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Busemann functions and positive eigenfunctions
of Laplacian on noncompact symmetric spaces

By

Toshiaki HATTORI

Introduction

L e t X  b e  a  complete simply connected m anifold of nonpositive sectional
curvature. We can associate each geodesic ray y in  X  with the following function
b(y) :

(0.1) b(y)(x)=1imfd(x, y(t))—  t} for x E X ,

where d is the distance on  X. T h is  is called the Busemann function associated with
y  (which was defined in [7]) and is an important object in the study of nonpositively
curved m anifolds. It is a C 2 convex function and the inverse images b(y) - 1 (t ) ( tE
R) are called the horospheres ([13,17]). By investigating such objects, many results,
for example, concerning co-finite discrete groups F  of isom etries of X  and the
structure of the ends of the quotient spaces F \ X  were obtained (e.g. [3,10]).

In this paper we point out that the Busemann function has other aspects which
do  not appear in  its geometric definition in the case of symmetric spaces o f non-
compact type.

Let us consider the case where X  has constant sectional curvature —1. In this
case, the functions e- 1 " " ) are minimal positive harmonic functions as pointed out
in  [2]. We can show this fact by direct computation. On the other hand, the author
computed the Busemann functions on the symmetric space SO(n)\SL(n,R) in ([15,
16]). The result is as follows. Let P(n,R) be the set of all positive definite symmetric
matrices with determinant I. I f  we identify SO(n)\SL(n,R) with P(n,R) in the usual
manner, the Busemann function b(y) associated with the geodesic ray

y(t)=diag(e 2 ' 111
 
, 11,e 2too/lIall, . . . ,e 2r.J11a11)

is

(0.2) b (y )(x )=
II A  i ( x ) - -

)a f o r  x E  P(n,R),

w here a=diag(a,,— ,a n ) is an element of the Lie algebra of SL(n,R) such that a,<
a 2 <•••< an, Mall its norm with respect to  the metric induced from the Killing form,
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and A 1(x ) the  (i X i)-minor determinant of x  in  the  top  left c o rn e r . W hat does the
product of m inor determ inants in  (0.2) mean ?  Roughly speaking,
i t  i s  a ls o  a  m in im a l p o sitiv e  eigenfunction o f  L aplace-B eltram i operator A  on
SO(n)\SL(n,R) as we show  in the sequel.

Let G be a connected semi-simple Lie group having finite center and no compact
fac to rs. L e t K be a  maximal compact subgroup o f  G  an d  X = G / K  the associated
symmetric space of noncompact ty p e . W e denote by x o the  coset of identity element
eE G . We suppose that the metric o f X  is induced from some constant m ultiple of
the Killing form B of the Lie algebra g of G . Let g=t-}-.0 be the Cartan decomposi-
tio n  of g, where t  is the  L ie  algebra o f  K, and  <,› th e  inner product on  0  induced
from  th e  R iem annian m etric o n  th e  tang en t space T ( X )  o f  X  a t  x 0. W e fix  a
maximal abelian subspace a of 0 and denote by A  the analytic subgroup correspond-
ing  to  a .  L e t  E be the  system of roots o f the  pa ir (g ,a ) . F o r each  root t9 E . we
choose the unique element H o o f a  such that <110 ,H>= 0 (H ) for a ll H a .  L e t  E+
be the  system of positive roots determ ined by som e ordering o n  a .  We put

a + = taE al0 (a )—

and

1 E  H o ,z. 0 E E +

where in  the sum every root occurs a  number of tim es equal to  its m ultiplicity . Let
A = divograd be the Laplace-Beltrami operator on  X . Two geodesic rays y i , y 2 in  X
are said to be asymptotic if d(y,(t),7 2(t )) is uniform ly bounded o n  [0,00) (see §1.2).

Theorem A  (Theorem 2 .5 ) . L et f  :  X — > R  be the function defined by

f  ( x ) =  e
Cb(y)(.v) f o r xE  X,

where y: [0, 0 0 ) - - - +X is a geodesic ray an d  C is an  arbitrary real number. Then
f  is an  eigenfunction o f  A and  the  eigenvalue is given as follows.  L e t  3/ : [0,œ)
— > X  be the  geodesic ray  em anating from  x o w hich is asym ptotic to y  an d  is

w ritten a s  y '(t)= k (ex p  t a  ) • x o , w here aEa +
— {0 }  a n d  kE K. T h e n  the

eigenvalue is

(0.3) C ( C  + 2 < p ,

Ilaall 4

where Ilall=.■kma> •

W hen C >0, the  function f = e C b ( k Y) is som ething like a distance function from
the point ky(œ) at infinity (for precise definition of the points at infinity, see §1.2).
So informally, on  symmetric spaces of noncompact type, the inverse of the distance
function from each p o in t at infinity is harmonic.

Consider the equation

>0 for a ll  OGE ± },
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(0.4) A f = c f

fo r  a n  arbitrary fixed number P .  T he m in im al positive  so lu tions o f this
equation was studied extensively by KarpeleviC ([18]). Let X(00 ) be the boundary
of the Eberline-O'Neil compactification of X and

(0.5) yo(t)=- (exp t—P-
11 IA )  x°

for t 0.

KarpeleviC called the  G-orbit E of 6.= yo(c.) x  (00) "the skeleton of the boundary
of X" (see §2 for more precise description). A nd he constructed a family of functions
p ( , , 2 ) :  X — >R  parametrized by (6,X)EE X a, w hich are positive solutions of

= (11 r  — 11P112) . f  as fo llow s. Let

(0.6) P(x 40)..)= e <P+ " ' for x = n e" xo,

where G= NA K  is the lwasawa decomposition. Since K  acts transitively on  E. for
any 6. = k6 0 E E , k E K , the  function p(x4,X) is defined by

(0.7) p(x,6,X)=p(k-ix,60,X) for

Theorem B (Theorem 2.6). L et kEK, k60EE, ,u E a t  T hen w e have

p(x4p),e-ilp+plib(k7vv) f o r all xE X,

where y  is  the geodesic ray  def ined by

y( t) = (exp t f o r t 0.
I1PP ±± m/./11 x °

By combining this with the  KarpeleviC's result, we can describe the set .Al. o f all
minimal positive solutions f  (x ) of the equation (0.4) such that f (x 0) =  1 as follows.

Corollary C (Corollary 2.8).
jd , _ t e -11p+plib(ky—lkE K , p c:(1-1,

where cG'.-=1.2Ea+ 111 a  = an d  yp ± „(t)=(exp t  rp ±
±

1111)

L et a) : A l, 'X( 00 ) be th e  m ap which sends each ecb(kY) E 4 .  to  the point
ky(co)E X(c0). We regard X(c0) as a geometric realization 171 of the spherical Tits
b u ild in g  o f G  (see §4 fo r m ore  details) an d  obtain th e  following (see §1 for the
definition of the  M artin  and the sphere topology).

Theorem D (Theorem 4.1). The m a p  i s  a homeomorphism from  A l, w ith the
M artin  topology  to its im age 0(./14,.) w ith th e  induced topology  f rom  the  sphere
topology on X (00 ). I f  1= rank  X 2, there ex ists an open neighborhood W  (with
respect to  the sphere topology) o f  th e  (I-2)-skeleton o f  17'1 such  that T(.////,)=
X(00)— W.
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In this way Busemann function b(y) leads to other analytically or algebraically
defined functions when we consider its exponential functions e C b t Y )

There are closely related descriptions in the book "Compactifications of sym-
metric spaces (Progress in M ath. 156, Birkhduser (1998)) written by Y. Guivarch, L.
Ji, and J.C. Taylor. So, such relations have been known to the authors of this book
and the persons concerned. Our paper was first written in  1996, and is independent
of their w ork. The point of view in this paper is different from theirs.

This paper is organized as fo llo w s. I n  § I w e  fix  notation and recall basic
definitions. In  §2 we show that the exponential function of any Busemann function
is an eigenfunction of the Laplacian A and clarify its relation to  the Karpelevre's
functions p (x 4 ,X ). In  §3 and §4, we give some applications of Theorems A, B. In
§3, we consider the case where the rank of X  is equal to 1 and describe the Poisson
kernels in terms of the Busemann functions. In  §4 we return to symmetric spaces of
general rank and try  to  compare the minimal Martin boundary ./1//, with the  Tits
geometry of X(09 ) through the map O. We also compute positive eigenfunctions on
some symmetric spaces by using Theorem A  and explain how to compute them on
general symmetric spaces in  §5.

§ 1 .  Preliminaries

1.1. L et G be a  connected semi-simple Lie group having finite center and no
com pact factors. Let K be a maximal compact subgroup o f  G  and X= G /K  the
associated symmetric space o f  noncompact type. W e  suppose th a t  X  is in -
dimensional, and denote by x o the coset of the identity element eE G . We suppose
that the metric of X  is induced from a constant multiple of the Killing form B  of
the  L ie  algebra g  o f  G .  Let f  b e  the  L ie  algebra o f  K  and  )p the orthogonal
complement of f  in g with respect to  B .  We denote by <,› the inner product on
induced from the Riemannian metric on the tangent space T 0 (X ) of X  at x 0 .  We
fix a maximal abelian subspace ci of ),), and denote by A  the corresponding analytic
subgroup of G . Let E  be the root system of the pair (g ,a ). For each root BEE, we
choose the unique element H o o f  a such that

<110 ,H >=0 (H ) for a ll H E a,

and denote by e the root space { Y Egl{H, Y1= 0(H ) Y  for all H E a). We introduce
a lexicographic order on a and denote by E±, T the system of positive, simple roots
with respect to this order. We denote by I the cardinality of T, which is equal to the
rank of the symmetric space X . L e t

c1+ = tc r E a l0 ( a ) 0  for a ll OET1

the closure of the Weyl chamber Int a + = fa e a l B(oz)>0 for a ll 0 E 7 1 . We put

1
H0,

0 E E +

where every root occurs a number of times equal to its multiplicity in this sum. Let
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n= E 0 E.g8 be  the Lie subalgebra of g and N  the analytic subgroup corresponding
to  n. Let M  be  the centralizer o f A  in  K .  The group P= M A N  is  a minimal
parabolic subgroup o f  G.

For each subset 0  of T, we denote by <0> the set of roots which are linear
combinations of elements in  (i), and put <0> + = <0> n E t  We denote by a ® (resp.
n®) the L ie subalgebra of a  (resp. n) defined by

a®  n ker 0  (resp. n® =  E  ge9),
0E® 8 E z — ( e y

and A® (resp. N ®) the analytic subgroup of G corresponding to a ® (resp. ne ) .  Let L ®

be the centralizer of as. in  G and Pe= L oN o. Note that P = P  and  P T = -G . Pe 's are
called the standard parabolic subgroups of G, and each proper parabolic subgroup
Q is conjugate by some element o f G to  one of Pe 's w ith (:) T  (cf. [5,111).

1.2. We recall the  definition of the Eberlein-O'Neil compactification (cf. [3,
13]). This compactification can be defined fo r any complete, simply connected
Riemannian manifold of nonpositive sectional curvature. But here X is a symmetric
space of noncompact type as in §1.I. By the Cartan-Hadamard theorem, every unit
speed geodesic y: [0 ,œ )- - - X  is a ray : d (y (t) ,y (s))=t— sL t,s O. Two geodesic
rays y i , y 2 a re  called asymptotic if d(y i (t),y 2(t )) is uniformly bounded o n  [0,00 ).
Being asymptotic is an equivalence relation. One define the sphere at infinity X( 0 0 )
of X  to be the set of asymptote classes of geodesic rays in X .  The equivalence class
represented by a  geodesic y  is denoted by y( 0 0 ). A  natural topology, the  cone
topology, on if = X U X(Œ) is defined as follows : F or vE T ,(X ), J>0, and R >0,
let

C„( v,6)= {x E X L xo ( v,

T 0(v ,d ,R )= C 0(v ,6 )-13„(R ),

where T -7,0 i s  the initial velocity of the geodesic ray through x  emanating from x o,
and B „(R )= {xE X id(x 0 ,x)<=R}. Then the dom ains T ,(v,O ,R ) together with the
geodesic balls B ( r ) ,  x E X  form a local basis for the cone topology. The induced
topology on X (œ ) is also called the "sphere topology". The set ST„(X ) of all unit
tangent vectors at xo is naturally identified with X(Œ ) by assigning each vector vE
ST „(X ) the equivalence class of the ray y(t)=(exp tv)•x o . This map also gives a
homeomorphism betw een the (m — l)-dim ensional sphere S T „ (X ) a n d  X(00 )
equipped with the sphere topology. The cone topology is independent of the choice
of the base point.

1.3. Let us consider the following equation on X :

(1.1) A f , cf ,

where A=divograd is the Laplace-Beltrami operator on X . If c < —  Ilp ( 1 . 1 ) has no
positive solution ([18, Theorem 17.1.1]). So we suppose We recall that
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a positive solution f  (x ) of (1.1) is called minimal if every positive solution of this
equation, not exceeding f (x ), differs from f (x ) only by a positive factor. The set ./14,
of minimal solutions f  (x) of (1.1) such that f (x 0 ) =1  is called the minimal Martin
boundary ([19]). W e can introduce a distance d, on 44, by

(x ) — f  (x)I c ,(f f 8 , .. ( i )  I -1 - 1.! (x ) f (x )I 
for f , f

We call the induced topology on ./14, the Martin topology.

§2. Busemann functions

We associate each vector a E a +
— {0} with the Busemann function b (y )  with

respect to  the geodesic y  w ith initial velocity c r / i l a l l .  T h e n  X  is foliated by the
horospheres b(y) - 1 (t), t R ([13]). So we can take a natural (global) coordinate (y,,
--,y„,) such that y i is the signed distance from x o along y  and ( y 2 , •  — , y , n )  corresponds
to the coordinate of the horosphere b(y ) - 1( —  y ,). We express the Laplace-Beltrami
operator A in terms of this coordinate and consider the relation between Busemann
functions on  X  and positive eigenfunctions of A.

L em m a 2.1. L e t y, : [0,00]— > X  ( i  1,2,•••) be a  sequence o f  u n it  speed
geodesics emanating from x o  which converges to a unit speed geodesic y .  Then the
sequence o f  Busemann functions b (y ,) converges to  b ( y )  uniformly o n  every
com pact subset o f  X.

P ro o f  It suffices to prove that the sequence {b( y ,)} converges to b(y ) uniform-
ly  o n  th e  geodesic ball 13,0 (R )  centered at x o f o r  any  positive num ber R .  The
following argument is an  improvement of the one in Lemma 2-3 of [16].

We fix an arbitrary point xE.B.„0(R ) .  Let

bs (y)(x)= d(x,y(s))— s  for s >O.

For each positive integer j ,  w e put 6,= z y ( J)(xo,x) and / i =  d (x ,y ( i ) ) .  Since the
sectional curvatures of X  are nonpositive, from the Rauch comparison theorem ([8]),
we have

O 1:0; (y)(x)— bi + s (y )(x )=  d (x ,y (j))—  d (x ,y (j+s ))+  s

- 1.; — .1l+s 2 +21,J s cos 6; +s.

Hence,

bi (y ) (x )— b (y )(x )  1; 0— cos 64.

Again by the comparison theorem, we have cos Of 
/2 +  1, - 1 1 )

, where / 0= d(x 0,x).

So we obtain
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0 - - b i (y)(X ) — b(y)(x) ( I /2+ 1 -1 1 )
2j1 1

(2.1)
R2 lô— (1 <  17'1 . {d(x ,,x )} 2.2j —  2 j 2 j

Similarly, for each positive integer j,  we put

b f ( y i ) ( x )= d (x ,y i ( j ) ) — j .

Then w e have

R 2 

(2.2) 0<---1);(yi)(x)—b(Y1)(x) z i  •

2For any E >0, we take and fix one positive integer j o  such that jo>  
2 R

  . Then, from

(2.1), (2.2), we have

bj ,(y i )(x ) — b(y i )(x )<
(2.3)

0<=b10(7)(x)—h(y)(x)<I.

For this j o, w e can take a positive integer I  so  as the  following holds.

(2.4) If i I , th e n  d(Y•Uo),A io))<÷i. •

N ote that

bfi(Yi)(x) bi0(Y)(x)1= d(x• Yi(j0)) d (x ,A io ) )1  d( Yi(io), Aio)).

So, from  (2.3) an d  (2.4), we obtain

lb(yi)(x) —  b (y)(x )1 1bio(Yi)(x) — b (y i) (x ) i± ib io (y i) (x ) — bio(y)(x)1

± * .(7 ) (x ) — b (y )(x )1 < 3:

Since x  is an  arbitrary poin t o f  B ( R ) ,  the convergence is uniform  o n  B „(R).

Lemma 2.2. L et y ( t ) = ( e x p  t  
11) x o b e  a u n it speed geodesic, where a E a

— M . I f  crEn + , then th e  B usem ann function b ( y )  is  inv ariant under the action
o f  N  on X.

P ro o f  Lemma 2.1 implies that it suffices to show the following equality in the
case where a  lies in  the  Weyl chamber

In t a+ ={«Ecil 0 ( a ) >0  fo r a ll  6E7'}.
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(2.5) b(y )(h•x )=-b(y )(x ) for all x X  , h N

We note that any element h  of the nilpotent Lie group N  can be written as

h =e Y ; Y =  E Y0; Y ,E g e .
0Ez'

Let )3= cr/liall. Since A d(e - w)Y o = e - ' ' Y0 and e( 13)>O, we have

lim A d ( e )  Y=0 and lim e 'f ih - l e tfi=lim  exp(—Ad(e - t g)Y)=e.
1 - ■ C O

Hence

lim  d(y(0,17 - 1  y (t))=1im
1- '0 0

and

lb(Y )(h • x) — b( Y )(x)1=Ilim (h• x,y(t))—  d(x,y(t))11
t - ■ .0

lim {d(x,h - ' y(t))—  d(x,y(t))11<=lim d(y(t),1C I y (t))=0.
( - 0 0 0

This implies the equality (2.5).

Lemma 2.3. L e t  a E a — {0} a n d  y(t)= (exp t 11:11)•xo. T he restriction o f

b(y ) to the subm anifold A • x o  is given by

b(y )(e H  • xo)=

f o r H E a.

P ro o f  W e rem ark  that A •x o i s  a  totally geodesic submanifold o f X  and
isometric to the Euclidean space le . We take an orthonormal basis v,,•••,v i of a such
that v i =a/Mall. And let (t i ,•••,(,) be the coordinate of a with respect to this basis.
We can regard this coordinate as a global coordinate of the submanifold A• x o under
the diffeomorphism x o .  T h e n ,  f o r  H =n =it iv i ,  we obtain

d (e" • xo,y(s)) —  s div((t ,,••• ,t1),(s,0,• • • ,0)) —  s

}1/2 E L , (t,)2 - 2t , • s  ={(t i —s) 2 + E (t i )2s - `-
i=2 N/(ti - S ) 2 ± n = 2 ( 0 2

Hence

b(y )(e H  • x 0 )= - 1- 1= — <H ,v i >= — <H ,
11:11>

Let G =N A K  be the lwasawa decom position. Then X =N A •x o  is  diffeomor-
phic to  N A . If the initial velocity y of geodesic ray y  belongs to at from Lemmas
2.2, 2.3, we have
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b(y)(ne H  • x0 ) = — <H ,v> fo r nE N , H a .

Since b (hy )(x )=b (y )(h - 1  • x) for a ll h E  G, xE X , *every Busemann function is C' s

o n  symmetric spaces o f noncom pact type . (*T his fa c t sh o u ld  b e  k n o w n . But we
cannot find  its p roof in  lite ra tu re .)  L et a '  b e  the  orthogonal complement of the
R-span of a  i n  a .  W e deno te  by  A ' the  analytic subgroup o f  G corresponding to
a l . F rom  lem m as 2 .2 , 2 .3 , w e have

Corollary 2 . 4 .  Under the assumptions o f  Lemma 2.2, b(y) is N A l  -invariant.
In  particular,

L . x 0 .b(y) - I
( —  s)=- NA

In what follows we take a certain global coordinate of X . L e t  a E a +  — {0}. The
exponential m ap exp . n—>/■/ . i s  a  d iffeom orphism . W e identify n w ith 11" - ' and
d e n o te  b y  q  the diffeom orphism  N—>I2m - 1  in d u ced  from  th e  exponential map.

11 11W e take  an  o rthonorm al basis {v i , - - ,v/} o f  a  su ch  th a t v i = c r / . 7 .  W e  d e f in e  a
diffeomorphism 9 2 :  12.' 1 XR /— > X  by

992((y1, - . ,y .-1 ),(th . - - ,0 )= 9 1  V 1 ,• • • ,Y , , , - / ) • e x p E  tivi)•xoi=1

for (y,, — ,Y .- /)E R ' n( t i , • • • , t r ) E R 1, and put 9 =  g 1 . The ambiguity of the choice
of y 2,•••,v 1 does not affect the proceeding co m p u ta tio n . So w e call 9  :  X —+12m - '
X le  the global coordinate of X  determined by a .  (When a is in the Weyl chamber,
th is corresponds to  the  "orispherica l coord inate" in  [18] and  the  calculation (2.8)
corresponds to [18,(9.9.2)].)

Let

E g ud y  d y

be the metric tensor o f X  in  terms of the  above co o rd in a te . In  this expression. we
have written as y„,- 1+ ,=  t, (i=  1,•••,/) for the sake of convenience . Let us compute

/5=  d e t (g y ) i i ,., „,.

First, we define a  function Ow : Ilm- '—>11. so that the volume form (with respect to
the  induced m etric from  X ) of the subm anifold N • x 0 o f  X  is given by

.1 N (y1 , - . ,y„,-1)dy , A  • A  d y , .

T hat is,

N (y  I , .  • • ,y ,

where x '=  9 - 1((y ,,••• ,,-1),(0, -  • ,0)). N ext, w e com pute

a t th e  p o in t x =  ço - 1 ((y 1,-••,y,,,_ 1 ),(t i ,•••,t 1 )). W e p u t H = E 1,-,t,v,, a=en
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We remark that fo r  YoEg
°
, we have

d ( e ' Y  a • xo,a • xo) =  d (a - 1  et Y° a • xo,xo)
(2.6)

= d ( e x p ( t e -  
da H (370

, ,

) ) • X 0 ,X 0 )=  d(exp(te-e(H )Y0)•xo,xo).

Let 2- be the Cartan involution of g :  i.e. 2
-
1E=lol.t, r l o =  i d . , .  We decompose YE

it as

1 1
Y= Y1+  Y 2 ;  Y I = -

2
r n E t ,  Y 2 = -

2
( Y

—
rn E lo .

Then

e t Y •x o= ex p (tY 2+ [  Y h Y 2]+ O (t 2))•x o,

1and the initial velocity of the curve tl-- -> e ' •  x o i s  Y2=
-
2

( Y
-

2-Y ) .  Hence, from

(2.6), we have

v td et(gu (x )),,, ,_ ,— * N c y , ,• • • ,y ,n _ o o r te  " )

(2.7)

= f , ( Y , , - - - ,y ,,-1 )  H

where e ° " 1e - ° ( " ) and  e - ( 1 1 " 1 >  appear in the product the same times as the multiplicity of
the root O. Let p"= •E , Ip i v i .  Then <p,H>— ip 1t 1. W e define  a  function ifrA-:
111- 1 — > R  by

f A ( t 2 ,— ,1 - 1 ) - = e x p ( - 2 E p i t i ) .i=2

W e rem ark that aat i )  a n d  x aay; are orthogonal to each

j= 1 ,••• ,m - 1. From (2.7), we have at the point x,

(2.8)

We now relate the Busemann functions to eigenfunctions of Laplacian.

Theorem 2.5. Let f :  X — > R  be the function def ined by

f (x )=  exp(Cb(y)(x)) f o r xE X,

where y :  [0, 0°) — > X  is a unit speed geodesic an d  C  is an  arbitrary real number.
Then f  is an  e i g e n fu n c t i o n  o f  A .  The e i g e n  value is given as follows :  L et 7' : [0,
co) — > X  be the unit speed geodesic em anating from  x o w hich is asym ptotic to y

an d  is written as  y ' ( t ) =  k(exp t
11 11

 x 0 , w here cr ci+ — {0} and  k K .  Then the
tr

other for i =1,•••,/ and
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eigenvalue is C (C + 2<p, (11 >).

P ro o f  Since b(y)= b(y')± c for some real number c ([3]), we have e cb ( Y) = e`
c

e cbcy '). So w e can assume th a t y =  y ' .  A nd it suffices to show  the equation

(2.9) 4-=C(C-1-2<p,11:11>)f

in the case where k= e, because b(ky)(x)= b(y)(k -  x ) for any  kE K  . W e use the
(global) coordinate determ ined by cr. The Laplace-Beltrami operator A is expressed
in  terms of (y  ,,••,y  by

1 " i  aE ( , , / 7 9, gu  a 
ay! a v t ) '

where (gu)=(g u ) '  and y - i + i = t, for i = 1,•••,/. From  Lem m a 2.3 and Corollary 2.
4, we have

(2.10)

Notice that

g(  a a  )= 0
\at,

, 

 ay, I fo r i =1,•-,1  ; j=1,•••,m — 1,

n (   a   ,  a  )= 0
a t, a t,/ fo r i * j ,

a  a and  g (  
at ,

,

 a t ,
)=  1 fo r  i = 1,•••,/. Hence, from (2.8) an d  (2.10), we obtain

I  a  (  \_  I  a 
A f a t I V g  a t ) at ' / i C e - c 6 )

= C(C+2p1)e-a= C(C+2<p,11:11))f

Let us consider the relation between the KarpeleviC's functions p (x 4 ,A )  ([18,§
11 )  and the functions e c b ( k Y) . Notice that p E / n t  a t  And let

(2.11) yo(t)= (exp t  rp m )•x of o r  t 0.

KarpeleviC called the G-orbit E of 60= yo(œ )EX(œ ) "the skeleton of the boundary
o f  X "  ([18,§14]). (M ore precisely, he called each se t consisting o f  all m utually
asymptotic geodesics a finite  bundle. A nd for aE ln t a + , he denoted by 60 the point
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on the boundary of the Karpelevie compactification determined by the finite bundle

containing the  geodesic ray y (t)= (e x p  t  x o . T h e  p o in t 60 is  independent of

the choice of crE Int a t  He defined E to  be th e  G -orbit of this p o in t 6 0 .) A nd he
constructed a  family of functions X — >R  parametrized by (6 ) )E E  X  a  as follows.
Let

p(x40,2i)= e<P+ " ' for x =  ne H • x 0 .

Here we remark that each xE  X  is uniquely expressed as x= ne H • xo ; nE N , H a .
Since K  acts transitively o n  E , any elem ent 6 EE can  be  expressed  as 4= k 0 by
using some element k  o f K .  Let

p(x ,6,A ,)=p(k - I x,60,A) for x E X .

This definition does not depend on  the  choice o f  k.

Theorem 2.6. L et k E K , 6=k6 0 EE, g E a t  T hen w e have

P(x 441)=- exP( - 11p+ pilb(ky)(x))

f o r all x E X , w here y  is  the geodesic ray  def ined by

Y (t)=(exp t 1) + , "  ) . f or t O.

P ro o f  Since

exp( - 11p-Fpllb(kY)(x))=exp( - 11p±,ullb(y)(k - I  x)),

and  p (x 4 4 4 =p (k - l x,60,//), w e m ay only  consider th e  case  w here k =e , 6 =6 0 .
Since p ± p E a + ,  from  L em m a 2.2, th e  function  f (x )=ex p(-11p-f -glib(y )(x )) is
N -invariant. A nd from  its definition, p (x 4 0„u) is  a lso  N -invarian t. Therefore, it
suffices to show  th a t the  tw o functions coincide o n  A • xo. From  L em m a 2.3, the
restriction of f  to  A • xo is given by

f  (e l l  • x0)=exp{ - 11p+ p11•( —  <H ,
lif jp ±± gml1 ) ) }  e < P  Y 'H )

for a ll  H E a .  Hence, p(x 4o,,u)=f  (x ) o n  A •xo.

Karpelevie showed the  following in  (the  proof of) Theorem  17.2.1 o f [18].

Theorem 2.7 (K arpelev ie). For — 4)112, le t

a-cF =f aE c il la l 2 =c+IIPPI.

T hen the set A c o f  all minimal positive solutions f ( x )  o f  equation A f =c f  such
that f ( x 0) 1 coincides w ith the set {p(x,641)16EE,pEct,±}.

For each p E  ,  let
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y i,+ ,( t)=  (e x p  t
111;) ±± 11,u 11) • x  °

be the geodesic with initial velocity HP - F i l m B y com bining this w ith Theorem  B, we
IIP±Y11 .

have the following.

Corollary 2.8. Fo r any  num ber c  such that -1Ip112 , the set A I . o f  all
minimal positive solutions f  (x )  o f  e q u atio n  f  = c f  such that f  (x 0) = 1  is given by

. 4 4 , =  f e ,--itp+plibcky„,;)(x)1k K , , u

§ 3 .  Poisson kernels in the rank 1 case

In  th is  section we consider the case where th e  ra n k  o f  X  is  e q u a l to  1 . The
sectional curvatures o f X  are bounded between two negative constan ts. T he  vector
a/licrli in  (0.3) is unique and coincides with  So, the functions e - ( IIP1 1 + 4 Pr+ c)b (k v)

are positive solutions of (0.4).
W e first recall the  definition of Poisson kernel.

Definition 3.1 ([2 1 ]). A  Poisson kernel f  norm alized at x o f o r qe  X  (œ ) is a
positive harm onic function on X  such that f  (x 0 ) = 1  and f  extends continuously to
the zero function on X (œ )— { q} .

Proposition 3.2  ([2, C oro lla ry  5.3], se e  a lso  [2 1 ]).  T here ex ists a unique
Poisson kernel f o r every gE  X (œ ).

By using the  Rauch com parison theorem , we have the following.

Lemma 3.3. Suppose that the sectional curvatures K x  o f  X  satisfy  K a2

< 0  ( a > 0 ) .  L e t crE o=  T ( X )  an d  y ( t )= (e x p  
t 1 : 1 1 )  x o. L e t  vE T , o( X ) ,  e>0

satisfy x(v,a)= 60> (.5'. T hen, for any  positive num ber C, w e have

(3.1) —  Cb( y)( <  (
I C O S (  60 —  61  ) —  C — Cd(zo,,v)

2 • e

f o r all x E  C ,o(v,(7) — {xo}.

P r o o f  L et y ' be the unit speed geodesic joining x o and xE Cro(v,6) — {xo} such
tha t y '(0 )=  x o ,  ) / ( s ) = x .  We denote by j/ (0 )  the  in itia l velocity o f  y '. L e t  Z 0 (û',
y— (0))= c o . T h e n  w 6 > 0 .

L e t u s  consider th e  follow ing geodesic tr ian g le  A(z 1,z2,z3)  in  th e  complete
si m ply  connected  R iem annian  m an ifo ld  /14_„ w ith  co n stan t sectional curvature
— a 2 :
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d m „(z i ,z2)=t, d m (z i ,z3) = s , Z ,(z 2 ,z3 ) =

By the  Rauch comparison theorem, we have

d (x ,y (t)) d ,(z2,z3)•

Let

1,fr= *(s ,t,w )= co sh  as cosh at —sinh as • sinh at cos

By the cosine form ula in  M_ a a, we have

cosh(a•dm,.(z2,z3))= ilr(s,t,w)•

Hence,
ea 'd(x ,y(I)) +  e —a•d(x,y(t))> 2 vr

We are interested in  the value lim .-{ a (x ,y (t))— t}. So we may assume that t >s.
Since co> 0, we have

1 1 0 - 1  e (s- t ) <1<ea ' d ( x•v( 0 ) .

Hence,

e a . d (x ,y (t) ) >  + .10,2 — 1,

and

d (x ,y (t)) , lo g (* - 1-4 2 - 1 ) .

We obtain

(3.2)

Since a> 0,

b (y )(x )=1 im {d (x ,y (t))— t}
t—

lo g (* + 1 * 2 1 )  J =  
1 I . rn log Ifr' + 1 *2 - 1  

i
t-co( a ) a  , '

///, 1 1 li m —  cosh as sinh as • cos w>0.
1 e 2 2

Therefore,

lim =cosh as —sinh as cose '

(3.3) = —
1

(1 —cos 60)e " - E -
1

(1 +cos (0)e - "2 2
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1 1 — a1 — cos cofe"- - (1 — cos(60
- 6 ) )e  s.

From (3.2) and (3.3), we have

lo - ( 1— cos(60 - 6)  ) + s .b (y )(x ) -1

a \ 2

This implies the inequality (3.1).

From this and Theorems A , B, Proposition 3.2, we have the following.

Proposition 3.4. For any  kE K,

P(x,k6o,p)=e
-211pliNk y, ) ( x )

is the unique Poisson kernel norm alized at x o f o r kyo(œ ), where

y o(t )=- (exp t
11:11) )c°

as in  (0.5), (2.11).

lipilb(kr )(R em ark . (1) The fact that e-2 ) is  the Poisson kernel should be already
known, since it is written (without proof) in [4] that e - " ( Y) , where h is the entropy,
is the Poisson kernel for y(00 ).
(2) For c*O,I I P  1 1 2 , it also follows from the above argument that the function
P ,= e-dpii+./110+0b(ky) is something like Poisson kernel in the following sense : (a) (A
—c)P c =0 , (b) P c (x 0 ) =1, (c) P. extends continuously to the zero function on X(00)
—{kY( œ )}.

§ 4 . Minimal Martin boundary and sphere at infinity

We recall that the sphere X ( 0 0 ) at infinity of X  can be considered (as a set) a
geometric realization 171 of the spherical Tits building T  of G ([3,11]). For each a
E a +  —{0}, let

y ,(t )= - (exp t  xo

be the unit speed geodesic with initial velocity We put

C o = fy (c 0 )l a a + }.

Since a is decomposed as the union of the closures of Weyl chambers, ly„(œ )laE
a — {0}}, the intersection of the flat A •x o w ith X(0o), is decomposed as the union of
some translates kC o (k E K )  o f C o.  A nd X( 0 0 )  is decomposed as follows.

X(œ)= U hCo= kU Ic( 0 .hE G  
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Let T={ 0,,--,0 1} be the system of fundamental roots of a as in §1.1. For each subset
8 of T, we put

e 0(0)=1Y .(œ)i a E a+ — {0} ,8 (a)= 0 for all BET — e l.

Then C o becomes an (/ — 1)-dimensional simplex with ! vertices Co(101}),•••,Co(18/})-
Each C0(0) (O CT) is a  (#0-1)-dimensional boundary face. The set X  of all
simplices he 0(0 ) of X(œ ) becomes a simplicial complex.

On the other hand, the spherical Tits building T  of G  is, by definition, the set
o f all (identity components of) parabolic subgroups Q G  equipped with the
following partial ordering < : Q<Q' i f  QDQ' (see [6,22]). If 4 is  an interior point
(in the sense of simplex) of h o(e), where hE G, then the isotropy subgroup G4  of
4- is  So, the set X  is naturally identified with the set of a l l  (proper)
parabolic subgroups of G .  For h1,h2E G, and 0 1,02CT, we have hi Co(01)Chzeo
(02) iff h 1P® h i D h 2 P 0 K I .  Therefore, in the above identification, the inclusion in
X  is compatible with the relation < : hi Co(81)Eh2Co(02)  i f  hiPeAT i < h2Pe,h 1 •
Thus, X(œ ) can be regarded as a geometric realization IT  o f  T .  We denote by
T r  the (I - 2) - skeleton of 17'1 for 1 2.

Let c -1Ip112 . We recall that

A c = Ip( x ,6,12 )16E7.:17,11 E a c+1=  f e -+Anck7p„) E  o ,±, k  K 1.

We define a map 0 : ./14,-- -+X( 0 0 ) by
c e - lp+Ab(ky,+,1= k

•
 y p + ( 0 0 )  f o r  p  a -cl-  k  K

In the rank 1 case, it follows from Proposition 3.4 and the succeeding Remark
that our map 0 coincides with the homeomorphisms .44,— >X(œ) constructed in [1,
2] by Anderson-Schoen and A ncona. In the higher rank case, 0  is  a  somewhat
different kind of map from the ones in [1,2].

Theorem 4.1. T he map 43. is a  homeomorphism from ./K, with the M artin
topology to its image ti)(11/1,) with the induced topology from the sphere topology on
X (co ). I f  rank X=1, then 0(./14,)= X (œ ). I f  1= rank X 2, there exists an open
neighborhood W (with respect to the sphere topology) of s u c h  t h a t  0 ( 4 71,)=
X(00)— W.

R em ark . (1) The neighborhood W depends on the value c. If c  becomes
larger, then W becomes smaller (see Figure). Let us identify .44, with the image of
0 . Then ./U-P=E, .44,c./(4,., if  c< c', and

where the closure in the last equality is relative to the sphere topology.
(2) In the case c=0, we also have an ideal boundary of G, namely the maximal
boundary B (G ) of G defined by Furstenberg ([15]). The maximal boundary of G
is identified with G / P = E .  Thus by embedding B (G) and .M0 into X( 0 0 ), we have
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Co

Xo

Figure. The case I= ran k X  =3 . The intersection of E and  Co consists
of a single point 70 (00) and ./He n  c 0 = {7 ,+ , (0 0 ) Ip E a }.

an inclusion relation as follows.

(  m axim al )  (minimal Martin geometric
\boundary E boundary .440( b o u n d a r y  X  (00)i

P ro o f  Let

.4 {y 0 +0 (œ)IpEcC } ,

where act=laEalliœr=c+11p11 2 1 as in §2. Since .4, is compact and T (.4 )=
(./Ii) is a compact subset of X(œ ). We notice that .44, is Hausdorff and that cD(.44,)

is metrizable (by using the angle m etric ). S o  w e show tha t (V I is continuous.
I t  suffices to  p rove  the following : If  a  sequence Ip1=1,2,... of points of 1)(4 )

converges to  pEO(.R,), then

lim d,(0 - 1 (p,),0 - 1 (P))=0.

Let

(I)  l (p i )(x )=e ; iti 0  —{0}; kiE K

for each i, and
0 - 1(p ) ( x ) ,  e -11p+y llb (k y ,o (x )  ; E  0 + _ {0} ; kE K.

Then,

P‘= k  • Y p+g,(œ), 19 = k • yp+p(œ).

Since h m , p , - = p ,  the sequence {k, 7, ± } of geodesics converges to  k y , + ,. Let a,
=-11p+pill, a p +uM. W e  w r i t e  b „ b  instead o f  b(y  p+,), b(y  p + , ) ,  respectively.
From  Lem m a 2.1, for any positive E ,  there exists a positive integer I  such that the
fo llow ing  ho lds. If i I , then

(4.1) alb,(x)—  b(x) < log  (I+e ) for a ll xEB,o(I),
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(4.2) (1 - FE).

L em m a  4 .2 . Let

0.1,1(x)=1 1 — e ( b ( x ) - " x l ,  0 .2,1(x)=1e - 11.

Then, for i I, w e  have

0.,, ; (x)<E, lbs 2,1(x )<E on 13x0 (1).

P ro o f  W e only show the inequality fo r 1/12,i .  (W e can show the inequality for
in  a  sim ilar way.)
We remark that Ilgrad b1M 1 ([ 3 ]). Since bi (x 0 )=0, we havelbi(x)15 1 on B 0 (1).
C A S E  1. Suppose th a t a f a- a . If b (x ) O, from  (4.2), we have

Ifrz ,(x )=  1— e 'mx,‹ 1—  e" - '<1— e - k 'gv +  ')= 1 1 
1 <E.4-E

Similarly, if b,(x)<O,

0.2,1(x)= e`" - ' )b '( x ) — 1 — l< e k'w +') — 1= E.

C A S E  2 . Suppose th a t a ,< a . If b(x)=>O, then

e x) — 1 < ea—a, _I< 1=  E.

If  b(x)<O,

1 
a  < 1 —  e — i ° g ( 1 ± d =

1  +  E  
< E

From  the  above lemma and th a t Ib1(x)15. I , lb(x) -51 on B ,(1 ) ,  we obtain

aln(x) e —ab(x)1 ,  e-ab(x). e' • Vr1(x)< sea,

e-,b,(x)..0.2,1(x)_<ea•*2,4 )<eea•

W e have

11:13-1(P1)(x)—(1)-1(P)(x)1=
a,b,(x) e — ab(x)1 ‹  2 E e a

uniform ly on B , ( 1 ) .  Hence,

d,(.13 - 1 (P;),<13 - 1 (P)) 5 f o lc13 - 1 (Pi)(x) — (1)- 1 (P)(x)1

Vol (B x o (1))• E

This shows that lim 1d c (c1)- 1 (p 1),0  l (p ) )= 0 .

§ 5 .  Computing positive eigenfunctions

5.1. W e com pute  positive  eigenfunctions o f  L a p la c ia n  A  in  th e  c a se  X =
SU(n)\SL(n,C) and com pare it w ith  the result o f  Dynkin ([9]). We m ust m ake a
few modifications (besides the obvious m odifications) on the results in  §2, since the
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symmetric space is regarded as the  se t o f righ t cosets in  [9 ]. T h a t is , we need to
change

y ( t)= ( e x p  t 11:11) • x o

in  Lemma 2.2, Theorem 2.5 into

y( t)=  x o • exp t

and

y (t )= (e x p  t
1113P ).x0

in  Theorem 2.6 into

+  
y(t)=xo•exp t

fp+ 11,1/11) .

W hen we treat the set of left cosets SL(n,C)/ SU(n), the  isotropy subgroup G ( .0) o f
y(00) is  N  i f  th e  in itia l velocity o f  y  belongs to a+ .  But when we treat the set of
right cosets, G ( 0) = N  i f  the initial velocity of y  belongs to —a± = {— alaE a ± }.  We
denote by Lemma 2.2', Theorems 2.5', 2.6' respectively the correspondents obtained
by this m odifications. W e also rem ark that in  [9], the metric o f SU (n )\SL(n ,C ) is
induced from th e  1/n of the  K illing form.

L et G = S L (n ,C ) and  K = S U (n ) .  W e can identify K\G with the set P(n ,C ) of
a ll nX n positive hermitian matrices with determ inant 1 ; i .e .  G  acts transitively on
P(n,C) by x • h= tfixh for xE P (n ,C ), hE  G , and the isotropy subgroup of L=diag
(1,–•,1) is  K .  (W e use bars over complex matrices to denote their com plex conju-
g a te s . A nd  w e denote by 7/ the transpose of the m atrix  h .)  Let

a=ta=diag (cri, — ,a„)Itrace a=0,a 1E R  for a ll  il.

For each i, we define a  linear m ap e, . a— >R by

e 1 ( a )= cy 1f o r  a = d i a g  ( a 1 , — ,an)Ea.

The system E  of roots (resp. the  system E±  of positive roots) is given by

,j

(resp.

The root space corresponding to e, — e is given by CEij, where Ey is  the
n X n  m atrices w ith  i - j  e n try  1, a ll o ther en tries be ing  O . S o , every  root has
m ultiplicity 2 . T he metric is given by

<Y, Y'>=4Re(trace( YY')) for Y,

So, the  norm  o f a= ( a i ,•••,a,,)ECI is
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Mcd=2{± (oei) 2 } 112 .
r I

W e also have the following.

H (Ell—  k ) ,4

1 1
p = - -, E  H e• •diag (c ,,•,c„),' 

c i=  
n - 2 1 + 1

 i = ,n.2

For

cyEn + =tdiag(cri, — ,a,,)Ealal

let

y (t )= x o•exp( t1 1:11) for t O.

For fi=diag (# 1,•••,fi„)Ea, w e put

d=diag „)= x o • efi ; Le. d , = e'fi' for i =

Then, from Lemma 2.3, we have

E;'=ia,(5.1) b(y)(xo• ef3)=< log d  
DaM ir= ,(c r ,)2

We rewrite the right hand side of (5.1) in an N-invariant form . For xEP(n,C), let
.L i (x ) the (i X i)-minor determ inant in the upper left corner. Then

(5.2) d + ,(d) '4 ,(d )

And for each i, we have

4 1(d • h)= 4 i (d ) for a ll  hE N

F rom  (5.1),

b ( y ) ( d ) = 7
 1

2{ ,E , a ,  log d,— ajlog d 1+ "-Flog

n-1

I i ( a ) 2 i a )  log d 1 =  1  
= i ( a )2 log ( i l )•

Here, from (5.2), we have
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n-i
11(d ,)
i= 1

=  I (d ..( A 2 (d)r  
A 2(d) ) * Au-2(d)

)

= H  •L i (d )
i=1

Hence

l l
b(Y )(d)— 7=1(

a i)) 

l o g  f

Therefore, from Lemma 2.2',

1 (5.3) log { H ,L i(x )
b ( 7 ) ( x )  A/E7=i(ai/ 2

for a ll x E P(n ,C ).
In particular, if

o =p +p , j  = di ag (1.1 „) E a + ,

then

4 _ 1 1
2 eid-1) — (p i 2 c i) — p i+1  At; 2 •

Hence, from (5.3) and  Theorems 2.5,' 2.6',

p (x ,6 0 ,p )=e
_,

—exp {2 log 
(„
H
i=1

is  a  positive eigenfunction o f  L aplacian  w ith  eigenvalue 11p112-11pr• I n  Dynkin's
paper, the coordinate o f aE a +  is tw ice our coordinate (a 1,---,a ,). So, let y i 2ji i :
i = 1,•••,n. Then w e have

n - 1

p(x ,0,11)= H  A i ( x ) y ,+ 1 - y + 1
•

This coincides w ith the form ula (39) in  [9, Theorem  3].

5.2. W e can com pute th e  Busemann functions o n  X  = S L (n,R )/ S O(n) in  a
similar way in  5.1. W e w ill use this result in  the  rem ainder o f th is section.

L et G= S L (n,R ) an d  K = S O (n ). W e identify G / K  w ith the set P(n,R ) of all
n X n positive definite, symmetric matrices w ith determ inant 1 ; i.e . G acts transitive-
ly  o n  P(n,R ) by h• x= hx` h for x E P(n ,R ), hE  G , and  the  isotropy subgroup of I,
is  K. L e t
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n={a=diag (a 1,--,ajtrace a=0,cr i E R  fo r a ll i).

The system of positive roots is

={e,— e1 1 I

and

a+=jdiag

The metric is given by

< Y, Y'>= 2n •trace ( YY') for

So, the  norm of a=(al,•••,oe,)Ect is

mall= {2ni(axy 2
.

F o r trEa—{0}, we put

y ( t ) = ( e x p  t 11:11)
fo r  t O.

Lemma 5.1. Let cr=diag (a l,•••,a,,)Eo — {0}.
(1) I f  aEa ± , then

b ( y , ) ( x ) =  

where (x ) is the ( jX  j) -m in o r  determ inant in the low er right hand corner.
(2) I f  tr O a +  , tak e a permutation 6  o f  n  letters such that a , ( 1 ) - ••• -cr Ø.,,, ) .
Then

(11_,
b (y e ,) (x )=

'cla l og

where x— ( x ( f ) U) )  f or x = (x u )EP(n,R).

5.3. We compute some o f th e  p o sitiv e  eigenfunctions o f  Laplacian on  the
upper half plane, the n  product of upper half planes, and Siegel upper half spaces.
Let us first consider the  following situation.

The symmetric space X  is embedded totally geodesically in  another symmetric
space X *  o f noncompact type  v ia  a  map F :  X — , X * .  We denote by g , g *  the
metric of X , X * respectively. There exists a positive constant C  such that F*g*=-
Cg, where F * g * is the pulled back metric on  X  by F  from the metric g * • I n  this case
we can reduce the computation of the Busemann functions o n  X  to the  one on X*
as follows.

Lemma 5.2. Let F . g ,  g *  be  as  ab o v e . Let y :  [ 0 , 0 0 )  - - - , X  be a
unit speed geodesic, and y * th e  u n it speed geodesic on X * def ined by  y*(t)=



Busemann functions and positive eigen fun ction s o f  Laplacian 429

F (y(t [ NIT')) for t O. T h e n  w e  have

1(5.4) b (y ) (x )=  Arc, b (y *)(F (x )) f o r all

W e recall that every sym m etric  space X = G / K  o f  noncompact type can be
embedded totally geodesically, isometrically into P(m,R), where m is some positive
integer, provided that one m ultiplies the metric on  each irreducible de Rham factor
o f X  by a  suitable positive constant.

Proposition 5.3 ([20],[12, A ppendix, P roposition (19)]). L et L: G — >SL(m,
R) be a faithful (m od center o f  G ) representation such that
(5.5) the image o f  G  is self-adjoint.  L e .  11.(G)}.= t(G),
(5.6) t(K)OES0(m).
Then the m ap F: X = G/ K — >P(m,R)= SL(m,R)/ SO(m) given by

F (hK)= t(h) 1 {e(h)} f o r all hE G

is  an  isometric, totally geodesic embedding after multiplying the metric on  each
irreducible de Rham f ac tor o f  X  by  a  suitable positive constant.

W e can always construct such a  representation t  . G >SL(m,R) satisfying (5.
5), (5.6) by using the adjoint representation (, in  which case m= dim  G ). Therefore,
in  principle, we can compute the (minimal) positive eigenfunctions of Laplacian on
any symmetric space of noncompact type explicitly by using Corollary 2.8. Lemmas
5.1, 5.2. But in each case which we treat in the remainder of this section, there exists
a m ore natural representation t  . G— >SL(m,R) than  the  ad jo in t representation.

a) upper half p la n e . Let

ge= lz= x+ ,/ -1yE C ly> 0)

be the upper half plane with constant sectional curvature — 1 . L et G=SL(2,R ) and
K= SO(2). The group G acts from the left on le by fractional linear transformation.
W e identify G / K  w ith P(2,R) as  in  §5.2. Then the  po in t in  P(2,R) corresponding

to  z=x-i- - 1 y E le  is ( Y + x 2 / Y  x / Y ) .  The metric is induced from the half of thex/y l/y
K illing form  of the  L ie  algebra g o f  G ;  i.e.

<Y ,Y'>= 2 trace ( YY') fo r  Y,Y'EIJ,

Let

y ( t ) =  
t/2 

e
-

2
)• X0 —  1 . e1 fo r  t O.

T he in itia l velocity o f  y  is 2p, where
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and MpM= -
2I •

_ 1  (I
P 4  \ I/'

Then, we have

b (y ) (x +,1 -1 y )= —log y.

Let f s be a function defined by

f s ( z ) =  e -2s11/311b(y)(:),

where s  is a real number. Then we have

f s(z )=(Im  z )s,

and from Theorem 2.5, A f ,=s(s — l ) f , .  We also have

f s(h" „z )=1 -f i z2112, for h = l a G .

If we map X  onto the  interior of the unit disk by the Cayley transformation, the
above result turns as follows. Let

y ( t ) = e
,

'  
e1-1 
et -1-1

be the unit speed geodesic and f s(w )=e
-2 s 1 Ip llb (y )(w ).  

Then

r2  

f s(re1-7')={ —1-H2-2r cos (6 —  co)}

b) the product of n upper half p la n e s . Let G=(S L (2,R ))" and K =(S 0 (2 ))" . The
group G acts transitively from the left on Ye" as follows.

h •z =(h ,•z i ,- - ,h ,•z ,)

for h =(h ,,- - ,h „)E G  and z =(z i ,•••,z „)E1r.

Then the isotropy subgroup of z0= ( /- 1,—,V— l) is K .  We identify X" with G /K
by using this action. Notice that G can be regarded as a subgroup of S L (2n,R ) by
identifying each element h=(11 1,•••,h„) o f G  with diag (h 1,•••,h„)ES L (2n,R ). The
metric of X  is given by

<Y, Y'> 2 trace ( YY') fo r  Y,

Let

y (t)=(e t i f Ti • —1) for

The initial velocity o f y  is  11: 11, where
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1.p =  4  diag (1,-1,•••,1,-1),

and  11P11 = i - W / 2 .  W e calcu late  b ( y )  by embedding .7 "  into P(2n,R )=S L (2n,R )/
S O (2 n ) .  We define a totally geodesic embedding F : .76"— >P (2 n ,R ) by

F (h •z 0 ) = li t h for a ll hE G.

We denote by g , g *  the metric of ge" ,P (2n,R ) respectively. Then we have F * g * = 2n
• g. Let

* =d iag (a*, ••• cy * )=  1  

2 4 .n  d ia g

and

y * (t )= (e x p  ta* )•x :

be a unit speed geodesic in P(2n,R), where x: is the coset of the identity element of
S L (2 n ,R ) . Let a  be the permutation of (2n)-letters defined as follows ;

••• i ••• n n+ 1 n ± j  • • •  2 n
••• 2 i - 1 2 n - 1 2 ••• 2j ••• 2 n  )•

Then we have
*  > *

CY a( I — a( 2 n)•

1 The only number i  such that a (i+1)
— a 0.* (0 0 is n ,  and then

n,I2 •

We have

( A  B\f y •  F ( z ) =

C  D ) ;

2

A =d iag y 5 ,Y  n  yn

B = C = d ia g ( 1 • •  x "
Y i' Y n)'

. 1
D = d i a g  — , •  

1
••

Y1

where z=-(z ,,•••,z ,) and z il y i  for each i. Hence,

1 F (z ))=
y i • • • • • y „

From Lemma 5.1 and (5.4), we obtain

6 = (
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1 b(y )(z )= ‘/T1 lo g  (y i • ••• • y„).

Let

f s ( z ) = e
- 2 4 nlib(y)(z)

be a positive eigenfunction of A. From Theorem 2.5, the corresponding eigenvalue
is s(s — 1)n. For z =(z 1,--,z ,)EC", we denote by Ar(z) the product z,  z , .  Then,
we have

fs(z)= (y , • • ..y ,)' fi 1m 4 = i r o n zy

for zEYe".
Let k be a totally real algebraic number field of degree n  with ring of integers

k. We denote by 96, 1,•••4 „  the distinct field embeddings k-- > R ,  where 0 1 is just
the inclusion Then we can embed SL(2,0 k )  in  G by

h l—q0 ,(h),- • • ,ch „(h)) for hES L (2,0 k),

where 0 1(h) is the matrix obtained from h by conjugating each entry of h by ch,. The
group SL(2,0 k ) acts on .76" through this embedding. We denote by cz+ d the point

(0 ,(c )z ,+0 1(d),•••,0„(c)z ,„+0„(d))

of C" for z =(z i ,•••,z„)E.76" and c,dE O k .  Then we have

f  s ( z )  
f , (  • z)-=

(cz d)12'

( c
c
i
. d

b  ) E S L(2,0 k) •for z = x + — ly  and h=

c) Siegel upper half p la n e . Let I„ be the unit matrix of order n, and

=
0

1„ /
(

. L e t
J

0  

G= Sp(n,R)={ hESL(2n,R)1 1 hJ„h=

and K = S O(2n)n S p(n,R ). We denote by .7e,, the Siegel upper half plane of degree
n, the set of a ll n X n complex symmetric matrices with positive definite imaginary
part. T he  group G acts transitively  from  the le ft on .76„ by

A Gh• z= (A z+  B)(Cz- - for h= (

D '

The isotropy group of z0 = J - 11„ is K . By using this action, we identify .76, with G/
K. L e t

a=ldiag
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The system of positive roots is

E ± ={2e i ll <=i<=n)Ute,± 1 nl.

The metric is given by

< Y, Y'>=(n + 1) trace ( YY') for Y ,Y 'E l.

So,

and

n—  i+ 1 
p= diag 2(n+.1)

11p112 = 1
1
2 n(2n+1).

for each i,

L et a =
1  (I
2

n )  a n d  y (t)= (exp  t W e have
\ —/„

(5.7) 21 n(n +1), <p,a>=+In(n+1).

W e compute the positive eigenfunction
f 5 ( z )

of A . W e define  a  totally geodesic embedding F : „— > P (2n ,R) by

F ( h z 0 )—h t h for a ll  hE G.

W e denote by g,g * th e  m etric of .76„, P(2n,R) respectively. Then w e have F * g* =
4n g .  Letn+1

*.. * .=  1  
cr*=diag

(
(a l ,  •,a )

and  y  (t)= (exp  ta * )• 4`, where )4  is the coset of the identity element of S L(2 n,R).
Then 7* (t) is a  un it speed geodesic in  P (2n ,R ). W e notice th a t tr',' .  The

1 
only num ber i  such  tha t ce*+ ,—ce"-± 0 is  n, and  th e n  ce*„± 1 —a*,= F o r  h=

( A  .13
)

E G  w e  h a v eD '

F ( h • z o ) =  h t h =
(A1 A +  B C + 13 1 1J

C  A-FLY B  C C H -D t Di .

Hence, from Lemma 5.1 an d  (5.4),
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b(y)(h• zo)= \I "
4
+

11
1 b(Y * )(F(h•zo))

/n-F1 
2 n  log Wet ( C I CH-D f D)}.V 

From  (5.7),

L(h'zo)=4clet ( CCH - Y D ) )  s ( n ; I )
 •

W e remark that

Im (h •z )=(  C -P D ) - 1 (Im  z )(Cz +D) - 1

for h ( z E j e)B .\ If z =z o , thenD n

Im (h•z o )=(C 1C F D I D) '.

Therefore, we have

s(z)= Wet (1m z)}  
(n

.f  for a ll zE..76„.

From  Theorem  2.5 and (5.7) this function satisfies the equation

A fs= "2 s(s - 1)n (n+l)f s .

W e also have

f ,(h •  z ) -- fs(z)Idet ( Cz +D )1" ± ')

for z E .7 ,  h = ( Ac
 B

D )E G.

Let be a torsion-free subgroup of finite index of a) SL(2,Z) or b) SL(2.0k)
or c ) S p (n ,Z ). W e put roo= r n N .  Let

q),(z)= E  f s (h•z ) for zE X ,
her.v-

where the sum runs over a complete set of representatives h E T  for the quotient Foc,\
F .  Then

E,(z)—  p z )

is the series obtained from the so-called Eisenstein series by replacing each term by
its absolute value.

D E P A R T M E N T  O F  M A T H E M A T IC S

T O K Y O  IN S T IT U T E  O F  T E C H N O L O G Y
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