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On some related non homogeneous
3D Boltzmann models in the non cutoff case

By

Radjesvarane ALEXANDRE

Abstract

We study some issues concerning the existence of weak solutions for two
Boltzmann like equations : a Modified Boltzmann model and the Boltzmann
Dirac model. The analysis of the collision operators rests on suitable decom-
positions. These are also provided for the Generalised Boltzmann operator.
This study is performed without assuming Grad’s angular cutoff hypothesis on
the cross sections.

1. Introduction

In this work, we wish to show that the method introduced in our previous papers
[Alel, ..., 6] yields definite results on such issues as the existence, regularity ..., when
looking to some related 3D Boltzmann models, for which Grad’s usual cutoff
hypothesis on the collision kernel B fails to be true.

More precisely, the models studied in this paper are non homogeneous ones, that is
they also depend on the position variable x (via the free streaming operator) and the
collision operators involved herein cannot be splitted into the usual gain and loss
terms, in view of the high singularity of the collision cross sections.

For the sake of simplicity, we shall only consider 3D cases, although as already
mentionned in [Alel, ..., 5], the computations could be extended to other dimensions,
once one knows the (more or less) explicit expressions for the cross-sections.

To explain our purpose, let us recall that the usual Boltzmann equation consists in
looking for a solution f =f(¢,x,v) where ¢ (the time) is in R*, x(the position) in R®,
v(the velocity) in R?, of the following non linear partial differential equation

(1 l) { a,f(t,x,v)+ Z).fo(l,x,v):Q(f»f)a

F0,x,0)=1fo(x,0).

Here fo=fo(x,v) is a given initial datum, and Q is the so called collision operator
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and acts on the variable v as
(1.2)
0¢.Nw={,§ dvidolr )1 @) =r 1 0)B(10-0il|(2=2re )

v/ and v’ are the post collisional velocities, which can be parametrised by w& S?,
unit sphere of R? as

(1.3) V=v+v—vwe, vi=v—(0—ve)e.

Here B is the given cross-section depending on the variables as pointed by (1.2). The
physical meaning of all the above quantities is by now standard and may be found
for instance in [ArBe, Cer, CIP, Gui].

Most of the mathematical works on (1.1) have been done under the so called Grad’s
angular cutoff hypothesis, which roughly means that

(1.4) w—B(,.)EL'(SY),

see also more precisely [Cer].

Let us mention that one main feature shared by the models considered herein consists
in that we shall never use the concept of renormalised solutions of DiPerna and
Lions [DiLil, 2, Liol].

This concept of solutions can be avoided for at least three models, which have a
“clear” physical meaning : the Modified Boltzmann equation (MB) [CIP, DiLi], the
Generalised Boltzmann equation (GB) [BePo, ArBe] and the Dirac Boltzmann model
(DB) [Dol]. The mathematical theory is nearly clear for these models and again it
has been done for cross sections B such as (1.4), or less ...

The natural next step is therefore to ask for what happens if (1.4) fails to hold. That
this question is indeed natural (physically) can be explained by turning to [Cer, Gui,
Ukal, where we are told that (1.4) never holds, at least for interaction potentials of
the form 1/7°(s>2). Indeed, in this case, B is close to

(15) B(|v—v.|,|(ﬁ5§:7,m)\)z|v—v,|w’<—v_;—13;,
v—u|’

where the critical exponents are defined by

s+1
s—1°

(1.6) 'y='y(s):§:?, v=u(s)=

For such B, most of the mathematical results are concerned with the non linear
homogeneous account of (1.1), see for instance [Arkl, 2, Gou, Vill], and regularity
results are also proven to be true by [Des] in 2D cases and again in the homogeneous
framework. In [Alel, 2, 3], we provide different decompositions of Q containing a
principal part which may be thought as elliptic, and we apply this to various issues
in [Ale4, 5]. Problem (1.1) is still outside this scope, with the aim at getting the
existence of global solutions for general initial data, satisfying the usual entropic
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bounds. Indeed, the renormalisation method of Di Perna and Lions seems hard to
fit, but not impossible, in view of the pdo like operators appearing in our previous
works. In fact, we have been able [Ale6] to define renormalised solutions and thus
to get ride of the assumption of average compacity of [Lio3], but 1 have only
succeeded in showing that limits of such solutions are upper solutions (though
formally, they are exact ones).

Note that the issue is similar to Landau’s equation [Vil2], whose global solutions are
unknown, in spite of the regularity results based on the entropy dissipation rate
estimates [Lio2].

The aim of this work is to study the three above mentionned models, that is (in the
order) (MB), (DB) and (GB).

Before introducing these ones, we would like to make some comments on some less
known models. One such example is studied by [DeGol.

To begin with, we have shown [Ale2] that under (1.5) and (1.6), one could assume
that the collision kernel B takes the following form

(1.7) ('” vil, Klv o )D_wlv—_vlrv

The difference between (1.7) and (1.5) corresponds to a cutoff cross section.
Subsequently, we shall always assume the form (1.7)-(1.6). In fact, we shall even
make a cutoff in velocity, but for the moment, let us keep this assumption. In
addition, see [Ale2], we have shown that the operator 0 may be written (in a
somehow simplified form) as

(1.8)
00 N0=\§, hrdas.ilf 0= W (at0)=F (0)f (atv=h))lal™,

where ¢,4-o denotes the Dirac measure over the surface {a.A=0}.

Next, if we want some more accessible mathematical models, one may first mollify
this measure. The simplest way is to change it by 1, and also replace |a|”** by 1, so
that we get

09 eurpw={{, rdal{f, LR ar)

This operator, not only leads to a very simple model, but also in connection with (1.
1), yields L” estimates. Note that up to constants, one has

(1.9) 0utsr N =—={{, riwdal=a)7 ()10).

If we want to keep the weight |a|”*”

0utf N={§, @t olaldal{§ LR ) -

, one obtains
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(1.10) —f(U)SRiSRIf(¢1’+v—hﬂdl|;2|:;f(a+v)|a|y ’

bl

that is also

0ur N=={{_r(a+vlal™dal—ay7 ()0)+

+7 =8 T, S @+ laldal(o).

Next, if we want something nearest to the Dirac mass, we can approch it by a smooth
function ... Finally, a last mathematical model can be obtained by changing in (1.8)
f(a+v) and f(a+v—h) by their mean value.

In this paper, we shall not analyse these mathematical models, although they could
be of interest. Nevertheless, one such study is provided by [DeGo] in one dimension.
Turning now to our objective, we modify assumption (1.7) as follows

(1.12) B<|v—v.l,](ﬁr,w)bza(lvl—v’l)ﬁ"'vf—_”;}lﬁ—",

where 4 belongs to <8 * and is null for small values. This hypothesis simplifies many
of the computations displayed in this paper, but should be weakened by looking for
moments estimates, something that we skip completely in this paper ....

Let us begin with the Modified Boltzmann model, see [CIP, DiLi]. In this case, the
collision operator is given by

(1.13) Ol N NOV= 1775 QU SO

We will study it in Section I1. Even if the physical meaning of (1.13) is not clear, we
include it in order to introduce some earlier ideas and to make the paper self-content.
Next, we introduce (Section III) the collision operator for the Boltzmann Dirac
model [Dol], (we set e =1 with respect to this paper)

(114) 0w/ =\ _{_dvidolr 7i0=) 1= =0 =)0 =FDIBC).

again with B as in (1.12).

Then, for the Generalised Boltzmann operator (Section IV) studied by [BePo], we
make some simplifications with respect to that paper. Let R>0, and P=P(r), |r|<
R, a measurable function such that

(1.15) P=P(r]), 0<P <P(r)<P*<oo,

Now, as in the primitive variables, see (1.2) and (1.3), the corresponding operator Q.
acts on both variables (x,v) as
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0uf Nx)=\" @\ avdelfx)f (x+row-

(1.16) —f(x.0)f (x+rw,v)}B(..)P(r),

with B still given by (1.12). As it is well known, we note that if P=4§,=,, then one
recovers the usual Boltzmann operator.
Our aim is then to analyse the non homogeneous equation

) { o.f (t.x,0)+v.V f(t,x,0)=Q(f.f),

f0,x,0)=fo(x,v),

where the operator @ is one choice among the above operators.

These are dealt with in Sections II to V respectively. However, we only provide the
decompositions associated with Q,, in Section V, leaving out any other questions.
To make the paper worth reading, I will recall the framework of this Section in each
of the following ones. I also use freely some results provided by my earlier papers,
for which readers are referred to (in order to limit the typesetting time spent herein
...). Clearly, many issues are not dealt with herein. Let us mention unicity, moment
estimates, trends to equilibrium, existence in other functional spaces, other models
such as the Povzner’s one [Mor, Pov] ... There are also other methods which may
prove more interesting, as for instance non linear semi-groups [Lun] (and references
therein). All this is left for future research.

Acknowledgements. 1 would like to thank Nicola Bellomo for sending me
several of his papers. As usual, I had many discussions with Kamal Hamdache.

2. Problem (MB)

This Section is devoted to the modified Boltzmann model as introduced in Section
I. Recall that

_ v—U, — _ lv,— v
(2.1) B<|v v, ’(W,w>’>—6(|vl v |)—E)Tv|u—,

where # belongs St is null for small values, and

s—5 _ (s):s+l
s—10 vV s—1°

(2.2) y=y(s)=
The modified collision operator is given as

(2.3) Ol SNO=" 5 775 QU L)),

where Q denotes the usual collision operator as given (1.2) of Section I.
We are interested in the following problem
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{ a.f (t.x,0)+v.V [ (t,x,0)=Qum(f,f),
(MB)

f(O,x,U)zfo(x,U),

where t€(0,T), T>0 fixed, xER’, vER’, and f, is the initial datum satisfying the
usual entropic bounds, that is

(%) ngo(l+|X|2+|U|2+|logfo|)dxdv<00.

We will follow the easiest way to deal with (MB), and we will not focus on any
questions of unicity ....

First, let us recall the following result from [Ale2], assuming in the sequel that f >
0, f regular and satisfies the usual entropic bounds

Lemma 2.1. With the above notations (2.1)-(2.3), the operator Q. writes as

Qs+ )= Qs f S ) Q(f . ),

where

Oual SN O= T g el (& 0)8(lDIS (@)D () (o).

and

02/ 0= dadilabIS (@)D (a0,

where C, is a constant depending on s, § denotes function § multiplied by a power
of |al, and S(a) is the projection over the hyperplane through 0 and orthogonal
10 «a.

Next, we simplify the expression of the operator Q% as follows

Lemma 2.2. With the notations of Lemma 2.1, one has

02l 0= ks (O K (10— K

where |K (lu))< C,.

Proof. In view of Lemma 2.1, all amounts to compute, see also our papers
[Ale]

(| dadllahls(@).D.) () atv)=
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24) =0, 7 e e lgl ),

where we have settled

@.5) &)=\ dllabls(a).gl e

Then, since 1 is decreasing of any order wrt & (as A€ J)

26)  dadilahls(a).D) " (at0)=_rikdk=ol),
with

@7 K(uh={ e syl

which directly leads to the Lemma.
From Lemma 2.2, one deduces easily the

Lemma 2.3. With the above notations

1Q%(f  Oll= Clf I
"anb(.f’f)—anb(g,g)"LbS C"f—g"u-

In particuliar, Q2,(f,f) has good functional properties, whereas we need to work a
little more over Qh,(f.f). For this purpose, we will follow [Ale2, 6], setting the

Definition 2.1. Let us write

Qoo [ )= Qms(f ) Qs f . )
Q:r:b(_f"f): - a,‘x(U,DF)(f‘)(U),

a,:(0.8)= 1+‘50f \ daf (.x.2)6(a—vh z(la—0) A ghla—0) AEI",

OBf N=T gy Vpdef (15,2t 0)xla AD G abla A DI~ (F)(0)
where y : R*—[0,1], supported in [0,1], smooth, =1 for t<2/3 and x(£)=1— x(1).
As in the above papers, one has

Lemma 2.4. With the above notations, one has
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|07 04a,.(v,8)| < Com(1+]ED" 7,

10m(f = Clf e

Now, we can introduce our definition of solutions for the (MD) model, following
earlier notations

Theorem 2.1. Under the assumption (J6), there exists a weak solution [ of
(MD), that is f satisfies

SUPrE(o,T)SS fli+|olP+|xlog fldxdv<Cr,

the entropy dissipation rate

WSS S B rimsrmoe G < e,

0

and f satisfies in distribution sense

{ arf(tsx’v)-}_v'v.\f(t»xsv):le:b(faf)_'- Q:b(f»f)-i-Q%nb(_f»f)’
f0,x,0)=fo(x,0).

Furthermore, there is weak stability of such solutions.

In view of the previous statements on the operator Q,, this result follows at once
from [Lio3] and the approximated problem considered by [DiLi]. see also related
issues in Sectioh IIl. However, we would like to end this Section by showing how
one could deduce regularity results from the entropic dissipation rate estimate (stated
by Theorem 2.1), without resting on [BoDe] as done by [Lio3]. In the following, we
let g=+f. p=If, so that one starts from

(2.8) S:SXSFSMSN%IQ’M —99’<Cr.

Next, we proceed as follows (note that the decomposition in [Vill] is slightly
different). Write first

(2.9) 9’91 —99.1’=(9.9' —99) >+ (97— ) g —g}).

Then, consider the estimate (2.8) involving the second term in (2.9). We claim that
it is bounded. By the usual change of variables, this is equivalent to show that

WSS rirse

Indeed, letting B for the l.h.s of (2.10), one has first

(2.10)
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(2.11) ﬁSS' sup,

§.S Buri-n)|

and as §,5,B(f1—f) is nothing else than the operator Q* of [Ale6], it follows B <
Clf .., In view of this estimate, one deduces from (2.8)-(2.9)
T

B ’ ’
(212) 0=\ N\ 77 o —aatr=cr

Next, we use the Carleman’s representation as in [Ale] to get from this

1y §§§§ oS 20aDig ot v—mygo—n—gatngwi=c.

B 1+p '
Setting
(2.14) J(z,a)=9(at2)9(2),
and using the Parseval’s relation with respect to the variable v, one gets
T dh S 19_(|a/|)S 2 2 ,—ihk _ 1|2

(2.15) WSS, SV katle ™ —1P< c.,
(/" denotes the F-transform w.r.t to the variable z) that is also

T 0_( )S £ 2 ol
(2.16) SonSs;‘.SEo.w 1+p kl‘] (k,a)llk.wl™'<C,
or, using previous notations

T 9_ I S £1 2 v—1
(2.17) \ nga_d_lwp 1 ka)PIS @)kl < C.

We claim that

218) 35S el et = = c.

0

Indeed, letting & for the left hand side of (2.18), one has
vl

ﬂzSS—l}r—pSk[S al]' (kalS(a) k' f). k'_]

which, using Cauchy-Scharwz inequality with respect to the variable a gives

4 nggxﬁgk{sa 9_(|a|)|f'(k,a)|2|S(a,),k|u—x} X

219 x{, 8abs =)

But
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Sw 67(|a|)1§2%%ﬁ=ga §(|a|)mlﬁ£ C,

by assumptions on # (note also that 0<p—1<2). Therefore, it follows from (2.19)
that

(2.20) A=\ 8 aabl ks @il

and the right hand side of (2.20) is bounded in view of (2.17), obtaining (2.18). From
this, it follows

0

T 1 u—|S Y £ 2
(2.21) S S i+, Sklkl ), 6dahs (k. a)f<C.
Note that |f'(k,a,/)| is up to dilatation in @ the modulus of the Wigner transform of
¢ (and thus bounded in L;,NLy,). Finally, we obtain

(2.22) Jllt—p (Jf *.,6)./fEL¥O,T)XR:; H"T_'(RZ)).

Note that this result improves on [Lio3]. Furthermore, one advantage is that this
scheme of proof adapts to completely different collision operators. Let us note that
we did not deduce regularity with respect to the variables (x,v), see Section III for
related results. However, it should be possible to get some results by looking to a
renormalised form of the problem. Finally note that we asked for a somehow weaker
formulation of solutions than possible, in that we can use instead the stronger notion
of H-solutions as introduced by [Vill]. This is done in the next Section for model
(BD).

3. Problem (BD)

This Section is devoted to the Boltzmann-Dirac model. As previously, let us
introduce the notations to be used herein.

We consider for f=f(v), the (BD) collision operator acting on the variable v as
follows

Gy o nNw= S andolr ria—na—ro—ga—ra-roBse..

We have used the classical notations of kinetic theory, and

(3.2) B<|v—v.|,‘<-[z%z:|-,w>’>50(|v.—v’l)%,

where 6 belongs %, is null for small values, and

s+1
s—1°

s—5, v=u(s)=

(3.3) y=y(9)=,7

Later on, we shall comment about possible weakenings on §, and in particuliar
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allow for §=1. As in the former Section, the main advantage is to make easier some
“classical” pdo analysis.
Among other issues, we want to solve the (BD) equation

{ 2. f(t.x,0)+ .V, f(t,.x,0)=Qwlf.f),
(BD)

J(0.x,0)= fo(x,v),

in whole phase space.
First, let us recall quickly the known facts on problem (BD) in the cutoff case [Dol].
To fix the ideas, let for n=>1, y,(¢)=1 for t<n, 0 elsewhere and

(3.4) B”(.,.)=B(.,.)x,,< v—v )

’Ul—l)’

Clearly, for any fixed nEN, it belongs to L'. Then consider the following (cutoff
type) problem

{ a.f (t.x,v)+v.V f(t.x,0)=Qs(f.f),
(BD")

f(O,x,U):fo(x,U),

where Qj,; denotes the BD operator with the cross section B" of (3.4). Naturally f
=f"..

Dolbeault [Dol] has shown that under the following natural assumption on f;,
(3.5) 0</v=1 ae | fuCro)(1+ 0P+l +log fil} <eo,
(of course, last part is superfluous), then there exists an unique solution f" to
problem (BD") satisfying
(3.6) f"ELYRYXRIXR)), 0<f"<1 ae,
with " absolutely continuous with respect to ¢ and

S"ECRT; L'(RIXRY)),

3.7 Sgnimf"([’x,v)dxdv:SSRiva(x’v)dxdv’ YV 1ERY,

(1,x,0)=f"(t,x,0)|[vE CR™; L'(R;XRY)),
(3.8)
SSRE""f”(t,x,v)|UIZdXdZ):SSRi_u fo(X,U)lUlzdde,
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(t,.x,0)=f"(t,x,0)|x]’E CO(R* ; L'(RIXR3})),

(3.9)
SSw f"(t.x,v)|x—tvdxdv= SSR Ffo(x,v)|xdxdv,

With the notations

(3.10) s(u)=ulog u+(1—u)log(l1—u),

etxn) =148 §avidolr ri0—pa—ry—ma—rHa—ropx

SAA=H)A=f)) 5»
(3.11) Xlog{ == }B (),

one has also the following entropic type estimates

(3.12) SSRB” If " log f"|(t,x.v)dxdv < C+SSR5” Folx,v)(|v]*+| x| dxdv,

(3.13) s(fELT(RY; L'(RIXRY)), e(f)EL'(RTXRS,),

with the estimate, for a.e positive ¢

(3.14) SSR&.»SU’I)(I’)C’U)-'_S;ggniwe(f")(s’x’v) - SSRZ.VSUO)(X’U)'

The main point is to note, although it is important in the proofs by [Dol], that all
these bounds do not involve the L' norm of B”.

Now what can we do to get (suitable) weak solutions of the non cutoff problem
(BD) ? One idea would be to pass to the limit as n—>co directly in problem (BD"),
in view of the above uniform bounds (3.6) to (3.14).

However, while this method is suitable for the homogeneous problems, see [Gou,
Vill], it breaks down for the non homogeneous ones, since we have to account for
the products involving functions of the variable x. The method choosen hereafter
will need some compactness and for this purpose, the entropic rate bound, that is (3.
11) with the non cutoff kernel, is essential as shown in [Lio3], see also[Ale3], in the
pure Boltzmann case.

Therefore, instead of the problem (BD"), we introduce the following modification
(BD}), n, m=1

B W1x ) F 0.5, f (1.2, 0) =D = Qb f i f 1),

fn(0,x,0)=fo(x,0).

First, we shall fix m =1, pass to the limit as =0, then send m—2°. The problem
(BD;,) is one method for achieving the entropic dissipation bound, and note for
instance the work of [Ale5] in the pure homogeneous Boltzmann case. Also note

(BD,,
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that one could change —A, by (—A,)* with a suitable «, in fact aés—l—], whose

advantage is clear, in view of some computations [Ale2]. However, we do not insist
on this point.
Next, following [Dol], one has

Lemma 3.1. For f, satisfying (3.5), there exists an unique solution f, of
problem (BD},), with the uniform bounds

(3.15) nELY(R*XR,XRY), 0<fn<l ae,

with f,, absolutely continuous with respect to t and

FnECURT; LI(RIXRY)),

(3.16)
SS . f;'n(l,x,v)dxdv:SS fo(x,v)dxdv, ViER*
Rxo R%.o
(t,x,0) = f n(t.x,0)|0PE CURY ; L'(RIXRY)),
(3.17) 2 |
ng‘yffn(t,x,v)lm dxd”:SSm‘ufo(X,U)|v| dxdv,
(1.2,0)=f (1.2, 0)|xPE CUR™ ; LI(RIX RY)),
(3.18)

ngmfﬁ,(t,x,v)lx—tvlzdxdv:ngmfo(x,y)|x|2dxdv.

(3.19) SSR;Jf'"" log fal(t,x,v)dxdv < C+SSR§.Uf0(x,v)(|v|2+lez)dxdv,

and for almost every t=0

TIn-S;SSRg,le“/ﬂdedv+

+§5,. S, S dvdolr ria—na—ro—ma—rHa-rix

LLA=0)0=f)])
(3.20) X log| T == }B ()=C,

where we set f=f to simplify.

Note that from the first part of (3.20) and usual arguments, one has, at least
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1

(3.21) ES;SSR;UIVI,/;U';,)dedvs c,

for all € C'(R).

Now, as a preliminary step, we want to send n to ©, while keeping m fixed. Note
then, we fall into the non cutoff BD operator and therefore, we must first define
suitable weak solutions for problem (BD,,). One way is to proceed as in [Ark2, Gou,
Vill].

Definition 3.1. We say g is an H-solution of problem (BD,,) if g satisfies (3.
15) to (3.20), without the index n and thus in the non cutoff case, with B such as
in the beginning of this Section, and if g satisfies in D’ sense

3.9(1.%,0)+ 0.V, g(1.%.0) = -8,9= 00i(9.9).
(BD,)
g(O,X,U)zfo(x,U).

Let us note that Q,,(g,9), with g such as (3.15) to (3.20), is well defined. Indeed

Lemma 3.2. Assume that g satisfies (3.15) to (3.20), where Q4 is given by (3.
1), (3.2) and (3.3). Then one has

de(g,g)ELz(O,T) XR,;H"

T(RY)),

and more precisely

1< Q04a(9,9): $>1<Cll g

with C a constant only depending on the above uniform bounds, and not on n.

LX(0,T)X R} ; H'T'(RY))

Proof. Using the above entropic estimate, note that g satisfies (since g is
bouded)

(3.22) 05, S, S, dvdotoga—aa—g)—ga.01-gr0-gpPBC)<C

0

Next, for smooth ¢

—99.(1—g"Y1—=g' )} B(.,. )¢ — ¢}dtdxdv.

We have used the classical symmetries associated with the operator Q. Therefore,
using (3.22), we find

- i
em I<eweoia>l=c((, S, § ol —arf

Using the same computations as in [Ale2], one may write

6
Rx.v
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SR AT S Rr——
< CS:SSR;USMT%%{W):,U—h)—¢(x,v)}2dvdxdz

=c§ (@ xeristag),

by classical results, see for instance [Stel, 2] and as 0< vy —1<2. Therefore, we have
shown

(3.24) 1< Q4a(9.9) ; $>1=< Cllllao.ryxrs: %' crny

Note that Q,, is also well defined on C? functions, with suitable decay estimates.
Now, let us turn to the sequence f', m fixed, of solutions of problem (BD;,) as given
by Lemma 3.1, that is

n n 1 n n n n
A m(t,x, )+ V.V f (£ x,0)———Auf m= Qba(f e [ ),
(BD}) m

ff,,(O,x,U)Zfo(x,v).

In view of Lemma 3.2 and all previous estimates, one has the following uniform
bound, with respect to n

(3.25) |<Qha mofm) ¢>|SC"¢||L=((o,r)><ki;H'””r’(Rt))-

Recalling that m is fixed for the moment, and using (3.20) and [Lio2, 3], this is
enough to conclude that the sequence {f},}, is strongly compact in L?((0,7)XR$,),
for any 1<p<oo, and we let f,, be a limit point.

Obviously, it satisfies estimates (3.15) to (3.20), with B” turned to B as results from
the above strong convergence and Fatou’s lemma.

In conclusion, we prove

Theorem 3.1. Under the assumption (3.5) on f,, there exists an H-solution f,
of problem (BD,,) that is satisfying in weak sense

B m(1.5,0)F V.V f n(£.5,0) =—of = Qs f o ),
(BD,,) m

fm(O’x’U):fO(x’v)’

see Definition 3.1 and Lemma 3.2, and the following bounds
(3.26) fmnEL(R*XRLXR}), 0<f,<1 ae,
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fmEL”(R*; L'(RIXRY))),

(3.26)
SS . fm(f,X,v)dxdv:SS  folx,v)dxdv, Y tER*,
Bho R,
(t.x,0)>fult X V)|VPEL™(RT ; L'(RIX RY)),
(3.27) 2 2
SSRi,vfM([’x’U)|v| d"dUSSSRgmfo(x,v)lvl dxdv,
(Lx,0) = flt.x0)XPE LR L'(RIXRY)).
(3.28) 2 2
Ssmvvfm(t,x,vﬂx—tvl dxdvéggmvfo(x,vﬂﬂ dxdv.
(3.29) SSR" Ifm Ing’"|(t’x’v)ddeSC+SSRS Folx,0)( ol +|xPydxdv,

and for almost every t=0

VVfm P dxdv+

e,

+SISSR:.vSRz.Ss£dv'dw{f FIA=NA= )=S0 =f)A=FDEX

0

[ Aa=a=1f)
(3.30) ><1og{ == }B(.,.)S C.

where we set f=f, to simplify.

Having at our disposal a sequence {f.,}.. of H solutions of problem (BD,,), (possibly
non unique), we want to pass to the limit as m—0, so that we loose the compactify-
ing properties of the viscosity term ——rl;A,,.

However, as shown in the pure Boltzmann case, see [Ale3, Lio3], we will see that the
entropy dissipation rate bound, that is the uniform estimate in m of the second term
of the left hand side of (3.30), leads to some regularity and compactness. The
following are modelled on the steps of Section Il

Omitting the index m in the remainder, we start from the estimate (7 >0 fixed)

aany S5 S S BUrria—na—r—ra-ma-roy=c,

that we write as follows
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a3y (S S sra—rg—n+ra-mui-nr=c.

Using the (classical) change of variables (v,0,)—(v’,v")), one gets also

a3y (S S Blria=—ros—m+ra-nu—rorsc.

From (3.32) and (3.33), we get finally the following estimate

S:SSR;K,SR%SSﬁBi{(l_fl,)f|+(1_fl)fl/}(f/_f)_*_

(3.34) Ha=r+a=Hr Y i-fok<c.

Next, we make the change of variables due to Carleman [Car], and provided by
[Alel, 2, Wen] to get, where we still use the notations f’, f1, f and f) this time for
f(v—h), f(at+v), f(v) and f(a+v—Hh) respectively,

38 SaTati ), adabla—rosrra—rorie =1+

(3.35) H—=)f+U=1 ) W =)l dadvdxdt < C.

We keep the same notations as in our previous papers, in particuliar E,, denotes
the hyperplane through 0 and orthogonal to h.

In view of the properties of function #, we can use Jensen’s inequality with respect
to the variable « to get

W8 Semit |l adabita=ron+a—rori|o—n+

e36)  +a-rr+a=n§, adahi-r) pandvaxar=c.

Recall the notations, and in particuliar that f and f” do not depend on «. Next, we
want to show the estimate

(3.37)
SOT SSRSRW[SE« o(aDl(1=rDfi+0—=f0f f}]z(f '— £)dhdvdxdt < C.

In view of (3.36), it is enough to show
(3.38)

T 1 ’ ’ Yy ’ 2
VS Semta=rr+a=nr§, adabii—r [ avaxar= c.
The left hand side of (3.38), denoted by B hereafter, reads as
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=St %,

X|SEM 6(a){f (a+v)—f(at+v—h)}dal’

If one denotes

ﬂ(ﬂ%{)zg&*f(a‘*‘ﬂ 6(lal)da,
and by ,§' its Fourier transform with respect to the first variable, we are led to
p=cl§supta=8, S e ol o) = (o= ngi)f
which, using Parseval’s relation, leads to
e TR i TS
Shifting A=r® in polar coordinates, one gets also

B< CSOTSRJXsup{(l —f)zfz}SsﬁgRi|/§'(k,w)|2|k.m|”".

Now, recalling that S(w) denotes the orthogonal projection over E,; one obtains
B'(k.w)=1 (k)6 (IS (w).k]),
and therefore
T
s=c(/§ supla—rpr_I7or<c.

As the estimate (3.38) holds true, we arrive at the final estimate (3.37). Next, since

(I=fofit(=fOf12(0=fDf

one gets
SOTSSR&.HSR%WI"TZ[S&,. 0_(|al)(] —flatv)f(at v)]zx
(3.39) X|f(v—h)—f(v)]Pdvdxdt< C.

We want to work this estimate. For this purpose, let us set
(3.40) 9(2)={1—=f(2)}f (2),

so that the term inside estimate (3.39) is {g(a+v)f(v—h)—f(v)9(a+v)}, that we
write as
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(3.41)
{J=g(a+v—hf(w—h)—f)gatv)+f(v—hm{g(atv)—g(atv—h)}

The second term of (3.41) may be estimated as above (for B), so that we are led to
the estimate

S:SRiSRiml"ngm SEM 6 (lah{g(a+ v—h)f(v—h)—

(3.42) —f(w)g(a+v)dal’dxdt<C.
Setting
(343 i(z7m)={§,. 20abaa+2]r .

the estimate (3.42) reads as

(3.44) SoT SR’XSR:WI"TZSR:\J(U_ h—|h_|> —j(v,—%—)‘zdva’xdt =C,

which again using Parseval’s relation leads to

a
¥l

J

(3.45) SOT S.u Skﬂﬁﬁ—zgm (k,ﬁ)he‘"""— 1*dkdxdt<C.

Using again polar coordinates in A=rw, one gets

T n o —irw.k __ 1|2
(3.46) S S S S qu‘(k,w)lzg a1 = G kavar< c,

0 JREJRLJ S 0 r
and from previous computations, we finally have

T
21 2 v—l1 <

(3.47) SO SRiSRiSS“Jj (k.w)lk.o| 'dxdt<C.
Using again ... Jensen’s inequality in variable  leads to

(3.48) S: SRiSRi

Let us compute the term inside the term |.|. We obtain

Sszf'(k,w)lk.wl‘ﬁ—'dw “dxdt<C.

Ss‘afl(k’wﬂk‘wl%ldw:
:Ssﬁgni{gam §(|a|)g(a+Z)}f(z)e_”‘"|k'w|”—;i

=St dabatatar@e {§ kol T do]

Shw
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= ] —ik.z vl
B CSSRZSR’. 6 (lahg(at+2)f (2)e”*|S(a).kl 2

=c{ {, 6(labgta+nf @e *lank[F"
With this expression, turning to (3.48) and using Parseval’s inequality for the
variable k, we find
(3.48) AL )W)EL((0,T)XRXRy),

where &, is the operator given by (up to unimportant constants)

(3.49) ﬂ:x(f)(U)Egkigki{gnidaﬁ_dabg(a+z)|a, Ak|%'}f(z)e-,-(.~—m_

A Y. is nothing else than the adjoint of the operator

(3:50) A=, Bl abg(a+vlan DT (),

see for instance our previous papers.

If there were no time and space dependence, one could deduce, exactly as in [Alel],
and for non trivial f, that the symbol of « satisfies, for all v&Q, Q being any
bounded open set of R?

(3:51) {ddabgta+olantls = c kT glabo(a.

v—I . .
and therefore fEHE_(Rf,). But unfortunatly (!) and as in Section II, we must
account for these variables, so at this point, we just state the result obtained (which
could be interesting by itself)

Lemma 3.3. If f =0 satisfies the above bounds, and in particuliar the entropic
estimate (3.31), then

(3.52) A ))ELN(O,T) X RS,),

where the operators ). and A, are given by (3.49) and (3.50) respectively, with
g()=(1—f(a))f (@)

Remark 3.1. In the above computations, there is some kind of Winger
transform involved therein.

Remark 3.2. As in any Sections of the paper, the cutoff (in velocity function)
6, or @, ... reduces the computations.
Of course, it is likely that the same results will hold true in the general case, see
Section I, by putting enough moments in the entropy dissipation rate bound, so as
to use Jensen’s inequality.
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For instance, we have used the fact that the measure 6(al) has finite mass (over
Eos). In the general case where 6(|a|)=1, see also the examples in [Alel], then 6
(la)=l|al**", and the entropy dissipation rate bound reads as, forgetting variables
(t,x) (with obvious notations)

(3.53) SmSRszﬂ%Sso dalal™"..dv<C.

Recall v+y>0. Next, letting 6>1, the use of Jensen’s inequality yields
2dh oty 1

3.54 S S 7 S d ——.['dv<C,

(3.:54) wJr (A7 | )i alal (1+lal)? Favsc

and one may proceed as earlier. In fact, it is even simplier from (3.53) to note that
it is bigger than our estimate with 6.

As said previously, the uneasiness is to keep track of the variables (¢,x).

Recall that our main intention is to prove the compactness of the sequence {f .} of
H-solutions of problem (BD,). Although it should be possible to adapt the
arguments of [Lio3], note that we have to work out the computations from [BoDe]
in the Boltzmann Dirac case. Instead, we provide a direct method, following exactly
Section 11, which I believe will prove usefull for different collision operators. At this
point, let us say that we have'nt looked for optimal estimates below ....

Starting from (3.47), let us first deal with the case 0<y—1<1 that is s>3.

We claim that

(359 BANLN

Indeed, letting & for the left hand side of (3.55), one has
T . Y 2=l g,
(3.56) 6:S S S [S lj‘(k,w)llk.wl"T'MZ—L_—:] <C,
0 JxJklJsi Ik&)| 2

and by Cauchy-Scharwz inequality in @

S T [ Yo

=l
m.(n)

is integrable over S*°, we deduce that & is bounded in view of

2 vl |2
J'(kw)lkl 27 <C.

Since w—

v—1

| k
T&[@
(3.47) and thus (3.55) is proven.

Next, from (3.55), we use again Jensen’s inequality in @ (as for (3.47) to (3.48)), and
finally we obtain

Lemma 3.4. [If f =0 satisfies the above bounds, and in particuliar the entropic
estimate (3.31), with the assumption s>3(0<y—1<1) then
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{( dablabota+n|r@rc o) xR BT (RY)

v

In the case 2<s5<3, note that one has (3.47) with the weight |k.e
k.w|*7? ..., and therefore, proceeding as above, we get

~! changed to |

Lemma 3.5. If f =0 satisfies the above bounds, and in particuliar the entropic
estimate (3.31), with the assumption 2<s <3(0<yp—2<1) then

v—1

2 (RY)).

{Smdar 8(lahg(a+ v)}f(v)e L¥(0,T)XR.; H

In view of [Lio2, 3], the Lemmas 3.4 and 3.5 are enough to conclude that the
sequence {f,,} of H-solutions of problem (BD,,) is strongly compact in any L?((0,T)
XRS,), 1<p<oco,

We finally obtain the following existence theorem for the (initial !) problem (BD).
Note we can pass to the limit in Q,, by “symmetrising” classically the inner integral.

Theorem 3.2. Under the assumption (3.5) on f,, there exists an H-solution f
of problem (BD), that is satisfying in weak sense

{ oS T .V f =0Quwl(f.f),
f(vavv):fO’

(BD)

see also Definition 3.1 and Lemma 3.2, and the following bounds

0<f<1ae fEL"(R'; L'(R.XRY)),

(3.57) SSR f(t,x,v)dxa’v=SSRs Folx.v)dxdv, Vi1ER*,
(3.58) W, rxwaxavlvpr+lx—o < roeo)xr+vPdxao,
(3.59) ng If log fI(t,x,v)dxdv< C+SSRS fo(x.0)(|vl*+|xP)dxdv,

G S S, andolrria=na—r—ma—roa—rix

0

S AAa=Na-=1f)
(3.60) Xlog{ T ANET S }B(.,.)s C.

It also satisfies the conclusions of Lemma 3.4 and Lemma 3.5.

Having provided an entropic solution satisfying some “regularity” in the variable v,
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we want to bootstrap this information on all variables (#,x,v), at least in (x,v). One
instance of this is the compactness of sequences of entropic solutions, as shown by
P.L. Lions [Lio2, 3]. Another one is the fact that the velocity averages of f has some
regularity in (#,x). Let us show how we can use this. In the sequel, we will simplify
our study by assuming that s>3, so that one may use Lemma 3.4.

In view of Lemma 3.2, using [DiLi2, DiLiMe], one has for all 1//Ea‘D(Rf,)

o
(3.61) SRaf(t,x,v)w(v)dUEH 441 2((0,T) XRY).
Therefore, in view of the above bounds, one has also

1

(3.62)
p*{§ 8ah0=f(@)f (@ndaf|_ rtx)p)dve B3 (0. T)XRY),

where p is a smooth function of the variables (#,x). Next, let (note that we use the
same letter g ...)

66 gxw=p*{§ Gla1—f (@) (@)da}b0)f (Lx)p()

where ¢ €D (R;), omitting cutoff in the variables (#,x) ..., and if we denote (7.k,&)
for the dual variables of (f,x,v) respectively, then from [DiLi2, DiLiMe], the
information (3.62) can be translated into, where § denotes the Fourier transform in
all variables

1 an
(3.64) (4|2 +| kP +5L 20 LR ; LR, XR})).

According to the Lemma 3.4, one has (g there is (1—f)f ....)
(3.65) (1+]£P)*7 g€ LA(R} : L*(R, XRY)).

In particuliar, one has also
|

iR
(2P H]hP) st 2
(1+gly?

for all §>3/4, and finally

(3.66)

g€ LY R} ; LR, XR})).

(1] + k)52
(1+]ePy?

(367 {a+leD T+

9E LR} ; LA(R, XRY)).

Since for all p>1, a, 5>0, one has %(a%)’+7;7-(b#)”'2a_:zb#, where %+ ; =1,

one deduces from (3.67) that

v

— R
5 (1|2 9€ LR ; LR, XRY).

(3.68) (1+l&P

Setting
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- v—1l & . 1 1 }
(3.69) ﬁ—mf{ T o =1 20 )
1+
2
which is positive by choosing p sufficiently close to 1, we get finally
(3.70) (1 +|gP+|2+1k PP oe L,

and therefore, we have arranged for

Theorem 3.3. For all ¢, , pED, set
g(z,x,v)Ep*{Smﬁ(lal)u—f(a))f(a)da}¢(v)f(t,x,v)1/f(v).
where [ is the solution provided by Theorem 3.2, with s>3. Then, one has
gEHA (R, X RXXRY),
where B is defined as

(=1 ¢ 1 1
=mf{v —; ,},
B 2w P g1 2p
2

for all §>3/4, p>1, such that §=0.

Remark 3.3. [In particuliar, note that for all ;>0 small enough, one has g in

v=1l _ & . . . . vl .
Hxi+ 0 TJrLu(R,XRiXRi), that is something which is close to H 4+ . For instance,

. 1 (wv+D)(v—1 . v—I1 1
= <p< — _
choosing 0=1, then for 1<p<1-+ ) L+2 , one obtains f3 27 I

However this regularity result is likely not optimal. One may also wonder if H”
spaces are the good spaces, and if instead we should not take some kind of
Orlicz’s type spaces, see for instance [PiSi]. Finally, it seems possible to deduce
(small) regularity on f as in [DeGo).

Now that we have produced H-solutions with some (partial) regularity, can we
bootstrap this type of result ?

It seems that we cannot do this, since we rested upon the entropic dissipation rate
bound and used “only” the non linear pde (that is problem (BD)) to get the
regularity of the velocity averages.

So, we must turn to the pde, and notice (at this point) that the weak form of problem
(BD) is not (or at least I do not know) well suited for (micro) local analysis. This
is where the decompositions, as those provided for the pure Boltzmann case, could
be usefull as we believe. In the following, we just explain these decompositions,
leaving out any possible applications.

A first step is to write the curly brackets term of (3.1) as follows

(3.71) == i =H+A=F fI= 1.

However, | have not succeeded in using this form, one reason being that, when going
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over to the representation in variables (/,a) for the operator (3.1), then f7, f1, f” and
f stand for f(a+v—h), f(a+v), f(v—h) and f(v) respectively, and looking to
[Ale2], note that a significant step there was that the change of variables hA— — A left
“invariant” the pure Boltzmann operator. In our case (3.71), note that Q,, "trans-
forms” as, where f,, f' mean f(a+v+h), f(v+h) respectively,

(3.72) U=0=A)fIF =H+A=f (=1

and thus we cannot factorize terms such as f'+f'—2f ...

However, I believe that this can be made, as it is suggested by the pure Boltzmann
case, note also in [Dol] that f and 1—f are somehow linked.

Since we are only interested from now in bootstrapping some regularity, I shall
simply write {.} as

(3.73) U=U=DfiF =NH+A=Df = )T I=f IS =N 1),

from which follows

Theorem 3.4. With Q,, as given by (3.1) and the previous assumptions, one
may write

Qo[ L) )= Qba(f . )W)+ Qia(f . ) () + Qialf . f)(V),

our. =\, § =t G- rori—p),
ous .=y, § A=t o—pyriri-p,
our =S, § U=t i poir =i,

In fact, I should have written the last term as
F= S =D === === =N

and in view of the previous estimates, one notes that

where

v—1

Qi EL(0,T)XR:; H™ 2 (R))),

so in the following we shall just concetrate on the two first terms Qi.(f.f) and Qja
(f.f). Oncemore, let us say that we do not believe that this is the right way, as we
think that a more symetric form could be possible as in [Ale] and in the previous
Section. Anyway, for these operators, we just refer to our papers where the following
results are shown

Lemma 3.6. With the above assumptions, the operator Qs of Theorem 3.4
writes as
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0 1Y )=—C daf (a+0)1=F (a+ ) 8(laD|S(@).DI'(F)(®).

where C, is a fixed constant (depending only on v). Recall that S(a) denotes the
orthogonal projection over E,,, the hyperplane passing through 0 and orthogonal
to a.

Lemma 3.7. With the above assumptions, the operator Q}, of Theorem 3.4
writes as

Ql(f ./ )=C(1 —f(v))f(v)gmdazi (laDIS(a).DI"'(f a+v).

with same notations as in Lemma 3.6.
Let us show how to expound suitably these terms, beginning with the simpliest Q%4

Lemma 3.8. With the above definition of Qii(f.f), one has

QLS = =FNf @, fROK (k—0l)dk.

where KE L.

The proof follows that of the previous section and is omitted.

Next, for Q4 as given by Lemma 3.6, we let, in view of considerations already
explained earlier, x(¢), t€R", a smooth function positive, with support in [0,1], 1
for t<2/3, x =1—x, and decompose

(3.74) Osa(f . /))= Qua(f . /)W) + Qualf. f)(0),
with
(3.75)
Qu(f . f)(v)=— CsSR,'da’f(a/-i'v)[l—f(a+v)]t9(|a|)|a/\D|"_'x(|oz/\D|)(f)(U)s

and

(3.76)
0 @)=~ C daf (a+0)[1=f (@+v)6(laDla A DI £ la A DD ).

For these expressions, one has
Lemma 3.9. Qu(f,f)(v) defined by (3.75) belongs to L*((0,T)XRS,).

Proof. Omitting the variables (¢,x), if we denote
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7. )V)=la AD|" g (la ADN)(f)(v).
then 7,: L*>L? is bounded for each ¢ non null and uniformly. Therefore, the

generalised Minkowski’s inequality yields the result.

There remains to study Qu(f.f) as given by (3.76), and we deal with it as follows.
If one sets, omitting (¢,x) dependance,

3.77)
a(v.§)=—C_daf ()[1=f(@)8la—vhl@—0) A&l Z(@— ) A gD,

then one checks that this is a good symbol within the class J¢,', with (£,x) as
parameters, and thus we can define Q4 (f.f) in D’ sense as

(3.78) <Qif. ) ¢>=<[f;a"(v,D.)($)>.
using the whole calculus of [Marl, 2, 3, Tay]. Recalling Theorem 3.2, one has finally

Theorem 3.5. Under the assumption (3.5) on f,, there exists a weak solution
f of problem (BD), satisfying the conclusions of Theorem 3.2 and (BD) in
distribution sense where

Qoa(f )= Qsaf . 1)+ Qualf f)F Qalf . )+ Qiulf . )

4. Problem (BG)

In this Section, we will only provide the decompositions for the (BG) operator and
leave out any other issues. Let us again recall quickly the setting of Section I.
We let & for the unit periodic box, and introduce a measurable bounded function
P=P(r), |r|<R(R>0 fixed ), such that

(4.1) P=P(|r|), 0<P <P(r)<P*<co,

and we set

(4.2) B(lv—v.l,l(ﬁ,w)})zﬁ(lv.—v’l)%%,

where # belongs to " and is null for small values, and

s+1

(43) Y=y =220 = us) =21

The other quantities are defined as in Section I. Furthermore, we still denote by P

the extension by 0 for |r|>R.
Next, we define, for f=f(¢,x,v), the operator

17 NeEn=\" a\ § avdolf st roon-
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(4.4) —f(x,0)f (x+rw,0)}B(...)P(7).

The different expression for J(f,f) starts as follows

Lemma 4.1. With the assumptions (4.1) to (4.3), the operator J given by (4.4)
writes as

1 De=\" ar§ S sl fro—mp (st rpirate)-

—f o (xtrpato—h) odablal P().

The proof is omitted as it is infered from [Ale2] by an easy inspection.

In the sequel, we shall use the notation 6 ... to denote any function § multiplied by
a power of |a|. In fact below, 6(a=06(al)lal”", ..

Still as in [Ale2], we split J according to the

Definition 4.1. One has

J(f’f)(xvv):JIU’f)(st)+J2U*f)(x’v)’
where J\(f.f) and J.(f.f) are defined by
2dh

J‘(f’f)(x’v):SiRdrSR1WSR26”'h=O{f(X’U_h)_f(x’v)}x
X f<x+r|—h|—,a+v>§(|a|)1’(r),

and

Jz(f,f)(x,v)=f(x,v)SiR d"SR:"%Ic{hTzSR% c)‘,,;,zo{f<x+r|—h(,a+ v)—

—f(x+r-|-}—l|—,a+v—h>} 7(al)P(r).

The second step consists in an explicit expression for these operators, using Fourier
transform as in [Ale2]. For J, one has

Lemma 4.2. With the notations and hypothesis of Definition 4.1, one has
Jl(f’f)(xyv): _a(x,U’DU)(f)(x7v)~

where the symbol a is given explicitely by

v—1 _
ae.0.6)=3, €100 sePLDEL 5l alys (et o+ o) dadh
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Proof. Making the change of variables ~4— —h and r— —r, one finds that

J.(f,f)(x,v):SiRdrSRil—}:llﬁ—zSRic?mh:o{f(x,v—h)+f(x,v+h)—2f(x,v)} X

><f<x+r1%r,a+v>5(|a|)1>(r).
Next, let us define
h _ (R — h
(4.5) ﬁf(x,m,v>—g_kdrgmaa,h=0a(lal)P(r)f<x+rW,a+v)da.
J(f,f)(x,v) writes as

J.(f,f)(x,v)=Sm—l%ﬁf<x,ﬁ,v>{f(x,v— h)+f(x,v+h)—=2f(x,v)}.

Thus, writing 4 in polar coordinates h=uew, u=|h|, we get

uly {f(xv+uw)+f(x,0—uw)—2f (x,0)} B (x,@,0).

+ o0
1 e =\""au_deo
Setting fz(x,g) for the Fourier transform of with respect to the variable v, one gets
J )_S d f"Z ) il;ivS d ){S+md L{ iu&w_z}}
() 0)=\ dEfi(x.8)e®"\  dwfif(x,0,0)\)  du e
(4.6) =— CJSRJ d!,-'fZ(x,g)e"a”{gsfudwﬁf(x,w,v)|§.w|"_'}.
In view of (4.5), note that
| gl =\ (" § 60m08lab P17 (x4 ro.atv)lg.ol
Si,ﬂf(x’w’v) ‘50) - st)—rJRE a.w=0 (a/ (r)f(x re,a g&) 5

which putting #=re with the identification r=|h|, @=|—Z|~, gives us

v—=1
Sszmﬂf(x,w,v)lg.(nJ'"_l:SR,S da.h:oP(lhblﬁh}rl—l 6(‘a|)f(X+h,a/+U).

3
» JRa

We get the Lemma setting

v—1 4,
ate,0.)=8, 0,4 PULIGAE0UOD £ g,
Let us come to J, for which we have similarly

Lemma 4.3. With the notations and hypothesis of Definition 4.1,
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P(|A)| Al —( LYAY.4

Jz(f,f)(x,v):C;’f(x,v)SmSR2 k| g ] >f(x+h,v+k).

Proof. From

JZ(f’f)(x’v):f(x’wSlrlSRdrSRﬂ%ﬁhTSkidaé\“'h:o

{f<x+r-lgl—,a+v)—f<x+r—’%|—,a+y—h>} 6 (al)P(r),

and setting A= uw in polar coordinates, we get

T do )
U g domyy nié\“‘“’zo

Jz(f,f)(x,v)=f(x,v)8|r|SRdrg

0

{(f(x+rw.at+v)—f(x+roatv—uw) 6(a)P(r)=

=/ (x, Z))SIrISR drSR%daé“"“FOSRifz(x tre.5)X

|
uV

N oo i i ey
X e"“””&, du—-(Q2—e"—e ") g (lal)P(r)=

=rwe  al doP(n foctronx
S ol Blabere el

S 0(lale“da= 6(|S(w).&)),

(after some computations), the above curly brackets term reads

{}= C;’W 6(S(w).(k—v)l).

To sum up

1 He=fanc  a\ doP(n foctrok)x

XW?(S(@).M—U)I),
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and thus setting A=rw ... , we are done.
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