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Busemann functions and positive eigenfunctions
of Laplacian on noncompact symmetric spaces

By

Toshiaki HATTORI

Introduction

Let X be a complete simply connected manifold of nonpositive sectional
curvature. We can associate each geodesic ray y in X with the following function
b(y):

(0.1) b(y)(x)=lim{d(x, y(1))—t}  for xEX,

where d is the distance on X. This is called the Busemann function associated with
y (which was defined in [7]) and is an important object in the study of nonpositively
curved manifolds. It is a C? convex function and the inverse images b(y)~'(t) (1€
R) are called the horospheres ([13,17]). By investigating such objects, many results,
for example, concerning co-finite discrete groups I of isometries of X and the
structure of the ends of the quotient spaces I'\X were obtained (e.g. [3,10]).

In this paper we point out that the Busemann function has other aspects which
do not appear in its geometric definition in the case of symmetric spaces of non-
compact type.

Let us consider the case where X has constant sectional curvature —1. In this
case, the functions e *”™ are minimal positive harmonic functions as pointed out
in [2]. We can show this fact by direct computation. On the other hand, the author
computed the Busemann functions on the symmetric space SO(n)\SL(n,R) in ([15,
16]). The result is as follows. Let P(n,R) be the set of all positive definite symmetric
matrices with determinant 1. If we identify SO(n)\SL(n,R) with P(n,R) in the usual
manner, the Busemann function b(y) associated with the geodesic ray

y(t):d]-ag(lem/IlaII’ehaz/HaII’,_.’eZIa,./Ilall)
1s
n—I
(0.2) b(y)(x)=ﬁlog< [I[ A;(x)“"""") for x& P(n,R),

where @ =diag(a,"**,a,) is an element of the Lie algebra of SL(n,R) such that a,<
a,<--<a, ||la| its norm with respect to the metric induced from the Killing form,
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and A(x) the (i Xi)-minor determinant of x in the top left corner. What does the
product IT/Z' A, (x)**~* of minor determinants in (0.2) mean ? Roughly speaking,
it is also a minimal positive eigenfunction of Laplace-Beltrami operator A on
SO(n)\SL(n,R) as we show in the sequel.

Let G be a connected semi-simple Lie group having finite center and no compact
factors. Let K be a maximal compact subgroup of G and X =G/K the associated
symmetric space of noncompact type. We denote by x, the coset of identity element
e G. We suppose that the metric of X is induced from some constant multiple of
the Killing form B of the Lie algebra g of G. Let g=f+p be the Cartan decomposi-
tion of g, where f is the Lie algebra of K, and {,> the inner product on p induced
from the Riemannian metric on the tangent space T,(X) of X at x,. We fix a
maximal abelian subspace a of p and denote by A the analytic subgroup correspond-
ing to a. Let 3} be the system of roots of the pair (g,a). For each root €2, we
choose the unique element H, of a such that (H,H>=@(H) for all HEa. Let 21*
be the system of positive roots determined by some ordering on a. We put

at={aEalf(a)=0 for all g2 "},
and

1
/327 Z Hﬁa
e’

where in the sum every root occurs a number of times equal to its multiplicity. Let
A=diveograd be the Laplace-Beltrami operator on X. Two geodesic rays y,, y, in X
are said to be asymptotic if d(y,(),y,(t)) is uniformly bounded on [0,0) (see §1.2).

Theorem A (Theorem 2.5). Let f: X——R be the function defined by

f(x)=e®  for xEX,

where v : [0,00) —— X is a geodesic ray and C is an arbitrary real number. Then
f is an eigenfunction of A and the eigenvalue is given as follows : Let y': [0,00)
—— X be the geodesic ray emanating from x, which is asymptotic to y and s

written as y'(t):k<exp tﬁw)-xo, where a€a*—{0} and kEK. Then the

eigenvalue is
(0.3) c( C +2<p,m>>,
where ||lal|=Kaa>.

When C >0, the function f=e“*” is something like a distance function from
the point ky(2°) at infinity (for precise definition of the points at infinity, see §1.2).
So informally, on symmetric spaces of noncompact type, the inverse of the distance
function from each point at infinity is harmonic.

Consider the equation
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(0.4) Af=cf

for an arbitrary fixed number c%—lelz. The minimal positive solutions of this
equation was studied extensively by Karpelevi¢ ([18]). Let X (o) be the boundary
of the Eberline-O’Neil compactification of X and

(0.5) yo(t)=<exp tﬁ)wo for £=0.

Karpelevicv: called the G-orbit E of &,= y¢(°)& X () “the skeleton of the boundary
of X” (see §2 for more precise description). And he constructed a family of functions
p(+,&,1): X—R parametrized by (&,1)EEXa, which are positive solutions of
Af=(AP=lpl?)f. as follows. Let

(0.6) p(x,E L )=e® T for x=ne"  x,,

where G=NAK is the Iwasawa decomposition. Since K acts transitively on E, for
any £=k&EE, k< K, the function p(x,&,1) is defined by

(0.7) p(x,&1)=p(k™'x,&0,1) for x€X.
Theorem B (Theorem 2.6). Let kEK, £=k&EE, uEa’. Then we have
p(x’é-,'u):e—“p+;4||b(ky)(x) fOI’ all XE/Y,

where y is the geodesic ray defined by

"y(t)———<exp tﬁ)-xo for t=20.

By combining this with the Karpelevic's result, we can describe the set . of all
minimal positive solutions f(x) of the equation (0.4) such that f(x,)=1 as follows.

Corollary C (Corollary 2.8).

/% — {e—||p+;x||b1k'y»-u)
c

kEK. pEal},

+
where =2 =a"llal'=c+plf) and y,+,(0=(exp (214 ) o

Let ®: M,—X () be the map which sends each e®*’E/(, to the point
ky(©0)E X (). We regard X (°0) as a geometric realization | T| of the spherical Tits
building of G (see §4 for more details) and obtain the following (see §1 for the
definition of the Martin and the sphere topology).

Theorem D (Theorem 4.1). The map ® is a homeomorphism from M. with the
Martin topology to its image ®(M.) with the induced topology from the sphere
topology on X (o°). If I=rank X 22, there exists an open neighborhood W (with
respect to the sphere topology) of the (I—2)-skeleton of |T| such that ®(M.)=
X (c0)— W.
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In this way Busemann function b(y) leads to other analytically or algebraically
defined functions when we consider its exponential functions e,

There are closely related descriptions in the book “Compactifications of sym-
metric spaces (Progress in Math. 156, Birkhiuser (1998)) written by Y. Guivarch, L.
Ji, and J.C. Taylor. So, such relations have been known to the authors of this book
and the persons concerned. Our paper was first written in 1996, and is independent
of their work. The point of view in this paper is different from theirs.

This paper is organized as follows. In §1 we fix notation and recall basic
definitions. In §2 we show that the exponential function of any Busemann function
is an eigenfunction of the Laplacian A and clarify its relation to the Karpelevic’s
functions p(x,&,1). In §3 and §4, we give some applications of Theorems A, B. In
§3, we consider the case where the rank of X is equal to | and describe the Poisson
kernels in terms of the Busemann functions. In §4 we return to symmetric spaces of
general rank and try to compare the minimal Martin boundary /. with the Tits
geometry of X (o0) through the map ®. We also compute positive eigenfunctions on
some symmetric spaces by using Theorem A and explain how to compute them on
general symmetric spaces in §5.

§1. Preliminaries

1.1. Let G be a connected semi-simple Lie group having finite center and no
compact factors. Let K be a maximal compact subgroup of G and X =G/K the
associated symmetric space of noncompact type. We suppose that X is m-
dimensional, and denote by X, the coset of the identity element e G. We suppose
that the metric of X is induced from a constant multiple of the Killing form B of
the Lie algebra g of G. Let £ be the Lie algebra of K and p the orthogonal
complement of £ in g with respect to B. We denote by <{,> the inner product on p
induced from the Riemannian metric on the tangent space T ,(X) of X at x,. We
fix a maximal abelian subspace a of b, and denote by A the corresponding analytic
subgroup of G. Let 2 be the root system of the pair (g,a). For each root €2, we
choose the unique element H, of a such that

(H,H>=6(H) for all HEq,

and denote by g’ the root space { Y Eg|[H,Y]1=6(H) Y for all HEa}. We introduce
a lexicographic order on a and denote by 2*, T the system of positive, simple roots
with respect to this order. We denote by / the cardinality of T, which is equal to the
rank of the symmetric space X. Let

a*={a€ald(a)=0 for all 67T}

the closure of the Weyl chamber Int a*={a€a|6(a)>0 for all HET}. We put

1
p:7 2 Hg.

ET”

where every root occurs a number of times equal to its multiplicity in this sum. Let
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n=2l,es-g’ be the Lie subalgebra of g and N the analytic subgroup corresponding
to n. Let M be the centralizer of 4 in K. The group P=MAN is a minimal
parabolic subgroup of G.

For each subset ® of T, we denote by <@> the set of roots which are linear
combinations of elements in @, and put <B>*=<@>NX". We denote by ag (resp.
ng) the Lie subalgebra of a (resp. n) defined by

ae= N ker 8 (resp.ng= 2 a9,
€0 gET —<O>*
and Ag (resp. Ng) the analytic subgroup of G corresponding to ag (resp. 1g). Let Lg
be the centralizer of ag in G and Ps= LgNg. Note that P,=P and Pr=G. Pg’s are
called the standard parabolic subgroups of G, and each proper parabolic subgroup
Q is conjugate by some element of G to one of Pg’s with ®FT (cf. [5,11]).

1.2. We recall the definition of the Eberlein-O’Neil compactification (cf. (3,
13]). This compactification can be defined for any complete, simply connected
Riemannian manifold of nonpositive sectional curvature. But here X is a symmetric
space of noncompact type as in §1.1. By the Cartan-Hadamard theorem, every unit
speed geodesic y : [0,00——X isaray: d(y(t),y(s))=|t—sl.2,s=0. Two geodesic
rays y.. y, are called asymptotic if d(y,(¢),y2(¢)) is uniformly bounded on [0,%0).
Being asymptotic is an equivalence relation. One define the sphere at infinity X (00)
of X to be the set of asymptote classes of geodesic rays in X. The equivalence class
represented by a geodesic y is denoted by y(°°). A natural topology, the cone
topology, on X =X U X (o) is defined as follows: For vE T, ,(X), §>0, and R>0,
let

Co(v,0)={xE X[ L (v, T)<6},

To(v,0,R)= Cy(v,0)— Bu(R),

where T35 is the initial velocity of the geodesic ray through x emanating from x,,
and B, (R)={xE=X|d(x,,x)<R}. Then the domains T,(v,8,R) together with the
geodesic balls B,(7), x€ X form a local basis for the cone topology. The induced
topology on X (o0) is also called the “sphere topology”. The set ST,,(X) of all unit
tangent vectors at x, is naturally identified with X (o°) by assigning each vector v&
ST,.(X) the equivalence class of the ray y(t)=(exp tv)*x,. This map also gives a
homeomorphism between the (m—1)-dimensional sphere ST,(X) and X(o°)

equipped with the sphere topology. The cone topology is independent of the choice
of the base point.

1.3. Let us consider the following equation on X :
(1.1) Af=cf,

where A=divegrad is the Laplace-Beltrami operator on X. If ¢< —||p||2, (1.1) has no
positive solution ([18, Theorem 17.1.1]). So we suppose ¢=—|p[’. We recall that
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a positive solution f(x) of (1.1) is called minimal if every positive solution of this
equation, not exceeding f (x), differs from f(x) only by a positive factor. The set /,
of minimal solutions f(x) of (1.1) such that f(x,)=1 is called the minimal Martin
boundary ([19]). We can introduce a distance d. on /(. by

= lf ()= f"(x)] /
d(s.f )_./Bxatl)l+|f(x)—f'(x)| for ', f'EM..

We call the induced topology on J, the Martin topology.
§2. Busemann functions

We associate each vector ¢ &a*—{0} with the Busemann function b(y) with
respect to the geodesic y with initial velocity a/|al. Then X is foliated by the
horospheres b(y)~'(1), tER ([13]). So we can take a natural (global) coordinate s
***,¥m) such that y, is the signed distance from x, along y and (y,,**,y ) corresponds
to the coordinate of the horosphere b(y)~'(—y,). We express the Laplace-Beltrami
operator A in terms of this coordinate and consider the relation between Busemann
functions on X and positive eigenfunctions of A.

Lemma 2.1. Let y;: [0,0]—X (i=12,-") be a sequence of unit speed
geodesics emanating from x, which converges to a unit speed geodesic y. Then the
sequence of Busemann functions b(y;) converges to b(y) uniformly on every
compact subset of X.

Proof. It suffices to prove that the sequence {b(y;)} converges to b(y) uniform-
ly on the geodesic ball B,(R) centered at x, for any positive number R. The
following argument is an improvement of the one in Lemma 2-3 of [16].

We fix an arbitrary point x&€ B,(R). Let

b(y)x)=d(x,y(s))—s for s >0.

For each positive integer j, we put ¢;= £ ,(x¢,x) and /;=d(x.y(j)). Since the
sectional curvatures of X are nonpositive, from the Rauch comparison theorem ([8]),
we have

0=b;(y)(x) = b+ (y)x)=d(x,y(j)—d(x,y(j+s)+s

<l,—J/I4s*+21;5 cos ¢, +s.
Hence,

0=b;(y)(x)—b(y)(x)=I;(1—cos d)).

2 212
Again by the comparison theorem, we have cos d; E‘L—%)’—l—o, where /,=d(x4,x).
J

So we obtain
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0=b;(y)(x)=b(y)(x)= ’f(‘ _L%II,__IO>
(2.1)

Similarly, for each positive integer j, we put
bi(y)(x)=d(x,y:(j)—J.
Then we have

<R

(2.2) 0= b)(y) () ~bly)(x) =5~

2
28R . Then, from

For any ¢ >0, we take and fix one positive integer j, such that j,>

(2.1), (2.2), we have

0= bjo(‘)’i)(x)_b('yf)(x)<%,
(2.3)
0= bﬁ()’)(x)_h(y)(x)<%.

For this j,, we can take a positive integer / so as the following holds.
(2.4) If iZ1, then d(y:(jo).y(jo) <~

Note that
B4y )X) = bi(y) ()= d (x.:(0) = d(x,7Go)) = d (v (o) y (o))-
So, from (2.3) and (2.4), we obtain
1b(y)(x) = b)) = |Ba(y)(x) = by ) F1Baly ) (x) = bi(y)(x)|
+1b,(7)(x) — by (x| <E-

Since x is an arbitrary point of B,(R), the convergence is uniform on B,(R).

Lemma 2.2. Let y(t)=<exp t—H%"—>-x0 be a unit speed geodesic, where a<a
—{0}. If a<a*, then the Busemann function b(y) is invariant under the action
of N on X.

Proof. Lemma 2.1 implies that it suffices to show the following equality in the

case where « lies in the Weyl chamber

Int at={a<=al6(a)>0 for all ET}.
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(2.5) b(y)(h x)=b(y)(x) forall xEX, hEN

We note that any element 4 of the nilpotent Lie group N can be written as

h=e": Y= Y,; Y,=q°

s
Let 3=a/lal. Since Ad(e”*)Y,=e "“PY, and 6(8)>0, we have
lirg Ad(e™*)Y =0 and E]-.IE e_'”h_'e'”=lir2 exp(—Ad(e ) Y)=e.
Hence ' ’
Eirg d('y(t),/l_ly(t)):}ir:lo d(xee"?h™'e®)=0

and

|b(7)(h°x)—b(y)(x)|=|lir:.} {d(hx,y(1))—d(x,y())}]

=lim {d(x.”'y(1) = d(xy (O Slim d(y(0).h ™ y(1)=0,
This implies the equality (2.5).

Lemma 23. Let a€a—{0} and y(t)=<exp t”—:“->'x0. The restriction of
b(y) to the submanifold A-x, is given by

b(y)(e™ xo)= —<H,m>
for HEa.

Proof. We remark that A-x, is a totally geodesic submanifold of X and
isometric to the Euclidean space R'. We take an orthonormal basis v,,**,v, of a such
that v,=a/llal. And let (¢,,>:.t,) be the coordinate of a with respect to this basis.
We can regard this coordinate as a global coordinate of the submanifold 4-x, under
the diffeomorphism a——4+x,. Then, for H=2l/_,t,v;, we obtain

d(e"xoy(s)=s=dr((t;,7,1)),(5,0,-,0) =5

=1(t, —s)? I el izi(t:)’—2¢,"s
{(tl s) +,~=22(t')} s VG ms P )

Hence
H — — — a
b(y)e"x)=—1t,= —KH,yp= —<H,m>,
Let G=NAK be the Iwasawa decomposition. Then X =NA-x, is diffeomor-

phic to NA. If the initial velocity v of geodesic ray y belongs to a™, from Lemmas
2.2, 2.3, we have
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b(y)(ne" xo)=—<H. v for nNEN, HEq.

Since b(hy)(x)=b(y)(h~ ' x) for all A€ G, xE X, *every Busemann function is C*
on symmetric spaces of noncompact type. (*This fact should be known. But we
cannot find its proof in literature.) Let a* be the orthogonal complement of the
R-span of @ in a. We denote by 4" the analytic subgroup of G corresponding to

a*. From lemmas 2.2, 2.3, we have

Corollary 2.4. Under the assumptions of Lemma 2.2, b(y) is NA*-invariant.
In particular,

b('y)_l(—s):NA lesa/"a".xo.

In what follows we take a certain global coordinate of X. Let «=a*—{0}. The
exponential map exp: n——N is a diffeomorphism. We identify n with R™"' and
denote by ¢, the diffeomorphism N——R™"' induced from the exponential map.
We take an orthonormal basis {v,,=~,v;} of a such that v;=a/|al. We define a
diffeomorphism ¢,: R”7'XR'—X by

1
qoz((yn,"',ym-/),(tlx",t/))=qu'(y.:".ym—z)'eXp(g] t;v,»>°xe

for (y1,*,ym-)ER" ™', (t,,-,t))ER’, and put ¢ =g;'. The ambiguity of the choice
of v5,*+,v; does not affect the proceeding computation. So we call ¢ : X—R""™'
XR' the global coordinate of X determined by a. (When « is in the Weyl chamber,
this corresponds to the “orispherical coordinate” in [18] and the calculation (2.8)
corresponds to [18,(9.9.2)].)

Let

,2 9ydy Qdy,

ij=1

be the metric tensor of X in terms of the above coordinate. In this expression. we
have written as y,—;+;=¢; (i=1,--,[) for the sake of convenience. Let us compute

Jg= vdet(9y)isijsm.

First, we define a function yry : R”~'—R so that the volume form (with respect to
the induced metric from X') of the submanifold N+x, of X is given by

Yy Ym-) @y N N AY .
That is,

WN(yI»'”,ym—l):‘/det(gij(x,))lgijén1—l’
where x'=¢ '((J1,"*",Ym-1),(0,++,0)). Next, we compute

Vdet(g(x))isijsm—1
at the point x=¢ ((¥1,"*".Ym=1),(t1,**,11)). We put H=2\_,t,v;, a=e".
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We remark that for Y,Eg? we have

d(e™a xoa x)=d(a""'e"a* xqxo)

(2.6)
=d(exp(te”“(Yy))* xo,x0)=d (exp(te "*™ Yy)* x0,X).

Let 7 be the Cartan involution of g: i.e. z|t=id.,, z|,=—id.,.. We decompose Y E
n as

Y=Y ,+Y,; Y1=—%—(Y+1:Y)Ef, Y2=%(Y—7Y)Ep.
Then

2
e xe=exp( 1Y HS ¥, YA+ 0() xo

and the initial velocity of the curve tF——e"" * x, is Y2=%(Y—1Y). Hence, from

(2.6), we have

‘/det(gij(X))l Sijsm—1— ¢~(y[,"',ym-z)a£12‘e“"”’
2.7)

= 1#~(y|,--',ym-/)agz,e*”"”’: (Vi ym-e 0,

—6(H) —(Ho,H>

where e and e appear in the product the same times as the multiplicity of
the root . Let p=2/=,p,v;. Then <p,H>=2!_p;t;. We define a function v, :
R'"'—R by

!
wA*(tZa”.’tl):exp<_zgzp;t,'>.

We remark that (8%) and ( 8?/ > are orthogonal to each other for i=1,--+,/ and
i /x j/x

j=1,--,m—I[. From (2.7), we have at the point x,

(2.8) VI=Pn(p i Y met)Pras(ta, e )P0,

We now relate the Busemann functions to eigenfunctions of Laplacian.

Theorem 2.5. Let f: X——R be the function defined by
F(x)=exp(Cb(y)(x))  for xEX,

where y : [0,00) —— X is a unit speed geodesic and C is an arbitrary real number.
Then f is an eigenfunction of A. The eigenvalue is given as follows : Let y : [0,
) —— X be the unit speed geodesic emanating from x, which is asymptotic to y

and is written as y’(t)=k<exp t”—zll—)-xo, where a €a*—{0} and kE K. Then the
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eigenvalue is C<C+2<p,m>>.

Proof. Since b(y)=b(y’)+ ¢ for some real number ¢ ([3]), we have e®”=¢C
"), So we can assume that y=7". And it suffices to show the equation
(2.9) Af = C<C+2<p,"f”>>f

in the case where k=e, because b(ky)(x)=b(y)(k 'x) for any k€ K. We use the
(global) coordinate determined by «. The Laplace-Beltrami operator A is expressed
in terms of (y,*,y») by

:T 2";. (‘/_g" ai,)

where (¢7)=(g;) "' and y,—;+;=¢; for i=1,--,/. From Lemma 2.3 and Corollary 2.
4, we have

(2.10) f((yl,"',,Vm—l),(t[,'“,l/)):e_C".

Notice that

g( 8. 8'>__0 for i=1,-,1; j=1,-,m—I,
2 0 >_ .
Q< ati‘_az,- =0 for i+j,

o _0o
ot;’ ot;

_ 1 2 af \__ 1 23 —cu
= a3 )=y o da e

and g( >=l for i=1,--,/. Hence, from (2.8) and (2.10), we obtain

:—CT_{¢N(,V|, Y=Y a(ty, J1)e”(CTmny

— —Ch— a
=C(C+2p))e —C<C+2<p,m>>f.

Let us consider the relation between the Karpelevié’s functions p(x,&,1) ([18.,§
17]) and the functions e“**”. Notice that pEInt a*. And let

(2.11) yo(t)=<exp tﬁ)mo for +=0.

Karpelevic called the G-orbit E of &= y,(%°)E X (%) “the skeleton of the boundary
of X ([18,§14]). (More precisely, he called each set consisting of all mutually
asymptotic geodesics a finite bundle. And for « € Int a*, he denoted by &, the point
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on the boundary of the Karpelevi¢ compactification determined by the finite bundle
containing the geodesic ray y(t)=<exp t-"%”->-x0. The point &, is independent of

the choice of @€ 1Int a*. He defined E to be the G-orbit of this point &.) And he
constructed a family of functions X——R parametrized by (&£,1)EEXa as follows.
Let

p(x,&,1)=ePr for x=ne" - x,.

Here we remark that each x& X is uniquely expressed as x=ne”*x,; nEN, HEq.

—

Since K acts transitively on E, any element £EE can be expressed as £=k&, by
using some element k of K. Let

P(x’fal)zp(k_]&tfo,l) for x€X.

This definition does not depend on the choice of k.

Theorem 2.6. Let kEK, £=k&EEE, uSa*. Then we have

p(x.&uw)=exp(=lo+ulblhy)(x))
for all xE X, where vy is the geodesic ray defined by

y(t)=<exp tﬁﬁ)wo for t20.

Proof. Since

exp(—llp+ wllb(ky)(x))=exp(—lp+ulb(y)(k'x)),

and p(x,&,u)=p(k™'x,&0,u), we may only consider the case where k=e, £=&,.
Since p+y<a’, from Lemma 2.2, the function f(x)=exp(—llp+ulb(y)(x)) is
N-invariant. And from its definition, p(x,&o,u) is also N-invariant. Therefore, it
suffices to show that the two functions coincide on A+x,. From Lemma 2.3, the
restriction of f to A+ x, is given by

+
H — — St
e xo)=expi—lp+ '<'—<H, >)}—e” s
S 0) p{ o+l ‘[LLI/J‘F,u"
for all HEa. Hence, p(x,&o.u)=f(x) on A-x,.
Karpelevié showed the following in (the proof of) Theorem 17.2.1 of [18].

Theorem 2.7 (Karpelevic). For c=—|p|? let
af ={a€a*|lal’=c+lpl’}.

Then the set M. of all minimal positive solutions f(x) of equation Af =cf such
that f(x,)=1 coincides with the set {p(x,& u)lEEE uEal}.

For each y€a;, let
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+
'y,,+#(t)=<exp tﬁ)wo

be the geodesic with initial velocity pi# I By combining this with Theorem B, we

have the following.

Corollary 2.8. For any number c¢ such that c=—|pl|’ the set M. of all
minimal positive solutions f(x) of equation Af =cf such that f(x,)=1 is given by

M= (e rsltnr & Ky Eat).

§3. Poisson kernels in the rank 1 case

In this section we consider the case where the rank of X is equal to 1. The
sectional curvatures of X are bounded between two negative constants. The vector
a/|lal in (0.3) is unique and coincides with p/|pl. So, the functions e~ del*/IeF+enky
are positive solutions of (0.4).

We first recall the definition of Poisson kernel.

Definition 3.1 ([21]). A Poisson kernel f normalized at x, for gE X () is a
positive harmonic function on X such that f(x,)=1 and [ extends continuously to
the zero function on X (°)—{q}.

Proposition 3.2 ([2, Corollary 5.3], see also [21]). There exists a unique
Poisson kernel for every q& X ().

By using the Rauch comparison theorem, we have the following.

Lemma 3.3. Suppose that the sectional curvatures K y of X satisfy K xy< —a’
<0 (a>0). Let a<€p=T(X) and y(t)=<cxp t"—Z"-)'xo. Let v&T(X), 6>0
satisfy £, (v.a)=7060>0. Then, for any positive number C, we have

(3.1) e_Cb"V"x)§< I_COSZ§0_§ )—C/n.e~Ca'(Xo.x)

for all xE C (v,6)—{xo).

Proof. Let 5’ be the unit speed geodesic joining x, and x& C (v,8)—{xo} such
that y'(0)=x,, y'(s)=x. We denote by y’(0) the initial velocity of y". Let £ . (a,
y'(0))=w. Then w=d,— ¢>0.

Let us consider the following geodesic triangle A(z,,z5,2z;) in the complete
simply connected Riemannian manifold M_, with constant sectional curvature
—a*:
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dy(2,,2)=t, du(2,23)=s, £.(2,,2})= w.
By the Rauch comparison theorem, we have
d(x,y(1)) 2 d y..(2223).
Let
Y= (5,t,w)=cosh as-cosh ar—sinh as-sinh at*cos w.
By the cosine formula in M_,, we have
cosh(a*dy (22,23))= Y (5,t,).
Hence,

ea~d(x,y(1))+e—u-d(x,y(t))gzllf.

We are interested in the value lim,~o{d(x,y(f))—t}. So we may assume that ¢>s.
Since @ >0, we have

Y=V PP LS eI g ),

Hence,
ea-d(x,yu))gw_'_ /1[’2_]7
and
d(x, (1) Z-Hog(y+/y=1).
We obtain
b(y)(x):}irg{d(x,y(t))—t}
(3.2) 1__
glim{ia log(yr++ wz—l)—t}zla lim log—’Lea,u.
Since a>0,
limJ%=Lcosh as—L sinh as-cos @ >0.
(oo @ 2 2
Therefore,
1_
lim—"Le},,u=cosh as—sinh as*cos

(3.3) =%(l—cos c.,))e’”+%(l+cos w)e
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2%( I—cos w)e” %%(1 —cos(do—d))e *.

From (3.2) and (3.3), we have

b(y)(x)z—‘lz— log (1—_‘%1%“.

This implies the inequality (3.1).
From this and Theorems A, B, Proposition 3.2, we have the following.

Proposition 3.4. For any kEK,
P(X kgo p): e_2||pl|b(ky,)(x)

is the unique Poisson kernel normalized at x, for ky,(o°), where

yo(t)=<exp tﬁ)-xo

as in (0.5), (2.11).

Remark. (1) The fact that e  #I*»™ s the Poisson kernel should be already

known, since it is written (without proof) in [4] that e " where 4 is the entropy,
is the Poisson kernel for y(o0).
(2) For c¢+0, c%—llpﬂz, it also follows from the above argument that the function
P.= e el+/IeF+obkn s something like Poisson kernel in the following sense : (a) (A
—c¢)P.=0, (b) P(xo)=1, (c) P.extends continuously to the zero function on X (<°)
—{ky(oo)}.

§4. Minimal Martin boundary and sphere at infinity

We recall that the sphere X (©°) at infinity of X can be considered (as a set) a
geometric realization |T| of the spherical Tits building 7 of G ([3,11]). For each «
Ea*—{0}, let

n(t)=<exr> tﬂfﬂ'xo
be the unit speed geodesic with initial velocity allal. We put
Co={ya(0©)a€a’}).

Since a is decomposed as the union of the closures of Weyl chambers, {y,()|aE
a—{0}}, the intersection of the flat 4+x, with X (°), is decomposed as the union of
some translates kCo(kEK) of Co. And X (o) is decomposed as follows.

X(2)=U hCy= U kC,.
hEG kEK
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Let T={6,,---.4,} be the system of fundamental roots of a as in §1.1. For each subset
® of T, we put

Co(®)={y.(®)asa*—{0},6(a)=0 for all fET—0O)}.

Then C, becomes an (/ —1)-dimensional simplex with / vertices Co({6.}),"**,Co({6.}).
Each Cy(®) (BCT) is a (#®—1)-dimensional boundary face. The set X of all
simplices ACo(®) of X (°) becomes a simplicial complex.

On the other hand, the spherical Tits building T of G is, by definition, the set
of all (identity components of) parabolic subgroups Q% G equipped with the
following partial ordering < : Q<Q’ iff QDQ’ (see [6,22]). If & is an interior point
(in the sense of simplex) of AC(®), where A€ G, then the isotropy subgroup G; of
& is hPgh™'. So, the set & is naturally identified with the set of all (proper)
parabolic subgroups of G. For 4,,A,€ G, and ©,,0,CT, we have 4,C(®,)Ch,C,
(®,) iff A Po,hy ' DhyPg,hy'. Therefore, in the above identification, the inclusion in
K is compatible with the relation < : 4,Co(®,)Ch,Co(®,) iff A Peh;'<h,Peh;".
Thus, X (o) can be regarded as a geometric realization |T'| of T. We denote by
| T|'~? the (I —2)-skeleton of | T| for [=2.

Let c=—|p[> We recall that

M= {p(x,ﬁ,;z)|£EE.,u Eall= {e—||p+u||b(ky»u) u

We define a map @ : M —— X () by

ECJ,kEK}.

q)(e—||p+u||b(ky»u)): k*ypsu(0) for u Eaf, kEK.

In the rank 1 case, it follows from Proposition 3.4 and the succeeding Remark
that our map @ coincides with the homeomorphisms #.—— X (o) constructed in [1,
2] by Anderson-Schoen and Ancona. In the higher rank case, ® is a somewhat
different kind of map from the ones in [1,2].

Theorem 4.1. The map ® is a homeomorphism from M. with the Martin
topology to its image ®(M.) with the induced topology from the sphere topology on
X (). If rank X =1, then ®(M )= X (). If |=rank X 22, there exists an open
neighborhood W (with respect to the sphere topology) of |T|' 7% such that ®(M.)=
X(c0)—W.

Remark. (1) The neighborhood W depends on the value ¢. If ¢ becomes
larger, then W becomes smaller (see Figure). Let us identify /. with the image of
®. Then M_yp=E, M M. if c<c’, and

X(e)y=( U M),
cz—|pl?
where the closure in the last equality is relative to the sphere topology.
(2) In the case ¢=0, we also have an ideal boundary of G, namely the maximal
boundary B(G) of G defined by Furstenberg ([15]). The maximal boundary of G
is identified with G/P=25. Thus by embedding B(G) and M, into X (o), we have
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{Votu(o0) | w € af}

Figure. The case /=rankX =3. The intersection of E and C, consists
of a single point yo(c0) and M.N Co={y,1.(0)|pEat}.

an inclusion relation as follows.

< maximal ) (minimal Martin>c< geometric >
boundary B boundary M, boundary X (o0)

Proof. Let
ﬂC:{’Vp'Fy(oo)lﬂ ea:}?

where af ={aEa*||al*=c+|pl*} as in §2. Since 4. is compact and &M ,)= K 4.,
®(M.) is a compact subset of X (o0). We notice that M. is Hausdorff and that ®(A,)
is metrizable (by using the angle metric). So we show that ®~' is continuous.

It suffices to prove the following: If a sequence {p;};=... of points of &(M,)
converges to pE®(AM.), then

lim d.(”'(p:).@'(p))=0.
Let
Q—l(pi)(x):e_l‘lJ+/l,||b(anmm)1X); }liea+_{0} : k,EK
for each i, and
®—I(p)(x):e_“p"'y“b(k‘ymu)(x) : ﬂ€a+_{0} : kEK.
Then,
Pi=ki* ypo+u (), P=K*y,4,().

Since lim;—. p;=p, the sequence {k,~y,,+,,‘} of geodesics converges to ky,.,. Let a;
=lp+ull, a=lp+ul. We write b;, b instead of b(y,+,), b(y,.+,). respectively.
From Lemma 2.1, for any positive &, there exists a positive integer I such that the
following holds. If i=1, then

(4.1) alb;(x)—b(x)|<log (1+¢&)  for all xEB,(1),
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(4.2) la;—al<log (1+¢).
Lemma 4.2. Let
Pr(0)= 1= TN, gy () = et T =1,
Then, for i21, we have
Pi(0)<e, Yrai(x)<e on B.(1).

Proof. We only show the inequality for ;. (We can show the inequality for
Y1 in a similar way.)

We remark that |grad b;|=1 ([3]). Since b:(x,)=0. we have |b:(x)|=1on B.(1).

CASE 1. Suppose that a;=a. If b;(x)=20, from (4.2), we have

b - - |
X —1—pla a)bi(x) < | —pda . Iog(H—e): _
Yri(x)=1—e Sl—e " <1—e 1 l+e<£'

Similarly, if b;(x)<0,
Pras(x)= el T — | S gt — | T — | =
CASE 2. Suppose that a;<a. If b;(x)=20, then
Yo x)= el T — | St r— | T — =,

If b(x)<0,

_ - - 1
. — 1 — pla a,)b,(x)s __ai—ua _ log(l+e) — 1 —
Yai(x)=1—e Sl—e" <l—e 1 1+e<8'

From the above lemma and that |5;(x)|=1, |b(x)|=1 on B,(1), we obtain

‘e_ab'(x)_‘e_ab(X)|:e—nb“)'wl,f(x)é et wl‘f(x)<£ea’

'e—(l.-b,(x)_ e—ub.(x)|:e—ub.(x). wl,i(x)éea' 1ﬁz,i(x)<€ea.
We have
@' (p)(x) =@ (p)(x)|=e™ " — e[ <2ee”

uniformly on B,(1). Hence,
4@ (p). 0" (% [, |07 (p) (0= (p)(x)
<2e“ Vol (By(1))*e.
This shows that lim;.. d.(®'(p;).® '(p))=0.
§5. Computing positive eigenfunctions

5.1. We compute positive eigenfunctions of Laplacian A in the case X =
SU(n)\SL(n,C) and compare it with the result of Dynkin ([9]). We must make a
few modifications (besides the obvious modifications) on the results in §2, since the
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symmetric space is regarded as the set of right cosets in [9]. That is, we need to
change

y(t)Z(exp tﬁw)-xo

in Lemma 2.2, Theorem 2.5 into

y(t)=xc’e><p<—tm>,

and

y(t)=<exp tﬁ) Xo

in Theorem 2.6 into

y(1)=Xxo exp <—tﬁ>.

When we treat the set of left cosets SL(n,C)/SU (n), the isotropy subgroup G, of
y(o0) is N iff the initial velocity of y belongs to a*. But when we treat the set of
right cosets, G, = N iff the initial velocity of y belongs to —a*={—alaEa*}. We
denote by Lemma 2.2°, Theorems 2.5°, 2.6’ respectively the correspondents obtained
by this modifications. We also remark that in [9], the metric of SU(n)\SL(n,C) is
induced from the 1/n of the Killing form.

Let G=SL(n,C) and K=SU(n). We can identify K\G with the set P(n,C) of
all nX n positive hermitian matrices with determinant 1 ; i.e. G acts transitively on
P(n,C) by x*h="hxh for x€P(n,C), h€ G, and the isotropy subgroup of I,=diag
(1,+-,1) is K. (We use bars over complex matrices to denote their complex conju-
gates. And we denote by ‘A the transpose of the matrix h.) Let

a={a=diag (a,,""",@.)|trace «=0,a;ER for all i}.
For each i, we define a linear map e, : a——R by
ela)=a; for a=diag (a\,"",a.)Eq.
The system 2} of roots (resp. the system 2.* of positive roots) is given by

Zz{ei—ej|i#=j,l§i,j§n}

(resp. 2t={e;—e;|[1<i<j<n}).
The root space g“~ corresponding to e; —e; is given by g~ “=CEj, where Ej is the
nXn matrices with i-j entry I, all other entries being 0. So, every root has
multiplicity 2. The metric is given by

{Y,Y'>=4Re(trace(YY")) for Y, Y Ep.

So, the norm of a=(a,,"*".a.,)Eq is
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n 1/2
lal=2{3 (2"}
We also have the following.

He —e Eli_Ejj)?

4(

1 =1 g
- 2 2 He.—e,— 2 dlag (Ch 9Cn)7

i<j

n—=2i+1  ._
= 5 ; i=1,n
For
a€a*={diag (a,""a.)EdaZa, 2 Za.},
let

y(t)=xo'eXp<—tm> for t=0.
For ﬂ:dlag (ﬁh.“’ﬁn)ea, we pUt
d:dlag (d.,"',d,,)=xo-e”; ie. d;:ezﬁ' for i=1,"-.n

Then, from Lemma 2.3, we have

(5.1) b(y)(xo'eﬁ):<ﬁ,]l—zw> —g—z'f—z‘:‘:’ i(; d

We rewrite the right hand side of (5.1) in an N-invariant form. For x&€ P(n,C), let
A(x) the (i Xi)-minor determinant in the upper left corner. Then

— Ai-H d
(5.2) d,——LlAi(d) :

And for each i, we have
A(d-h)y=AL,(d) for all hEN.
From (5.1),

n—1|

b(y)(d)=W{2a, logd:—a.(log d,+--+log d,.—n)}

n—I1

] n—1 _
=L Sai—a)logd=m—1 de==).
l(a') E(CY “ ) o8 27=|(a/i)2 og<i=I_I' )

Here, from (5.2), we have
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n—I1

E[I (di)m—an

=A.(d)m-m.<%%>“"“".(%;(%)L)w. - (ﬁ%)

n—1

=11 2(d)y

Hence

Py D)=t tog {TT &)=},

i

Therefore, from Lemma 2.2°,

l n—1 _
(53 b )x =10 {HA, x)* an.}
) O Gy LSS
for all x&€P(n,C).
In particular, if
a=p+tu,pu=diag (,u|,"',,un)60+,

then

1 1 1
ai+l_ai:<,ui+l+7Ci+l>_(ﬂi+76i):,ui+l_/.li_7-

Hence, from (5.3) and Theorems 2.5, 2.6’,

n—1
P(X. o) = e IHHlbIW =gy {2 log ( 1 Ai(X)“"'_‘“__;>}
i=1

is a positive eigenfunction of Laplacian with eigenvalue ||,u||2—||p||2. In Dynkin’s
paper, the coordinate of @ &a* is twice our coordinate (a,,"**.&,). So, let vi=2u;:
i=1,-,n. Then we have

n—I

p(-xat‘;’-o,ﬂ)z H Ai(x)ym—y.+].
i=1
This coincides with the formula (39) in [9, Theorem 3].

5.2. We can compute the Busemann functions on X =SL(#n.R)/SO(n) in a
similar way in 5.1. We will use this result in the remainder of this section.

Let G=SL(n,R) and K=S0(n). We identify G/K with the set P(n,R) of all
n X n positive definite, symmetric matrices with determinant 1 ; i.e. G acts transitive-
ly on P(n,R) by h*x=hx'h for xE P(n,R), h€ G, and the isotropy subgroup of I,
is K. Let
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a={a=diag (@,"".a,)|trace =0,a,ER for all i}.
The system of positive roots is
Dt={e;—e)lISi<j<n},
and
at={diag (a\. @, )E0la 2 a2 2 a,).
The metric is given by
KY,Y>=2n-trace (YY) for Y,Y Enp.

So, the norm of a=(a,"".&.)E0a is
n 1/2
lal={2nZ ] "
i=1
For «€a—{0}, we put

ya(t)=<exp tﬂ%">'x0 for t20.

Lemma 5.1. Let a=diag(a,, .a,)Ea—{0}.
(1) If a€a*, then

n

e P L g

where [;(x) is the (jXj)-minor determinant in the lower right hand corner.
(2) If aa*, take a permutation & of n letters such that a,1)Z""* = &y
Then

n—1
b(ya)(x): _WC’:—”_ log {,].—:II Dn—i(d .x)am”“_am”}a
where g x= (,xa(,-)d(j)) f0r x:(xfj)EP(l’l,R).

5.3. We compute some of the positive eigenfunctions of Laplacian on the
upper half plane, the n product of upper half planes, and Siegel upper half spaces.
Let us first consider the following situation.

The symmetric space X is embedded totally geodesically in another symmetric
space X * of noncompact type via a map F: X——X* We denote by g, g* the
metric of X, X* respectively. There exists a positive constant C such that F*g*=
Cg, where F*g* is the pulled back metric on X by F from the metric g*. In this case
we can reduce the computation of the Busemann functions on X to the one on X*
as follows.

Lemma 52. Let F: X——X%*, g, g* be as above. Let y: [0,00)—— X be a
unit speed geodesic, and y* the unit speed geodesic on X* defined by v*(t)=
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F(y(t/JC)) for t=0. Then we have
(5.4) b(y)(x):71_c—b(y*)(f*(x)) for all 1=0.

We recall that every symmetric space X =G/K of noncompact type can be
embedded totally geodesically, isometrically into P(m.,R), where m is some positive
integer, provided that one multiplies the metric on each irreducible de Rham factor
of X by a suitable positive constant.

Proposition 5.3 ([20],[12, Appendix, Proposition (19]). Let o : G—>SL(m,
R) be a faithful (mod center of G) representation such that
(5.5) the image of G is self-adjoint : ie. {L(G)}=1.(G).
(5.6) L(K)TSO(m).
Then the map F: X =G/K— P(m,R)=SL(m,R)/SO(m) given by

F(hK)=.(h){c(h)}  for all hEG

is an isometric, totally geodesic embedding after multiplying the metric on each
irreducible de Rham factor of X by a suitable positive constant.

We can always construct such a representation  : G——SL(m,R) satisfying (5.
5), (5.6) by using the adjoint representation (, in which case m=dim G). Therefore,
in principle, we can compute the (minimal) positive eigenfunctions of Laplacian on
any symmetric space of noncompact type explicitly by using Corollary 2.8, Lemmas
5.1, 5.2. But in each case which we treat in the remainder of this section, there exists
a more natural representation ¢ : G——> SL(m,R) than the adjoint representation.

a) upper half plane. Let

H={z=x+/—1yEC|y>0}

be the upper half plane with constant sectional curvature —1. Let G=SL(2,R) and
K=S0(2). The group G acts from the left on # by fractional linear transformation.
We identify G/K with P(2,R) as in §5.2. Then the point in P(2,R) corresponding
_ (y+xy x/y L
toz=x+y—1yEH is x/y 1yl The metric is induced from the half of the
Killing form of the Lie algebra g of G ; i.e.
KY,Y'>=2trace (YY) for Y. Y'Ep.

Let
er/2
7(1):< e_,/;>'xo:v—l'e’ for t=0.

The initial velocity of y is 2p, where
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1 /1 |
p=al ) melbl=ry
Then, we have
b(y)(x++—1ly)=—logy.
Let f; be a function defined by
fv(Z): e"ZS"p"b(y)(:)
where s is a real number. Then we have
fi(z)=(m z)’,
and from Theorem 2.5, Af,=s(s—1)f,. We also have

iz _(a b
fs(h-z)= ztdP for h_(c d)EG.

If we map J6 onto the interior of the unit disk by the Cayley transformation, the
above result turns as follows. Let

V= oV 16, e'—1
y(D=e "y

be the unit speed geodesic and fi(w)=e > Then

S ay— 1= «}3
filre™®) {l+r2—2rcos(é‘—w) )

b) the product of » upper half planes. Let G=(SL(2,R))" and K=(SO(2))". The
group G acts transitively from the left on " as follows.

h°Z:(h|'Z|,"'yhn’2n)

for h=(h,," h,)EG and z=(z,,*",z,)EH".

Then the isotropy subgroup of zo=(¥/—1,*,Y/—1) is K. We identify 7" with G/K
by using this action. Notice that G can be regarded as a subgroup of SL(2n,R) by
identifying each element A=(h,,-,h,) of G with diag (A,,"*,h,)ESL(2n,R). The
metric of " is given by

Y,Y'>=2trace (YY) for Y,Y' Ep.
Let
y(O)=(e"" =T " J=T)  for 120.

The initial velocity of vy is m, where



Busemann functions and positive eigenfunctions of Laplacian 431

p=%diag (L,—=1,,1,—1),
and [pl=+vn/2. We calculate b(y) by embedding #" into P(2n.R)=SL(2n.R)/
SO(2n). We define a totally geodesic embedding F : #6'—— P(2n,R) by
F(h-z))=h'h for all hEG.
We denote by g,¢* the metric of 8", P(2n,R) respectively. Then we have F*g*=2n
*g. Let

. 1 .
*_ ¥, k) — ] eee | —
a”=diag (al, ", am) 5n diag (1,—1,->-,1,—1),

and
y*(1)=(exp ta™)* x{

be a unit speed geodesic in P(2n,R), where x¢ is the coset of the identity element of
SL(2nR). Let o be the permutation of (2n)-letters defined as follows ;

_< l ee l’ cee n n+1 coe n+j e 2’1)
T\ e 2i—1 e 2n—1 2 e 2 e 2n)

Then we have

. . 1
The only number i such that a¥;+,—ak,#0 is n, and then a¥,+,—ak.,=

ny2’
We have
(4 5).

. x? x?
A= ( +_1’...’ n+ ">’
diag| y, 7 y 7.
B:C:diag<£|_‘...’ﬁ>’

yl yn
. 1 1
D=ding (L L),
1ag Y Vu

where z=(z,,***,z,) and z;=x;++— 1y, for each i. Hence,

D,,(a-F(z)):ﬁ.

From Lemma 5.1 and (5.4), we obtain
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b(y)(2)= == log (3" y.)

Let
fs(Z) — e-ZSIlp“b(y)(:)

be a positive eigenfunction of A. From Theorem 2.5, the corresponding eigenvalue
is s(s—1)n. For z=(z,,"**,z,)€C", we denote by A (z) the product z,**-**z,. Then,
we have

fs(z)=(y.°~---y,1)"’=<,_fi_l[| Im z,~>5=/1/(1m z)*

for zE X",

Let k be a totally real algebraic number field of degree n with ring of integers
Ox. We denote by ¢,,""*,¢, the distinct field embeddings k—— R, where ¢, is just
the inclusion Then we can embed SL(2,0,) in G by

h’_’(¢|(h),"',¢,,(h)) fOr hESL(zaok)*

where ¢;(4) is the matrix obtained from 4 by conjugating each entry of 4 by ¢;. The
group SL(2,0,) acts on #" through this embedding. We denote by cz+d the point

(¢|(C)Zl+¢1(d),"',¢,,(C)Z,,+¢,,(d))
of C" for z=(z,,**,z,)EX" and ¢, dEO,. Then we have

— s\Z
1=

b
d
c¢) Siegel upper half plane. Let [, be the unit matrix of order »n, and

(0 1,,)
J_<—I,, 0) Let

for z=x+v—1y and h=<i )ESL(Z.Ok).

G=Sp(n,R)={h€SL2nR)|'hJ,h=1J,)},

and K=S0(12n)N Sp(n,R). We denote by J6, the Siegel upper half plane of degree
n, the set of all nXn complex symmetric matrices with positive definite imaginary
part. The group G acts transitively from the left on J6, by

A B

« 7= =1 —
h-z=(Az+ B)(Cz+ D) for h (C D

)EG, IEH,.

The isotropy group of zy=+—11, is K. By using this action, we identify /6, with G/
K. Let

a= {dlag (ala”.»am— als“.7_ a,,)eg[(zn,R)}.
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The system of positive roots is
St=2e]1=isn)Ufetel1=i<j<n)}.
The metric is given by
Y, Y>=(n+1)trace (YY) for Y, Y Ep.
So.

. n—i+1 ,
p=diag (o1, 0 =P P ;pf:m for each i,

and

1
||p||2=ﬁn(2n+ 1.

IN
Let a=%< _1> and y(t)=<exp t-“z—">°xo. We have
(57) lalP=Fn(n+ 1), <pa>=-fn(n+1)
We compute the positive eigenfunction
fs(z): e—xﬂa"b(y)(:)
of A. We define a totally geodesic embedding F : J6,—— P(2n,R) by
F(h-zo)=h'h for all hEG.

We denote by ¢,g* the metric of J6,, P(2n,R) respectively. Then we have F*g*=

4n
n+1

g. Let

*— g *o. ky—_ | <1~ )
a” =diag (ai".a3) 22 —1,

and y*(¢)=(exp ta™) x& where x{ is the coset of the identity element of SL(2n,R).

Then »*(¢) is a unit speed geodesic in P(2n,R). We notice that af=-- 25, The

only number i such that a¥ —a¥F0 is n, and then o, —al= —ﬁ. For A=
A B>
(S
<C D G, we have

F(h-zo):h’h———<A A+B'B A'C+B D>.

C'A+D'B C'C+D'D

Hence, from Lemma 5.1 and (5.4),
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b )20 =3/ T by *) (F (he20))

= /"L log (det (C'C+ D' D).

From (5.7),
fu(h-z)={det (C'C+D' D))"
We remark that
Im(h-z)=(z'C+'D)"'(Im z)(Cz+ D)™

A B

for h:<C D

>E G, z&€5%,. If z=z,, then

Im(h-zy)=(C'C+D'D)”".
Therefore, we have
fi(z)={det (Im z)}" 5 for all zE€%,.

From Theorem 2.5 and (5.7) this function satisfies the equation
Afx=%s(s—l)n(n+l)fs.
We also have

o — f:(2)
filh2)= |det (Cz+ D)["*D

A B)
S5 = =G.
for z€%,, h (C D G

Let I' be a torsion-free subgroup of finite index of a) SL(2,Z) or b) SL(2,0)
or ¢) Sp(n,Z). We put [o=I'NN. Let
@ (2)= 2 fih-2) for zE X,
hel\I'

where the sum runs over a complete set of representatives #& I for the quotient I\
I'. Then

is the series obtained from the so-called Eisenstein series by replacing each term by
its absolute value.
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