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On steady Stokes and Navier-Stokes
problems with zero velocity at infinity in a

three-dimensional exterior domain

By

S.A. NAZAROV and  K. PILECKAS I

1. Introduction

In  th e  paper we study th e  exterior S tokes and  Navier-Stokes problems with zero
conditions at infinity in  weighted function spaces. Let us formulate these problems.
Let f2 be an  exterior domain in  R 3 (i.e. 12=11 3\ 6, where G is a  bounded domain).
Without any loss of generality we can assume that the  Cartesian coordinate system
in 123 is chosen so, that the origin lies outside f2 i.e. the point x=0 belongs to G . We
also assume the boundary af2 to be a  smooth com pact m anifold . In  K1 we consider
the Stokes

—  vA v+V p=f, xE ,f2,

V • v = g ,  x [ 2 , (1.1)

and Navier-Stokes

— vA v+(v•V )v+V p= f, xE S 2 ,

V •v= 0 , x û , (1.2)

systems of equations with the  boundary conditions

v = h ,  xEa12. (1.3)

Moreover, we assume the velocity field 17 to vanish at infinity

lim v(x)=0. (1.4)
ki–os

I n  (1.1)-(1.4) x=(x,,x 2 ,x 3 )E R 3 ,  V=(a/ax,,a/ax 2 ,a/ax 3 ), v=(v,,v 2 ,v3 )  and  p  are
the velocity field and the pressure function in the flow, v is the coefficient of viscosity,
f  and h are given vector functions in  113 and  g  is a  given scalar function. By "•" we
denote the scalar product in  R 3 .

'T h is  paper w as fin ished  du ring  th e  stay  o f  K . Pileckas a s  a  v isiting  p rofessor a t the K yoto
University w hich is kindly acknow ledged for the  financial support.
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The mathematical study of the flow of viscous incompressible fluid around the
three-dimensional obstacle (problem (1.2)-(1.4)) and the flow past the obstacle (the
case l im I X H O O  v(x)=v 0) was the subject of many papers. The existence theory of
solutions w ith a  finite Dirichlet integral (D-solutions) for both problems is well
known (see [7]). In  [7] it is also proved that the solutions approach their limits at
infinity pointwise. In  1965 R. Finn [4] introduced so-called PR-solutions (physically
reasonable solution), i.e. solutions satisfying the relation

Iv(x)1= 0 (1x1- 1 ), i f  v.=0,

if v *O,

where E may be arbitrary small. In the case of the flow past the obstacle (v .*0 ) it
was proved [1] (see also [51) that every D-solution is a  PR -solution. Moreover, in
[1], [5] the asymptotic behaviour of solutions was investigated and the existence of
a wake region behind the obstacle was shown. The uniqueness of such solutions was
studied under additional smallness assumptions (e.g. [5]).

For the flow around the obstacle (v.=0) PR-solutions were constructed only
under certain smallness assumptions on data of the problem [4], [5]. For sufficiently
small data the uniqueness of D-solutions satisfying the energy inequality

vS
n
lVvrdx f•v dx

is known. Moreover, it was shown that the PR-solution admits the representation

v(x)=É(x)• (S a a  T(v,p)ndS+S o fdx )+w (x ), (1.5)

where E is the velocity part of the fundamental matrix to the Stokes system, T(v,p)
is a stress tensor, n is a normal vector to an and

lw(x)1=0(1x1 - 1 ) a s x 1 — >oe (1.6)

(e.g. [5]). For the derivatives av/axk and for the pressure function p in  [17] was
derived the relation

1Vv(x)1+1/3 (x)1=0(1xl - 2 ) a s  I x H o o . (1.7)

We do not mention here the other results obtained in this direction and only notice
that the exhaustive list of referencies concerning these problems can be found in the
books of G . P. Galdi [5] and in the survey paper of R . Farwig [3].

In  (1.5) the chosen main term is of the order 0(1.x1- 1 ) (just as It(x)1) and the
"remainder" w(x) has the same order of decay. Hence, the formulae (1.5)-(1.7) do
not give an asymptotic representation of the solution and should be considered as the
decay estimates only. The problem  whether it is possible to  find  the asymptotic
representation of the solution with the remainder w(x) of the  order o(lx1 - 1 ) was
o p e n . In this paper we construct (for small data) the solution (v,p) of (1.2)-(1.4)
which has the asymptotic representation
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1v(x)= — V (0 ,.p)A- 0(1x1 - 2 + '), E > 0 ,

1p (x )= (0 , ) + 0(1x1 - 3 ), E  >o,

where (r ,0 ,9) are spherical coordinates in R3.
T h e  most efficient a n d  convenient w ay to investigate elliptic problem s in

unbounded domains is to use function spaces with weighted norms. However, in
applying such approach to th e  nonlinear Navier-Stokes problem (1.2), (1.3). (1.4)
there appear certain peculiarities and difficulties which are emphasized and overcome
in  th e  p a p e r . T h e  special a tten tion  is given to  th e  derivation o f  th e  asymptotic
formulae the essence of which subtend that the remainder m ust have a better decay
rate  at infinity as that of the chosen leading term (compare with (1.5), (1.6)).

F o r  sm all d a ta  w e consider t h e  nonlinear problem  (1.2), (1.3), (1.4) a s  a
perturbation of the linear one. The results related to the linear Stokes problem (1.1),
(1.3), (1.4) (see Section 2.1) are  proved by applying th e  general theory o f elliptic
problems in domains with conical points [6], [8], [9], [13]. In order to employ these
results, we regard 12 as a domain with infinitely remoted conical point, i.e. 12 implies
a compact perturbation of a complete cone K=R 3M0}. The investigations lead us to
the conclusion

ID' v(x)I—Ixl - k  , k  as (1.8)

Thus, th e  nonlinear term (v •V)v is equivalent to 1.x1 - 3  a s  1.xl—>00. T h e  behaviour
(1.8) of the solution y to the linear and nonlinear problems forces us to deal with the
weighted spaces where th e  operator o f th e  S to k es  problem looses the Fredholm
property. The latter is related to the fact that A= — 1 is an eigenvalue of the operator
pencil associated with the Stokes system. To overcome this difficulty, we narrov the
domain of definition of the Stokes operator and study the Stokes problem (1.1), (1.3),
(1.4) in  "weighted spaces with detached asymptotics". We prove that in  such spaces
the Stokes operator is Fredholm  and that the  problem (1.1), (1.3), (1.4) is solvable
if the right-hand side f satisfies certain orthogonality conditions (Section 2.2). The
corresponding arguments are closed to those from the paper [10]. Finally, in Section
3  w e  p rove  tha t th e  orthogonality c o n d itio n s  a re  alw ays valid  f o r  f=(v•V)v,
provided that v is solenoidal and belongs to the space mentioned above. This allows
u s  to  reduce th e  nonlinear problem  to th e  operator equation a n d  to prove its
solvability for small da ta  applying the  Banach contraction principle.

Notice that the  analogous problem for "large" data remains open and that for
the  two-dimensional exterior domain f2 such a  result is not known even for small
data.

2 . Stokes problem

2.1. Weighted function spaces and the solvability of the Stokes problem.
L et c o- (n) be the set of all infinitely differentiable functions with compact supports
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in  D and L 2 (f2) be the space of measurable square integrable over 12 functions. As
usual, for nonnegative integer I  and flE R , by V ( f l )  we denote the completion of
Cô(f2) with respect to  the weighted norm

IIz ;  V  (0)11=( MO- ! H a i r  z ; L (12)111 1 2

1.1=0

where ILY= a l' I/axraxTaxT, = al +a2+ a3, Hi(D) is the Sobolev spaces
of functions with the norm

fiv2)11=(,,S,,ID-zi2dx)' / 2

and H 1 - 1 /2 (a12) is the space of traces on an of functions from H'( 12). Hi-u2(312)

is supplied with the natural norm.

We consider the operato -  S i
f l  of the Stokes problem (1.1), (1.3), (1.4)

aDifi v (n ) v H ( 12)3 x  v (n )(v ,p ) S (v  ,p )=

=(f,g,h)EY4 V(1 .2 ; an)—= v'(2) 3 x Vi
g (D) X 1114- '12 ( 312). (2.1)

It is continuous for each fiER and I = 0,1,2,•••. In order to investigate the properties
of S l

i3 , we apply general results on formally self-adjoint elliptic problems in domains
with conical points, regarding 12 as a  domain with infinitely remoted conical point,
i.e. for large lx1 the domain 12 coincides with a complete cone K=RNOI. Since in
this part our reasonings are standard (e.g. [13], Ch. 6), we only underline the scheme
of the proofs. First, we consider the Stokes system (1.1) in the complete cone K. We
rewrite (1.1) in spherical coordinates (r,w ) with the origin at x= 0, i.e. lx1= r, w
(9 ,6) , p  <27 , 0 0 < z .  Power solutions of the Stokes problem are the functions
of the form

v (x )= rW (w ), p (x )= P (6 0 ) , AEC, (2.2)

which solve the homogeneous Stokes system in  113 :

—  v A v  V p=  0 , V •v=  0 , xE R 3\{01. (2.3)

Substituting (2.2) in to  (2.3) and separating the variables r  and  co, we obtain for
(V, P) the system of partial differential equations on the unit sphere F=tx : lx 1=1),
depending on the complex parameter :

S(A, ; 13)(V ,P )= 0 , w EF.2 (2.4)

The family of mappings A..—>S(A, ; •) is called the operator pencil associated to the
problem (2.3). The complex numbers A. for which the problem (2.4) has nontrivial
solutions are called eigelvalues of (2.4) and the corresponding nontrivial solutions
are called eigenvectors. It is evident that the functions (2.2) are power solutions of
(2.3) if and only if i s  an eigenvalue of (2.4). The following results are well known
(e.g. [13], Ch. 6.4).
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Lemma 2.1. The eigenvalues of  the pencil A— >S(A. ; •) consist o f  numbers
X E Z .  I f  X E Z , there exist nontriv ial solutions to S(A ; D,„)(V,P)=0 which are
sm ooth o n  th e  w hole sphere F. T he corresponding pow er solutions (r'V(co),
r ' - '13 (c0)) consist either o f  homogeneous polynomials (the case A. 0), or can be
obtained by differentiating the colomns

8rv ix1
1 

1, (s.,1x12 + x ix »  62 1Eu )(  ) = x12-Ex7xi,

613 1x12 - 1- x 3x1 , 2v.,v; )T , j=  1,2,3, (2.5)

E ( 4 ) ( x ) =  ( V x  2 7/1)I1 3 )

of  the fundam ental m atrix  E to the Stokes system (V ' )  is  the forth column of  the
fundam ental m atrix  E  without the delta-function in  its pressure com ponent). In
particular, to the eigen value A = - 1  correspond three power solutions

(vw ,pu ) )= E u ) , j=  1,2,3. (2.6)

The power solutions corresponding to A, = 0  have the form

(v,p)= (c,0), c E R3 . (2.7)

Let us consider now the Stokes problem (1.1), (1.3), (1.4) in the exterior domain
O .  Notice that there holds the following Green's formula

( - vAv +Vp,u) n + ( - V • v,q) a  ±(v,nq - va,,u) a n =

=(v,- vAu+Vq) 0 +(p, - V • u),1 + (np - va „v,u) an, (2.8)

where (•,•). is a  scalar product in L 2(E) ; (v,p), (u,q)E C o
- (0 ) 4 ;  n  is a unit normal

vector to at-2 and a n = V •n  is a normal derivative.
Because of Green's formula (2.8) the problem (1.1), (1.3) is formally selfadjoint.

'F or the spherical components (V , , V 9 ) of the velocity field V the problem (2.4) takes the form

—  v[(2 .±  N -2+A r ] V,. +2vdiv r ( Ve ,  V9 )+(A —1)P=0,

vV2 v  cos° — v[(A. +1)A. +A r ] 17
0 +  s in 2 ge s in 2 0  3,17 , - 2v80 v,+a 0 P=o,

2v 2vcos0 v v V 9,  p _ o14( -1-1)A +41 V9  s i n e  a,v,
sin2 0 6 sin 2 e s i n °  '19

— (À. +2) V,.—div r ( V,) 0,

where Ar = (sine)  I  a e (sin0.3 5)+(sin0) - 2 a 2
ço i s  th e  Laplace-Beltrami operator, div i.( v8 , v50=

(sin0) -  l [a e (sin 0 Vo)-F a, v„] is the surface divergence of the tangental vector ( Vo ,  1/
9 ), a0 = a/ae,

a,-ala9.
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Therefore, applying the general results (see Ch. 6.1, 6.4 in [13]) we get

Theorem 2.1. ( i )  The mapping S 1,̀  (see (2.1)) is Fredholm  if  and only  if  13-1
+ i/2Erz. In  the  case  where 13-1+1/ 2E Z the range o f  S i

g  is not closed.
(ii) T he operators S i

p  a n d  S i
21 _f i are Fredholm  simultaneously and

coker {(u,q,(nq —  v a ,u )lao ) (u ,g )E k e r (2.9)

(iii) T he mapping S 1,3 is an isomorphism, if  gE (1 -1/2 ,1+ 1/2). For fl >1+1/2,
is a  m onom orphism  and  f o r p< 1 -1 / 2 , S 1,3 is an  epimorphism.

P ro o f  The part (i) of the theorem follows from Theorem 3.4 in [6] (see also
Theorem 4.1.2 and Remark 4.1.5 in [13]) and Lemma 2.1 (the statement is true if the
line {AEC :  Rea. =p—I+1/2 } is  free of eigenvalues of the problem (2.4)).

The part (ii) is a sequence of general results on self-adjoint elliptic problems (see
[8] and Ch. 6.1 in [13]).

In  order ot prove (iii), we mention that by (i) the mapping S; is a Fredholm
operator (1 -1+1/2EZ). Since S i

p = S 1
2/ _ft fo r g= 1 , we have

IndS;-===dim kerS — dim cokerS 0.

For each (v,p)Eker S  there holds the relation

3

vAv+Vp,v) o -F( va„v—np,v) a o = vi)„,
.J =1

i.e. v, = c , .  By virtue of homogeneous boundary conditions ci = 0 . Further, from the
Stokes equations it follows Vp= 0 and hence, p= c o .  Since co EE O n ), we conclude
co = 0. Thus,

ker S' -={0}

and the m ap p in g  S  is  an isom orphism . Since the  strip {AEC: O<ReA.
+1/2<1} is free of eigenvalues of the problem (2.4), it follows from Theorem 3.3 [6]
and Theorems 4.2.1, 4.2.4 [13] that S ; is an isomorphism for each pE(/ — 1/2, 1+1/
2).

Finally, an increase of /I narrows the space Vf i V((). It is not difficult to verify
that in the case p>1+1/2 the cokernel of S I,3 is  n o t trivial (we will see it later in
Theorem 2.2). In particular, this means that in the case /3<1- 1/2 the kernel of S /3.1

is not trivial (see the formula (2.9)). Hence, S i
t l is  a monomorphism for  /3 >1+1/2

and S i
p  is  an epimorphism for p</ — 1/2.

We conclude the investigation of the Stokes problem (1.1), (1.3), (1.4) in spaces
60,,1 V((2) with an assertion concerning the asymptotics of the solution.

Theorem 2.2. L e t  (f,g,h)EN I,v(E2 ; an), l l ,  y (1--k 1/2,1+3/2). Then
the solution (v ,p )E V f l V(0), gE (1-1/2,1+ 1/2) o f  the problem (1.1), (1.3), (1.4) 3

adm its the asymptotic representation



S teady  S tok es and N avier-S tok es problems 481

(v 3
-* (

V
)

= E ckE(k)-F( 
) ,

E V(0)p ) k = 1 p p (2.10)

w here ck =c k (fs,h ) are constants. M oreover, there holds the estimate

ilck1+11(v,IY); Vy V(f2)11<d(f,g,h); 3.? 1,,,v (n ; an)II. (2.11)
k=1

The theorem follows immediately from Theorem 1.2 [6] (see also Theorems 4.2.1,
6.4.3 [13]) after we take into account the obtained information on eigenvalues of the
pencil S(X;•) (Lemma 2.1) and Theorem 2.1.

Remark 2 . 1 .  The analogous results are also true in  weighted function spaces
generated by V-norms (q>1). However, we ignore these generalizations, since they
are not necessary for our purporses (e.g. [9] and Ch. 3.6 and Remark 4.1.6 in [13]).

Let us consider the problem (1.1), (1.3), (1.4) in  weighted Holder spaces. For
0  being a n  integer, (SE(0,1) and pER, the  weighted Wilder space AV(f2) is

defined as the completion o f M i l )  in the norm

119) ; AV(n) E  s u p d x r 1 D"9(x)1)+
1.1, /  A-Eo

s u p ( i x 1 P s u p (
IW Q 9 ( x ) — D % 9 ( ) 1 ) ) .

1.1-[11 xen YEE1 1X - Y 1 6

Further, by c " (8 ( 2) we denote the space of traces on an of functions in  cl ( t-2), i.e.

c"(af2)=- {Tla.: T E  C"(12)},

where C (S 1 ) is the usual Wilder space.
The operator V i of the Stokes problem (1.1), (1.3), (1.4) realizes the continuous

mapping :

07:) 6A(n)-=-A17 1.6(n) 3 xAV(n)D(v ,p)1— >V"(v,p)-- =

(f,g,h)E RVA(C2 ; an nt,g- - "(n) 3 X AV(fl) X ci -"(an ) 3 .
According to general results o n  elliptic boundary value problems (e.g. [13])
inherits (after the obvious recalculation of indeces) the properties of the operator
and, therefore, there holds the following assertion.

Theorem 2.3. ( i )  The mapping Vi4a is Fredholm  i f  an d  only  if  fi—1 — — 1 Er
Z. In  th e  c ase  f i — l - 6 - 1 Z  the  range of  V I is not closed.
(ii) I f  flE(1± 6+1,l+ 6+2) the m apping V4' is  an  isom orphism , if  p>1+ 6+2,

3 T he existence of such a  so lu tion  follows from Theorem 2.1 (iii).
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V  is  a  rnonomorphism an d  if  3 < l+  ô + 1 ,  V  is  an  epirnorphism.
(iii) L et (fs,h)E.R VA(1 -2 ; an), 7 E(l+s+2,/+6+3). T hen the solution (v,p)E
Z V A (0 ), gE(i+6+1,1+6+2), adm its th e  asym ptotic represention (2.10) with
(i1,15) ZYA(f2) an d  there holds the estimate

C k  +11(V ,15 ) ; oV,,6 A( )11 cli(fs,h) ; A ( û ; an)II. (2.12)
k=1

2.2. Stokes problem in  weighted function spaces with detached asymptotics.
We start this section by explaining the m otivation of the presented below investiga-
tions o n  th e  linear Stokes problem (1.1), (1.3), (1.4). In Section 3 we are going to
study (for small da ta ) the  nonlinear Navier-Stokes problem (1.2), (1.3), (1.4) as a
perturbation of the linear problem (1.1), (1.3), (1.4). L e t (v ,p) be the  so lu tion  of
(1.2), (1.3), (1.4) admiting the  asymptotic representation (2.10), i.e.

Iv(x)1^- r - ' a s  r—>c 0 .

The nonlinear term (v •V)v in  (1.2) is then equivalent to 1. - 3  a s  r—>00. Considering
(v•V)v a s  a  right-hand side of the  linear problem, we get (v•V)vEA',37 1'(12) 3 w ith

— —  1 =  l E Z .  A s it follows from Theorem 2.3, in  such the case V;,' gives off
the Fredholm  property (the same is true for the operator S I,3 ). On the other hand, for
fl > /  +  6 + 2  the operator OV is a monomorphism with a nontrivial cokernel and the
solvability o f (1.1), (1.3), (1.4) requires additional compatibility co n d itio n s . Thus,
the  nonlinear problem (1.2), (1.3), (1.4) cannot be treated as a  perturbation of the
linear one regarded in the classical Kondratjev and Holder weighted spaces. In order
to overcom e this difficulty, we narrow th e  dom ain o f  definition of the  S tokes
operator introducing the weighted function spaces with detached asymptotics, which
reflect more precisely the behaviour of the solutions at infinity. Such kind of spaces
were first introduced in  [14], [15] (see also [13] C h. 6.2 and  C h . 12.2) in  connection
with the investigation of boundary value problems in  domains with edges on the
b o u n d a ry . T h e  asymptotics w as separated only in  th e  s o lu t io n  itself and  the
right-hand sides were specified to decay sufficiently fast near the edge. For the Stokes
a n d  Navier-Stokes problems in  dom ains with cylindrical outlets to infinity this
technique has been applied in  [1 2 ] . T h e  complete separating o f  th e  asymptotics
(both in the solution and in the right-hand side) become relevant in [10], [11], [16].
The considerations below are similar to those in  [10].

L e t u s  fix a  natura l num ber / a n d  a  weight in d e x  y E ( /+ 1 /2 ,/± 3 /2 )  and
introduce the space zi,v(n) of vector functions (v ,p) which can be represented in the
form

1 1v (x )=  
r

V (6 ,)) ±  (x ) ,  p (x )= — , 1 3 (6 ))-  115(x),r - (2.13)

where (V,P)E11 1+ I (F) 3 X H1(r ) and ( , p -) D,(Ç2). The norm in the space V„, V(f2)
is defined by the formula
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11(v ,P) ; Z i
y  V (n)11 -= (11(V ,P) ; H i (F) 3 X H i (F )r ±

+11(V,P") ; 0,V ), V(0)112 /1 2 . (2.14)

The Stokes operator (1.1), (1.3), (1.4) acts continuously from Z i. V(0) into the space
9ity  v(t2,af2) which contains triples of functions (f,g,h) admiting the  representation

f(x )-=  
1

3 F (G ))+ I (X ) , g(x) -= 
r
2 G (C 0 )± g (X ), h(x)=11(x),1  ( 2 . 1 5 )

where (F,G)E1-1 1 - '(F) 3 ><H i (F), (ts,fi)E.R v(c2,an). The norm in 9i;,v(o,an) is
defined by

M(f,g,h) ; 9i"), v(n,a2)I1=(11(F, G) ; 11 1 - 1 (F ) 3 x - (r)I1 2 +

+11(T,ff,r1) ; y  V ; an)112)'1 2 . (2.16)

Remark 2.2. Let (v ,p )E V)3 (1-2) be a solution of the problem (1.1), (1.3), (1.4)
with th e  right-hand side (f,g,h)E.Vy (12). If  g e(l-1 / 2 ,1+1 /2 ) a n d  y e (I± 1 1 2 ,
1+3/2), th e  so lu tio n  admits th e  asymptotic representation (2.10) (Theorem 2.2).
Hence, (v,p) can be represented in  the  form (2.13) where

(

V ( ) , -Ç P(r0))= ckE( k ) .r r k=i

(see formulae (2.5) for the definition of the functions E m ). T h is  was the reason why
we have used the  combination o f words "spaces with detached asymptotics" in the
title of the section.

Lemma 2.2. Let S(A . ; •) be  the operator pencil associated to the problem
(2.3). The problem

S( - 1 ; D ,,)(V ,P )= (F ,G ), CO , (2.17)

with (F ,G)E1-1 1 - 1 (r) 3 X (F ) has a solution (17,p)EH'+'(r)3x H I (F ) if  and  only
if  there holds the compatibility condition

F•cdF 0, V e E fe . (2.18)

The solution (V ,P ) is not unique ; th e  homogeneous problem (2.17) has three
linearly independent solutions

1441)(wy, ( 1+sin20 cos 2 9, sin 2 8 sin 9  cos 9 , sin 0 cos 0 cos 9, 2v sin 0 cos 9 ),
8 7rv

16(2)(60)=. (sin20 cos 9 sin 9, 1 +sin 2 8 sin2 9, sin 0 cos 0 sin 9 ,  2v sin 0 sin 9 ),
87z-v
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1 6(3)(w)= 
8 7 t v  

(sin 0 cos 0 cos 9, sin O cos 0 sin ço, 1 - 1-- cos2 0, 2v cos 0). (2.19)

Notice that 6°) (co) are the traces of  the fundam ental colomns E° ) , j= 1,2.3, on the
the sphere r  (see (2.5)).

P ro o f  T h e  elementary calculations show  th a t  th e re  h o ld s  th e  following
Green's formula

<S(I ; D,,)(V,P), (U,Q)>= <(V,P), S(1+ ; D„)(13,Q)>, (2.20)

where XE C  a n d  <•,•> stays for the scalar product in  O F ). Hence, the  pencils
S(A. ; D J  a n d  S (1 ±  ;  D J  a re  form ally adjoint. T hus, th e  form ally adjoint
operator to S( —1 ; D) is S(0 ; 1),,,). Since (2.17) is an elliptic problem, it has the
Fredholm property. As usual, the solvability conditions for (2.17) can be obtained
from (2.20), taking in  it S( — 1 ; D„)(V,P)= (F,G) and substituting instead of (U,Q)
the eigenvectors of the adjoint problem

S(0 ; D r„)(U, Q)= (0,0). (2.21)

From Lemma 2.1 we know that the eigenvectors of (2.21) have the form

(U,Q)= (c,0), cE1:1 3

(see (2.7)) and we immediately get the solvability condition (2.18). From Lemma 2.1
it also follows the formulae (2.19) (see (2.5)) for linearly independent solutions 4( k ) ,
k= 1,2,3, of the homogeneous problem (2.17).

Let us denote by 9 i, the  subspace o f t v ( n ;  an) consisting from elements
(f,g ,h )E t V (f2 ; an) which satisfy the orthogonality condition (2.18), i.e.

L = {(f,g,h)Eal l
y V ( ;  an): SF F( w) • edr„= 0, V eE R1

(see the representation formula (2.15) for f).

Theorem 2.4. L et ( f ,g ,h )E 9 i. Then the Stokes problem (1.1), (1.3), (1.4) has
a  unique solution (v,p)EV„, V(11) an d  there holds the estimate

11(v ,P);Z I,V(0)11<ell(f,g,h); 1R v(n ; af2)11 (2.22)

P ro o f  By Lemma 2.2 the problem (2.17) is solvable in 1-11 + I (F) 3 ><H 1(F) for
every right-hand side (F,G)E1--P - 1 (F) 3 X H i (F) satisfying the compatibility condi-
tion (2.18). We denote the operator of this problem by A. Let us fix anyhow a linear
inverse operator B to  the epimorphism

A: Ht -H(r) 3 x HAP) (A),

where A(A) is an im age of A . We put (C ,V ) = B ( F ,G ) .  Then
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11(0,0 ; H' - "(r)3x 1-1/(r)11 cll(F,G) ; H' - '0 3 x1r(r)11‹

cll(f,g,h) ; V(S2 ; ac2)II (2.23)

(see the definition (2.16) of the  norm in  al l
y  V(S2 ; an)). Substituting the  sums

1 1 V (x)= —
r
V(Gd)-Fu(x), p(x)= 

r
2 Q0 ( w )±  q(x).

into the Stokes problem (1.1), (1.3), (1.4), we derive for (u,q) the same problem with
the  new right-hand side

r(x )=T (x ), g °(x) = g(x), h°(x)— ii(x)— (ir  U 0 (6)))i00- (2.24)

Thus,

( f o, g o,h o) E v(f2 ; an), yE(/-1- 1/2,1+3/2).

If gE(/— /2,/ + 3 /2 ), then

v(n ; an)Œ.C, V(12; an)
and  according to Theorem 2.1 (iii) and  Theorem 2.2 there exists a unique solution
(u,q)E0D l

i, V(11) of this problem admiting the asymptotic representation (2.10) with

(il,q)E V .,,V (n) a n d  th e  estimate (2.11) holds true. T h e  sum ckE(k ) c a n  b ek=1
represented in  the  form (r - I V°,r-2 .1) ° ) and  because o f (2.11)

Hi -H(r) 3 ><HV)11-<-c11(r,g°,h) ; v(n, ; an)II. (2.25)

Thus,

,P)=(+ (V
° +1-r),-* ( P ° Q ))+  014 ),  ( 1-14 )E V y  V (n).

In virtue of (2.23), (2.11), (2.25) we have

; VIS2/11<- cd(f,g,h) ; 94 V(S2 ; af2)11+11(r,g ° ,W) ; (S2 ; at.2)11)

cll(fg,h) ; V([2;

T h e  uniqueness o f th e  so lu tio n  (v,p)EZ l
y V (0), yE  (1+ 1/2,/ +3/2), follows from

the inclusion V.V(S2)C0% V(E2) with fiE (i 1/2,i + 1/2) and from the  uniqueness
of the solution to (1.1), (1.3), (1.4) in  the  space Vp v(n) (see Theorem 2.1 (iii)).

Remark 2.3. Since the solution is unique, (v,p) does not depend on the choise
of the  operator B i.e . it is not im portant how we fix a  nonunique solution of the
problem (2.17) on  the  sphere F.

The analogous results are also valid in Holder spaces with detached asymptotics.
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Let us fix the numbers / 6E(0,1) and yE(/+ 6+2,1+ 6+ 3) and introduce the
space TYA(C2) of functions (v,p) which are represented in the form (2.13) with (V,
P)E  c'±' ,8(r)3x Ca (f ), (V,p- )E Z Y A (f2 ). The norm  in ZVA(12) is defined by the
formula

; ZVA(n)ii = ; c'+'.6(F)3x c'Ar)11+11(v,P) ; 0,V,;riA(n)11.
Let, further, TYA(Q, ; an) be the space of triples (f,q,h) admiting the representation
(2.15) with (F,G)E c ' - ''6(r)3x c"(r), (f, -g,ii)E. n(n ; an) and

11(f,g,h) ; tan(n ; an)11=11(F,G) ; C ' '8(F) 3 c"(r)I1+

+II(1,01) ;A ( ;

Theorem 2.5. L et (f,,q,h) 9tV A42 ; an) and le t there holds the orthogonality
condition (2 .1 8 ). Then the S tokes problem (1.1), (1.3), (1.4) has a unique solution
(v,p)EIVA(S2) satisfying the estimate

kv,P); ZY.A(f2)11‹ cll(f,g,h) ; 9iVA(t2 ; an). (2.26)

3. N avier-S tokes problem

In this section we prove in weighted spaces with detached asymptotics the solvability
(for sufficiently small data) of the nonlinear stationary Navier-Stokes system (1.2),
(1 .3), (1 .4). We start with some auxiliary results.

Lemma 3.1. ( [2 ]) . ( i)  L e t  uE ;13 (n), l < 3 / 2 ,  2 < q 6 / (3 - 2 / ) .  T hen uE
L 4,3_/-3/ q +3/2(12) and

; c u ; v",([2)11. (3.1)

(ii) I f  1> 3/2, m + 6< /-3/2, dE (0 ,1), then u E A V e + p - ( / - 3 1 2 ) ( 2 )  an d

Mu ; s+ p -312)(n) cHu ; V "A n* (3.2)

Lemma 3.2. T he mapping WI

Z 'y  V (f2,) (v ,0)1-- --÷9Ji(v,0)= (—  •V)v,0,0)E

E 9 i l
y  V(S2 ; an), yE(1+1 / 2,1+3/ 2), (3.3)

is continuous an d  there holds the estimate

Mn(v , 0 ) ; 9i l
y  V (f2 ; c.II(v,o) ; V), v(n)I12. (3.4)

P ro o f  From the representation (2.13) for v we have
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i=-(v.v)v,-(fy(.).v)(+17(.))-

1 1
— T (co) •V)V" — (V •V )( —

r
V  (w )) —  (V •V )t- = fo -  f  +  f 2 -1- f 3 .

Let us write (v•V)v in the form (2 .15). One can easily verify that

f 0 (x)=-

1
r
- F (c )

and due to embedding theorems F(w)E1/ 1 - 1 (F ) and

IF ; 1P - 1 (n)11 cV  ; 1 1 1 + 1 (r)112

From the definition of the norm in  V;,(11) it follows that

f, = ( -
1

r
V  .v )V  E  V  ( t1 )  , f2 = (V •V)(-

1

r
V) E V l

y '(n),

; 17'y - 1(Ç1)11+11f, ; v ly - t(n )11< clIv ; Hi+ 1(r ) 1111v ; v̀y±l(n)11-<

c v  ; Ç v(n)112
. (3.8)

The first inclusion in (3.8) is evident, since VEH H - 1 (F)C C i - I ( r )  and VVE r»,,( 2)Œ
11,11

1(,(2). In order to prove the second inclusion one can employ the approach due
to V.A. Kondratijev [6] : to  divide-the cone RNO} in to  the annula  cok =lx : 2 k <
I x l < 2 k + 1 1 ,  

k = 1,2,—, and, after the change of variables cokDx 1— '2 - k xE col. to
apply th e  Sobolev embedding theorems in  co l . M a k in g  the inverse change of
variables and summing the obtained inequalities we derive (3.8).
In  order to estimate the last term f 3 ( V)V in  (3.5), we consider the sums

D'01-k a 0 a x k ) = E DkDP(aiTi/axk),
la11141.11

i ,k = 1,2,3, ler1=0,1,-••,1 — 1. (3.9)

Lemma 3.1 shows that

D'iTk E Viy±'-l'i(f2)CA
1v1.1.5r1 < 1 _ 1 .

Since yE(/ + 1/2,1+3/2), we have

Ilf-r(i7kaiTi/axk) ; L7 _1±1+la1(n)112

E liy i ,121D pv id2(1 ± r 2
)
v-/-1-1Hai dx

I ô1< = 11:11

(3.5)

(3.6)

(3.7)
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= c  E 1D112(1+r)Y-1+1,11-1/21Dmvvi2, ( 1 ±  r 2,

)  Y+1+1/2dx
1,1+Iy1=1.1

Y—/HRI I

Igldx,--1+1,1+112)Ç IDPVV12(1-Fr2Y-
Jf1

o
E  s u p ( V v 1 2 0  + r 2.)

v Lfir L=1 ,,Lovi I x

E 11130-* ; A l
y

- ' - 1 '1'2(1-2)11211DP vT, ; L 2
y _1+1„1(0)11,1+1m1=1.1o<1,1,ral

2

; v ',-" (n )114. (3.10)

Summing the inequalities (3.10) over la1=0,•••,/ -  1, we deduce (V-V)VE l(n)
and

11(V*V)V.; 11 : 1(n)11 c110 ; 171,- I tn)112 . (3.11)

From (3.5)-(3.11) we conclude that i" is represented in the form

i(x)=- r
1

3 F(w)+?(x) (3.12)

w ith-?=f 1 -1-12 -1-f3 E V - 1 (S-2) and

11(t0,0); 9. v(n ; an)II cll(v,o) ; v( 1)I12.

Lemma 3.3. A ssum e th at the function H (x )= r - T(co) can be represented in
the form

H (x )= - ( iV  (6 ) ) -V ) ( - -1-V  (w )),

where

d iv  —

r
V (co ))= 0 .

 ( 1

T hen there holds the relation

SI, 

F(60•cdr 0, V c E R 3. (3.15)

P ro o f  Let us consider the integral

I= S
2 R Sr

r - 3 F (w )•cr 2 d r  dr' ln 25 F(co)•cdr, (3.16)
R 

where the number R  is arbitrary. From  (3.13), (3.14) it follows that

(3.13)

(3.14)
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(
Ir V(60)•V)( 1 V(G)))•edx=

IxEle R <,<2121

1 
r

2 (V(w)•n)(V(co ) - c ) d S =
rE R 3 R < ,<2 R )

= 5 1 
r 2  ( V (  )• n)(V( (0)• c)dS —

(x EIV  r=2111

ir2
(1 7 ( (Q ) )  • n)(V(w)• c)dS, (3.17)

ixER3
where n is a  u n it outward norm al to 8{xE R 3 : R < r < 2 R } .  Since the  integral

r - 2 (V(G0)•n)(V(w)•e)dS= 5 (V ( w)• n)(V • c)dF,,
{ xER 3 : r= t)

does not depend o n  t, from (3.17), (3.16) we conclude

0= 1= 1n 2 S F(c.o)•edP,,

and, hence,

F (w )•c  d r o, V  c E R 3 •

Now we are able to prove the  m ain  result of the paper.

Theorem 3.1. S uppose th at  (f,0,h)E9V),V(f), ; a i l )  w ith y(/± 1/2 ,/+ 3/2).
A ssume, in addition, that f  satisfies the orthogonality  condition (2 .18). There exists
a positive constant x o such  that if

1(f,0,h) ; V(12 ; af2)11<x0, (3.18)

then the problem (1.2), (1.3), (1.4) h as a unique solution (v,p)EZ 1,,V(E2) an d  there
holds the estimate

11(v,p); Vy v(mIl el(f,o,h);9V,,v(t-2; (3.19)

P r o o f  L et .2  be th e  operator of the  linear Stokes problem (1.1), (1.3), (1.4)

acting from V y  V(S2) into 9i,={(f,g,h)E91 1, V(S2 ; : IF( 6,) • c dP„= 0, ecE R 31.

By Theorem 2.4 there exists the  bounded inverse operator .  If (v,p)EV,V(Q),
from Lemmas 3.2 and 3.3 we know that Wt(v,0) 9i i .  Hence, the problem (1.2), (1.3),
(1.4) is equivalent to the  operator equation in  the  space 5417( ( ) :
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(v ,p)= (f,0,h)+ - 10(v ,0)=- W(v ,0).

The estimate (3.4) shows that the operator a maps the ball

3 {(v ,0) : 11(v >0) ; V (n)ii 1}

into itself, provided that

ik3- 1 11x0<x1/2 , 11A - 1 11c* x l <1/2

(c i s  the constant from the inequality (3.4)). Moreover, using the same arguments
as in the proof of Lemma 3.2, we show for (v,0), (u,O)E .73 the estimate

Ila(v,0) — V4u,0) ; V(n)11 * * (11(V ,0 ) ; Zly V (E2)11

+11(0 ) ; V ), V(12)11)11(v u,0) ; V ), V(a)11< 2c * *x i 11(v — u,0) ; v(n)II.
Thus, if

œ l<1/2c**,

the operator VA is a contraction and the statement of the theorem follows from the
Banach contraction principle.

Remark 3.1. A decisive point in the proof of Theorem 3.1 was the fact that for
each solenoidal vector function vEV„, V(S2) the nonlinear term  (v Vv) satisfies the
orthogonality condition (2.18). T his is true (see Lem m a 3.3) only fo r the  three-
dimensional exterior domain SZ and that is the main reason why the same method
cannot be applied in the case of two-dimensional exterior domains.

Remark 3 .2 .  The compatibility condition (2.18) does not contain the integral

characteristic of the boundary function h, i.e . .1. h•n ds, which is usually called "the
an

flux" of h .  To explain this fact, we notice that the potential vector field

w (x )= V * (x ) ,  *(x)=1/47r1x1

is not only solenoidal and harmonic, but also satisfies the system of homogeneous
Navier-Stokes equations

— vAvv±(w•V)w+Vq=0,

1 1 12where q= -

2
IVw12 .  This can be seen from the identity (v•V)v= —v X rot v - F-

2
Vivi •

Thus, taking

v= a .71  + u, p = a .q + s ,

one gets for (u, ) the system of equations which differs from the Navier-Stokes system
only by first order terms a.(w •V )u - 1-  a.(u •V )w . The new boundary function h— a .
Vipd,r, have zero flux, provided we have chosen the constant a .  in  an  appropriate
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way. The flux of h is related to the next eigenvalue = - 2  o f the  pencil S(A. ; •).

Analogously to Theorem 3.1 can be proved

Theorem 3.2. L e t  (f,0,h)E9i;7A(f2; an), sE (o ,i), yE (/+J+2 ,/ - 1- 6
+ 3) and let f  satisfies the orthogonality condition (2 .1 8 ). There exists a positive
number w o such that if

11(f,0,h);9i;,6A(S2; a ,a)11<œo,
then the problem (1.2), (1.3), (1.4) has a unique solution (v,p)EZ;; aA(S2) and  there
holds the estimate

11(v,P) ; TVA(f2)11<cli(t0, 11) ; 9i;',a(n; (3.20)

Remark 3.3. From Theorem 3.2 it follows, in particular (see the definitions of
the norm inA ( S ) ) ) ,  that in the case where f  has a compact support the solution
(v,p)Eq);,'A(S2), / 6E(0,1), yE(/-1-6+2,/±6+3), admits the asymptotic repre-
sentation

1v (x )= - - V (w )+ (x ) ,  P (x ) ----- P(6))± 15 (x ) ,

Ilx9 (x)1=0( r - 2 — l ad + '), E>o,

75(x)I= 0(r ), a(=0,1,• • • E >0.
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