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Uniqueness in inverse hyperbolic problems
—Carleman estimate for boundary value problems—

By

Masayoshi Kuso

1. Introduction

We give sharp Carleman estimates including boundary conditions to show the
unique continuation across a lateral boundary for hyperbolic equations, and we
show the uniqueness in hyperbolic inverse problems by the use of the above unique
continuation. ,

T. Carleman [4] proposed a weighted inequality to show the uniqueness in Cauchy
problems to which Holmgren’s theorem are not applicable, and we call this type of
weighted estimates the Carleman estimates. The Carleman estimate has been playing
an important role to show the uniqueness not only in Cauchy problems but in
inverse problems. Especially for inverse hyperbolic problems, the uniqueness is one
of the most interesting problems in this field, and many researchers study applica-
tions of the Carleman estimate ; e.g. Bukhgeim [2], Bukhgeim and Klibanov [3],
Isakov [6], Lavrent’ev, Romanov and Shishat-skii [9], Yamamoto [19] etc.

The author gives a new type of the Carleman estimates in the present paper, and
he shows sharp results in the uniqueness. The main interest of this research lies in
an inverse problem to identify unknown coefficients of the wave equation from
measurement on a lateral boundary. The problem is attractive for many researchers,
since it is a mathematical model in geophysics to find properties of geophysical
media by observation of wave fields on a part of the surface of the Earth. We wish
to know conditions for the uniqueness of solutions, but the uniqueness has not been
shown for the case observation is done on a part of a boundary. We show sharp
estimates to give conditions for the uniqueness to this case. Proofs of uniqueness
theorems of inverse problems are based on the following two points ;

(1) the Bukhgeim-Klibanov method presented in [3],

(2) Carleman estimates near the boundary for boundary value problems.

We remark the method (1) is an application of the Carleman estimate to inverse
problems and effective for various inverse problems to determine coefficients in the
equations for which the Carleman estimate holds. Since the Carleman estimate
depends essentially on a relation between the type of differential equations and the
shape of a domain, and many serious difficulties arise in particular for hyperbolic
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equations; one can see examples for non-uniqueness and counterexamples for the
Carleman estimate [1], [8] etc. Our aimed equations are hyperbolic equations with
boundary conditions on a part of the lateral surface: Observation data for our
inverse problems are given as boundary conditions on a part of the lateral surface
which may not be strongly pseudoconvex. We should pay very much attention to
show the Carleman estimate. Recently Tataru [16] proposed the Carleman estimate
including boundary data in order to show the unique continuation near the bound-
ary, and we develop his idea to introduce the Carleman-Lopatinski condition and
obtain delicate uniqueness theorems. We should remark that we use not only the
initial conditions but also boundary conditions to give our Carleman estimates, and
this idea is essential in our argument.

We shall address our inverse problem precisely. Let u be a solution to the
following initial-boundary value problem for a hyperbolic equation :

(2= A —a(x)u(t, x)=f(x)R(tx) 0<t<T, xEQ, (1.1)
u(0,x)=09,u(0,x)=0 xEQ, (1.2)
B“I(O,T)xanzo’ (1.3)

where QCR"' is a bounded domain with a smooth boundary 8Q and B denotes a
boundary operator. We assume that a(x) and R(f,x) are given functions, and our
inverse problem is identification of f(x). We denote the solution to (1.1)-(1.3) by
ulf1(t,x) for f(x), and TCaQ is a part of the boundary which is given a priori. A
question of our inverse problem is how to conclude f,(x)=/f>(x) x&Q under the
observation

Bulf(t.x)=Bulf:)(t,x) 0<:<T, x€T, (1.4)

where B is a boundary operator associated with the operator B ; what conditions
should be posed for B, B and T in order to identify f(x)? When T is the hole
boundary I'=98(, and when B and B is the Dirichlet and the Neumann boundary
operator respectively, a strong affirmative result is known (See e.g. Bukhgeim and
Klibanov [3], and Yamamoto [19] for a stability estimate). In the case I'# 9 or the
boundary operators B and B are different types from those mentioned above, we
have counterexamples for usual Carleman estimates (See [1], [8]) and the condition
for unique identification has been an open problem.

We introduce the Carleman-Lopatinski condition which is a new type of the
Carleman estimates including boundary conditions. We show uniqueness theorems
for identification of the force term f by using our Carleman estimate. The
Carleman-Lopatinski condition implies a suitable choice of the boundary operators
B and B.

This paper consists of four sections. In §2 we state our results, and we give our
Carleman estimates near the boundary in §3. We give proofs of the main results in
the final section. We remark that the Carleman estimates given in §2 are meaningful
for not only the research of inverse problems but the unique continuation of solution
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to linear differential equations.
2. Notation and Results

We state the results for our inverse problems in this section, and we have two types
of uniqueness ; the one is the local uniqueness (Theorem 2.1 and Theorem 2.2) and
the other is the global uniqueness (Theorem 2.3 and Theorem 2.4). We remark that
the latter results are derived from the former ones for a special domain.

Before stating the results, we should recall the problem (1.1)-(1.3) and the question
stated in the previous section ; we must clarify conditions to conclude f(x)=0 when
Bu[f](t.x)=0. The following theorems are answers to the questions. We denote the
Dirichlet and Neumann boundary operators by B, and By respectively, and we
denote the normal derivative of v on a surface § by a—iuls. The Carleman-
Lopatinski conditions are key ideas in the present research, and we give the
definitions in §3. The strong pseudoconvexity is used in the usual sense and is stated
precisely in §3. Our results are as follows.

Theorem 2.1. Let SCR" be an oriented C* hypersurface transversely inter-
secting with both a cylinder (0,T)X 3Q and a plane {t=0}, and let (0, x,)E2QN
S|i=o. We assume that S is strongly pseudoconvex w.r.t. d’Alembertian [ at (0, x,)
and that {{J,By} satisfies the strong Carleman-Lopatinski condition w.r.t. S at (0,
Xo). We assume that R(t,x)E W?>*((0,T)XQ) and R(0,x)#0 (xEQ). We assume
that (u,f)* H*((0,T)X Q)X LXQ) satisfies

(22— A —a()lu(t.x)=f(OR(t,x) 0<i<T, xE€Q,
u(0.x)=2,u(0.x)=0  xEQ,

ul(o,r)xan:(),

and that -g;-uEHZ((O,T)XQ). If u|s=%u|520 in a neighborhood of (0,x,),

then there is a neighborhood V CR" of (0,x,) such that f(x)=0in VN (0,T)XQ.

Theorem 2.2. Let SCR" be an oriented C* hypersurface satisfying the same
hypothesis as in Theorem 2.1. We assume that {{],By} satisfies the weak
Carleman-Lopatinski condition w.r.t. S at (0,x,)E8QNS|,=o and that R(t.x)E
W>**((0,T)XQ) and R(0,x)F0 (xEQ). We assume that (u.f)EH*((0,T)XQ)X
L*(Q) satisfies

(o=, —a(x)lu(t,x)=f(x)R(t.x) 0<:<T. x€EQ,

u(0,x)=0,u(0,x)=0 x€Q,
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el _
o U|(o,r)><an—0,

and that —éat—uEHZ((O,T)XQ). If u|s=%u|s=0 in a neighborhood of (0,x,),
then there is a neighborhood V CR" of (0,x,) such that f(x)=0in VN (0,T)XQ.

Remark 1. In the case where the boundary operator B in (1.3) is of the
Neumann type, we remark the strong Carleman-Lopatinski condition is not fulfilled,
and the situation is similar to the case of the uniformly Lopatinski condition in
mixed hyperbolic problems (see [11]). The boundary operators B in (1.3) and B in
(1.4) should be chosen so that the unique continuation across a lateral boundary
holds for solutions to

{?—A—a(x)lu(t,x)=0. 0<:<T, xEQ.
We should remark the cases (B=B,,B=By) and (B=By,B=B)) are quitely
different.
We show global uniqueness theorems as a simple consequence of above results.
Let Q be a disk in R"™' and let a subboundary I'C 8Q be a part of 3Q ;
Q: ={xER"": |x|<R}, (2.1

rs2{x€a80: x,<5)}, (2.2)
where R and ¢ are positive numbers.
Theorem 2.3. Suppose that T>R and a;(x)EL*(Q), u;(t,x)E W*((0,T)X

Q) j=12.
Suppose that each pair of the functions {a;(x),u;(1.x)};=1, satisfy

(31— D —a;(x)u(t.x)=0 0<:<T. xEQ, (2.3)
ui(0,x)=a(x), 2.u;(0,x)=p(x) xEQ, (2.4)
u(t,x)=g(t,x) 0<:<T, x€E2Q, (2.5)

where « € H'(Q), BE LY(Q), and g= L*((0,T)X 8Q), and we assume that |a(x)| =
ao>0 almost everywhere on Q) with a positive number «y>0. If

Byu(t,x)=Byu,y(t,x) 0<:<T, xET,, (2.6)
then

a(x)=ay(x) x€Q,

u(t,x)=uy(t,x) 0=<t<T, x€EQ.
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Theorem 2.4. Suppose that T>R and a,€L"(Q), uy;EW>*((0,T)XQ) j=1,
2. Suppose that each pair of the functions {a;(x),u;(t,x)},=.2 satisfy

(91— L —a;(x)u(t,x)=0 0<:<T, xEQ, (2.7)
u;(0,x)=a(x), 3,u;(0,x)=p(x) xEQ, (2.3)
Byu(t,.x)=g(t,x) 0<:<T, x€2Q, (2.9)

where « €EH'(Q), BEL*(Q), and gE L*((0,T)X 3Q), and we assume that |a(x)|=
ao>0 almost everywhere on Q) with a positive nhumber a,>0. If

u(t,x)=uy(t,x) 0<t<T, x€ET,, (2.10)
then

a(x)=ax) x€Q,

u(t.x)=u(t.x) 0<t<T, x€Q.

Remark 2. We remark that we have the same results on the global unique-
ness if we replace the principal part of the equation (2.3) with a strictly hyperbolic
operator for which the Carleman estimates in §3 holds. Furthermore the results
holds for an arbitrary domain Q as far as boundary operators satisfy the
Carleman-Lopatinski conditions.

3. Carleman estimates near the boundary

We shall give the Carleman estimates near a boundary for solutions to boundary
value problems, and the estimates are extensions of those by Tataru[16]. We prove
the Carleman estimates with boundary data as well as the energy inequalities for
hyperbolic mixed problems (See e.g. [14]).

We use the following notation. Let P(x,D) be a m-th order partial differential
operator in a domain 3CR" with a smooth noncharacteristic boundary 33. We
assume its principal symbol p(x,&) is real and has C' coefficients. We decompose
P=P"+ P"* where P" is the principal part of P and P is bounded from H” ' into
L*. Let S be an oriented C* hypersurface intersecting with 93, and let ¢ be a real
valued C* weight function. We denote the Poisson bracket of two symbols p and ¢
by {,*}: ie.

{p.gh(x.&): =§< §§j aaf, aaf, gg, >

Let us first recall the strongly pseudoconvex condition (See e.g. [5]).

Definition 3.1. We shall say that ¢ is strongly pseudoconvex w.r.t. P at x,,
in case

{p(x.6—irV $).p(x,& +izV $)}(x0,&)/ 71 >0
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on {(&,7)ER"™\{0} : p(x0.&+irV$(x0))=0,7=0}

Definition 3.2. Let S be an oriented C* hypersurface which is a level surface
of a smooth function ¢(x), and let x,€S, V¢ (x,)*0 on S. We shall say that S
is strongly pseudoconvex w.r.t P at x,ES, in case

Re{p,{p.¢}}(x0.&)>0

on {£ER\{0}: p(x0,&)=1{p.¢}(x0.£)=0}

and

{p(x0.6—irV $),p(x0,E +irV $)}(x0,E)/ 7i >0

on {(&,7)ER"": p(xo,&+izV)={p(x0,E+izV ), }(x0,&)=0,2>0}.

As in 28.3 of [5], one can easily check that the strong pseudoconvexity dose not
depend on the choice of the function ¢.

Let B: ={B*(x,D)};= ..., be a set of boundary operators on 93. We consider
a boundary value problem

{P(x,D)u= F in 3,

B*(x,D)u=g* on 3%, k=12,4. CAY

In order to discuss local property of solutions, we are enough to consider the case of
a half space S : ={x=(x,."",x,)ER": x,>0}. Since the boundary 33 is nonchar-
acteristic, we assume the coefficients of DY, in P™ should be 1. We denote x'=(x,,
. x,—) and &=(&,,&,-) for the tangential space and the corresponding tan-
gential Fourier variable respectively. Thus x=(x",x,) and &=(&".&.).

3.1. Weighted norms and pseudodifferential operators with a parameter. We
introduce Sobolev spaces H;(Z) and H7(92) defined by the following norms
respectively. For non-negative integer m and non-negative number 7=0

m .
lul,.: =I§)r”("’_”|u|3ﬁ(2),
m .
<U>fm L= ;)sz_jwul%ﬂ(az),
=

where we denote that the usual Sobolev norm by |*|,;, the L inner product in 3 by
(+,*) and the L’ inner product on 93 by <-.->. Equivalent norms are given by

” u”im L= !(lD.\vl:+ Tz)m/zuPL’(z),

<<u>>$n1 L= |(|D\

We denote A : =(1+|&P+ 29" and A: =0p{(1+]&'*+7%"?}. For a real number
s, we define the following norms

2+ TZ)M/.’.u

2
L*(3%)-
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luls.: =AUl

Wiyt = BDLA W,

and we define a Sobolev space H™(3) with the above norm |*|,....

We introduce classes of pseudodifferential operators (¢.d.o) with a parameter 7.
The parameter 7 is the weight one in the norms of the Sobolev spaces. On the other
hand, the parameter 7 in the symbols of ¢.d.o is useful to the proof of energy
estimates for strictly hyperbolic equations as well as in the proof of Carleman
estimates.

We introduce the following classes of symbols :

S™: ={a(x,&.7): |D:DLal< C <& >" " 0. FEN"}
S :{a(x,g,f):égf,‘,aj(x,g',f): |DEDLa)|< C,4<& "7 g EN,
ﬁ’eN”"}
c s ={a(x,&,7): |DiDal< C, K&, >" ¥ |a| <k SEN")

cks™ . ={a(x,g,r)=,Z})gﬂa,(x,g’,r): |D2DEa)|< C, <& > 17 | o] <k,

ﬁ/ENn—l}

where we set <&,z>: =(1+[&+]z[)".

We define the corresponding spaces with homogenious symbols S and S7’ in the
following sense (See Taylor [17]). We will say a(x,&,7)E€ 54, provided that a(x,&,
7)ES" has a classical expansion

a(x,&r)~j§)a‘j’(x,§,r),

where terms @’ are homogeneous of degree m—j in (&,7), in the sense that the
difference between a(x,&,7) and the sum over j<N belongs to S~ ".

L? estimate and Garding’s inequality (the sharp Gﬁrding inequality) hold for the
above defined classes of operators with respect to the weighted Sobolev norms.

3.2. Green’s formula and modified Garding inequalities. We denote by p(x,
&) and b*(x,&) the principal symbols of operators P(x,D) and B*(x,D) respectively.
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and we set p.(x.&,7): =p(x.&+irV ) and bi(x.&,7): =b (x.&+izrV ), and we
define

char P,: ={(x,&,7)ESXR"\{0}): p.(x,&,7)=0}.

We set X : =(x,&",7)ESXRY ' X{r>0}, and for a fixed point Xo: =(x'0,0.&,70)
€3 XRy 'X{z=0} on the boundary 33, we consider the symbol p.(x.&,7) as
follows. Let the symbol p.(x,&,7) be abbreviated to p.(X,&,) to emphasize that the
symbol is a polynomial of &,.

Let us factorize p.(X,,&,) with respect to &, ;

P:(Xo.é,‘n):Pf(Xo,f,’n)Pr_(Xo,En)l;I(?En— gnm

where we assume the imaginary part of the roots of pf(Xo,a;-‘,,)=0 and p; (Xon&,)=
0 are positive and negative respectively, and {é’;‘,ﬁ”} are all the real roots of p.(Xo.&,)
=0. Then there exists a suitable small conic neighborhood U (X,) such that extend
a &,-polynomial factorization for X € U (X ) :

pAX,&)=pI(X,&)p (X, «fn)Hp (X&) (3.2)

We note that the imaginary part of all the roots of p7(X,&,)=0 and p;(X.£,)=0
positive and negative for any X € U(X,) respectively, but we remark that all the
roots of p¥(X,&,)=0 may not be real. For the factorization (3.2) we set

m'™ . =({the degree of p;(X.&,) w.rt. &}, (3.3)

and we set, in case m'7’>0,

X5 =BALEL g =1, (3.4)

We remark that these symbols are not smooth generally.

In order to introduce Green’s formula we make some preparations. Let r(x.,&,7)<
S7 and s(x.&,7)ES5 " be
r(x.&.7): =ryx.& )&+ r(x.& )8+ Fr(x.81)A",
5(x,8,7): =so(X,&, )& +51(x,E,AEN T s, (X8, AT

2\1/2

where A : =

{r(x,g,r),s(x,g,r)} by

. We define the Bézout form g,, of two &,-polynomials

_ r(X.E)S(X.E)—r(X.E)S(X.£.)
g”_ gn

I DE
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gm—l
g

=[er A& 21" 1g,.(x.8.7) : (3.5)

Am—l

and we remark that g,.(x.&,7) is a m X m matrix of which the entries are symbols of
order zero w.r.t. (&,7). Furthermore we set a boundary bilinear form
Dm-[ Dm—l
Xn Xn
AD}T*| | ADE?
u .

il

G, Lu,vw: =<G, (x,D,7) v,

Am—l Ar;t—l

where G,(x,D,7): =Op{g,’_,(x,.f,-',1)}. The following Green’s formula is due to
Sakamoto [15]. (See also Lemma 3.6 in [16].)

Lemma 3.3. We denote pseudo-differential operators with their symbol r and
s byR and S respectively. Let u, vE H"(3), then there exists a positive number C
such that

l(R(x,D,7)u,$™(x,D.7)v)=(S(x,D,7)u,R™(x,D,7)v) = G, <u,»|

< C{l Ulm—l,,' V|m—|,1+<u>m— =122V e = |/2.r},

where R'* and S'*’ are the formal adjoint of R and S respectively.

Set a bilinear form by F, (u,u): =(R(x,D,7)u,S(x,D,7)u), and we have the next
estimate.

Lemma 3.4. Suppose that the symbols r& C'S%° and s C'S7™"° are real,
and that uS H"(Z), then there exists a positive number C such that

|2I{e Fruis(uﬁu)_Gr',s<u,u>|£ C{|u|fn,—l‘1+<u>$n—l,—l/2.r}-
We remark F, (u,u): =(R(x,D,7)u,iS(x,D,7)u).

We futher introduce the principal and subprincipal symbols for the bilinear form F,
(u,u) as follows. We define the principal symbol f,(x,&,7) by

[rs(x, &, 1) =r(x,&,7)5(x,&,7)

sub

and its subprincipal symbol f}7(x,&,7) by the formal subprincipal symbol of the
operator SR :

]

rg =4 (54 Dres—r5.0)).

Hence we have the next estimate.
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Lemma 3.5. Suppose that the symbols rEC'S)° and s€C'S5™"" are real
and that uS H"(3), then there exists a positive number C such that

[Re(2F, ;(u,u) —2F " (u,u)— G, <u,u>)|

< C{Iulfn,—3/2‘1+<u>%n—l.—l/2.-r}-
where Fi't(u,u) is a bilinear form and the real part of its symbol is Re f if;b(x.g,
7).
For z=(z¢,"*",z,n—1)EC™, we set bilinear forms
Zm—l
=1. —[=5 . = Zm—2
Gr,x[zaz] . —[zm—Iazm~2’.“azo]gr,x : B

2y

[ * Y
(lm GI‘,.\)[Z’Z—]: :[z-m—l»z_m—b'”az_o]{’ggs—z_—g—LL} z";_h )

where ¢,,=¢..(x,&,7) is the matrix derived from the Bézout form (3.5) and gl =
(g,,)". For the symbols {b*} crresponding to the boundary operators, let 8*: ={the
degree of b{(X,&,) wrt. &}, and

DX .£)= SN g7
Further for z=(zo,"**.z,n—))EC", we set
Bilz): =S b5z
We also define e/[z] for the symbol e/(X.,&,) in the same manner. From the

definition (3.4) of €/(X,&,), the degree of /(X ,&,) with respect to &, is m—j and
that

X .E)= D el N g,
and, for z=(zo,"*",Zu—)EC", we set
e'lz]: :'::Z_.ie;‘(X)z,,,_,_/.
Under the above preparations we state Garding inequalities.

Lemma 3.6 (Garding’s inequality). If r&C'S}° and s€C'S}™"°, and if
the bilinear form (Re G,,)|z,z] is positive, ie.
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(Re G,,)[z,z]=c|z],
then we have

5

Re(G,ou,10) 25 Cudh o
We also state the following sharp Garding inequality for m X m systems.
Lemma 3.7 (sharp Garding inequality). If rEC'S}° and s€C'S57'°, and
if the bilinear form (Re G,,)[z,z] is non-negative, i.e.
(Re G,,)[z,2]>0,
then there exists ¢>0 such that
Re( Gr.s<u’u>) = _C<u>3ﬂ—l‘—1/2.t‘

A proof of the above Garding inequality can be seen in [17] and [18].
Since the imaginary part of the zeros of p,;(X,£,)=0 as a polynomial of &, is
negative, we obtain the following proposition.

Proposition 3.8. There exists a positive number ¢>0 such that
|U|3n“’—1,1/2.r+<u>fn"*—1.o,f£C(|P;U|(2>.—|/2,1+|u|%n"'—|.—|/2,1)-
Proof. We decompose p, (X,&,) into

)

PrX.EN=Er +a(X)Er " T+t a(X)A"

)

+i(ai(X)/1gZ'M‘_l+”'+af;1"’(x)/1"ﬂ ’)

=Re p (X,&,)+ilmp (X.5.),

where Re p; (X ,&,) and Im p;(X,&,) are real symbols whose coefficients aj(X) and
aj(X) are homogeneous symbols of degree zero with respect to (&',7). Since all the
roots of p,(X,£,)=0 lie in the lower half plane {Im g,,<0}, we see that al(X)>0
and all the roots of {Re p;}(X,g,,)=O and {Im p,_}(X,é;’,,):O are real and distinct.
We remark that m'~’—1 roots of {Im p; }(X.&,)=0 separate m'~’ roots of {Re p. }(X,
&,)=0 and that the coefficient of the leading term of Im p;(X,&,) is positive (see
Hermite theorem in [11]), i.e.

aj(X)>0. (3.6)
We begin with
|A_I/ZP:(X,D,T)U|(2),1:|A~]/2(Re P:(x,D,T)‘i‘l. Im P:(X‘D,T))ultz),r

={|A7"*Re P ul},+|IA"""Im P ul;.} (3.7)
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—i{Re P u,A™'Im P, u)—(A 'Im P u,Re P u)}. (3.8)
For RHS of (3.7), we have
|A™"Re P7uls, +IA™ " Im P ull . = c|A™ulbe , —dlulbo, .. (3.9)

and we can check it as follows; since an equality

m

(Re P;)(x,D,7)=D7 "'+ X aj(x,D’,7)A' D"
j=1

)

—J

leads us to

)

IA™2D2 uls . <|ATA(Re P7)(x,D.x)ul}, +dIA ulie -, (3.10)
we have, by virtue of aj(X)>0,
Al -1 <IA™(Im P;)(x,D,2))ul} ,+d|ul-y.. (3.11)

Thus (3.10) and (3.11) yield the estimate (3.9). For the two terms in (3.8), we use
Green’s formula, Lemma 3.4 and conclude

l(Re P7)u.A™'(Im P))u)—(A~'(Im P;)u,(Re P;)u)+ Gy, o m pr <UL U

< d(l ulzn"’—l.r+<u>12n"’—l.— 1/2.0)

By the Hermite theorem in [11], since the Bézout form for Re p- and 17" Im p; is
positive definite, we can apply Garding’s inequality of Lemma 3.6 to show

GRep;.)r‘ Im p;<u,u> 2<u>%ﬂ"’—l,r-
Hence we have
|u|%n"’—l.l/2,1+<u>$n"’—l.0,r£C(|P:u|(2),—l/2.r+|u|3n"’—l.r)'
By the interpolation inequality for the second term in the RHS, we conclude
|u|%n“‘—|.fg€|u|%n“’—1,|/2,1+ 1/e|u|fn“’—l,—l/2.r

and this completes a proof of Proposition 3.8.
By Garding’s inequality, we get the same kind of proposition as in [16].

Proposition 3.9. Let rES7° and s&S57'°. If there exists a suitable small
conic neighborhood U (X,) such that

(Re G, )[z.z]=clzf on UXx)N{e[z]=b4z]=0=1,m k=1, 4}
for any X,ESXRE ' X{r=0} on the boundary 33, then there exist c>0 and d>
0 such that the following estimate holds

Re( G,..S<u,u> + dkg](B’;ll)fn—p*—l,T) >c< u>%n— 107 d( | lllfn— |v—1/:,,+ IPrulg.—l/z.r)
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for u H™(3).

Proof. By the use of a partition of unity, we are enough to give a proof for a
localized problem in a neighborhood of X, The assumption leads us to have

(Re G,,)[z. z]+d(2ef 21/ 2]+ 21 b4z] >>c|z|2
for large enough d>0, and an application of Gérding’s inequality gives
Re(G, {u, u>)+d<2<E’u>, ,,+kﬁ]<B’;u>f,,_ﬂ~_,‘,>2c<u>f,,_lio.,
=1

(See Lemma 3.12 of [16]). We apply Proposition 3.8 to the function E™ u to show
< m u>m —IOr<c lP ulO I/21+|u|m 1—1/21)

and we reach
2<E1u>1 l1<c(|Pru|é,—l/2‘1+|u|lln—l,—|/2,1)'
This completes a proof of Proposition 3.9.

According to the modified sharp Garding inequality (Lemma 3.7), we can extend
Proposition 3.9 to the case that the bilinear form (Re G,,)[z,2]=0 on U (X,)N{e’[z]
=bz]=0, j=1,m k=1 u}:

Corollary 3.10. Let rES7° and s€S77'°. If there exists a suitable small
conic neighborhood U (X)) such that
(Re G,)[z,2]1=>0 on U(Xo)N{elz]=bz]=0,j=1,m k=1, u}
for any XOEEXRQ_'X{—:ZO} on the boundary 93, then there exist ¢>0 and d>
0 such that the following estimate holds.
Re(Gr$<u u>+dé<B u>m -pg* —11> c<u>ln L—1/2,r d(T I|u|m |r+|Pru|(2).“|/2,1)
for us H™(3).

Next proposition is a basic estimate for the Carleman estimate.

Proposition 3.11. Let rES7° and s€S77'° be real symbols, and set
Fo(u.u): =(R(X,D,7)u,iS(x.D,7)t).
If
fr=ruxgn>clglP+2)"" on char P,

then there exist ¢>0 and d>0 such that we have
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Re{F, s(u,u)— G, Ku,w}>cluls-) . —d(|Pouli— A <udh —i1)
for large enough >0 and for uc H™.

Proof. By Lemma 3.4 in [16], there exists a symbol g& m=L=1 such that
Re(f*(x.8,0)Fp(x.6,0)9(x.5,7) > (|5 + )"
Furthermore we can decompose the above symbol into the form
Re(f**(x.6,2)Fpx.&:0)a(x.80)=c/2|gP+ )"+ B {a)(x.8. 1)),

where a,€ C'S™ '°(j=1,2) are real symbols respectively. (See Lemma 3.5 in [16].)
We firstly show our aimed estimate for symbols with smooth coefficients. By
Proposition 3.4 or Lemma 3.7 in [16], we have

Re F’“”(u,u)+(P,(x,D,r)u,Q(x,D.r)u)—c/2|u|?n-|,,—,lezlAj(x,D,r)ulé,,
J=1L

< d(lulfn.—3/2.r+<u>i1—l.—l/2.1)'

Since the boundary is noncharacteristic, one can estimate the m-th order derivative
of u along the normal direction by P,(x,D,7)u and |u|,—,,;

|“I%n,—[,rgC(|u|2m—|,f+|P1(X~D»T)u|(2),—|,f)«
Here we use an estimate
|U|fn.—3/z.fS T_||u|3n.—|/:.f
and we have
ReF""(uu) < clulf-1 . — d(|P(x,.D.0)uls -1 . +<wh-1 - 1p)
for large enough 7. Using Lemma 3.5, we have

IRe(F(u.u)— F"(u.u)— G, <u,ud)l
< d(|ulfn.—s/z,f"'<u>,2n—|,—|/z,z)

< d/(IPT(x’D’f)u|(2),—I,r+ T_|| u|fn—|,1+<u>%n—l,—l/2.1)'

This implies that the desired estimate holds for smooth coefficients case. In order to

obtain the result for symbols 7 and s with C' coefficients, we have only to check that

the estimate is stable with respect to small perturbations of » and s in C'S7°and C'
m=1,0

ol respectively.  Indeed, replace the symbols » and s with smooth &-
approximations, and, from the estimate in Lemma 3.7 of [16], we have

[Re(F,,(u,u)— G. . u,u>)—Re(F,. (u,u)— G, lu,ud)l

< C|£(|u|§n,—|,r+<u>in—l,—|/2v1)



Inverse hyperbolic problems 465

< Cle(|P1('anaT)u|(:).—l.r+|u|2n—|,r+<u>?;n—|.—l/l.1)'

This implies the desired estimate for C' coefficients.

3.3. Proof for the Carleman estimates near the boundary. Sakamoto [14]
introduces a basic concept which is a refinement of the uniform Lopatinski condi-
tion. It is essential to show the energy inequality for hyperbolic mixed problems, and
it is also important for our case. We shall firstly define Carleman-Lopatinski (C-L)
conditions near the boundary, and we prepare

Pux.&,7): =Rep(x,&.7), pux.&7): =Im p(x,&,7).

Definition 3.12 (strong Carleman-Lopatinski condition). Let S={¢ =0} be a
C* hypersurface, x;,& S N33 and suppose (&,,70)ERL ' X{7=0}. We shall say
that {P,B} satisfies the strong Carleman-Lopatinski condition w.r.t. S at X,=(x,0,
&0, 70), In case
there exists a suitable small conic neighborhood U (X,) such that

Gu'plzz]<clzP on  UX)N{e[2]=0bMz]=0,j=1,-m D k=1,p),

where {P,B} comes from the boundary value problem (3.1).

Definition 3.13 (weak Carleman-Lopatinski condition). Let S={$=0} be a
C? hypersurface, x;,&S N3 and suppose (&, 70)ERE 'X{r=0}. We shall say
that {P,B} satisfies the weak Carleman-Lopatinski condition w.r.t. S at Xo=(x,0,
&0 7o), in case
there exists a suitable small conic neighborhood U(X,) such that the following (A)
and (B) hold :

(A) There exist g C'Sy™ " and real symbols q", ¢°'€C'S!;™"'~" such that
(1) g=(¢"+ig®)z"'Im p, (mod Re p,) and q¢">0 on char Re P,
(2) Im Gpogl22]<0 on U(Xo){e/[2]=biz]=0, j=1,,m'™, k=1, u}

(3) Im{p.. g} <—c(|&*+2)""" on char P,.
(B) There exists a real symbol r&EC'S ™" such that
G lzzl=clz? on UXxy)N{elz]=blz]=0, j=1,m T k=1, ).
The main goal of this section is to show the following two theorems.
Theorem 3.14. Suppose that ¢ is a strongly pseudoconvex function w.r.t. P
and that {P,B} satisfies the strong Carleman-Lopatinski condition w.r.t. the level set
of ¢. Then for large enough v we have
le"”uli,-._,+<e’¢u>in-,,o,,Sd<%le""Pulé.,+,ﬁ<e""Bku>fn—p~—l‘,> (3.12)
=1

whenever uS H"™'(3) is supported in a fixed compact set and the RHS is finite.

Theorem 3.15. Suppose {P,B} satisfies the weak Carleman-Lopatinski condi-
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tion w.r.t. the level set of ¢. Then for large enough r we have
Ie"“ulzm-..r+r‘“<e""u>i,—1.-|/:,,£d(%le’“‘Puléﬁél<e"”B"u>i,—p~—u) (3.13)
whenever uS H"™'(3) is supported in a fixed compack set and the RHS is finite.
Proof of Theorem 3.14. We define a bilinear form F(u,u) by
F(u,u): =F,,;,¢;,,;(u,u)=2((Re P,)(x,D,7)u, —i(lm P)(x.D.7)u).

From the pseudoconvex condition, we have

sub

fp:,—'rp;(x,&f)Z%{Re p.lmp,}>0 on char P.
Proposition 3.11 leads us to

Re(F( u,u) - Gpr',*ip;<u’u>) = C|u|.}n—|.1—— d(lprulé.—|.1'+<u>3n—l.—1/2.r)s (3 ]4)

and the strong Carleman-Lopatinski condition and Proposition 3.9 make us to
deduce

Re( G,,;,L,,;(u,u>+ki] <B’;“>%n—p'—1.,>
T =1

= c<u>§n—].0,1_ d(|P1u|é.—|/l.r+|ulfn—l,—l/l,r)' (315)

We combine (3.14) with (3.15) to see, for large enough 7.
Re F(u’u)+kﬁ<Bl‘;u>§n—ﬁ'—l.12C(lu'fn—lv1+<u>fn—l,o.r _dlprul(z).—l/lr (316)
=1

Here we use simple facts

2 1 2 2 Ly 2
<u>m—l,—l/l.rg—;-<u>m—l.0,ra |u|m—|.—l/2.1£7| ulm—l.-r‘

It is obvious that

7 Re F(u,u)=|P.uli,—|Re P,)uls,—Im P)uls, <|P.ul;.,

and combination of this inequality with (3.16) leads us to
|uf? 2 < (L 2 ﬁ kN2
Ul <0 <A\ AP Ul + DB o). (3.17)

Since the difference between P(x,D+irV¢) and P.(x,D,r) is an operator of order
m—1, we set v: =e™u and get

|Pv:. <c(|P(x.D+izV )y

f),r+ | vlzn—l.r)'

In the same way as above, we have
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<B£v>fn—ﬂ‘—l,rg C(}(ﬁ_:](B(X,D'i' 7V )V>$n—ﬁ'—l.1+ GO I,—l.r>'

Hence we apply (3.17) to v, and we obtain the inequality (3.12) for large enough z.

We have shown the inequality (3.12) for u& H™, and by virtue of the following
lemma, we have the same result for uSH"'(3), P(x,D)ucL*3) and B*ue
H™ #~(33).

Lemma 3.16. Suppose that uE H"™\(3) satisfies P(x,D)u€ L*(3) and B*ue<
H" #7(33). Then there exists a sequence {u;}E H™(S) such that

u;—u in H"7'(3)
P(x.D)u; — P(x,D)u in L*(3)

B*u;— B*u in H"#7'(33).

Proof. 1t is enough to show the results for localized problem. There are two cases ;
the support of u is included in 3, and it contains the boundary 93. Since the first
case is treated in [5], we consider the second one. Denote uj: =Aju, A;: =(1+1/
FID')7', and we see w;€EH™""" and u;——u in H""'(3). Furthermore, P(x,D)u;
=A,~P(x,D)u+[P,Aj]u. Since the coefficients of the principal part of P P are
Lipschitz continuous, it follows that the operator [P,A,-] is equibounded from H"™'
to L? (see e.g. Lemma 17.1.5 in(5]).

Since [P,A;]Ju ——0in L*(Z) for uE H"(3), it follows that the same result holds for
each S H"'(3) by density argument. Thus one can see, from the commutation
properties of pseudodifferential operators, P(x,D)u;——P(x,D)u in L*Z). In
particular, P(x,D)u;€L°, u,EH" "' implies that D/u;€EL’ and u,EH"(3).
Finally, to complete the proof of the theorem we have to estimate B*u;=A;B"u
+[B* A;]Ju. The first RHS term converges to Bu in H™ #7'(33) while the
operator [B",Aj]|az is equibounded by the trace regularity and the same commutator
estimates as above, and we see pointwise convergent to 0 from H”~'(3) into H" #"~!
(22). We obtain the desired result.

In order to start a proof of Theorem 3.15, we prepare a lemma :
Lemma 3.17. Suppose {P,B} satisfies teh hypothesis (A) in the weak
Carleman-Lopatinski condition w.r.t. the level set of ¢. Then for u€ H™(Z) and

large enough >0, we have

m—1
Re(P(x.D.7)u,Q(x,D,7)u)> c(luIi,—..,+ T Z‘-Ole(x,D,r)uB.r)
~

_d<|qu|(2).—r/z.r+§l<35u>fn—ﬂ‘—l,r+<U>En—|,—l/2.r>~ (3.18)
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where a symbol of q for the operator Q plays a role seen in the weak Carleman-
Lopatinski condition, and the operators Q; have symbol q; defined by

g;: =z '(Imp,)& A~ (mod Re p,) (j=0,1,-,m—1).

Proof. From the hypothesis (4)(1), there exist symbols w,EC'ST™" (k=1.2)
such that

m—1
Re(pfti)zr(cglq,-lzﬂ“k;‘.zlka) (3.19)

(See Lemma 4.3 in [16]). Let

m—1
F(u,u): =(P,u,Qu)—r<cl§)|Q,-ué.f+k=2[2l Wku|8.1>,

and, by the equality (3.19), the real part of the principal symbol of F(u,u) is equal
to0. By direct calculation, we have

Re f**(x,&,7)={Re p,Im g}—{Im p_,Re ¢}>0 on char P..
Applying Proposition 3.11, we obtain
Re(F(u,u)— Geluwd) 2 cluls, -, —d(|Puls- . +<w -1 21p0), (3.20)

where Geu,u) 1 = Gopiim S u>+ Gipre Su,u>. Since the hypothesis (4)(2) holds,
we have the estimate from Corollary 3.10

Gyt o<, Giige U u>+ fz B U
=1

2_C<u>%n—l,—|/2.r__61(|P‘tu|(2),—|/2,-r-i‘’7-'_l|ul%n-|,-r)' (321)
Combination of (3.21) with (3.20) yields (3.18).

Proof of Theorem 3.15. From Lemma 3.17 and the hypothesis (A), we have
an estimate

m—1
|ulf,,_l.,+crj§)le(x.D,r)ulé.,

gcj(|P'zf(x~DaT)ulg—|/2.'r_+_kﬁ<]3fu>%n-ﬂ‘"—I.'z'-*_<u>3n—l.*l/2,‘t>' (3'22)
=1
On the other hand, by the hypothesis (B), we obtain
Re G,,;,,<u,u>+rki‘, <BXun—por—is
=1

> czudd oy~ — AP, D) ulo el 21 22). (3.23)

Application of Lemma 3.4 yields
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IRe(iP}u. Ru)— Gy, uud| < de(|ulf -1 - 1o+ <udh20.). (3.24)
and we obtain, for positive >0,

1/2
2T uf . (3.25)

[Re(iPLu,Ru)| <2a7r*?|z 'Plul;,+
Therefore by (3.22)-(3.25), we see
st 20 = (P e+ 2 B )
and it completes a proof of the Theorem 3.15.

3.4. Unique continuation and applications. The Carleman estimates near the
boundary in the previous section suggest that the following unique continuation
property. We remark that we also use the same notation as above.

Theorem 3.18. Let S C(3), ¢(x0)F0, S: ={g(x)=(x0)}, and assume
that the level surface of ¢ is strong pseudoconvex w.r.t. P at x, and {P, B} satisfies
the strong Carleman-Lapatinski condition w.r.t. the level surface of ¢ at x,. Let
uEH""'(3) be a solution to

{P(x,D)u=O in 3
B/(x,D)u=0 on 093,j=12, 4.

If there exists a neighborhood U (x,) such that u=0 in {(xE U(x,); ¢(x)>¢(x0)}
then u=0 in a neighborhood of x.

Remark 3. We should note that the strong Carleman-Lopatinski condition is
stable w.r.t. small C' perturbation for the function .

Theorem 3.19. Let ¢ CX3), ¢p(x0)F0, S: ={p(x)=(x0)}. Assume that
the level surface of ¢ is strong pseudoconvex w.r.t. P at and that {P,B} satisfies
the weak Carleman-Lopatinski condition w.r.t. the level surface of ¢ in a neighbor-
hood of x,. Let uSH™ '(3) be a solution to

{P(x,D)u=0 in s
B/(x,D)u=0 on 33, j=12, 4.

If there exists a neighborhood U (x,) such that u=0 in {xE U(xo); ¢(x)>¢(x,)}
then u=0 in a neighborhood of x,.

We apply the above results to the wave equation with the Dirichlet (or
Nneumann) boundary condition. Note that the strong (or weak) Carleman-
Lopatinski condition holds for the cases.
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4. Proof of the main results for inverse problems

Extend u(f,x) as an even functions w.r.t. tE[—T,T], and we get, by the equations

(1.1)-(1.4).

(Bi— A= a(x)u(t,.x)=f(x)R(t,x)—T<t<T,xEQ (4.1)
1(0,x)=9,u(0,x)=0 xEQ (4.2)
u(t,x)=0 —T<i<T, x€3Q (4.3)
%(t,x)zo — o <t<ro, XE QN D(Xo.r0). (4.4)

and we define P, by
P.: =9!—A,—a(x).
By the assumption R(0,x)+0(V xEQ), there exists a number <(0,7,) such that
R(t.x)*+0, —z<t<py, x€EQ.

Therefore from (4.1), it follows that

P,u(t,x)
f(x)= Rth,x);’ —p<t<y, xEQ,

and we have

=af(x):i{Pau(t,X)} _
0 ot ot UR(tx) ) n<t<p, x€Q.

Let

h(t,x): =a’T1§t%l, Q: =08,—h(t,x)

then we see

(QPu)(t,x)=0, —u<t<yzy, x€Q.

We set v(t,x): =(Qu)(t,x) and have the following system for # and v:
Poy(t,x)=[P,Qlu(t,x), —n<t<y, xE€Q, (4.5)
Qu(t.x)=v(t,x), —n<t<ygy, xEQ. (4.6)

where [4,B]=AB—BA. Since u(0,x)=0, we can solve an ordinary differential
equation, for fixed x&EQ,
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%u(z,x)—h(t,x)u(t,x)=v(t,x). —p<t<y
in the form
u(t,x):S;H(t,s,x)v(s,x)ds, (4.7)

wherre H(t,s,x)=M

h(s,x)" For simplicity, we denote H by the operator

(Hv)(t,x): =S;H(t,s,x)v(s,x)a’s.
The following inequality Lemma 4.1 can be proved (e.g. Lemma 3 in Bukhgeim [2]).
For (%x°)&(—T,T)XQ we set a weight function by

_ ==+ |x—x

¢ 2

and for £ >0 we set
Q9 ={(t,x): xEQ.¢>e).
Lemma 4.1 (Bukhgeim). Suppose t+3,¢ <0 and Q“'C(—#,n)XQ. Then

S e2‘r¢
Q(e)

Sfor YV pELY(Q).

S;lp(s,x)ldsrdtdx < ;me )e2’¢’|p(s,x)|2dta'x

From (4.5) and (4.7), we have

Pav(t,x)=[Pa,Q]S;H(t,s,x)v(s,x)a’s. (4.8)

We remark that [P,,Q] is a Ist order differential operator. Let xy € C*([—7.7]1XQ)
be 0< x(¢,x)<1 and,

. l ([,X)EQ(E)
x(t,x)= {O (Z’X)EQ(O)\Q(e—e/Z)’

and set
w(t,x): =x(t,x)v(t.x), |t|<zn, xEQ.
In (4.3) and (4.4), we apply Theorem 3.14 to obtain
rle?wli  +<e?wdio. < Cle™Pwl;..
and application of Lemma 4.1 and (4.8) lead us to see

le Pwli.=e™ Pyl;.
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<le®[P g Ivli.+1e™ x Py,

<|e®[PxIvls.+le*[ x,H]v] .+ el xv]3 ..

Therefore, for large enough 7, we have

rlewll +<e®wdi,.

<C(le®[PxIvs.+ e[ x.H]v3,).

A straightforward consequence of the usual proof for unique continuation is v=0.
According to the equality (4.7), we get u=0. By the assumption R(0,x)#0 and the
equation (4.1), we obtain f(x)=0.

Thus the proof of Theorem 2.1 is complete.
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