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A duality theorem for homomorphisms
between generalized Verma modules

By

Akihiko GYOJA

Introduction

Let K  be a field of characteristic zero, g a split semisimple Lie algebra over K,
u  a parabolic subalgebra, and 8  the half of the sum of roots whose root subspaces
are contained in the nilpotent radical of la. T h e n  — 2e gives a one dimensional
u-module, which we denote by the same letter. F or a  finite dimensional simple
p-module E , let E *  be its dual u-module. Put M (E)= U(g)C) u m E .  The following
duality theorem is attributed to G. Zuckerman (cf. [1,(4.9)]).

Duality Theorem . For a finite dimensional simple la-modules E  and F, there
is a  natural isomorphism

H om ,(M (E ),M (F))=H om ,(M  (F*0(-28)), M  (E * 0( —2E))).

In order to study the b-functions of semi-invariants and the generalized Verma
modules [10], the author has come to need [1,(4.9)]. Since [1,(4.9)] seems difficult to
understand correctly for non-experts, we give in  this note a detailed proof, which
follows a similar line as was indicated in [1,(4.9)], but is purely algebraic.

Convention. For an algebra A , an A-module means a  left A-module, unless
otherwise stated. Every vector space is considered over the base field K , and, Horn
and C) means Hom K  and C)K .  For a vector space V , V * denotes its dual space, and
< > the natural pairing of V  and V .  More generally, we sometimes denote the value
of a (vector valued) function f  at a point p  by <f ,p> or <p,f > for f  (p).

A  L ie algebra character, say A, o f a L ie algebra g gives a one dimensional
g-module, which we shall denote by the same letter A. We consider K  as the trivial
g-module, which is also denoted by 0 by the above convention.

When two objects are naturally  isomorphic, we sometimes write =  for

§1

The purpose of this section is to prove (1.7), which is used later in (3.7).
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1.1. We fix a field K of characteristic zero as the base field. For the sake of
simplicity, we assume K to be algebraically closed. (Cf. [6, 7.2.2,(i)].) For a Lie
algebra g  U (g) denotes th e  universal enveloping algebra. L e t  u  — > U T  b e  the
anti-automorphism o f U(g) such that X T =  —x for x E g . For a U(g)-module M, the
U(g)-module structure of M * is defined so that <um,m*>=<m,u T m*> for uE U(9),
m E M , and m *E M *. Denote by A the set of isomorphism classes of finite dimen-
sional simple U(g)-modules.

1.2. Let t be a  reductive Lie algebra, VE t, {1,(4)16 B( V)} a linear basis of
V parametrized by a set B(V), and {v * (4-)I4EB( V)} the dual basis in V .  F o r  k

U (t), p u t  c. (k)=<v * (6),kv(77)> a n d  4,(k)=<v(4"),kv*(77)>. T h e n  4 ,(k )=
c„e (k T ) and c ,  c;,,E  U (t)*. Sometimes we write c(4,77)= c v(4,0 (resP. c * ( .,77)=
c;(6,77)) for c (resp . 4 7). Let U (tg  be the linear span of {e j6 ,  n E B (V ) ) . We
can define a U ( ) -module structure of U(t) * by  (kc)(k')= c(k T  ( r e s p .  (kc)(k ')=
c(k' k)), which we shall denote by U(t)7 (resp. U(t):). L et U(tri , (resp. U(1); ) be
the set of U ( ) -finite vectors in  U(t);,' (resp. U ( 1 : ) .  It is know n [6, 2.7.121 that
U(t)2= U(tYR=evEtU(t);, w hich  w e shall denote  sim ply  by  U(t )' . T h e  two
U ( ) -module structures of U (t)' commute each  o ther, a n d  g ive  a  t Xt-module
struc tu re  in  U(t)'. M ore generally, fo r any  t-module Z ,  le t  Z ( ) d e n o te  the f-
submodule consisting of zE Z  such that dim  U(t) z<co.

1.3. L e t  be a  subalgebra of t which is reductive in t (cf. [6, 1.7.5]), and E a
semisimple T-module ( i.e ., a  su m  o f  s im p le  submodules) o f  fin ite  dimension.
Consider U(t) L'OE as a tensor product of two t-modules, and denote the subspace
( U(O'L 0 E ) 1 o f  1-invariant vectors by Y (E ) .  T h e n  Y (E ) has a  natural t-module
structure coming from  U ( t ) .  Since U (t); is a  t-submodule o f  U(t) i, a n d  UMR',
( U (W C )E )'=  : Y (E) v  i s  a  t-submodule o f  Y ( E ) .  O bviously , Y (E )= 0 v E t
Y(E) v .  We can identify Y (E ) with coind (E11—>t) ( ) =Hom t ( U(t),E) ( t ) in  a  natural
w ay . (See [6, 5.5] for the coinduction.) Here U(t) is considered as an 1-module by
the left multiplication of I. Thus, for y=Ec ( 0e,E  Y (E )C  U(t)*OE and kE U(t),
we have y(k)=Ec r (k)e i .

1.4. The coalgebra structure k—>k01+10k (kEt) o f U(t) gives a K-algebra
structure U (t)*O U (t) *— >U(t) * .

L et co b e  th e  natural homomorphism U(t) —> U(t)/ U(t)t= K .  T h en  Kco =
U(t) (7̀. (By convention, 0 denotes the trivial U(t)-module.) Let r  be the composi-
tion  of the projection U(t)' —>U(t) (7 a n d  U(W Dc —>c(1)EK. The la tter is  an
isomorphism because the  im age  o f co i s  1. Define a  pairing o f  U (t)'0 E  and
U (t)'0E* by

<c0e,c* Oe*>= r(cc*)<e,e*>

fo r  c,c*E U (t)', eE E , a n d  e * E E * .  T his  b ilinear fo rm  is tX1-invariant and
non-degenerate [6, 2.7.15]. (The f -action (resp. f-action) comes from U(t)',, (resp.
U ( t ) ) . )  Since U (t); ( VE  t) is t X t-simple, U(t)' is t X t-semisimple. Since 1 is
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reductive in f  a n d  E  is t-sem isim ple, U (trO E a n d  U(t)OFE * a r e  semisimple tX
[-modules. Hence the  above pairing gives non-degenerate pairings between respec-
tive isotypic p arts . In  particular it gives a n o n -d e g e n e ra te  p a ir in g  <  , > = <  , > y

between Y (E ) v  a n d  Y(E * ) v .. T h e  p a i r in g  <  ,  >y can be also obtained as the
com position of the natural f-homomorphisms

(1) Y(E)Ø Y(E * )—> Y (E 0 E * )—>  Y (K )= U (t)' - >K.

See [6, 5.6.7] for the first arrow.
Let E and F be semisimple t-modules,0 : Y(E * )—> Y(F * ) a f-homomorphism,

and ciciv : Y(E * )v. —> Y(F * )v. ( VE t) the f-homomorphism induced on the isotypic
subspace. Since Y(E * ) v . a n d  Y (F * ) v * are finite dimensional, we can consider the
dual T v  : Y (F )v —>Y (E )v  of cl3v with respect t o  <  ,  >  y . Let ‘11= 0 'v c t4 iv . Then
‘If : Y(F)—> Y(E) is th e  dual f-homomorphism o f IT. T h u s  w e  g e t  th e  following
assertion.

L em m a  1 .5 . Let f  b e  a  reductive L ie algebra, t  a  subalgebra of  f  w hich is
reductive in f , and, E  an d  F semisimple t-modules. Then there ex ists a  natural
isomorphism (=transposition)

T : H orn t ( Y(E*), Y(F * ))—>Homt ( Y(F), Y(E)).

1.6. Under the same assumptions as in (1.5), consider the following condition
fo r TE H orn t ( Y (F), Y (E )): For any  e* EE* , there ex ists a  f inite fam ily  { k ,E
U (t) , f  E FliE l}  su ch  that

(#) <(1, y)(k),e*>= E <y ( k ,k ) ,f
1E1

f o r any  y E Y  (F ) and  kE  U (f). Denote by Hom4 ( Y(F), Y(E)) the totality of such
V . (The m eaning of this condition  will become clear in  (2.8).)

L e m m a  1 .7 . Under the same assumptions as in  (1.5), T  induces an  isomor-
phism

T : H o m (  Y(E * ), Y(F * ))—*Hornf( Y(F), Y(E)).

The remainder of this section is devoted to the proof of this lemma. We assume
the simplicity o f  E  a n d  F .  T he general case can be easily reduced to this case.

1.8. L e t  th (t)ILEB (E , V )}  (resp . { e (a )IceE B (E )} ) be  a  lin e a r  b a s is  of
Hom e(E, (resp. E ), where B (E ,V ) (resp. B (E )) is a  parameter se t. P u t

B (V )=  E y I {G ,a )IG E B (E ,V ), a E B (E )), and

v(4 )=<h (t),e (a )>  fo r 6 = (t ,a )E B (V ).

Then t v ( ) 1 6 E B (  V)} gives a  linear basis of V . W e shall consider the coefficients
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of the representation matrices c v ( 6,77) (resp. cE (tv,16)) with respect to  {v(6)} (resp.
t e ( a ) ) ) .  The following two facts are constantly used in the argument below.
(1) For /E U(1), c v((x,fl), (t,a))(1)=0 unless t = x , and c v((t.,13),(1-a)(1)= c E (P,a)
(1). (2) Because of the simplicity of V ,(cv(6,71)(k))4.,EB(v) runs all over the matrices
of size dim V , when k  runs over U(t).

L em m a 1.9. For co = e v (a, 13), (1) 2-(c 4 4 6) = 0  unless (cr,fl)= (y,6 ), and (2)
r(c o c:fi ) =(dim

P ro o f  Considering U (t)*=  U (t):, we get r (k (c o cy*,))=2-((kc o ) • 4 5 -1-co  •
(k 4 ))=1 ,2 -(c a,c,fl ( k )4 )+ ,1 - ( c o cy*,,c ( k ) ) = 1 , 2 - ( c c ) c o (k )— ,1 - (c c y* „ )c (k )
for k E t. Since co 's are linearly independent in  U(t) * , r ( c c y

*,) =0 unless t =- 6, and
r(c 4 6) = T (c o cy

*,,). Combining this with the similar result obtained by replacing
right with left, we get (1) and also we can show that r ( c c )  is independent of ( a,
f l ) .  Since k (k E t)  in  U (t) : ,  i.e., I c o c:fi E U (W , we get r(2„ . f i co

4 3) = fi co  ( l ) c ( 1 ) dim V . T hus w e ge t (2).

1.10. For (t 4 )E B (E ,V )X B (V ),  put

= E cv((1,a),4-)e(a), and
a E B (E )

=  E c%(t,a),6)e*(a).
a E B (E )

Then {.1)(/-6)} (resp {Y * (t,6 )}) gives a linear basis of Y (E ) v (resp. Y (E *) v . ).  By (1.
9), we have

< y *(1 ), y (x ,r i)> = 0  unless (t 4 )= (x ,n ), and
(1)

< y* (t) , y (t4 )> = d im  E / d im  V.

F o r OEHom f (Y  (E * ),Y  (F * )) ,  le t  v.= T(0)EH om c( Y (F ), Y (E )), an d  define
01:017(x,n  ; t4 ),  1 1 v(c,•; x,77)EK by

(2) cD.Y* (t , 6 ) =  E ; t,6), and
,E B (F ,V )
,7E 8 (V )

(3) TY(1‘,71)= E  y(t,6»pv(t,6; x,„)
,„E ,„

E ,5 (

for t B (E ,V ) ,  E B (F ,V ) and 6,77 B( V ). By (1)

(4) d im  F 
; x,n)= d i m  E cI3 v(x,7/ ; 14 ).

Compare the coefficients of cv(77,)'5 of (1)(ky * (14 ) )= k (0 ) ) * (t 4 ) )  using
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k y *(t,6)= E  y*(t4)cv(-,6)*(k)
E B (

for kE U(t) and ( t ,6 )E B (E ,V )X B (V ) .  Then we can show that v(x,17 ; t,6)=0
unless 6= n . and (13, v(x,6 ; t ,6 )  is independent of 6, which we shall denote by  v ( x ,
t )  om itting 6 . Define Nity(toc) in the same w a y . Then

cDy*(t,6)= E  y * ( x ) 0 v ( x , t ) ,
,EB(F,v)

T y ( x , o =  E  y ( t , o v v ( t , x ) , and
, E  8( E, V)

dim F 
v (t,x )= d i m  E T v(x ,t).

The following lemma concludes the proof of (1.7).

L e m m a  1.11. L e t  E  a n d  F  b e  sim ple U(t)-m odules, OEHom t ( Y(E * ),
Y (F * ) )  and  V =  T(0)EHom t ( Y (F ), Y (E )). The following conditions are equiva-
lent.

(1) OEHom4 Y(E * ), Y(F * )).
(2) For any  f  E F, there ex ists a f inite set { e, E E,k , E  U (t)}  such that f o r any

V E t ,  g E B ( F ) , tE B ( E ,V ) , an d  x E B (F,V ) , w e have

<f* (R), f v() c,t)= E  c v « K ,A ( t ,a» ( k ,) <e * ( a) ,e ,>.
aEB(E)

(3) There ex ists k o E U (t)  su c h  th at f o r a n y  V ,  t rE B ( E ) ,  f iE B ( F ) ,  t E
B (E,V ), an d  KEB(F,V ), we have

Dv(x ,0= v ((x ,13), ,œ))(ko).

(4) For any  e * EE* , there ex ists a f inite set If 7 E  F * ,k1E  UM} such that for
any  V e t, ceE B (E ), 1 ,E B (E ,V ), an d  jC B(F,V), w e have

<e(ce),e*> d
d

 m
m

 E
F E  c v ( ( , , g ) , (i,,))( 0< f(g )f7> '

/3E 9(F)

(5) TEHotr4 ( Y(F), Y(E)).

P ro o f  (1) (2) Let us write down the left hand side of the condition (#) for <13
(cf. (1.6))

<(0.),*(t,6))(k),f >

= E <y*(k,o(ociovo,,,,),p
/311%

(2')

(3')

(4')
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E  c*((x,g ) 4 ) ( k )<r (/3),p o v ( x ,t).
xE B (E V )
13 B (F )

Next let us write down the right hand side :

E<y*(1.,6)(k 1 k),e
i E l

= E  * ( ( i , a ) ,  6)(k i k)<e * ( a ) , e
i E l

a E B (E )

= E c* ( ( ,,a ) , (x,,6))(k ,)c * ((x ,fl),6 )(k )< e* (cr),e i >
i E l

a E B (E )

Since c * (6,77)(k)=- c(274)(k T ), comparing the coefficients of c * ((x ,,3),6), we get (2).
To prove (2) (1), read the  above proof backward. We can prove (4) (5 ) in the
same way, using (1.11, (4')).

(3 ) (2 )  For /E U (t) and eoE E ,

E c im x ,#),(,,,))(ik oy e(,),e ,>
aEB(E)

= E  cv ((,,p),(x ,y ))coc,((x ,y ), (1,c0)(ko<c*(a),e0>
E B(E )

y E  BCE)

=E cF(13,7)(1)0y(x,t)<e * (a),eo>.

Taking 1 and e o  so that Ey cF(/3,7)(/)=<./ . * (/3),f > for any f lE B (F ) , and E < e*(a),
e o >= 1, we get (2).

(2) (3) Since E is a simple [-module, there exist / l e  U(t) such that cE (y,a )(/ ,)
= <e * (y),e i > for any a , y E B ( E ) .  Then the right hand side of the equality in (2) is

E  cv((x,g), (1,y))(k v ((t ,y ) , (1 ,0 )(1 ,)=  v ((x ,1 3 ), (1 ,a ))(k )
yE B (E )

for any crE B (E ), where k : = I 1 k,1 1 .  For any /E U(I),

v ( (x , f l ) ,  ( , ) ) ( 1 k )

= E cv(oe,p), (x,Y))( 1 )c v((ic >7), (t,œ))(k)
yEB(,) 

E  c F (fi,y)(1)<f * (y),f >0 v(x,e)•

T ake  f  F  and  /E  U (1) so  th a t  l y c F (13 ,y)(1 )q  *  (y)f> =  1 for any gE  B (F ), and
p u t k o = lk . Then we get (3). We can prove (3)<=>(4) in the same way.
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§2

T he purpose of this section is to prove (2.8), which is used later in  (3.7).

2.1. Let M  be a  K-vector space. Consider the discrete topology in  K  and the
finite-open topology in  M * : =H om (M ,K ).

L em m a. (1 ) T he totality  M * *  o f  th e  continuous linear functionals on M *
can be naturally  identif ied w ith M . (2) I f  M  has a countable linear basis, M *  has
a  countable open basis f o r th e  neighbourhoods o f  0.

P ro o f  (1) W e  h a v e  a  natural in jection co :  M —> M * * . L et us prove its sur-
jec tiv ity . Let {m i } be a  linear basis of M  and  define mi*E M *  so that <m i ,m,*>=
1 if i = j ,  otherwise = 0 . Then M = a K m i a n d  M * =11,Km7. Given p E M * * , put
p i = ,u(m7), and  assum e tha t pi,* 0  fo r  infinitely many i p 's  (p  =  1,2 ,— ). Then

:  n : converges to E,„7- 1,u,, Im i
*„  but ,u (nn= k is not convergent. This

contradicts the continuity of p .  Hence m =E i g i m i is  a  finite sum , and Km, m7>=
<,ci,m*> for any i, i.e., co(m )= ,u. (2) If {m1,m2, — } is a  linear basis of M , then {mi,
•••,m,} ± CM*(p=1,2,•••) form an  open  basis for the neighbourhoods of 0.

2.2. Let g be a semisimple Lie algebra, q a parabolic subalgebra, and m a Levi
subalgebra of q .  L et .4, be the category of finite dimensional a-modules which are
m-semisimple. F o r  E E ,,,i „  put

M (E )=ind(Elq — >g) : = U u(0)E , and

M '(E)=coind(E lg —>g) : = Homuini( U(g),E).

C f . [6 , 5 .1  a n d  5.5]. W e always consider th e  discrete topology i n  E  and  the
finite-open topology in  M '(E ) .  F o r a n  element m * E M (E ) * =Hom(U(g)O u ,,,E,
K ), define the element m 'EH om (U (g),E*) by <m' (u),e>= m *  (u T  10 e ) (u  U  (g ),e
E E ) .  Then m 'E M '(E * )  a n d  m * — >m ' gives a n  isomorphism M (E) * —> ( E ) *
including topology ([6 , 5 .5 .4 ]). Thus by (2.1), we get th e  following assertions.

Lemma 2.3. For E, H om g(M (E ),M (F )) is naturally  identif ied w ith
H o m (M '(F * ),M '(E * )), where the latter is the set of  continuous homomorphisms.

Lemma 2.4. T he g-submodules o f  M (E ) are  naturally  in  one  to  one corre-
spondence w ith the closed g-submodules o f  M '(E *)=  M (E )* .

2.5. L et a  be the center o f  m . Any A E a * can be uniquely extended to a Lie
algebra character of a, which we shall denote by the  same letter A , or by A, if the
specification is necessary. W e also denote th e  corresponding o n e  dimensional
a-module by the  sam e letter. Let f  be  a  subalgebra of g , and put t=t n a .  Let EE
..4 ,  and consider the  following conditions.
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( I )  t  is reductive in  g a n d  is reductive in  t.
(2) g=t-Fq.
(3) For any com position factor E of E , there exists a  finite dimensional simple

t-module V  such that Hom f (
(4) For any composition factor E of E, there exists A E a * such that 2L ,I1=0 and

M (E * 02_,) is simple.

Lemma 2.6. I f  (1)-(4) are satisf ied, then M '(E) ( r ) is  a dense g-submodule of
M '(E).

P ro o f  By [6, 1.7.9], M '(E) ( t ) is  a  g-submodule. Since

(2.6.1) M'(E)(0=coind(Elq—>9)(0=coind(E1]—>t)(0 by (2) an d  [6, 5.5.8]

= Y (E )=(U (1)'0E )`-= ,C)? ( U (t)V 0E ) 1,

the functor .54,D E — >M '(E ) (f) is  e x a c t . Hence we can reduce the  proof to the case
where E  el. By (3) and (2.6.1), M'(E) ( ) ± 0 . As t-modules, we can naturally identify

M r(E)=coind(Elq—N)=coind(E11 —>t)

= co ind (E 0( — A)11- ->t)=coind(E0( —  X)1c1- ->9)=M(E * CA ) *

including topology, for A  a s  in  ( 4 ) .  In  particular the 1f-module /14'(E) ( t ) ( * ( ) )  is
identified with M (E * 10A) ) , whose closure is M (E * 10X) * =M r (E )  by (4) and  (2.
4).

2.7. F o r  EE.54,1, p u t X(E)=coind(Elg —>9)(0=M"(E)(0. Since we can natu-
rally identify X (E )it w ith  Y(E)=coind(E11 —>t) ( ) , we have a  natural mapping

Hom4 Y(F), Y (E)) — >Hom ,(X (F),X (E)) (E,FE,54,),

whose image we shall denote by H o m 4X (F ),X (E )). P ut Hom#, =Ho4F1Hom,.

Lemma 2.8. L et E,FE.54,, and assum e the conditions (1)-(4) o f  (2.5) f o r E
a n d  F .  T hen w e hav e  a natural isom orphism  (=restriction)

R : H om e(M '(F),M '(E))— >H om (X (F),X (E)).

P ro o f  The restriction of /fr'EHorriAM '(F),M '(E)) to  X  (F)= M '(F) (E ) gives a
g-homomorphism X (F)- - >X (E ), which we shall denote by R ei()=  T . B y  (2.6), 1//:
—>qr is injective.

L e t  u s  determine t h e  im a g e  o f  R. Let :  M (E * )-->M (F * )  b e  t h e  g-
homomorphism corresponding to /fr,' :  M '(F)— >M '(E) (cf. (2.3)). L e t e *  b e  any
element of

 E * .  B y  (2.5, (2)),
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b, (10 e * )= C C I . 7  (finite sum)

with some k, E  U (t)  and f  E F * . L et * *  :  M (F * ) * —>M (E * ) * b e  the dual o f  * .
If m * E M (F * ) * corresponds to  m 'E M '(F ) (cf. (2.2)), then

<(i11m')(k),e*>=<ifr* m* ,Ic i  Oe*>=<m* ,*(k T  C)e*)>

=Km* ,E k T  kT O f 7>=E<m'(k i k),f

fo r any k E  U (t) . Thus the condition  (#) o f (1.6) is satisfied, and  hence the image
o f R  is contained in  Horn(X (F),X (E)).

Given T E H o m (X (F ),X (E )), let us show that 'Ti can be extended to a continu-
ous g-homomorphism W (F)— > M'(E). F o r  m 'E M '(F )= M (F * ) * , w e can find a
sequence [x 1,x 2 ,•••} i n  X  (F ) co n v e rg in g  to  m ', b y  (2 .1 ,(2)) a n d  (2.6). Since
<(4!x„)(k),e*>= i <x„(k,k),f7>, li m ( T x p ) (k )  is  convergent for a n y  kE U(t).
Define this limit value to be ( * m ') (k ) .  Then we can show tha t *EHom ò(M '(F ),M a

(E )) and  R (* )= V .

§3

The purpose of this section is to prove the duality theorem  (3 .9 ). In  (3.1)-(3.6),
modifying the  a rgum en t o f [6, 9.6.9], w e construct a n  invariant pairing betw een
certa in  Harish-Chandra m odules o v e r g X g. W ith o u t to  say , th is  p a ir in g  is  an
algebraic counterpart of the  L 2 -inner product o n  a  hom ogeneous space. Using this
pairing an d  also the  results o f th e  previous sections, w e prove in  (3.7) the  duality
theorem in  the  special case where the L ie algebra is of the  form  g X g. The general
case (3.9) follows from  this special case by  a sim ple trick (3.8).

3.1. Let g be a semisimple Lie a lgebra . F ix  a C artan subalgebra t) and a Borel
subalgebra con ta in ing  it. L e t  0  b e  a  s ta n d a rd  parabo lic  subalgebra, i t s  Levi
subalgebra containing t), and 0_ the  parabolic subalgebra such that 0 no_=t.

Let pE h* be the half of the sum of the positive ro o ts , W the Weyl group, and
w the longest element of the Weyl subgroup corresponding to 0 . Then 2€ : =  wp+ p
E h *  can  b e  ex ten d ed  to  a  L ie  algebra character o f  t , a n d  can  be  regarded  as a
character of 0 by the projection ,p—>f. U sing [II, 1.17], we can show tha t in d (-2 €
11J- - ci) is a sim ple g-module, w hose annihilator w e shall denote by J .  T h e n  J.  is
a prim itive ideal w ith the  trivial central character.

L et G be the simply connected semisimple algebraic group whose Lie algebra is
g, and, P  and  L the connected algebraic subgroups o f  G corresponding to 0 and
respectively. L et D(G / P) be the ring of differential operators o n  G/P, and  /p the
kernel of the  natural algebra homomorphism U (0) — > D (G  P ) . Then

(1) U(g)/Jp= U(g)/p by  [2, 3.7]
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= D(G / P) by [2, 3.8].

Furthermore, as g-modules

(2) D(G / P) -= grD(G 1 P )

= K [T * (G / P )] by [2, 1.4]

= K [G  X P loi ] by [2, 2.4],

where K[— ] denotes the regular function ring, T * (—) the cotangent bundle, and 0 '
the orthogonal complement in  g * . We identify g* with g by the Killing form. Let
y  be a  generic element of the center of t, and  Y :  =  G (Ky+13 - `). Since the
function Ky-Ho j - ->K y= K  is P-invariant, it induces f :  Y — >K . Since the natural
morphism Y — >G/P X K  is smooth (a fibre bundle with fibre 1 -`), f : Y — > K is also
smooth. By the proof of [3, A l],

(3) K[G>CoL]= K[f - '0:0]=  K[Y]/fx[Y].

(Read infra p. 101, 1. 14, noting that the assumption `G.,,= P ;  is not used there. Cf.
(3.2) below.) By the proof of [3, 7.6, Behauptung (1)],

(4) K [Y ]/ fK [Y ]= K [Y ]/ (f  —1)K[ Y]

as g-modules. (Read p. 97,11. 4-7.) Put K x = KM0} a n d  Y x = f - I K x .  Then we can
show that f  :  Y <— K >< is isomorphic to the trivial bundle f  (0 )X  K x  —> K x  . Hence

(5) K [Y ]l (f — 1 )K [Y ]=  K [Y x ]/ (f —1)K[ y x ] = , K [f - 1 (1)].

Since gy = f  and  G, is known to be connected [14, 8.5], GE = -L . Here gy  (resp. Gy )
denotes the centralizer o f y  in  g (resp. G ) .  L et U  be the unipotent radical of  P.
Then U y = 1 and hence U • yŒy -Flo' is dense. By the proposition of [15, 2.5], U•y
is closed, and hence y U  • y =P  •  y= P/ L . Thus

(6) f-1(1)= GX"(y-Ho i ) = G>C(P/ L)=G/ L.

Let Ô be the set of isomorphism classes of irreducible rational representations of G.
Identify 6' with 'A in  a  natural w ay . F o r 0- EA= 6- ,

(7) mtp,( cr,K[ G/L]) = mtp G ( K [ G/ L ]) = mtp L (0, o- 1L)= mtp 1(0,(511)

b y a n  algebraic Frobenius reciprocity theorem. Here m tp,(6,— ) etc. denote the
multiplicity of csEn etc.

Remark 3.2. A t the  end  of the  proof of [3 , A l], th e  vanishing theorem of
Grauert-Riemenschneider [8, 2.3] is used in the following fo rm . L et X  and Î  b e
algebraic varieties over a f ield of  characteristic zero, : Î — X  a  proper birational
morphism, and t h e  sh eaf  o f  absolutely  regular highest dif ferential form s on 1.
Then Rin..1 =0 for j >O. (By the argument of [13, p. 236, 11. 14-23], we may assume
X-  a  smooth projective variety, a n d  X  a (norm al) projective variety. N o w  w e
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reproduce the argument of [8, 2.3] in a slightly m odified fashion. Let be an ample
line bundle on X .  P u t  k (n )=Z O 7 r * o t". Consider the  spectral sequence Eq(n):
=1--P(X ,Ri 7t.Z(n)) H` +l( 1-  ,,k (n)). A ssu m e  t h a t  K r ../ r= 0  ( 0 < j< q )  and
Rqz..7?"*O, for some q > O . T hen  E l(n )=0  (0<j<q), and by [9, (III, 2.2.2)], E r(n)
= E " ° (n)=O a n d  E (

2
)q(n)* 0 i f  n is sufficiently la rge . B ut then O E ( n ) =  •—=

E t(n ) -= Hq(X*  ,Z (n)), which contradicts the vanishing theorem of Kodaira. See [5]
fo r an  algebraic proof of the  vanishing theorem o f  Kodaira.)

3.3. Put t={(x,x)Eg xg} an d  It = 440E1 X I). Iden tify  I w ith It , and in
a  natural w a y . W e  a lso  id e n tify  w ith  A. F o r EE.54, and F.54 ' ,_ , put

M(E,F)=ind(E0FIIJX1J- - '9X9),

M'(E,F)=coind(ECIFIlo X1)- - N X 9),

X (E,F)= M '(E,F) ( ) , and

Y(E,F)=coind(E0FlIt — q)().

Lemma 3.4. Consider U(g) as a g X g-module by  (x ,x ')u= xu—  ux' f or x,x"E
g, uE  U (g). Then

mtpt (o. , U(g)//p)= mtp i (0,611)= mtpt(a, X (2 e, — 2E ))

f o r any

P ro o f  T h e  first equality follow s from  (3.1, (1)-(7)). The second equality is
proved as follows :

mtpt (1,X(2e, - 2E))

= mtpt ( 0- ,coind((2E)0( - 2E)1 X 0_—>g X g))

=ffitp t (6,coind(Oli t -30)

= mtpg ( cr,coind(01{ — '9))

=mtp 1(0, 0•11)

b y  [6, 5.5.8]

b y  [6, 5.5.7].

By (3.4) , w e can follow  the  same argum ent as the proof o f  [6, 9.6.6] to get the
following assertion.

L em m a 3.5. A s  a  gX g-m odule, X  (2e,-2,€) is naturally  isom orph ic  to
U (9)/ r.

3.6. Since J p  is contained in the largest primitive ideal o f  U(g) with the trivial
central character QU (g), w e get g X g-homomorphisms



448 Akihiko Gyoja

X (E ,F)X X (E * 10(2e), F * 0 ( - 2E)) — >X (E Ø E * 0 (2 E ) , FO F * 0 ( - 2E))
-->X (26,-2E)= U(0)/ J p— >U(0)1 U(g)0= K.

See [6, 5.6.7] for the first arrow. Thus we get a g X g-invariant pairing < ,  > = <
>X of  X (E ,F) and X (E * 0 (2E ), F * 0 ( - 2E )). If we restrict the g X g-action to  t,

then X  (E,F) (resp. X  (E * 0 (2 e ) , F * 0 (  — 2E))) are naturally identified with Y  (E,F)
(resp. Y (E* ,F*)), and the above g X g-homomorphisms becom e those of (1.4,(1)).
H ence < ,  >x  is  id e n tif ie d  w ith  <  ,  >y given in  (1.4), and w e can  app ly  the
results of §1 to  the duality  w ith  respect to  <  ,  >x•

Lemma 3.7. L et E 1, f ' 1 ,4 , and  E 2 , F 2 E .4 ._ .  A ssume that f or any weights
A,2, /12 of  E 1, E 2 ,  F 1 ,  F2 , respectively, a.1 -  A 2  an d  p 1 +11 2 a re  integral

w eights. Then w e can naturally  identify

Hom,x g (M (E (F1,F2)),

H oi* x 1 (M '(F 7 ,F n ,W (E 7 ,E n ),

Hom 1(X (F 7 ,F ) ,X (E 7 ,E n ) ,

Hom#,IX (E ,C )(2E ),E 20 ( - 20 ),X (F 10 (2E ),F 20 ( - 2e))),

Homx 1(M '(E10(2E),E20( - 26)),M '(F 10(2e),F 20( — 20)), and

Horn, x ,(M  (F;' 10(-2r),F 0(2E )),M  (E ;' 0( - 2E ),E  0(2E ))).

P ro o f  Let us show tha t the assumptions of (1.7) and (2.8) are satisfied. First,
consider the condition (2 .5 ,(3 )). Let E l, E2, I ', and F2 b e  composition factors of
E 1 , E 2 ,  F 1,  and F2, respectively, and A.1, A-2, p i, and /22 b e  the respective highest
w e ig h ts . Let V  be the finite dim ensional simple f-module w hich has the extrema!
weight A., ±A 2 .  Then Homt,(KE1CDE2)*O. In this way, we can show th a t E10E2,
E 7C D E ", FR F 2 and F7CDF3' satisfy (2 .5 ,(3)). U sing [11,1.17], we can show that
(2.5,(4)) is alw ays satisfied. The remaining conditions are obvious.

Lem m a 3.8. (1) L et EE13 an d  FE .4„(resp . E E .54 , an d  FE.0_), pu t M (E)
=ind(E1):) - ->g) and M  _(F)=ind(FIP_ — *0), an d  consider M (E)(resp. _(F)) as a
@X 0-module (resp. O X -m odule). T h e n  a s  a s  0-m odules, w e h av e  natural
identifications

Horn9x0(M (E),M  (E,F))= M  _(F),

(resp. Hom o x ,(M  _ (F) ,M (E ,F))= (E )) .

(2) For E 1 , E 2 E 4 2 an d  F E ,

Hom o n (M (E 1,F),M (E2,F))=Flonig(M (E1),M 1EM •



Generalized Verma modules 449

(3) For E E f) and F 7, F 2 E .54

Horri g x ,( M (E,F 1), M (E,F 2))=Hom o (M -(F 1),A1  -(F2)).

P ro o f  (1) S i n c e  M  (E ,F )=  M  (E )O M  _ (F ) ,  m  M  (E )  g iv e s  a  0  X  g-
homomorphism :  M _(F)—>M (E,F), m'—>mOm r .  Conversely, assume that a 0 X
g-homomorphism q : M  _(F) — >M (E ,F ) is given and F E _ . T a k e  a highest weight
vector f  of F .  L e t çb (1 ® f ) = i m i O m ' i ( m i E M (E ) ,m ',E M _ (F ) )  with linearly
independent {m i }. C o n s id e r in g  the M g-action , w e can  show that every m ', is
p roportional to  110f. H ence w e h a v e  q 5 (1 0 f )= m 0 (1 0 f )  w ith  a  uniquely
determined rn E M ( E ) .  Then 4 (m ')= m 0 O m ' for any m 'E M _ ( F ) .  By
and m m , we get the second identification. The first identification can be obtained
in the same way.

(2) Naturally, OEHonl7(M(E1),M(E2)) induces a g X g-homomorphism 001
between M (E ,,F )= M (E  i )O M  _ (F )  ( i= 1 ,2 ) .  C onversely IfrE H om (M (E ,,F ),
M (E 2 ,F ) )  induces a g-homomorphism :  M (E 1)— >M (E 2 )  by (1). By these corre-
spondences, we get the desired identification. (3) can be proved in the same way.

T heorem  3 .9 . T here is a natural isomorphism

H om ,(M  (E ),M  (F ))= H om ,(M (F * 0 ( -2 E )) ,M  (E * 0 (  —2E)))

f o r any  E, F

P ro o f  F o r A t)* , le t E ) + ,2  be the sum of weight spaces E  such that X — A."
belong to the root lattice Q .  Then E A. + Q E .4 0 ,  E = a l E t ,•/Q E A. + Q  e tc ., and Hom,
(M (E ),M (F ))= C % E t ) ./Q H om ,(M (E ,H _Q ), M (F A ± Q )). H ence we m ay assume from
the beginning that E= E x+Q  and F= F Â ± Q .  Take E,DE L = T  whose highest weight
b e lo n g s  to  + Q . Then, by (3.7),

H om ,x ,(M (E ,E ),M (F ,E ô ))

=Hom,x g(M (F * 0 ( - 2E)),E00(2E)),M(E * 0 ( - 2E),E0®(20)).

Thus we get the desired result by (3.8).
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