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Uniqueness in inverse hyperbolic problems
—Carleman estimate for boundary value problems—

By

Masayoshi K U B O

1. Introduction

W e g iv e  sh a rp  Carleman estim ates inc luding  boundary  conditions t o  show the
unique continuation across a  la te ra l boundary  for hyperbolic  equations, and  we
show the uniqueness in hyperbolic inverse problems by the use of the above unique
continuation.

T. Carleman [4] proposed a weighted inequality to show the uniqueness in Cauchy
problem s to which Holmgren's theorem are no t applicable, and we call this type of
weighted estimates the Carleman estimates. The Carleman estimate has been playing
an im portant ro le  to  show  the uniqueness no t on ly  in  C auchy problem s but in
inverse problem s. Especially for inverse hyperbolic problems, the uniqueness is one
of the m ost interesting problem s in th is  field, and many researchers study applica-
tions of the Carleman estimate ;  e.g. Bukhgeirn [2], Bukhgefm and Klibanov [3],
Isakov [6], Lavrent'ev, Romanov and Shishat-skii [9], Yamamoto [19] etc.

The author gives a  new type of the Carleman estimates in the present paper, and
he shows sharp results in the uniqueness. The main interest of this research lies in
an inverse prob lem  to  iden tify  unknow n coefficients of the w ave equation from
measurement on a la teral boundary. The problem is attractive for many researchers,
s in c e  it  is  a  m athem atical m odel in  geophysics to  find properties o f geophysical
media by observation of wave fields on a part of the surface of the Earth. W e wish
to know conditions for the uniqueness of solutions, but the uniqueness has not been
shown for the case observation is done on a  part o f a  b o u n d a ry . W e  show sharp
estimates to give conditions for the uniqueness to  this c a se . Proofs of uniqueness
theorems of inverse problem s are based on the follow ing tw o points ;
(1) the Bukhgeim-Klibanov method presented in [3],
(2) Carleman estimates near the boundary for boundary value problems.
W e rem ark the  m ethod (1) is  an application of the Carlem an estim ate  to  inverse
problems and effective for various inverse problem s to determ ine coefficients in the
equations for w hich the Carlem an e s tim a te  h o ld s . S in c e  the Carlem an estimate
depends essentially on a  relation between the type of differential equations and the
shape of a dom ain, and many serious difficulties arise in particular for hyperbolic
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equations; one  can see exam ples fo r  non-uniqueness a n d  counterexamples for the
Carleman estim ate [1], [8] etc. O ur aim ed equations are hyperbolic equations with
boundary  c o n d it io n s  o n  a  p a r t  o f  th e  lateral surface : O bserva tion  da ta  fo r our
inverse problems are given as boundary cond itions on  a  part o f the  lateral surface
w hich m ay not be strongly pseudoconvex. W e should pay very m uch attention to
show  the Carlem an estim ate. Recently Tataru [16] proposed the Carleman estimate
including boundary data  in  order to show  the unique continuation near the bound-
ary, and  w e develop his idea to introduce the Carlem an-Lopatinski condition and
obtain delicate uniqueness theorem s. W e should rem ark that w e use no t on ly  the
initial conditions but also boundary conditions to give our Carleman estimates, and
this idea is essential in  our argument.

W e  sha ll ad d ress  o u r inverse p ro b le m  p re c ise ly . L e t  u  b e  a  so lu tio n  t o  the
follow ing initial-boundary value problem  fo r a  hyperbolic equation

{.3 — & — a(x)}u (t, x )= f  (x )R (t,x )  0 < t < T , x , ( 2 ,  ( 1 . 1 )

u(o,x )=a t u(O,x) , o x E n , (1.2)

Bulco,nxa[2 ---7 -0
5

 (1.3)

where SICR" - I  is  a  bounded dom ain w ith a  sm ooth boundary af2 an d  B  denotes a
boundary  opera to r. W e assume th a t a(x )  an d  R (t,x ) are given functions, and  our
inverse problem  is identification of f  ( x ) .  W e denote the  solution to (1.1)-(1.3) by
u[f ]( t,x) for f  (x ), and FOE an is a part of the boundary which is given a  p rio ri. A
question of o u r  inverse problem  is how  to conclude f  ,(x )= f 2 (x )  x E ll  u n d e r  the
observation

iiu _f i k t ,x )= f iu [f d ( t ,x )  0 < t  < T  , x E F ,  (1.4)

where II is  a  boundary operator associated w ith the  operator B  ; w hat conditions
should  be posed fo r  B , h and F  in  order to identify f  ( x ) ?  W h en  F  is  th e  hole
boundary r= an, an d  w hen B  an d  h is the D irichlet and the N eum ann boundary
operator respectively, a  strong affirmative result is know n (See e.g. B ukhgeim  and
Klibanov [3], and Yamamoto [19] for a stability estimate). In the case r*a,f1 or the
boundary operators B  a n d  Ê  are  different types from  those m entioned above, w e
have counterexamples for usual Carleman estimates (See [1], [8]) and the condition
for unique identification has been an  open  problem.

W e in troduce  the C arlem an-L opatinski condition  w h ic h  is  a  new  type  o f the
Carleman estimates including boundary co n d itio n s . We show uniqueness theorems
fo r  id e n tif ic a tio n  o f  th e  fo rc e  te rm  f  b y  u s in g  o u r  C a r le m a n  estimate. T h e
Carlem an-Lopatinski condition implies a suitable choice of the boundary operators
B  an d  ff.

T his paper consists of four sections. In §2 w e state our results, and  we give our
Carleman estimates near the boundary in  § 3 . W e give proofs of the m ain results in
the final section. W e remark that the Carleman estimates given in §2 are meaningful
for not only the research of inverse problems but the unique continuation of solution
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to linear differential equations.

2. Notation and Results

We state the results for our inverse problems in this section, and we have two types
of uniqueness ;  the one is the local uniqueness (Theorem 2.1 and Theorem 2.2) and
the other is the global uniqueness (Theorem 2.3 and Theorem 2.4). We remark that
the latter results are derived from the former ones for a special domain.

Before stating the results, we should recall the problem (1.1)-(1.3) and the question
stated in the previous section ;  we must clarify conditions to conclude f (x ) 0 when
:13- tt[f ](t,x )= 0 . The following theorems are answers to the questions. We denote the
Dirichlet and Neumann boundary operators by BD and BN respectively, and we

a denote the normal derivative of y on  a surface S  by //Is. The Carleman-av
Lopatinski conditions are key ideas in  th e  present research, and w e give  the
definitions in §3. The strong pseudoconvexity is used in the usual sense and is stated
precisely in §3. Our results are as follows.

Theorem 2.1. L et S C R  b e  an  oriented C 2 h y p e r su r fa c e  transversely inter-
secting with both a cylinder (0 ,T )x  an, and a plane {t =0}, and let (0, x 0 ) EaÇ2 n
S 0 . W e  assume that S  is strongly pseudoconvex w .r.t. d'A lembertian 111 at (0, xo)
an d  th a t  { ,B D }  satisf ies the strong Carleman-Lopatinski condition w.r.t. S at  (0,
x0). W e assume that R(t,x)ETV 3 - ((0,T)XE2) and R (0 ,x )*0  (xE 12). We assume
that (u f )±  H 2 ((0,T)X E2)X L2 (1.2) satisfies

a (x )}u (t ,x )= f (x )R (t ,x )  0 < t<  T , x E n ,

u(0,x)=a t u(0,x)=0 xES-2,

ul(onxan-0,

aa  an d  t h a t  at uE1-1 2 ( (0 ,T )X n ). I f  u s —s =  
a v

ui 5 -=0 in  a  neighborhood o f  (0,x0),

then there is a neighborhood V CR' o f  (0,x 0) such that f (x )= 0  in  V n (O, T)X n.

Theorem 2.2. L et S C R " be  an oriented C 2 h yp er su r fa ce  satisfy ing the same
hypothesis a s  i n  T heorem  2.1. W e  assum e t h a t  {E,B N }  satisf ies th e  weak 
Carleman-Lopatinski condition w .r.t. S  a t  (0,x 0)EaS2n Slt=0 an d  th at  R(t.x)E
W3 ' ( ( 0 ,T )x n )  and  R (0 ,x )t0  (x E 1 2 ). W e assume that (u ,f)E H 2 ((0,T)X(2)X
L2 ( i l)  satisfies

{ a . — A .,,— a (x )}u (t,x )= f(x )R (t,x ) 0< t< T , xcE2,

u (0 ,x )=a,u (0 ,x )=0
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a 
av nxac2=0,

an d  th a t  at
a  u ( ( 0 ,T ) ,Q ) .  I f  il =E H 2 X lsa ul s =0  in  a  neighborhood of (0,x0),av

then there is a neighborhood V CR" of  (0,x 0) such that f  (x )=0 in V  n (o,T)Xn.

Remark 1. In  the  case  where the boundary  operator B  in  (1.3) is  o f  the
Neumann type, we remark the strong Carleman-Lopatinski condition is not fulfilled,
and the situation is sim ilar to the case of  the uniformly Lopatinski condition in
mixed hyperbolic problems (see [11]). The boundary operators B in (1.3) a n d  i n
(1.4) should be chosen so that the unique continuation across a  lateral boundary
holds for solutions to

{a— A x— a(x)}u(t,x )= 0. 0 < t < T  ,  x E n .

W e should rem ark  the cases (B= BN) an d  (B= BNJ= BD )  are quitely
different.

W e show global uniqueness theorems as a simple consequence of above results.
Let n  b e  a disk in  Rn - 1  and  le t a  subboundary FC an be a part of a n ;

={xER" - ': (2.1)

r,D {xE an : x„<6}, (2.2)

where R and 6' are positive numbers.

Theorem 2.3. Suppose th at T >R  and a (x ) L °° (1), ti,(t,x)E r4/3•- ((0,T)X
j=  1,2.

Suppose that each pair of  the functions la .,(x),u .,(t,x)} 0 =1,2) satisfy

(a—A x —a,(x))u,(t,x)=0 0 <t<T  , xEn,

u1 (0,x)=a(x), a r ti,(0,x)=g(x) xE0,

u.,(t,x )=g(t,x ) 0 <t<T  , x E

(2.3)

(2.4)

(2.5)

where tr E F IV 2), LAS2), and gE L 2 ((0, T )x  an), an d  we assume that ler(x)i
a o > 0  almost everywhere on 0  with a positive number œ o > 0 .  If

13,04,(t,x)=B N u2( t , x )  0 < t <  T ,  xEr' d, (2.6)

then

a ,(x)= a 2( x )  x E n ,

u ,(t ,x)= u 2( t , x )  0  t  T  ,  x E O .
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Theorem 2.4. Suppose th at T > R  and af  E L- ( 2), u,E W 3 ' - ((0, T)X 0) j= 1,
2. Suppose that each pair of  the functions la f (x),u,(t,x)} u =,,2 ) satisfy

(a—A x —a1 (x))u1(t,x)=0 0<t< T, x e f2 ,

u.,(0,x)= a(x), a,u (0,x )=fl(x ) x E n ,

(2.7)

(2.8)

BN uf (t,x )=N t,x ) 0 < t< T , xE ao, (2.9)

where œE1/ 1(12), 1SEL 2 (12), and gE L 2 ((0, T )x  an), an d  we assume that
ao>0 almost everywhere on f), with a positive number a > 0 .  I f

u (t,x )= u 7 ( t ,x )  0 < t< T ,  x E F , , (2.10)

then

a i(x )=  a 2 ( x )  x E n ,

u ,(t ,x)=. u2 (t ,x) 0 t T ,  x e 1 -2.

Remark 2. W e rem ark  that w e have the sam e results on the global unique-
ness i f  we replace the principal part of  the equation (2.3) with a strictly hyperbolic
operator f o r w hich the  Carleman estim ates in  §3 holds. Furtherm ore the results
holds f o r  a n  arb itrary  dom ain  f2 as  f a r  a s  boundary  operators satisf y  the
Carleman-Lopatinski conditions.

3. Carleman estimates near the boundary

We shall give the Carleman estimates near a  boundary for solutions to boundary
value problems, and the estimates are extensions of those by Tataru[16]. We prove
the Carleman estimates with boundary data as well as the energy inequalities for
hyperbolic mixed problems (See e.g. [14]).

We use the following no ta tion . L e t P(x,D ) be a  m-th order partial differential
operator in  a  domain C R "  w ith a  smooth noncharacteristic boundary W e
assume its principal symbol p (x 4 ) is real and has C ' coefficients. We decompose
P= P m  P b where Pm is the principal part of P and Ps"' is bounded from II '  into

Let S be an oriented C 2 hypersurface intersecting with and let ct. be a real
valued C 2 weight function. We denote the Poisson bracket of two symbols p and q
by {•,•}; i.e.

tp,o(x,4.): =±(  a p  a q a p  a q  
86*, ax, ax, a4*, 1*

Let us first recall the strongly pseudoconvex condition (See e.g. [5]).

Definition 3.1. W e shall say  that 0  is strongly  pseudocon vex w.r.t. P at  xo,
in case

tp(x4 — irvo),p(x4+ irv o )1(x0,4)/ Di >0
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on {(6,r)ER"' \{0} : p(x 04-1— iz-V0(xo))=0,-/- 0}

Definition 3.2. L et S  be an oriented C 2 h y p e r s u r fa c e  which is a level surface
o f  a sm ooth function ch (x ) , and let x o ES,V  cb(x 0 ) * 0  o n  S . W e shall say  that S
is strongly  p seu d o con v ex  w .r .t  P  at x 0 S ,  in case

Re{P,{13.95}}(x0,6)>0

o n  {6ER"\{0}: P(x0,6)={P,0}(x0,6)=0}

and

{p(x04—irvo),p(x04+irv)}(x04)/7-i> 0

o n  {(4- ,r)E R " + ' : p (x 04+irV  ch)={P(x0,6 - FirV 0),çb}(x04)=0,7 ->01.

As in 28.3 of [5], one can easily check that the strong pseudoconvexity dose not
depend on the choice of the function ch.

Let B : -={13 k (x,D)} k =I 2 . b e  a set of boundary operators on aE. We consider
a boundary value problem

fP (x ,D )u = F  in  1,
(B k (X,D)U=g k  o n  8E, k = 1 ,2 ,• ,,u .

In order to discuss local property of solutions, we are enough to consider the case of
a half space : ={.,c=(x l ,-••,x„)ER" : x n >0}.  Since the boundary  aE is nonchar-
acteristic, we assume the coefficients of TY",„  in  P'" sh o u ld  be  1. W e denote x '= (x ,,
•••,x„_,) and  4 '= - ( , •• , 6 „ )  for the tangential space and the  corresponding tan-
gential Fourier variable respectively. Thus x= (x ',x„) and 6= (6',6„).

3.1. Weighted norms and pseudodifferential operators with a param eter. We
in troduce  Sobolev spaces H a n d  HT.(aE) d e fin ed  b y  th e  follow ing norm s
respectively. For non-negative integer m and non-negative num ber 2-

u = r 2( ' — f ) ul2HJ(z),
J=0

< 0 2  •• := U 2
r  Hj(a2),

j= 0

where we denote that the usual Sobolev norm  by H ip, the L2 inner product in by
(•,•) and the L2 inner p roduct o n  aE by <•,•>. Equivalent norm s are given by

=1(1,0 ,12+ r 2) "uPLa(I),

<<u>>2..,: =1(1D.,12 +7;2 )4 1 / 2 u120aE).
We denote A : = (1 +161 2 7 - 2 ) 112 and A :  = O pt( 

I + 1 6 1 2 +  7 ,2

)
1/2

1
. For a real number

s, we define the following norms

(3.1)
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< : =

and  we define a  Sobolev space 117(E) w ith the  above norm
We introduce classes of pseudodifferential operators (...d.o) with a parameter r.

The parameter r is the weight one in the norms of the Sobolev spaces. On the other
h an d , th e  param eter r  in  th e  sym bols o f  (b.d.o is  u se fu l to  th e  p roo f o f  energy
estimates fo r  stric tly  hyperbolic  equations a s  w e ll a s  in  th e  p ro o f  o f  Carleman
estimates.
W e introduce the  following classes of symbols

Sm : ={a(x4,r) :

S m 's : ={ a(x ,6,2-.)= EN%
j=o

g'EN" - If

C k :  = { a ( x , 6 , 'r ) :

CkStm : =f a(x ,6 ,2 - )=E eaf (x ,6"4"): IIX D f aJI<C e,.13 ,J=0

g'E N ' - '}

where we set <6,r> : ( I +1612 + IrlY 2 -

We define the corresponding spaces with homogenious s y m b o ls  S  an d  S c";'' in the
following sense (See Taylor [17]). W e will say a (x ,6 ,r)E S , provided that a(x4,
2-)ES"' has a  classical expansion

a(x ,6,r)— au ) (x ,6,r),

where term s aw  are  hom ogeneous o f  degree m — j in  (6,r), in  th e  sense that the
difference between a(x 4,1-) and  the  sum over j < N  belongs to  Sm- N .

L 2 estimate and Garding's inequality (the sharp G irding inequality) hold for the
above defined classes of operators w ith respect to  the  weighted Sobo lev norms.

3.2. G reen 's  formula and m odified  G arding  inequalities. W e denote  by  p(x,
4') and bk (x4 ) the principal symbols of operators P(x ,D) and  B k (x ,D ) respectively.
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and we set p r (x,6,7-) : = p(x,6- iz-V 0) and bk,(x 4 ,-/-): =b k (x ,6-FirV 0), and we
define

char P,: = {(x ,6 ,7-)E IX R" -"\{0}) : p r (x4 ,r)= 0} .

We set X :  = (x,6' ,T-)E1X Rr X {7- 0), and for a fixed point X 0 : = (x '0 , 0 4'o,ro)
XRV I X{2->_ 0} on the boundary a , w e consider the symbol p , ( x 4 , r )  as

follows. Let the symbol pp(x ,6 ,r) be abbreviated to p r (X , ) to emphasize that the
symbol is a polynomial of 6„.
Let us factorize p r (X 0 ,6 n )  with respect to 6, ;

102.(x°,60=p-',- (x0,60pJx0,6011(6, — e

where we assume the imaginary part of the roots of p ,+  (X 0,4 ,)=0 and p -,7 (X 0,6)=
0 are positive and negative respectively, and {e } are all the real roots of p,(X 0, )
= 0 .  Then there exists a suitable small conic neighborhood U(X 0 ) such that extend
a  6„-polynomial factorization for XEU(X 0 ) :

P-(X ,)=P(X ,6 ,)P;(X ,6 0 1 1 P (-") (X ,6„). (3.2)

We note that the imaginary part of all the roots of p7,E (X ,6„)=0 and p.,7(X 4„)=0
positive and negative for any X E  U(X 0 )  respectively, but we remark that all the
roots of p? ) (X ,6 n )=0 may not be real. For the factorization (3.2) we set

m ( - ) : =Ithe degree of p -,- (X , )  w.r.t. 6„1, (3.3)

and we set, in case

el(X ,6,) • = P r ( X '4.") 6m' u= 
"

m") (3.4)

We remark that these symbols are not smooth generally.

In order to introduce Green's formula we make some preparations. Let r(x 4 .T )E
S tr  and s(x,6,2-)ES1 - 1 '° be

r(x4,r): =  ro(x,6' ,r)67,H  ri(x,6% -r)X6r 1 +•••+rm(x,6',1- )V ,

s(x,6,2-) : = s o (x ,e  >7.- ) 6 7 1 -  s ,(x ,e ,r)A ,67 2 •• • d - s„,_ 1( x , e ,

w h e r e  : =(1+16'1 2 ± r 2) Il2 .  We define the Bézout form g, of two 6,-po1ynomials
{r(x4,r),s(x4,D )) by

= r (X  ,„ )s(X r(X  ,„ )s (X  ,„ )  
6 , —  6,
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m — I i g „ , (x 5 6 , 2 .,)
x6n1-2

(3.5)

   

and we remark that g,.,,,(x4,r) is a  mX m matrix of which the entries are symbols of
order zero w.r.t. (6 ,r ) . Furthermore we set a  boundary bilinear form

D Z
- t

_

Dx
(*„- '

u , 
ADZ - 2

 v>,

_ A"
- 1

where G ,-,s(x,D ,r) : =Op{g(x,6,7 - )}. T h e  following Green's fo rm ula  is  d u e  to
Sakamoto [15]. (See also Lemma 3.6 in  [16].)

L em m a 3 .3 . W e denote pseudo-differential operators with their symbol r  and
s b yR  an d  S  respectively. L et u , vE lL n(I), then there ex ists a positive num ber C
such that

l(R (x,D ,r)u,S ( * ) (x ,D ,r)v) — (S (x ,D ,r)u ,R ( * ) (  ,D ,r )v ) — G,„<u,v>1

where R ( *) a n d  S ( *) a re  th e  formal adjo in t of R  and  S respectively.

Set a  bilinear form by F ,(u ,u ): = (R (x ,D ,2 -)u ,S (x ,D ,r)u ), a n d  we have the next
estimate.

L em m a 3 .4 . Suppose th at the symbols ST(' an d  sG C 1 S '° a re  real,
an d  th at uEHm(E), then there ex ists a positive num ber C  such that

I2 Re 

W e rem ark  F „,(u ,u ): = (R (x ,D ,r)u ,iS (x ,D ,r)u ).

We futher introduce the principal and subprincipal symbols for the bilinear form
(u ,u ) as follows. We define the  principal symbol f r,(x 4 ,1 -) by

f = r(x4,2-)s(x,6,2-)

and its subprincipal sym bol f  (x 5 6,2-) b y the form al subprincipal sym bol of the
operator S ( *)R :

•-sub i
(X,6, T )

=
2

Or,s(}+E(r —r ) ).

Hence we have the next estimate.
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Lem m a 3 .5 . Suppose th at  the symbols rE an d  s E  S ' r "  are  real
an d  that uEI-Im (), then there ex ists a positive num ber C  such that

1 R e (2 F(u ,u )-2 Fs, (u,u)—  G,,,<u,u>)

w here Fs4(u,u) is a  bilinear form  and  the  real p art  o f  its sym bol is Re f ( x . 6 .
r).

For z= (z o ,• • • ,z „,_,)ECr" , we set bilinear forms

:

z„,_,
Zm  -2

z o _

h n  G rA Z , 21 =  [ f tn -h f  m -2 /  •  " J O ] s g7.‘2
_ z o

where g g ,,(x ,6 ,r)  is the matrix derived from the  Bézout form (3.5) and g7, : =
( g )

T

 F o r  th e  symbols { b}  crresponding to the boundary operators, let f i  : = {the
degree o f bk,(X 4 „)  w.r.t. 6„}, and

b(X ,4*„) b  ( x ) A i

,=0

Further for z=(z ,,,•••,z„,_,)EC", we set

b.kr [z]: bkri(X)z de—  I.1=o

W e also define e q z ] fo r  th e  sym bol ei(X , )  in  th e  sam e  m an n e r. F ro m  the
definition (3.4) o f ef(X , ), the  degree of e/(X ,6„) with respect to  6„ is m — j and
that

e'(X , 6„)=- 1 e6 (X)11/ 4",; ' -1 ,
1=0

and, for z = (z 0 ,•••,z,„- 1)EC"', we set

e l[z ]: = 1=c)

Under the  above preparations we state Garding inequalities.

L em m a 3.6 (Garding's in e q u a li ty ) .  I f  rE  C I S V  an d  s E  
s t ,: ) - 1 , 0 ,

 a n d  i f
the bilinear form  (Re G,,,){z,z{  is positive, i.e.

Z m - i

Ztn-2
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(Re G )[z ,f]> clz1 2 ,

then w e have

Re(G r ,,< u,u>) 1  < u n -  1,o,

W e also state the  follow ing sharp Garding inequality fo r m X m systems.

Lemma 3.7 (sharp Garding inequality). I f  r E C 'S V  an d  s E C 'S 7 r" , and
if  th e  bilinear form  (Re G ) [z , f ]  is non-negative, Le.

(Re G,.,,)[z,f]

then there ex ists c>0  such that

Re(Gr,s<u,0)> — c<u> 2„,_1.-1/2,,-•

A  proof of the  above Garding inequality can be seen in  [17] an d  [18].
Since th e  im aginary p a r t  o f  th e  zeros o f  p.,7(X,4 '„)=0 a s  a  p o ly n o m ia l o f  6„ is
negative, we obtain the  following proposition.

Proposition 3.8. There ex ists a positive num ber c>0  such that

C ( P r .
 1 /10, - 1/2,r + 1 1/ 1, - 1/2,T)•

P ro o f  W e decompose p„7(X,6,,) into

p.,7(X 4 „ )= 6 ",',1  ̀L-Ed,(X)A.4",,l̀ ( X )A.'"`

+ i(a(x) +

= Re 13 (X ) + i  Im p (X 4 ,, ) ,

where Re p,7(X,6„) and Im p ;(X 4 „ ) are real symbols whose coefficients a (X )  and
a (X ) are homogeneous symbols of degree zero with respect to  (4- ', r ) .  Since all the
roots of p ( X , „ ) = 0  lie  in  the  lower half plane {lm 6„<0}, we see that a (X )> O
and  a ll the  roots o f {Re p;}(X,4"„)=0 and  {Im AT}(X,6„)=0 are rea l and distinct.
We remark that m "—  1 roots of Om p ) - (X , ) =0 separate m "  roots of {Re p } (X ,
6 ,) = 0  and th a t the coefficient of the leading term  o f  Im p ;(X ,e ,,) is  positive (see
Hermite theorem  in  [11]), i.e.

a;(X )>0. (3.6)

We begin with

172 P , (x ,D ,r)uL = 1A - 1 / 2 (Re P ;(x ,D ,T )±  i lm  P ;(x ,D ,r))u iL

={1A 'R e  P u P u kr} (3.7)
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—i[Re 13 1),7 u,Re u)}. (3.8)

For RHS of (3.7), we have

IA- I 1 2 Re 1='; P,7 til(2)„> c1A - r " ul;” — (3.9)

and we can check it as follows ; since an equality

(Re 17 ; ) (x ,D ,r )= D xm„''+  a1 (x,D ',T )A iD 7,:
J=1

leads us to

1A- 1 / 2 D ru l(2),,-<!A - 1 "(Re P .)(x ,D ,r)u1L+ (3.10)

we have, by virtue of ci(X )>O ,
lAourm,, i .r <IA - 1 / 2

(Im P.,7)(x,D,r)) 0 + (3.11)

Thus (3.10) and (3.11) yield the estimate (3.9). For the two terms in (3.8), we use
Green's formula, Lemma 3.4 and conclude

((Re P ,)u ,A '(lm  1 ) 1u) — (A - 1 (1m P.,7)u,(Re 13 ; )u )±  G R C  pr,A'Imp< 11,0 1

I/2,,)•

By the Hermite theorem in [I1], since the Bézout form for Re p ;  and ,1, - 1  Im  p ; is
positive definite, we can apply G carding's inequality of Lemma 3.6 to show

p r <U,U> <U>2m' ' - 1,r•

Hence we have

114 12m('-1,172,r+<U> -1,0,, C (P .; 14 10,- 1/2,,±1 11 1L'- -1,r).

By the interpolation inequality for the second term in the RHS, we conclude

/4 12m,E  I /El /412m'-'-1,-1/2,

and this completes a  proof of Proposition 3.8.

By Gâ'rding's inequality, we get the same kind of proposition as in [16].

Proposition 3.9. Let rE  S i ° and sE . 5
1,0.7; - I f  t h e r e  e x i s t s  a suitable small

conic neighborhood U (X 0 ) such that

(Re G,)[z,z] elz12 o n  U(X0)flle i [z ]= b i [z ]=0 ,j=1 , - . ,m ",k = 1 , — ,p}

for any  X0 E IX R V I X  {r  ()}  on the boundary  az, then there ex ist c>0 and d>
0 such that the following estimate holds

Re( G<u,u> - Fd 4± , <B kru >L_p._
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f o r u E  I m(E).

P ro o f  By the  use of a  partition  of unity, we are enough to give a  proof for a
localized problem in  a  neighborhood o f X o . T he assumption leads us to  have

(Re Gr A z ,z p - d(Ee/[z]el [21+ ± b ijz [b /j f ] ) . -  clzI 2

j=I k=1

for large enough d> 0, and an application of Gd'rding's inequality gives

Re(G,..,<u,u>)+ d(E<E 1

J=I k=1

(See Lemma 3.12 of [16]). We apply Proposition 3.8 to  the function Em u to show

an d  we reach

E<E i  u>. - r c ( P ulô,-112,r+1141L- 1,-1 /2,).i=1

This completes a  proof of P roposition 3.9.

According to the  modified sharp Gârding inequality (Lemma 3.7), we can extend
Proposition 3.9 to the case that the bilinear form (Re Gr , )[z ,f]> 0  o n  U (X o ) n{el[z]
=  b [z ] O, j = 1 ,• • ,m( - )  ,k = 1 4.11

Corollary 3 .1 0 .  L et rES51.° a n d  sES71

- 1 , 0 . If  there  ex ists a  suitable small
conic neighborhood U (X 0 ) such that

(Re G, )[z,f] > 0  o n  U (X 0 ) n tea [z ]=b [z ]=o,;=1 ,---,m ( - ) ,k=1,•••„0

for any XoE I X RV' X {r >_ 0} on the boundary  az, then there ex ist c>0  an d  d >
0 such  that the following estimate holds.

Re(G,.,,<u,u>+ d±<B k
r  ) d ( r  11111L-1,r+IP,u126.-1/2.,-)

k=1

f o r uEllm(E).

Next proposition is a basic estimate for the Carleman estimate.

Proposition 3 .1 1 .  L et r .S. 7;. °  an d  sE,S71
- 1 '  be real sym bols, and set

F ,„(u ,u ): = (R (x ,D ,r)u ,iS (x ,D ,r)u ).

I f

fs"b=f,l(x4,1-)>c(161 2 — Es-2 )m— ' o n  char P,,

then there ex ist c> 0  an d  d > 0  such that w e have
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R e fF (u ,u ) — c 1 1 4 1 2 „ 7 - 1 —  d ( 1 1 3
r ul(2),-,,, - 1-  <0 2,1,-1 /2,-)

for large enough z >0  and f o r uElim .

P ro o f  By Lemma 3.4 in  [16], there exists a symbol such that

Re(f "b(x,6,r)- p,(x,6,r)q(x,6,r))> c(14 . 12 + r 2 )

Furthermore we can decompose the above symbol into the form

R e (f  (x ,6 ,r )± p ,(x ,6 ,r )q (x ,6 ,r ) )= c /2 (1  6
12 ±  r 2 ) n  -  I  ±

{ a,(x ,6,z )} 2 ,
j=1,2

where a, E  s m-o ,  .=u  1 ,2 )  are real symbols respectively. (See Lemma 3.5 in [16].)
We firstly show our aimed estimate for symbols with smooth coefficients. By
Proposition 3.4 or Lemma 3.7 in [16], we have

Re F b (u,u)± (P,(x ,D ,z )u,Q (x ,D ,D )u) — c/21u1 2. - 1 , —  E 1A ; (x ,D ,r)uL,=1,2

<d(lu1 2,3 1 2 ,,+<0 2,1,-1/2,-,).

Since the boundary is noncharacteristic, one can estimate the m-th order derivative
of u  along the normal direction by Pr (x ,D ,z )u  and 1/41„,_,,p;

Here we use an estimate

11,112m,- 3 /2 , - '1" 1 114 12.,-1/2,,

and we have

for large enough r .  Using Lemma 3.5, we have

1Re(F(u,u) — P" b (u,u) — G,<u,u>/1

d (1 11 12m,-312,r+ <U> 21n - I, -  I /2,z)

This implies that the desired estimate holds for smooth coefficients case. In order to
obtain the result for symbols r and s with C ' coefficients, we have only to check that
the estimate is stable with respect to small perturbations of r and s in  C 'S °  and C'
S "  respectively. I n d e e d ,  rep lace the symbols r  a n d  s  with sm ooth E-
approximations, and, from the estimate in Lemma 3.7 of [16], we have

1Re(F.,,(u,u) — G,.,,<u,u>) — R e(Fre ,„(u,u) —  G„ <u,u>)1
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<c2E(1Pr(x,D,r)4.-1.r - Flu12. - +<u>1,-1/2,).

This implies the desired estimate for C ' coefficients.

3.3. Proof for the Carleman estim ates near the b ou n d ary . Sakamoto [14]
introduces a basic concept w hich is a  refinement of the uniform  Lopatinski condi-
tion. It is essential to show the energy inequality for hyperbolic mixed problems, and
it is also important for our case. We shall firstly define Carleman-Lopatinski (C-L)
conditions near the boundary, and we prepare

p ( x 4 , r ) :  =R e p,(x,6,2-), p i
r (x4 ,r) : = Im  p,(x ,6,r).

Definition 3.12 (strong Carleman-Lopatinski condition). L et S ={ 0=0}  be a
C 2 hypersurface, xo'Es n az and suppose (60%-ro)ERV I X { r 0 } .  W e shall say
that {P,f1} satisfies the strong Carleman-Lopatinski condition w.r.t. S at  X o =
6,-ro), in case
there ex ists a  suitable small conic neighborhood  U (X 0 )  such that

o n  U (X o ) n tel[z]= b'Jz]=0,j=1,• • • ,m ( - ) ,k=1,• • • ,p1,

where {P,B} com es from  the boundary  value problem (3.1).

Definition 3.13 (weak Carleman - Lopatinski condition). L et S = {0 = 0 } be a
C 2 hypersurface, x S fl aI and suppose ( 7-0 )ER V I X { r>0 } . W e shall say
that {P,B) satisf ies the w eak  Carleman-Lopatinski condition w.r.t. S  a t  Xo= (4,0,

,ro), in case
there ex ists a suitable small conic neighborhood  U (X 0 ) such that the following (A)
and (B ) h o ld .
(A ) There ex ist g E  C ' S r '  an d  real sym bols q" ) , q (2 ) e  S ' ; - 1 1 - '" such that
(1) q ( q (1 ) -Fie )2 - - I lm p r  (m o d  R e  p ,)  an d  e > 0  on char Re P,
(2) Im Gp .,.,[z,z] 0 o n  U(X 0 ) n{ e[z ]=14[z ]=0, j= k=1,--„u}
(3 ) Irn {p,4}‹ — c(1612 + 7'2

)m _
I o n  char Pr .

(B ) There ex ists a  real sy m bol r E  S 1 °  such that
G ,,..1,,,[z,f.]>c1212 o n  U(X 0)n{ eqz1=b k

r [z ]=o, j=1 „ m ( - ) ,k=1,--„u1.

The main goal of th is section is  to  show the following two theorems.

Theorem 3 .1 4 . Suppose th at 0  is  a  strongly  pseudoconvex f unction w.r.t. P
and  that {P,B} satisfies the strong Carleman-Lopatinski condition w.r.t. the level set
o f  0 .  Then f or large enough r  we have

2le 611 12/71-1 ±<e rq5 0 -1,0,, d ( — r le ' Puk,,+ <e4 13
k

k=1
(3.12)

whenever ueHm
- 1

(2,- ) is supported in  a f ix ed com pact set and the R H S  is finite.

Theorem 3 .1 5 . Suppose {P,13} satisf ies the  w eak  Carleman-Lopatinski condi-
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tion w .r.t. the level se t o f  0 .  Then for large enough z- we have

le g s ,,r+ 7,112< e -4 u >  n2 i/2,r <  d ( ie rop t a r +  ± <e rgsB ko zn flk
(3 .1 3 )k=1

whenever uE llm - I (E ) is supported in a f ix ed com pack set and the R H S  is finite.

Proof  o f  Theorem 3.14. We define a  bilinear form  F(u ,u )  by

F ( u ,u ) : =F p ;...p (u,u)=2((R e P r)(x ,D ,r)u, Pr)(x,D,r)u).

From  the pseudoconvex condition, we have

2 pr,Imppl >0 o n  char Pr .

Proposition 3.11 leads us to

Re(F(u,u)—  G d (IP ,urci ,-,,,+< 0 2 ,1.-1/2.,), (3.14)

a n d  th e  strong  Carleman-Lopatinski c o n d itio n  a n d  P ro p o sitio n  3.9 m ak e  u s  to
deduce

Re(G X u,u›-f -± <B k
r u > - # - I.,)k=1

c< u>_,0, —  d ( P , 11 10,- 112,H- 1 14 12m - 1, - 1 /2 ,r ) •

We com bine (3.14) w ith  (3.15) to see, for large enough r.

Re F ( u ,u ) ± ± ‹ B k,U>2
m--13 , C(11412,n- ± < 0 2 m-0,r) —  d iP

k=1

Here we use simple facts

1 / 1 I I
114 2m - -1 /21- -1= 1 - 111 12m- 1r

It is obvious that

r Re F(u,u)=1P-rulL — IRe Pr)(4 ,r1 Pru  2

and com bination of this inequality  w ith (3.16) leads us to

14 - 1 ,,± <0 - 1 ,0 ,, d ( 1 IP,u1L ± ± <11u> 1,,)•k=1

Since the difference between P(x ,D-i-irV ck ) and  P r (x ,D ,r)  is  an  operator of order
m - 1 ,  we set y :  -=e 4 u and  get

I Prldi),, c(IP(x,D+

In  the same way as above, we have

(3.15)

(3.16)

(3.17)
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<B k
r v> _ )3

,—,, c(± < B (x ,D +
k= 1

Hence we apply (3.17) t o  1, , and  we obtain the inequality (3.12) for large enough r.
We have shown the inequality (3.12) for uE  H  , and by virtue of the following

lem m a, w e h a v e  th e  sam e  resu lt f o r  uEH"' - 1 ( 1 ) ,  P (x ,D )uE L 2 ( 1 )  a n d  B k uE

Lemma 3 .1 6 .  Suppose that uE H  I (1 ) satisfies P (x ,D )uE L 2 (E) and B k uE
Hm 1( a E ) .  T hen there ex ists a sequence {uf }E i lm ( I )  such that

u1 — > u in  H m _ ()

P(x ,D )u, P (x ,D )u  in L2 ( )

B k u, — >B k u  in Trn - - '(aI)•

P ro o f  It is enough to show the results for localized problem . There are two cases ;
the support of u  is included in  1,, and  it contains the boundary  a l .  Since the first
case is treated in  [5], we consider the  second one. D enote u ,: = 11 1 u, A.; : = (l + 1/
/ 0 1 )  ' ,  and  we see u , E H ' ' '  a n d  u ; — > u in  H m - 1 ( 1 ) .  Furtherm ore, P(x ,D )u,
= -A ,P (x ,D )u+ [P ,A ]u . Since th e  co e ffic ien ts  o f th e  p rin c ip a l pa rt o f P  P  are
Lipschitz continuous, it follows that the operator [P,A i ] is equibounded from Hm - 1

to  L2 (see e.g. Lem m a 17.1.5 in[5]).
Since [P,A i ]u — >0 in  L 2(1 ) for it follows that the same result holds for
each  uE Hm - 1 ( I )  by density a rg u m en t. T hus one can see, from  the commutation
properties o f  pseudodifferential operators, P(x ,D )u, — > P (x ,D )u  i n  L 2(1). In
p a rtic u la r , P(x ,D )u f EL 2 , u , E H ' ' '  im p lie s  th a t  D"', u f EL 2 a n d  uj E lim (I).
Finally , to  com plete  th e  p roof o f  th e  theorem  w e have to  estim ate  B k u,=A J B k u
± [B k ,Ai ]u. T h e  f irs t R H S te rm  converges t o  B k u  i n  Hm - - '(aE) w h ile  the
operator [ B k , A j I a I  is  equibounded by the trace regularity and the same commutator
estimates as above, and we see pointwise convergent to 0 from Hm- 1 (1 ) into
(az ) . W e obtain the  desired result.

In  order to  start a  proof of Theorem  3.15, we prepare a  lemma :

Lem m a 3 .1 7 .  S uppose {P ,B} satisf ies t e h  hy pothesis ( A )  in  t h e  weak
C arlem an-L opatinsk i condition w.r.t. the level set of  çb. T h e n  f o r uE lim (E ) and
large enough r> 0 , we have

m-]
R e(P r (x ,D ,r)u ,Q (x ,D ,1-)u)> I- E 1Q ; ( x ,D ,r ) u L )

J =0

d (1 1 /2,7- k± i < B > 2;rt - < 14 > 2rn - 1, -  1 / 2, r (3.18)
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where a symbol of  g  f or the operator Q plays a role seen in the weak Carleman-
L opatinsk i condition, and the operators Q, have sym bol g , defined by

g ,: = pr),A .:-.1  (mod Re p,)

P ro o f  From the hypothesis (A)(I), there exist symbols wk e  C I S 7  (k =1.2)
such that

na—

R e(p ,q )= -r(c  E lqi 12 + E wk1 2 )
j=0 k=1,2

(See Lemma 4.3 in  [1 6 ]) . Let
m-i

F ( u ,u ) : =( P r u,Qu) — r ( c E  Q1 ur6,,+ E w o
j= 0 k= 1,2

and, by the equality (3.19), the real part of the principal symbol of F(u ,u ) is equal
t o 0 .  By direct calculation, we have

Re f s"b (x 2-)= {Re p r ,Im  0— {Im p r ,R e  q } > 0  o n  char P r

Applying Proposition 3.11, we obtain

R e(F(u,u) — Gf <u,u>) c d(1PruR _I,,± <0.-1,-i/2 ,,), ( 3 . 2 0 )

where GF <u,u> :  -=Gp r,,,,<u,u> - FG,AR e q <u,u>. Since the hypothesis (A)(2) holds,
we have the estimate from Corollary 3.10

G0 ,1 r n„„<u,u>

— (3.21)

Combination of (3.21) with (3.20) yields (3.18).

Proof  of  T heorem  3.15. From Lemma 3.17 and the hypothesis (A), we have
an estimate

11412m—I,r +  CD E 1Q1(x,D,r)(41,i=0

_<d(11',(x,D,r)uL112,r+

On the other hand, by the hypothesis (B), we obtain

Re GA ,.<u,u>+

C r < U > 2”1 1,-1/2,z d ( I P T ( 7)162)— 1/2,r ± 11 12m — 1,— I/2,r)•

Application of Lemma 3.4 yields

(3.22)

(3.23)
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1Re(ify,u,Ru)— G<u,u>1 dr(14-1,-112+ <u> 2.-2,o,r), (3.24)

and  w e obtain, for positive a> 0,

Re(iPu,Ru) 2a7-3/2 1r - I P'r u  +  
 2 r /2  2

(3.25)

Therefore by (3.22)-(3.25), we see

11 -
2( ,

-
>, 2 < d( 1 'P r /4 + 

k
<Bk,U>2m-/34-I,r)1 12m1,2- x m- —

=I

and  it com pletes a  proof of the  Theorem  3.15.

3.4. Unique continuation and applications. The Carleman estimates near the
boundary  in  th e  previous section suggest that th e  fo llow ing unique continuation
property. W e rem ark that w e also use the same nota tion  as above.

Theorem 3 .1 8 .  L e t OE C 2 (1), ck(x 0 )±O, S :{ch (x)= g5(x0)}, and assum e
that the level surface o f  0 is strong pseudoconvex w.r.t. P at x o an d  {P, B} satisfies
the strong Carleman-Lapatinski condition w.r.t. the level surface o f  0  at  x o . Let
uEH ) be a solution to

jP (x ,D )u = 0  in E
(B i(x ,D )u = 0  on 3 z , j= l ,2 , • • • ,p .

If  there ex ists a  neighborhood U (x 0 ) such that u=0 in {xE  U  (x0 ); 0 (x)>  0 (.01
then u=0  in  a neighborhood o f  x o .

Remark 3. W e should note that the strong Carleman-Lopatinski condition is
stable w.r.t. sm all C ' perturbation for the function 0.

Theorem 3 .1 9 .  L et 41E OE), 0(xo)*0, S :  = {¢.(x)= cb(x0)}. A ssum e that
the level surface o f  0  is strong pseudoconvex w.r.t. P a t  an d  that {P,B} satisfies
the w eak  Carleman-Lopatinski condition w.r.t. the level surface of  0  in  a neighbor-
hood o f  x o . L e t uE Hm - 1 (1 ) be a solution to

fP (x ,D )u = 0  in E
{B i(x ,D )u = 0  on

If  there ex ists a  neighborhood U (x 0 ) such that u=0 in {xE U (x0); 0(x)> cb(xo)}
then u=0 in  a neighborhood o f  xo.

W e  a p p ly  t h e  a b o v e  re su lts  to  t h e  w a v e  e q u a tio n  w ith  th e  D irich le t (o r
Nneumann) b o un d ary  condition. N o t e  t h a t  t h e  s tro n g  ( o r  w e a k )  Carleman-
Lopatinski condition  holds for the cases.
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4. Proof of the main results for inverse problems

Extend u(t,x ) as an even functions w.r.t. tE[— T ,71, and we get, by the equations
(1.1)-(1.4),

(a— A x — a(x))u(t,x)= f (x )R (t,x )—  T  <t<T  ,x E12 (4.1)

u (0 ,x )=a,u (0 ,x )=0 x E n (4.2)

u (t,x )=0 — T < t < T ,  x E a n (4.3)

aU (t ,X )=  0 ro< t < r o ,  XE n D(go,ro),an (4.4)

and we define P, by

P: =  — A, — a(x).

By the assumption R (0 ,x )*0 (V xE n ), there exists a num ber n E(0,r o) such that

R (t,x )*0 , ?7< t < 7 7 ,  xE n .

Therefore from (4.1), it follows that

f P a u ( t , x )  
R (t,x ) 71‹  t < 7  x E n ,

and we have

Let

then we see

0 ,   af (x)a   f  Pa u(t,x )f
at at (  R (t,x ) 77< t < 7 7 ,  x E n .

a tR (t x) h(t,x ) : ' Q : =  a t — h(t,x )

(QPa u ) ( t ,x ) = 0 ,  —  n < t < 7 7 ,  x E n .

W e set v (t,x ): =(Q u )(t,x )  and have the following system for u  and y :

P,v (t,x )=[P„,Q ]u(t,x ), t< , ( 4 . 5 )

Q u (t,x )= v ( t ,x ) , — n< t <  7 ,  xE n . (4.6)

w here [A ,B ]= AB — B A . S ince  u(0,x)=0, w e can  so lv e  an  ordinary differential
equation, for fixed xEr2,
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d 
d t  

u(t
'
x)— h(t,x)u(t,x)= v(t,x), 77<t<77

in  the  form

u(t,x)=S 1
0„ x ) v ( s , x ) d s , (4.7)

wherre H(t,s,x)—
_   h ( t , x )  

.  F o r simplicity, we denote H  by the  operatorh(s,x)

(Hv)(t,x): =S 1 H(t,s,x)v(s,x)ds.0

The following inequality Lemma 4.1 can be proved (e.g. Lemma 3 in Bukhgeim [2]).
F o r (t ° ,x )E (—  T,T)X f2 we se t a  weight function by

—(t — 02+ — x°12
2

and  fo r E > 0 we set

SY' ) :  = { ( t ,x ) :  xE f2,0> €1.

Lemma 4.1 (Bukhgeim). Suppose t•a t o o  an d  E2(')OE(-77, ) x n . Then

Se2 5 t Ip(5,x)id5
2

 dtdx.-< 271 S e21- I
'5 1P(S,X)1 2 dtdX

0 ( 0 0 n(0

f o r V pEL 2 (1.2( ' ) ).

From (4.5) and  (4.7), we have

P,v(t,x)=[1 3,,Q]So
f H(t,s,x)v(s,x)ds.

We remark that [P,,Q] is a  1st order differential operator. Let x E C '([ —  7747] X S),)
be 0 (t,x) 1 and,

x ( t , x ) =  
{1 (t,x)Ef2 ( E)

0  (t,x )E 2 m V2 ( ' — '
2),

and set

w (t ,x ) :  = x (t,x )v (t,x ), xEf2.

In  (4.3) and  (4.4), we apply Theorem 3.14 to obtain

w CleYwIL,

and application of Lemma 4.1 and  (4.8) lead us to see

le4 P1442:1,,-= e4Pxylô,,

(4.8)
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le' [P,x] vI + ler'xPvIL

Therefore, for large enough 2-, we have

-tier° <e.'4

C(le q [P,x])711L+ I er qx,I -1]
A  straightforward consequence of the usual proof for unique continuation is v=0.
According to the equality (4.7), we get u =0 . By the assumption R(0,x)*0 and the
equation (4.1), we obtain f (x) O.

Thus the proof of Theorem 2.1 is complete.
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