the  decompositions, as those provided for the pure Boltzmann case, could
be  usefull as w e  b e liev e . In  th e  following, we just explain these decom positions,
leaving o u t any possible applications.
A  first step is to w rite the curly brackets term of (3.1) as follows

(3.71) {.}= ( l  — f i ) fÇ (r — f ) ± ( 1 — .0 f ( f — f i).

However, 1 have not succeeded in using this form, one reason being that, when going
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over to the representation in variables (h, s) for the operator (3.1), then f ' , f ,  f  and
f  stand for f (cr v— h), f ( a+ v), f (v— h) and f (v ) respectively, and looking to
[Ale2], note that a significant step there was that the change of variables h—> — h left
"invariant" the pure Boltzmann operator. In  our case (3.71), note th a t Q b d  "trans-
forms" as, where f  f '  mean f (a .+ v  h ), f  (v  h ) respectively,

(3.72) {.}= 0 — fA r (f '— f)+ (l— f" )f (f— fi),

and thus we cannot factorize terms such as f ' + f ' —2f ....
However, I believe that this can be made, as it is suggested by the pure Boltzmann
case, note also in [Dol] tha t f  and  1— f  are somehow linked.
Since we are only interested from now in  bootstrapping some regularity, I shall
simply write {.} as

(3.73) {.}= ({ — f  ;)f ■(/' — f )+ 0 ■—f t) +(f  ; — f  ,)( f ' — f )(f  ; — f ) ,

from which follows

Theorem 3.4. W ith Q b d  as  given by  (3.1) and  the  previous assumptions, one
may write

Qbd(f ,f)(v)= Q lbd(f ,f)(v)+ Q 2bd(f  ,f )(v )+ , f )(v),

where

Vbd(f f )(v)'S R7, SsL
6  i(viv± 7/

71): 1) (1  f 'in f ' — f ) ,

Q2bd( f. 'f ) ( v ) Sin,S.sl e 1(7)1v± v1): 1)
( 1  f

) f (  f f ' ) ,

Vbd(f ,f)(v)---S i a SsL  ° ' v,19 C f ; f i) ( f " — f  ) ,

In  fact, I should have written the last term as

( f — f i) ( f ' — f ) ( f — f ) = ( f — f ,) ( f ' — f ) f — ( f — f i)(f " — f ) f ,

and in view of the previous estimates, one notes that

VbdEL 2 ((0, T) X  R . H  '2 1 (1 0 ),

so in the following we shall just concetrate on the two first terms Q'bd(f ,f) and Qid
(f ,f ). Oncemore, let us say that we do not believe that this is the right way, as we
th ink  tha t a m ore symetric form  could be possib le  as in  [A le] an d  in  th e  previous
Section. Anyway, for these operators, we just refer to our papers where the following
results are shown

Lemma 3.6. W ith the  above assum ptions, the  operator Q ib d  o f  Theorem  3.4
writes as
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Vbd(f ,f)(v)-- —  c ,SR doef (a+ v)[1— f (a + v )] dab' S (a).Dr(f  )(v ),

where C  is a f ixed constant (depending only on y). R ecall that S (a) denotes the
orthogonal projection over E 0 , ,  hyperplane passing through 0 and orthogonal
to a.

Lemma 3.7. W ith the above assumptions, the operator Qid o f  Theorem 3.4
writes as

Q2ba(f f )(v)= Cs(1 —  f (v)).1. (v)S i n da e (f )(a + u),

with same notations as in Lemma 3.6.

Let us show how to expound suitably these terms, beginning with the simpliest Q 2bd

Lemma 3.8. W ith the above definition of Qid(f ,f), one has

Qia(f ,f )(v)=(l — f (v)) f (v)S R i f (k)K (1k-

where KE L -

The proof follows that of the previous section and is omitted.
Next, fo r  Q ibd as given by Lemma 3.6, we le t, in  view o f  considerations already
explained earlier, x ( t) , tE R - E. , a  smooth function positive, with support in [0,1], 1
for t 2/ 3, x— = 1 — x , and decompose

(3.74) Q1a(f,f  )()) = QZ(f f )(0+ QL(f ,f)(v),
with

(3.75)

V b
1
d (f ,f)(v )=  — C s Si e daf (cy+ v)[1 —  f (cy+ v)] (I a 1)1 a A D re la  A D IV )(v ),

and

(3.76)

Vb2d(f f )(0= — csSR l dotf (a+ v)[1 —  f (a + v)]0(iabla A DI' 1 2C (l a A D I)(f)(v ).

For these expressions, one has

Lemma 3.9. V, I
d (f,f)(v ) defined by (3.75) belongs to L 2((0 ,T )X R ).

Proof  Omitting the variables (t,x ), if we denote



and  we set

(4.2)

where 0

(4.3)

(   -  )

Iv— vi l )= odvi v1) I v e lY ±
'

belongs to s3 +  a n d  is null for small values, and

s - 5 
y

=  Y ( s ) =  s
- 1'

„  s 1 
vls1 -= s _  •
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r.( f ) (v )=- 1a A Dr' x (Ia A )(v),

then r „ : L 2 —>L2 is bounded fo r e a c h  a  n o n  nu ll a n d  uniformly. Therefore, the
generalised Minkowski's inequality yields the  result.

There remains to study O W  , f )  as given by (3.76), and  we deal with it as follows.
If one sets, omitting (t,x ) dependance,

(3.77)

CsScdaf (6 0 [1  f  (a )i8 (6 — v1)1(a —  v)A x (1(a — y) A 41),

then one checks tha t th is  is  a  good symbol within th e  class w ith (t,x ) as
parameters, and  thus we can define Q L (f , f )  in  0D' sense as

(3.78) <V (f , f ) ;  0 > = < f  ; a* (v ,D,)(0)> •

using the whole calculus of [M arl, 2, 3, T ay ]. Recalling Theorem 3.2, one has finally

Theorem  3.5. Under the assumption (3.5) on f 0, there exists a  weak solution
f  o f  problem (B D ), satisfy ing the  conc lusions o f  Theorem 3 .2  and  (B D ) in
distribution sense where

Q b d (f  )= Q Z (f  )+ V b 2d(f f  )+ Qid(f f  )+ V bd(f , f  )•

4. Problem (BG)

In  this Section, we will only provide the decompositions for the (BG) operator and
leave o u t any other issues. L e t u s again recall quickly the  setting of Section I.
We le t Y  for the unit periodic box, and introduce a  measurable bounded function
P= P(r), Irl < R (R > 0 fixed ), such that

(4.1) P=P(It-1 ), O<P - < P (r)< P ± <co,

The other quantities are defined as in Section I. Furthermore, we still denote by P
the extension by 0 for r
Next, we define, for f = f (t,x,v), the  operator

f  )(x ,v )=S  R d i - 5. 1 , 5s „  dv ,d60{ f (x,v')f (x- -
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(4.4) — f (x ,v )f  (x+rro,v ,)1/3(.,.)P(r).

The different expression for J( f  , f )  starts as follows

Lemma 4.1. W ith the assumptions (4.1) to (4.3), the operator J given by  (4.4)
writes as

CR C   2dh  CJ(f ,f )(x ,v )=) - R dr) w 1h r2 h -o f f  ( x ,v  h ) f ( x + r h  er+ v )—
1111'

— f (x ,v )f (x +r ,erd- v — h )} 0 (6 1 ) lar'P(r) .

The proof is omitted as it is infered from [A1e2] by an easy inspection.
In the sequel, we shall use the notation 0 ... to denote any function 0 multiplied by
a power of ' a l .  In  fact below, (l a )=  0(1a1).1a1Y ,
Still as in [A1e2], we split J  according to the

Definition 4.1. One has

J ( f ,f )(x ,v )= J ,(f  ,f )(x ,v)- F J 2(f  ,f )(x ,v ),

w here  J,(f  ,f )  and  J 2( f , f )  are defined by

J ,(f  ,f  )(x ,v )= SR
 R 12411:1E2 S w 6 ..h=00 (x ,v — h) — f (x ,v)} X

X  f  (x + r hh i ,a+ v ) 0 (61)P(r),

and

J2(f ,f )(x ,v )=f (x ,v )S R  RdrSw 211°111-±12 Sw 6a "- ° {f  ( x  r a  + v )

— f (x- F r 1 ,c r + V —  h)}  0 (lal)P(r).

The second step consists in an explicit expression for these operators, using Fourier
transform as in [Ale2]. For J ,  one has

Lemma 4.2. W ith the notations and hypothesis of  Def inition 4.1, one has

J ,(f  ,f )(x ,v )= —  a(x ,v ,D ,)(f )(x ,v ),

where the sym bol a  is given explicitely by

p(111114-.1ilv ( l a b f ( x  F h,a(x ,v 4 )= SRASk,C lh v+1 a+ v)dcydh.
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P r o o f  Making the change of variables h—* — h and r—> — r, one finds that

f f )(X  >2) ) -= S  R drS w 1hcf„h+2S idS o.h=of f  ,v h ) ±  f  ( x ,v  h ) - 2f (x,v)} X

X  f (x - F r 1 1 ,a+ v ) (Ial)P(r).

Next, let us define

(4.5) f if (x , ,v )=  SR
 R  dr (L.h=0 0 (61)P(r)f  (x + r

J ( f ,f )(x ,v ) writes as

J iC
f , f ) (x , v) S  f l f (X , O ff  (x ,v  —  h)± f  (x ,v+ h)-2f  (x ,v)} .

Thus, writing h  in polar coordinates h u c ,,u =lh l, we get

+co 1 11(f  ,f )(x ,v )=S 0 d u S v , dco u , { f (x,v uw )± f  (x ,v  —  uto)-2f  (x  ,v )}  f (x

Setting1 2 (x ,6) for the Fourier transform of with respect to the variable v, one gets

(f
+0.

, ,f )(x ,v )=S  
Ft

c  1 j" 2(x ,6)e S  d
u `

, {e"`" —2}}
4
t 0 f ( x , w , v ) { S  du

0

(4.6) = — C,S , 2(x >6)e i4 u  {S dcoR f(x,co,v)16.6D1' - '}.
V.

In view of (4.5), note that

r R
gi(X,CO3016•COl'-1 1 0 dai)P(r)f (X  ± rCe) 016 .- R

h which putting h-= rco with the identification r=1111, co= gives us

JR1JR1 -  °
P f ( X , C O 3 0 1 6 • C a t - 1 = ç ç o ,  P(1h1)1.0- 1  6 dal) f  ( x +  h , c y  4 _ 0 .

We get the Lemma setting

a(x ,v ,6)=5 P (1h1)14 .0 - 1  dal) f  ( x  h , a  v ) .Ri l ja..h=0

Let us come to .12 for which we have similarly

L e m m a  4 .3 . With the notations and hypothesis of Definition 4.1,
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' 21.12(f ,f)(x,v)= f ( x ,v )C P(1111) hr 4 ,—(  lh
111
 A  (x+ h,v+ k).

Proof From

J 2(f , f )(x ,v)= f (x,v)S irIndrS.11h1
2 d h

,-F2 dada.h=0

r , a  v )  f  ( x +  r  1 1,a+ —  h)} e (la)P(r),

and setting h= uw in polar coordinates, we get

+00
J 2(f ,f)(x,v)= f (x,v)S iri R drSo duS s I dco „ Si eps a 0,=0

Rx+ rw ,a+ v) —  f (x+ rw,a+  y— u co )} (Ia l)P (r)=

= f (x 'OS d r  dad 0 Sf  2 (x + , 6 ) X
HSR

X S
+00 1 du (2 — e 1"
0 iu") 0 (101 0 1 0 =

=f (x,v)C7S dr d co P (r )S  f (x +  rco ,k )X
1,1 R

X  {SE SIII,a.co=0 
16

.

w  I - ' eclabe
1('+v )4 e - i k .4  .

As

S C 0 (1a1)e da
=

 (1S(W)•61),

(after some computations), the above curly brackets term reads

{.} = C '
1 ( k — v

1
) 2.

9 ( 1 S ( c 0 ) • ( k — v ) 1 ) .cor

To sum up

J 2(f , f )(x,v)= f (x,v)C:'S h i x drSs t dcoP(r)S R I f  (x+ rw,k)X

X

1(
k  y ) . c o 2 ( S( G,,).( k — 01),
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and thus setting h= rco , we are done.
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