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A duality theorem for homomorphisms
between generalized Verma modules

By

Akihiko Gyoia

Introduction

Let K be a field of characteristic zero, g a split semisimple Lie algebra over K,
p a parabolic subalgebra, and & the half of the sum of roots whose root subspaces
are contained in the nilpotent radical of p. Then —2& gives a one dimensional
p-module, which we denote by the same letter. For a finite dimensional simple
p-module E, let E* be its dual p-module. Put M(E)=U(g)®ywE. The following
duality theorem is attributed to G. Zuckerman (cf. [1,(4.9)]).

Duality Theorem. For a finite dimensional simple p-modules E and F, there
is a natural isomorphism

Hom,(M (E),M (F))~Hom,(M(F*®(—2¢)), M(E*Q(—2¢))).

In order to study the b-functions of semi-invariants and the generalized Verma
modules [10], the author has come to need [1,(4.9)]. Since [1,(4.9)] seems difficult to
understand correctly for non-experts, we give in this note a detailed proof, which
follows a similar line as was indicated in [1,(4.9)], but is purely algebraic.

Convention. For an algebra 4, an 4A-module means a left 4-module, unless
otherwise stated. Every vector space is considered over the base field K, and, Hom
and @ means Homg and Q. For a vector space V', V'* denotes its dual space, and
<> the natural pairing of ¥ and V' *. More generally, we sometimes denote the value
of a (vector valued) function f at a point p by <{f,p> or {p.f> for f(p).

A Lie algebra character, say A, of a Lie algebra g gives a one dimensional
g-module, which we shall denote by the same letter 1. We consider K as the trivial
g-module, which is also denoted by 0 by the above convention.

When two objects are naturally isomorphic, we sometimes write = for =.

§1

The purpose of this section is to prove (1.7), which is used later in (3.7).
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1.1. We fix a field K of characteristic zero as the base field. For the sake of
simplicity, we assume K to be algebraically closed. (Cf. [6, 7.2.2,(i)].) For a Lie
algebra g U(g) denotes the universal enveloping algebra. Let u — u" be the
anti-automorphism of U(g) such that x"=—x for x&g. For a U(g)-module M, the
U (g)-module structure of M * is defined so that <um,m*>=<m,u"m*> for u€ U(g),
m&M, and m*EM*. Denote by § the set of isomorphism classes of finite dimen-
sional simple U(g)-modules.

1.2. Let £ be a reductive Lie algebra, V€£, {»(&)|£EB(V)} a linear basis of
V parametrized by a set B(V), and {v*(&)|&E B(V)} the dual basis in V*. For k
EU(E). put c.,(k)=<v*(&).kv(n)> and ¢}, (k)=<v(&),kv*(5)>. Then ¢} (k)=
ce(k") and ¢, c;,E U(E)*. Sometimes we write ¢(&,7)=cy(&,7) (resp. ¢*(&,7)=
cv(&,,)) for cg, (resp. c3,). Let U(E)} be the linear span of {c,,|&, 7€ B(V)}. We
can define a U (f)-module structure of U(£)* by (kc)(k')=c(k k') (resp. (ke)(k')=
c(k’k)), which we shall denote by U (f); (resp. U(£)z). Let U (), (resp. U(£)i) be
the set of U (f)-finite vectors in U(£); (resp. U(£)). It is known [6, 2.7.12] that
U®)=U®)r=D,etU(f)}, which we shall denote simply by U(f). The two
U (f)-module structures of U(f)’ commute each other, and give a £Xf-module
structure in U(f). More generally, for any f-module Z, let Z+ denote the t-
submodule consisting of z& Z such that dim U (f) z<oo,

1.3. Let [ be a subalgebra of £ which is reductive in £ (cf. [6, 1.7.5]), and E a
semisimple [-module (i.e., a sum of simple submodules) of finite dimension.
Consider U(t);®E as a tensor product of two [-modules, and denote the subspace
(U(6).®E)" of l-invariant vectors by Y(E). Then Y(E) has a natural £-module
structure coming from U (£)z. Since U(£)} is a f-submodule of U(£); and U (£);,
(UB)}QE)'=: Y(E), is a f-submodule of Y(E). Obviously, Y(E)=®,ct
Y(E)y. We can identify Y(E) with coind (E|(—€)e=Hom (U (£),E) in a natural
way. (See [6, 5.5] for the coinduction.) Here U (%) is considered as an (-module by
the left multiplication of [. Thus, for y=3¢,®e, € Y(E)C U(£)*®E and k€ U(¥),
we have y(k)=3c:(k)e;.

1.4. The coalgebra structure k—>k@1+1Q®k (kE¥t) of U(f) gives a K-algebra
structure U(E)*Q@ U (£)*—> U (£)*.

Let ¢, be the natural homomorphism U(f)— U(f)/U()f=K. Then Kco=
U (f)s. (By convention, O denotes the trivial U(f)-module.) Let 7 be the composi-
tion of the projection U(f)—=U(f); and U(t)y Sc —c(1)E K. The latter is an
isomorphism because the image of ¢, is 1. Define a pairing of U(f)’®E and
U(E)®E* by

{cQe,c*Re*>=7(cc*)e,e*>

for ¢,c*EU(f), eEE, and e*SE*. This bilinear form is £Xl-invariant and
non-degenerate [6, 2.7.15]. (The f-action (resp. l-action) comes from U (), (resp.
U(%)z).) Since U(f)} (VETE) is EXE-simple, U(f) is £XE-semisimple. Since [ is
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reductive in £ and E is [-semisimple, U (f)’®@E and U(f)®E™* are semisimple £X
[-modules. Hence the above pairing gives non-degenerate pairings between respec-
tive isotypic parts. In particular it gives a non-degenerate pairing< , >=< , >y
between Y(E), and Y(E™),.. The pairing < , >y can be also obtained as the
composition of the natural -homomorphisms

(1 Y(E)YQY(E*)>Y(EQE*)—Y(K)=U(f)>K.

See [6, 5.6.7] for the first arrow.

Let E and F be semisimple [-modules, ®: Y(E*)— Y (F*) a -homomorphism,
and ®,: Y(E*),.— Y(F*),. (VEE) the f-homomorphism induced on the isotypic
subspace. Since Y(E™),. and Y(F™),. are finite dimensional, we can consider the
dual ¥, : Y(F),—Y(E), of &, with respect to < , >y. Let *=@®,<¥,. Then
V: Y(F)>Y(FE) is the dual -homomorphism of ®. Thus we get the following
assertion.

Lemma 1.5. Let t be a reductive Lie algebra, | a subalgebra of t which is
reductive in t, and, E and F semisimple \-modules. Then there exists a natural
isomorphism (= transposition)

T: Home(Y(E™),Y(F*)=Hom( Y (F),Y(E)).
1.6. Under the same assumptions as in (1.5), consider the following condition

for WEHom(Y (F),Y(E)): For any e*EE™, there exists a finite family {k €
U(Y). fFEF|i€l} such that

#) (wp)h)e>= D Wykik).f1>

el

for any yE Y(F) and k€ U (f). Denote by Hom{ (Y (F),Y (E)) the totality of such
V. (The meaning of this condition will become clear in (2.8).)

Lemma 1.7. Under the same assumptions as in (1.5), T induces an isomor-
phism
T : Hom{(Y(E*),Y(F*))»Hom{(Y(F),Y(E)).
The remainder of this section is devoted to the proof of this lemma. We assume

the simplicity of E and F. The general case can be easily reduced to this case.

1.8. Let {A(.)|.EB(E,V)} (resp. {e(a)laEB(E)}) be a linear basis of
Hom¢(E, V) (resp. E), where B(E,V) (resp. B(E)) is a parameter set. Put

B( V)=EU {(t.,a)lLEB(E.,V), aEB(E)}, and

el

v(&)=<h(r).e(a)> for E=(r.a)EB(V).
Then {v(&)|&E B(V)} gives a linear basis of ¥. We shall consider the coefficients
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of the representation matrices ¢,(&,7) (resp. cg(a.B3)) with respect to {v(&)} (resp.
{e(a)}). The following two facts are constantly used in the argument below.

(1) Forl€ U, c¢v((x.8), (t,a))(!)=0 unless : = x, and ¢, ((¢,8), (¢.a)(!)=ce(B,a)
(7). (2) Because of the simplicity of V, (¢v(&,7)(k))e. ye v runs all over the matrices
of size dim V', when k runs over U (f).

Lemma 1.9. For c,=cv(a,B), (1) 7(Ca5¢ys)=0 unless (a,8)=(y.,6), and (2)
7(CapCig)=(dim V)7,

Proof. Considering U(£)* = U (£)x, we get 7(k(CosCrs))=7((kCop) * CrotCap ®
(ke ) =2, 7(CaCp(k)Crs) T2, 7(CopCrCrs( k)= 2, 7(Co C1s) € p(K) — S T(CapCop) Con( k)
for k €t. Since c,4's are linearly independent in U (£)*, 7(c,¢;;)=0 unless . = ¢, and
7(CasCys) = 7(CasCys). Combining this with the similar result obtained by replacing
right with left, we get (1) and also we can show that z(c,sc}s) is independent of (a,
B). Since k S, 5CasCas=0 (KEE) in U(b)i, ie., ScuciE U(f)s, we get 7(2, pCap
Cag) =3 sCap (1Cag(1)=dim V. Thus we get (2).

1.10. For (¢,§)EB(E,V)XB(V), put

&) = 2 cvl((e.a).8)e(a), and

aE€B(E)

PLE) = D) ena)g)et(a).

«€B(E)

Then {y(¢.&)} (resp {y*(¢,&)}) gives a linear basis of Y (E), (resp. Y(E*),.). By (I.
9), we have

y*(e,&), y(x,7)>=0 unless (¢,&)=(x,7), and
(1
Y*(e.&), y(0.&)>=dim E/dim V.

For ®<=Hom; (Y(E*),Y(F*)), let *=T(®)EHom((Y(F),Y(E)), and define
Dy(x.77;0.8), Ty, x,7)EK by

(2) Oy*(.8)= D) ¥ 0em®vien;eg),  and
xEB(F,V)
2EB(V)
3) Cyem)= D) PLEVALE: x7)
(EB(E,V)
£€EB(V)

for c«&B(E,V), x€EB(F,V) and &,7EB(V). By (1)

dim F
4) Wv(t,ﬁ;x,n):m@v(mn;t,&)-

Compare the coefficients of ¢,(7,£)’s of ®(ky*(¢,&)=k(Dy*(¢,&)) using
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ky*(6,6)= D0 y*(&)en( .8 (k)

EEB(V)
for k€ U(f) and (..&)EB(E, V)X B(V). Then we can show that ®,(x.7 ; ¢,&)=0

unless &=z, and ®y(x,& ; ¢,&) is independent of &, which we shall denote by @, (x,
¢) omitting &. Define ¥, (¢,%) in the same way. Then

(2) Oy (1.E)= D) ¥ 0E)0ulx0),
xEB(F,V)
(3" Vy(x.n)= 2 Y(.n)¥y(e,x),  and
LEB(EYV)
@) Voleo) =30 L ).

The following lemma concludes the proof of (1.7).

Lemma 1.11. Let E and F be simple U(l)-modules, ®<Hom(Y(E™),
Y(F*)) and =T (®)EHom(Y(F),Y(E)). The following conditions are equiva-
lent.

(1) ®=EHom{(Y(E*),Y(F™*)).

(2) For any fE€F, there exists a finite set {e,S E.k,E U (t)} such that for any
vet, BEB(F), LEB(E.V), and xS B(F,V), we have

SHBS>Dv(,0)= 2 cv((e,B)s(esa)) (ke (a),e.

aEg(E)
(3) There exists ko& U (%) such that for any vet, «EB(E), BEB(F), (€
B(E)V), and xEB(F, V), we have

Dy(x,0)=cv((x.8), (¢.a))(ko).

(4) For any e*SE™, there exists a finite set {f} € F* ,k;& U (£)} such that for
any vet, aSEB(E), cEB(EV), and xEB(F,V), we have
* d F — 4 *
Ce(@)e> G p v = D) el(6), (L.a) k)< (BLS .

J
BEB(F)

(5) WEHom! (Y(F),Y(E)).

Proof. (1)=(2) Let us write down the left hand side of the condition (#) for ®
(cf. (1.6)):

A@y*(e.&)(K).f>

- Z <y*(7fa¢f)(k)¢‘y(lc,t),f>

xEB(FV)
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= D1 (B).E) K (BI>Br(.t).

xEB(FV)
BEB(F)

Next let us write down the right hand side :

Sy (&) kik).ed

el

=DV *(a), O)(kik)<e* (a).e
aEiEB{E)

= z : ™ ((e.a), Ge.Bk)c* ((x,8),8)(k)<e* (a).e.
el
«SB(E)

Since ¢*(&,7)(k)=c(%.&)(k "), comparing the coefficients of ¢*((x.8),&), we get (2).
To prove (2)=(1), read the above proof backward. We can prove (4)=(5) in the
same way, using (1.11, (4")).

(3)=(2) For /€ U(l) and ¢, € E,

DV cn(ef)(e.))lko)ic (a),e0

a€B(E)

= 2 CV((x!ﬁ)’(}fﬂy))(l)cV((Ksy)s (L»a))(k0)<C*(a’)an>

a€B(E)
yEB(F)

=DV ek B D (x.0)<e* (a),e0.

Taking / and e, so that 3,cr(B,y)(1)=<f*(B).f> for any SE B(F), and 3 ,{e*(a),
e =1, we get (2).

(2)=(3) Since E is a simple [-module, there exist /;& U (l) such that cg(y,a)(/;)
=<e*(y).e> for any a,yE B(E). Then the right hand side of the equality in (2) is

Z cv((x.8), (Ly)k)ev((ey), (ca)))=cv((x.6). (¢.a))(k)
yE’B(E)

for any «a € B(E), where k: =3,k;I/;. For any I€ U (1),
cv((e,3), (¢e,a))k)

= DV cnleB). e De(ey), (a))(k)

yEB(F)

= DV B DS DS IBre0).

yE B(F)

Take fEF and /€ U(Y) so that 3,¢c-(8,y)()f*(y)f>=1 for any BE B(F), and
put ko=1/k. Then we get (3). We can prove (3)<(4) in the same way.
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§2

The purpose of this section is to prove (2.8), which is used later in (3.7).

2.1. Let M be a K-vector space. Consider the discrete topology in K and the
finite-open topology in M*: =Hom(M,K).

Lemma. (1) The totality M** of the continuous linear functionals on M*
can be naturally identified with M. (2) If M has a countable linear basis, M™* has
a countable open basis for the neighbourhoods of 0.

Proof. (1) We have a natural injection @: M—M™*. Let us prove its sur-
jectivity. Let {m;} be a linear basis of M and define mEM * so that <m,;,m}>=
1 if i=j, otherwise =0. Then M =@@,;Km; and M *=I1,Km. Given yEM**, put
#;= u(m?). and assume that yx;,# 0 for infinitely many i,’s (» = 1,2,>). Then
Se-i;'mi=": ni converges to Sy u; 'm}, but u(ng)=k is not convergent. This
contradicts the continuity of 4. Hence m=3,u;m; is a finite sum, and <m, m;>=
u,mi> for any i, i.e, w(m)=yu. (2) If {m,,m,, -} is a linear basis of M, then {m,,
~em " CM*(p=1,2,--) form an open basis for the neighbourhoods of 0.

2.2. Let g be a semisimple Lie algebra, g a parabolic subalgebra, and m a Levi
subalgebra of 0. Let #, be the category of finite dimensional g-modules which are
m-semisimple. For EE &, put

M(E)=ind(Ela—9): =U@)®uwE, and

M'(E)=coind(E|a—g) : =Homyu(U(g),E).

Cf. [6, 5.1 and 5.5]. We always consider the discrete topology in E and the
finite-open topology in M'(E). For an element m* €M (E)* =Hom(U (8)® y«E,
K), define the element m'EHom(U(g),E*) by <m’(u),e>=m*(u" Qe) (uE U(g).e
€F). Then m"EM'(E*) and m*—>m’ gives an isomorphism M(E)*—>M'(E)*
including topology ([6, 5.5.4]). Thus by (2.1), we get the following assertions.

Lemma 23. For E, FE A, Hom(M(E),M(F)) is naturally identified with
Homy(M'(F*),M'(E")), where the latter is the set of continuous homomorphisms.

Lemma 2.4. The g-submodules of M(E) are naturally in one to one corre-
spondence with the closed g-submodules of M'(E*)=~M(E)*.

2.5. Let a be the center of m. Any A €a” can be uniquely extended to a Lie
algebra character of q, which we shall denote by the same letter A, or by A, if the
specification is necessary. We also denote the corresponding one dimensional
g-module by the same letter. Let £ be a subalgebra of g, and put (=tNg. Let EES
A, and consider the following conditions.
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(1) £ is reductive in g and [ is reductive in £

(2) g=t+a.

(3) For any composition factor £ of E, there exists a finite dimensional simple
t-module V such that Hom,(V,E)=0.

(4) For any composition factor E of E, there exists 1 €a* such that 1,][=0 and
M(E*®A1,) is simple.

Lemma 2.6. If (1)-(4) are satisfied, then M'(E)y is a dense g-submodule of
M'(E).

Proof. By [6, 1.7.9], M'(E), is a g-submodule. Since
(2.6.1) M'(E)g=coind(E|g—a)n=coind(E|(=£)y by (2) and [6, 5.5.8]

=Y(E)=(U(®)QE) = V(@%(U(f)*&@E)[,
the functor #,DE—>M'(E), is exact. Hence we can reduce the proof to the case
where EE4. By (3) and (2.6.1), M'(E)n+0. Asf-modules, we can naturally identify
M’(E)=coind(E|a—g)=coind(E|(—¥)

=coind(EQ(— 1)|[(=f)=coind(ER(— 1)|lg—a)=M(E*®21)*

including topology, for A as in (4). In particular the £-module M'(E)e (F0) is
identified with M (E*®2)g, whose closure is M(E*®L1)*=M'(E) by (4) and (2.
4).

2.7. For EE A, put X(E)=coind(E|q—g)y=M'(E)s. Since we can natu-
rally identify X (E)[f with Y (E)=coind(E|(—F)y, we have a natural mapping

Hom{( Y (F),Y (E))—~Homy(X (F).X(E)) (E,FE A4,),
whose image we shall denote by Hom{(X (F),X (E)). Put Hom!=Hom{ N Hom,.

Lemma 2.8. Let E,FE A, and assume the conditions (1)-(4) of (2.5) for E
and F. Then we have a natural isomorphism (= restriction)

R: Home{(M'(F),M'(E))—Hom/(X (F),X (E)).

Proof. The restriction of v EHomy(M (F).M'(E)) to X(F)=M'(F)« gives a
g-homomorphism X (F)— X (E), which we shall denote by R(¢')=¥. By (2.6), ¢’
—¥ is injective.

Let us determine the image of R. Let ¢ : M(E*)>M(F") be the g-
homomorphism corresponding to ¢’ : M'(F)=>M'(E) (cf. (2.3)). Let e* be any
element of E*. By (2.5, (2)),
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P(1®e*)= D kT ®fF (finite sum)

with some &k, €U () and f7EF*. Let ¥*: M(F*)*">M(E™*)* be the dual of .
If m*©M(F*)* corresponds to m"EM'(F) (cf. (2.2)), then

L' m)(k),e*>=Ly* m* k" Qe*>=<{m* (k" Re*)

=m*, DT ®F =D K (kik) S

for any k€ U(£). Thus the condition (#) of (1.6) is satisfied, and hence the image
of R is contained in Hom(X (F).X (E)).

Given WEHom#(X (F),X (E)), let us show that ¥ can be extended to a continu-
ous g-homomorphism M'(F)—>M'(E). For mEM'(F)=M(F*)*, we can find a
sequence {x,x,-'} in X(F) converging to m’, by (2.1,(2)) and (2.6). Since
L¥x,)(k).e*>=3<x,(kik),f >, lim,me(¥x,)(k) is convergent for any k< U(f).
Define this limit value to be (¢m')(k). Then we can show that +SHomy(M (F),M’
(E)) and R(y)="V.

§3

The purpose of this section is to prove the duality theorem (3.9). In (3.1)-(3.6),
modifying the argument of [6, 9.6.9], we construct an invariant pairing between
certain Harish-Chandra modules over gXg. Without to say, this pairing is an
algebraic counterpart of the L*-inner product on a homogeneous space. Using this
pairing and also the results of the previous sections, we prove in (3.7) the duality
theorem in the special case where the Lie algebra is of the form gXg. The general
case (3.9) follows from this special case by a simple trick (3.8).

3.1. Let g be a semisimple Lie algebra. Fix a Cartan subalgebra §) and a Borel
subalgebra containing it. Let p be a standard parabolic subalgebra, [ its Levi
subalgebra containing 9, and p_ the parabolic subalgebra such that pNp_=1.

Let pEH* be the half of the sum of the positive roots, W the Weyl group, and
w the longest element of the Weyl subgroup corresponding to . Then 2e : =wp+p
€h* can be extended to a Lie algebra character of [, and can be regarded as a
character of p by the projection p—[. Using [11, 1.17], we can show that ind(—2e
|b—>q) is a simple g-module, whose annihilator we shall denote by J,. Then J, is
a primitive ideal with the trivial central character.

Let G be the simply connected semisimple algebraic group whose Lie algebra is
g, and, P and L the connected algebraic subgroups of G corresponding to p and {,
respectively. Let D(G/P) be the ring of differential operators on G/P, and I, the
kernel of the natural algebra homomorphism U(g)—D(G/P). Then

(1 U(e)/Jr=U(®)l,  byl2,37]
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=D(G/P) by [2,38].
Furthermore, as g-modules

(2) D(G/P)~grD(G/P)
=K[T*(G/P)]  by[2, 1.4]

=K[GX"p*] by (2, 24],

where K[—] denotes the regular function ring, T *(—) the cotangent bundle, and p*
the orthogonal complement in g*. We identify g* with g by the Killing form. Let
¥ be a generic element of the center of [, and Y : =GX” (Ky+p*). Since the
function Ky+p*— Ky >~ K is P-invariant, it induces f : Y —K. Since the natural
morphism Y—G/PX K is smooth (a fibre bundle with fibre p*), f: Y—K is also
smooth. By the proof of [3, Al],

3) KIGX"p* |=K[f 7' (O]=K[Y1/fK[Y]

(Read infra p. 101, /. 14, noting that the assumption ‘G,= P,’ is not used there. Cf.
(3.2) below.) By the proof of [3, 7.6, Behauptung (1)],

4 K[Y/fKIY]=K[Y])/(f —DK[Y]

as g¢-modules. (Read p.97,/[. 4-7.) Put K*=K\{0} and Y*=f""'K*. Then we can
show that f : Y*— K™ is isomorphic to the trivial bundle /' ~'(0) X K*—K*. Hence

(5) KIY)/(f=DK[Y]=K[Y*]/(f —DK[Y*]=K[f (D]

Since g,=[ and G, is known to be connected [14, 8.5], G,=L. Here g, (resp. G,)
denotes the centralizer of y in g (resp. G). Let U be the unipotent radical of P.
Then U,=1 and hence U * yCy+p*is dense. By the proposition of [15,2.5], U Y
is closed, and hence y+p*=U * y=P+ y>=P/L. Thus

(6) £ (M=G6X"(y+p")=GX"(P/L)=G/L.

Let G be the set of isomorphism classes of irreducible rational representations of G.
Identify G with § in a natural way. For ¢€8=0,

(7 mtp,(¢.K[G/L])=mtpg(c,K[G/L])=mtp.(0,c|L)=mtp(0,5]0)

by an algebraic Frobenius reciprocity theorem. Here mtp,(o,—) etc. denote the
multiplicity of €48 etc.

Remark 3.2. At the end of the proof of [3, Al], the vanishing theorem of
Grauert-Riemenschneider [8, 2.3] is used in the following form. Let X and X be
algebraic varieties over a field of characteristic zero, r : X —X a proper birational
morphism, and & the sheaf of absolutely regular highest differential forms on X.
Then Rz« A =0 for j>0. (By the argument of [13, p. 236, /. 14-23], we may assume
X a smooth projective variety, and X a (normal) projective variety. Now we
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reproduce the argument of [8, 2.3] in a slightly modified fashion. Let &£ be an ample
line bundle on X. Put Z(n)=AQz*L". Consider the spectral sequence E¥(n):
=H (X, Rz (n)y=H (X F(n). Assume that Rz.F=0 (0<j<gq) and
Rz A +0, for some ¢>0. Then Ej(n)=0 (0<j<gq), and by [9, (111, 2.2.2)], E{(n)
=E4{""%n)=0 and E%(n)# 0 if n is sufficiently large. But then 0% EY(n)="-=
E%(n)= H%X A (n)), which contradicts the vanishing theorem of Kodaira. See [5]
for an algebraic proof of the vanishing theorem of Kodaira.)

33. Put t={(x,x)EgXg} and ,={(,/)E(X1}. Identify { with {,, § and p_ in
a natural way. We also identify £ with §. For EE 4, and FEA,_, put

M(E,F)=ind(EQF|pXp_—gXg),
M'(E,F)=coind(EQF|pXp_—gXg),
X(E,F)=M'(E,F)g. and

Y(E,F)=coind(EQF|[;—f)q.

Lemma 3.4. Consider U(a) as a gXg-module by (x,x ) u=xu—ux’ for x,x'€
g, u€U(g). Then

mtpe(o, U(g)/J p)=mtp (0,5/))=mtpe(c. X (2¢,—2¢))

for any s<=¢.

Proof. The first equality follows from (3.1, (1)-(7)). The second equality is
proved as follows :

mtpe(o,X (2e,—2¢))

=mtp(c,coind((2e)R(—2¢e)|b Xp_—gXg))

=mtpe(o,coind(0|;—F)) by [6, 5.5.8]
=mtp,(o,coind(0|(—g))
=mtp(0, o/0) by [6, 5.5.7].

By (3.4), we can follow the same argument as the proof of [6, 9.6.6] to get the
following assertion.

Lemma 3.5. As a gXg-module, X(2e,—2¢) is naturally isomorphic to
U(9)/Js.

3.6. Since J; is contained in the largest primitive ideal of U(g) with the trivial
central character gU(g), we get gXg-homomorphisms
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X(EF)XX(E*®Qe), FFR(—2¢) > X(EQE*Q¢), FRF*®(—2¢))
—X(2e,—2e)=U()/J > U(@®)/U@8s=K.

See [6, 5.6.7] for the first arrow. Thus we get a g Xg-invariant pairing < , >=< |

>x of X(E,F) and X(E*®2¢), F*®(—2¢)). If we restrict the gXg-action to E,
then X (E,F) (resp. X (E*®(2¢), F*®(—2¢))) are naturally identified with Y (E,F)
(resp. Y(E*,F*)), and the above g Xg-homomorphisms become those of (1.4,(1)).
Hence < , >y is identified with < , >, given in (1.4), and we can apply the
results of §1 to the duality with respect to < , Dy.

Lemma 3.7. Let E,, F,\€4,and E,, F,£4,_. Assume that for any weights
A Ao uy p2 of Ey Es Fy, F,, respectively, A+ 21, and y,+u, are integral
weights. Then we can naturally identify

Homgxo(M (E 1, E»),M(F ,F3)),

Homx (M (F7,F3),M'(E],ES)),

Hom{x(X (F7,F7),X (E],E?)),

Homjxo( X (E,®(2¢).E;Q(—2&)). X (F ®Q2¢),F,&(—2¢))),
Homyx(M'(E,Q(2e),E,Q(—2¢)),M'(F &(2¢),F,&(—2¢))). and

Homyx (M (F{®(—2¢),F; ®(2¢)),M(EQ(—2¢),E; D(2¢))).

Proof. Let us show that the assumptions of (1.7) and (2.8) are satisfied. First,
consider the condition (2.5.(3)). Let E,, E,, F,, and F, be composition factors of
E, E, F, and F,, respectively, and A, A1, u, and yu, be the respective highest
weights. Let V be the finite dimensional simple f-module which has the extremal
weight 1,+21,. Then Hom(V,E,®QE;)#0. In this way, we can show that E,QE,,
EfQE}, F/QF, and F;®F75 satisfy (2.5.(3)). Using [11,1.17], we can show that
(2.5,(4)) is always satisfied. The remaining conditions are obvious.

Lemma 38. (1) Let EED and FE A ,_(resp. EE A, and FED_), put M(E)
=ind(E|p—g) and M _(F)=ind(F|p-—q), and consider M(E) (resp. M _(F)) as a
aX0-module (resp. 0Xg-module). Then as as g-modules, we have natural
identifications

Hom,xo( M (E),M(E,F))=M _(F),

(resp. Homoxo(M _(F),M (E,F))= M (E)).
(2) For E;, E;= 4, and FEY_,
Homx( M (E ,F),M (E,,F))=Homy(M (E),M (E))).
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(3) For EED and F,, F,€4,,
Homyx (M (E,F),M(E,F;))=Homy(M _(F),M _(F,)).

Proof. (1) Since M(E,F)=M(E)®M_(F). mEM(E) gives a 0Xg-
homomorphism ¢,,: M _(F)=M(E,F), m"—>m@m’. Conversely, assume that a 0X
g-homomorphism ¢ : M _(F)—= M (E,F) is given and FEp_. Take a highest weight
vector f of F. Let ¢(1Qf)==,m,Qm'\(m;EM(E),m';EM _(F)) with linearly
independent {m,}. Considering the 0Xg-action, we can show that every m’; is
proportional to 1Qf. Hence we have $(1&Qf)=m ,Q(1&Qf) with a uniquely
determined my,EM(E). Then ¢(m)=m,m’ for any m'EM _(F). By ¢—>my
and m— ¢ ., we get the second identification. The first identification can be obtained
in the same way.

(2) Naturally, ¢ EHom (M (E,),M (E,)) induces a gXg-homomorphism ¢®&]
between M(E;, F)=M(E;)®M _(F) (i=12). Conversely Yy EHomyx,(M (E ; F),
M (E ,,F)) induces a g-homomorphism ' : M(E,)>M(E,) by (1). By these corre-
spondences, we get the desired identification. (3) can be proved in the same way.

Theorem 3.9. There is a natural isomorphism
Hom (M (E),M(F))~Hom,(M (F*®(—2¢)),M(E*&(—2¢)))
for any E, FE A,

Proof. For AEH*, let E,+, be the sum of weight spaces E, such that 1 — 21’
belong to the root lattice Q. Then E,4+oE A,  E=®,eyp/oE 1+ etc., and Hom,
(M(E),M(F))=@®,epoHomy(M (E,+0),M(F,+0)). Hence we may assume from
the beginning that E=FE,,p and F=F,,,. Take E,=p_=1 whose highest weight
belongs to A+ Q. Then, by (3.7),

Homyx (M (E,E{),M(F.E}))

=Homgxo(M (F*®(—2¢)).E&®(26)),M (E*®(—2¢),EQ(2¢))).
Thus we get the desired result by (3.8).
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the author of the paper of D.H. Collingwood-B. Shelton [4] which gives a duality
theorem for higher extensions. The present note seems also useful to understand [4].

The author learned another generalization from M. Duflo [7], in which g and »
are allowed to be almost arbitrary, but Harish-Chandra modules do not appear.
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