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Outline

In this paper we investigate the possible self-similar metrics on self-similar
sets. Traditionally, a self-similar set is associated with a family of contractions
on a metric space. One often finds two of these self-similar sets are homeomor-
phic to each other, for example, the unit interval and the Koch curve (Figure
1). These two self-similar sets have the same topological structure but the dif-
ferent ‘metric structures’. Moreover, we will later see that there exist many
metric structures on this ‘topological’ self-similar set (Example 1.16). Roughly
speaking, our question is the following: What metric does a self-similar set
admit?

Our notion of self-similar sets is slightly different from the classical one.
We introduce the notion of topological self-similar sets, which is a generaliza-
tion of self-similar sets. While a self-similar set is associated with a family
of contractions on a metric space, a topological self-similar set is abstractly
constructed from the shift space.

By definition, there are no a priori metric on a topological self-similar set
K. Our first aim is to find a distance function which makes K self-similar, which
is called a self-similar metric. We will construct a self-similar pseudometric on
K, however, the existence of a self-similar metric depends on the topology of
K. We will give an example of a topological self-similar set which admits no
self-similar metric. We also discuss some sufficient conditions of the existence
of a self-similar metric.

Secondly, we study a critical property of self-similar metrics. Suppose that
a topological self-similar set K admits a self-similar metric. Then K together
with the metric is a self-similar set associated with contractions. But there is
some restriction, that is, the possible Lipschitz constants of the contractions
are bounded below. We expect that the lower bound, which we call a critical
polyratio, is an important characteristic of topological self-similar sets. Using
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604 Atsushi Kameyama

Figure 1: The Koch curve

an analogue of Milnor-Thurston’s kneading theory, we will calculate of critical
polyratios for a certain class of self-similar sets.

Introduction

The idea of self-similar sets has developed gradually. Classically, there are
well-known self-similar figures including Cantor’s ternary set and the Sierpinski
Gasket. One can see that these figures are invariant sets of finitely many
similitudes. Moran’s result [15] is one of the earliest works from this point
of view. This classical notion is refined through the works of Williams [20],
Hutchinson [6] and Hata [4]. Their self-similar sets are constructed from finitely
many contractions instead of similitudes (Definition 0.2). Afterward a purely
topological definition (Definition 0.3) is given by the author [7] and Kigami
[11]. One of the motivation of our study is to clarify the difference between
these notions.

Definition 0.1. Let (X, d) be a metric space. A continuous mapping
F : X → X is called a contraction with respect to the distance d if

Lipd(F ) = max
x�=y

d(F (x), F (y))
d(x, y)

< 1.

The constant Lipd(F ) is called the Lipschitz constant of F , and it is also called
the contraction ratio of F .

Definition 0.2. Let (X, d) be a complete metric space. Let F1, F2, . . . ,
FN be contractions on X. Then there uniquely exists a nonempty compact set
K ⊂ X such that

K = F1(K) ∪ F2(K) ∪ · · · ∪ FN (K).

We say that K is the self-similar set associated with F1, F2, . . . , FN .

By this definition, one can consider the self-similar set K as the attractor
of the semigroup action generated by F1, F2, . . . , FN (see [4] for detail). In
fact, for any word w = i1i2 . . . ik ∈ {1, 2, . . . , N}k, the composition Fw =
Fi1 ◦ Fi2 ◦ · · · ◦ Fik

has a global attractive fixed point xw, that is,

xw = lim
n→∞Fw

n(x)(0.1)
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for any x ∈ X. Then we have an expression

K = closure

{
xw |w ∈

∞⋃
k=1

{1, 2, . . . , N}k

}
.

Thus a dense subset of K is ‘coded’ by the set of finite words. Moreover, let us
see that self-similar sets have a stronger property called ‘coding property,’ the
whole set K is coded by the set of infinite words. We denote by ΣN the one-
sided shift space with N symbols, i.e. the set of one-sided infinite sequences of
{1, 2, . . . , N}, which is identified with the mapping space {1, 2, . . . , N}N = {a :
N → {1, 2, . . . , N}} and is equipped with the topology of the direct product of
the finite set. Then for any a = i1i2 · · · ∈ ΣN , similarly to (0.1), we have a
unique point xa ∈ K such that

xa = lim
k→∞

Fi1i2...ik
(x)

for any x ∈ K, and also an expression

K = {xa | a ∈ ΣN}.

This correspondence between a and xa yields a continuous surjective ‘coding
map’ π : Σ → K such that the diagram

Σ τi−−−−→ Σ�π �π

K −−−−→
Fi

K

commute for all i = 1, 2, . . . , N , where τi(w1w2 . . . ) = iw1w2 . . . . In the light of
the coding property, we propose a purely topological description of a self-similar
sets as follows.

Definition 0.3. A compact Hausdorff topological space K is called a
topological self-similar set if there exist continuous maps F1, F2, . . . , FN : K →
K and a continuous surjection π : ΣN → K such that the diagram

Σ τi−−−−→ Σ�π �π

K −−−−→
Fi

K

commutes for all i. We say that (K, {Fi}N
i=1), a topological self-similar set

together with the set of continuous maps as above, is a topological self-similar
system. We call π the coding map of (K, {Fi}N

i=1).

Clearly, a self-similar set associated with contractions F1, F2, . . . , FN is a
topological self-similar set. However it is not easy to see whether the converse
is true or false.
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Problem 1. Let (K, {Fi}N
i=1) be a topological self-similar system. (1)

Is there a distance function d(·, ·) on K such that all Fi are contractions with
respect to d? (Such a distance is called a self-similar metric.) (2) If the answer
is negative, what kind of topological self-similar sets has a self-similar metric?

The first half of this paper is concerned with this problem. In Section 1 we
construct a standard pseudodistance Dα(·, ·) on K for α = (α1, α2, . . . , αN ) ∈
(0, 1)N which satisfies Dα(Fi(x), Fi(y)) ≤ αiDα(x, y) for all i. We say that α is
the polyratio of Dα. A standard pseudodistance is the basic tool throughout this
paper. We will show that there exists a self-similar metric if and only if there
is a polyratio such that the standard pseudodistance is a distance. Moreover, if
the standard pseudodistance with polyratio (α1, α2, . . . , αN ) is a distance, then
the standard pseudodistance with polyratio (α′

1, α
′
2, . . . , α

′
N ) such that αi ≤ α′

i

for all i is also a distance. This fact gives rise to the following problem:

Problem 2. Find critical polyratios, i.e. minimal polyratios such that
the standard pseudodistances are distances if exists.

The set of critical polyratios is considered as a measure of the topological
complexity of a topological self-similar set. We will see in Section 3 that it
has a strong relation to the topological entropy. In Section 1 we also present a
result on totally disconnected topological self-similar sets. For a self-similar set
K associated with one-to-one contractions F1, F2, . . . , FN , it is known that the
connectedness of K is restricted by the Lipschitz constants of the contractions:
if
∑N

i=1 Lip(Fi) < 1, then K is totally disconnected (see [20] and [4]). Our
result is following: a topological self-similar set is totally disconnected if and
only if the set of critical polyratios consists of only one point (0, 0, . . . , 0), i.e.
any standard pseudodistance is a distance.

We also give a counterexample to Problem 1 in Section 1, that is, we
will show that there exists a topological self-similar set without any self-similar
metric. This example is constructed as follows. First we introduce the notion of
the critical set of a topological self-similar system, which will play an important
role in our study. As in the study of interval dynamics, we use the idea of
kneading invariants, which is determined by the behavior of the critical set.
We will see that a topological self-similar set is, in topological sense, a quotient
space of ΣN with respect to a equivalence relation ‘generated’ by the kneading
invariant, moreover, under a certain condition, we can construct a topological
self-similar system with a given kneading invariant. Specifically, we show that
there exists a topological self-similar system which has the kneading invariant
same as that of an irrational rotation on S1. From the fact that an irrational
rotation is volume-preserving, we see that this topological self-similar system
has no self-similar metric.

In Section 2 we consider topological self-similar sets (K, {Fi}) satisfying a
certain condition, which are often said to be ‘finitely ramified.’ Such a topolog-
ical self-similar set has only finitely many critical points, and hence its ‘dynam-
ics’ resembles to one-dimensional dynamics. Roughly speaking, in this context,
it is natural to consider the dynamics of f , the ‘inverse map’ of {Fi}, which
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behaves as a piecewise monotone map on an interval or a rational map on Rie-
mann sphere. With respect to a self-similar metric (if exists), f is an ‘expanding
map.’ Thus the self-similarity is regarded as a kind of the hyperbolicity of the
dynamics. We say that (K, {Fi}) is non-recurrent if the orbit of any critical
point does not accumulate in the critical set. Such a condition often appears
in the study of one-dimensional dynamics (see [18], [17] and [14], Chapter III,
Section 6). For example, in [18], van Strien showed that a Misiurewicz map
on an interval with some assumption is almost hyperbolic. We will prove that
(K, {Fi}) has a self-similar metric if it is non-recurrent.

Problem 2 will be studied in Section 3. Under a certain situation, a topo-
logical self-similar set defines a dynamics on a topological tree. In such a case,
if a critical polyratio (α1, α2, . . . , αn) satisfies α = α1 = α2 = · · · = αN , then
− log α is the topological entropy. Thus we can consider the notion of critical
ratios as a generalization of topological entropy. In [7], using matrices asso-
ciated with directed graphs, the author calculated the critical polyratios of
topological self-similar sets with the property called ‘postcritically finite.’ In
this paper we will use a version of Milnor-Thurston’s theory (see [16]) in order
to study critical polyratios. Recall that in interval dynamics, the topological
entropy is calculated from the asymptotic behavior of the lap number. In our
case we will define a power series with coefficients corresponding to the lap
numbers, and show that its radius of convergence is a critical polyratio. For
the proof, Milnor-Thurston has used kneading determinants of one variable; we
will use kneading determinants of N variables. (Kneading determinants of N
variables are strongly related to dynamical zeta functions with locally constant
weight. See [1].) We prove that the critical polyratios are zeros of the kneading
determinant, and immediately we see that the set of the critical ratios is a real
analytic set since the kneading determinant is an analytic function.
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1. General theory and examples

In this section we introduce the concept of standard pseudodistances on
topological self-similar sets, which is the main tool throughout this paper. After
that, several preparatory results, including a counterexample, are formulated.

1.1. Basic definitions

In this subsection we formalize our notation and give several examples. We
also see the fundamental fact that a topological self-similar set is metrizable.

Notation and Definition 1.1.

(1) (The space of infinite sequences) We denotes by (ΣN , σ) the one-sided sym-
bolic dynamical system with N symbols (N ≥ 2). Namely, ΣN = {1, 2, . . . , N}N

is the space of infinite sequences of {1, 2, . . .N}. We write an element of ΣN as
w = w1w2 . . . . The shift map σ : ΣN → ΣN removes the leading symbol of a
sequence, that is, σ(w1w2 . . . ) = w2 . . . for any w1w2 · · · ∈ ΣN . The shift map
is an N -to -1 map, and we can naturally define the branches τ1, τ2, . . . , τN of
σ−1 such that τi(w1w2 . . . ) = iw1w2 . . . for i = 1, 2, . . . , N .

(2) (The space of words) The space of finite sequences of length n is denoted
by

Wn = {1, 2, . . . , N}n = {u1u2 . . . un |uk ∈ {1, 2, . . . , N}, k = 1, 2, . . . , n}.

We write W∗ =
⋃∞

n=0 Wn. An element of Wn is said to be a word of length (or
depth) n. The set W0 consists of only one element, called the empty word, which
we denote by ∅. The length of a word U is denoted by |U |. The mapping σ
and τi are also applied on W∗. More precisely, we set σ(u1u2 . . . un) = u2 . . . un

for u1u2 . . . un ∈ ⋃∞
n=1 Wn, σ(∅) = ∅, and τi(u1u2 . . . un) = iu1u2 . . . un for

i = 1, 2, . . . , N and u1u2 . . . un ∈ W∗. A word U is called a successor of U ′ if
σk(U ′) = U for some k.

(3) (Basis) If U = u1u2 . . . un is a word, then τU is the composition τu1 ◦ τu2 ◦
· · · ◦ τun

. For simplicity, we write UV instead of τU (V ). For u = u1u2 . . . , we
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write
[u]n = u1u2 . . . un.

We also write
[U ]n = u1u2 . . . un

if U = u1u2 . . . um ∈ Wm and m ≥ n. For a word U = u1u2 . . . un ∈ W∗, we
write

Σ(U) = τU (ΣN ) = {u ∈ ΣN | [u]n = U}.
Then {Σ(U) |U ∈ W∗} is a basis for the open sets of ΣN .

(4) (Order) We define a partial order on W∗,

U ≺ U ′

if Σ(U) ⊂ Σ(U ′). Remark that

Σ(U) ∩ Σ(U ′) �= ∅ ⇐⇒ U ≺ U ′ or U ′ ≺ U.

If m > n, we use the notation

Wm(U) = τU (Wm−n) = {V ∈ Wm | [V ]n = U} = {V ∈ Wm |V ≺ U}.

Notation 1.2. Let (K, {Fi}N
i=1) be a topological self-similar system

(Definition 0.3). For U = w1w2 . . . wk ∈ Wk, we write K(U) = FU (K), where
FU = Fw1 ◦Fw2 ◦ . . . Fwk

. If U = ∅, then FU denotes the identity. Remark that
K(U) is compact and K(w1w2 . . . wk−1) ⊂ K(w1w2 . . . wk). We write

Ln(x) =
⋃

π−1(x)∩Σ(U)�=∅
U∈Wn

K(U).

Remark 1.3. Let K be a compact Hausdorff set, and let F1, F2, . . . , FN

be continuous maps of K to itself. Then (K, {Fi}N
i=1) is a topological self-

similar system if and only if
⋂∞

n=0 K(u1u2 . . . un) consists of only one point for
any u1u2 · · · ∈ ΣN . In particular, if (K, {Fi}N

i=1) is a topological self-similar
system, then the coding map is uniquely determined.

Indeed, if π is the coding map, then it has to satisfy π(u1u2 . . . ) ∈ K(u1

u2 . . . un) for any n ≥ 0. If
⋂∞

n=0 K(u1u2 . . . un) has more than one point,
then π is not surjective. Conversely, suppose

⋂∞
n=0 K(u1u2 . . . un) has only one

point for any u1u2 · · · ∈ ΣN . Then a surjective map π : Σn → K is defined
by π(u1u2 . . . ) ∈ ⋂∞

n=0 K(u1u2 . . . un). If O is a neighborhood of π(u1u2 . . . ),
then there exists n such that K(u1u2 . . . un) ⊂ O. Since π−1(K(u1u2 . . . un))
includes Σ(u1u2 . . . un), which is a neighborhood of u1u2 . . . , we conclude that
π is continuous.

Lemma 1.4. Let (K, {Fi}N
i=1) be a topological self-similar system with

coding map π. Then N (x) = {Ln(x) |n = 0, 1, 2 . . . } is a fundamental neigh-
borhood system.
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Proof. Note that X =
⋃

π−1(x)∩Σ(U)=∅
U∈Wn

K(U) is compact. Since x /∈ X, we

conclude K − X is a neighborhood of x in Ln(x).
Conversely, let O be an open neighborhood of x. Then π−1(O) is also

open. It is easy to see that

π−1(O) =
⋃

Σ(U)⊂π−1(O)
U∈W∗

Σ(U).

Since π−1(x) is compact, there exists a finite subset U ⊂ {U ∈ W∗ |Σ(U) ⊂
π−1(O)} such that π−1(x) ⊂ ⋃

U∈U Σ(U). Therefore Ln(x) ⊂ O for n =
maxU∈U |U |.

Theorem 1.5. A topological self-similar set is metrizable.

Proof. From Lemma 1.4, a topological self-similar set K satisfies the sec-
ond countability axiom. Indeed,{

int
⋃

U∈D
K(U) | D ⊂ Wn, n = 0, 1, 2, . . .

}

is a basis for the open sets. A Hausdorff space together with the second count-
ability axiom is metrizable (for example see [10]).

Lemma 1.6. Let (K, {Fi}N
i=1) be a topological self-similar system with

coding map π. Let d be any distance on K which is compatible with the original
topology. We denote, by diam X, the diameter of X ⊂ K with respect to the
distance d. Then

lim
n→∞ max

U∈Wn

diamK(U) = 0.

Proof. Suppose there exist a positive number ε > 0 and a sequence
U1, U2, . . . such that Uk ∈ Wk and diam K(Uk) > ε. Let us take a point
uk ∈ Σ(Uk). Since ΣN is compact, we can assume that limk→∞ uk = u. For
each n there exists k such that Uk ≺ [u]n. Thus

diamK([u]n) ≥ diam K(Uk) > ε.

Since {Ln(x) |n = 1, 2, . . . } is a fundamental neighborhood system, the ε/3-ball

B(π(u), ε/3) = {y |D(π(u), y) < ε/3}
includes Ln(π(u)) for some n. Therefore

diam Ln(π(u)) < 2ε/3.

This contradicts the fact that K([u]n) ⊂ Ln(π(u)).

As we have seen in Introduction, a self-similar set associated with contrac-
tions is a topological self-similar set. The first problem discussed in this paper
is the following.
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Definition 1.7. Let (K, {Fi}N
i=1) be a topological self-similar system.

A distance d on K which is compatible with the original topology of K is
called a self-similar metric if F1, F2, . . . , FN are contractions with respect to
the distance d.

Problem 1-(1). Does a self-similar system (K, {Fi}N
i=1) have any self-

similar metric?

We will consider this problem in the following subsections. For the mo-
ment, we show several examples of self-similar sets, all of which are obtained
from contractions.

Example 1.8. The first four examples are subsets of the unit interval
[0, 1]; the last two examples are Julia sets of quadratic polynomials in the
complex plane.

We use the symbols 1,2, . . . ,N instead of 1, 2, . . . , N in order to avoid
confusion. If U is a word, we denote, by U , the infinite periodic sequence
UU · · · ∈ ΣN . For example, 12 = 121212 . . . and 12 = 1222 . . . . Similarly,
if j is a nonnegative integer, we write U j = UU . . . U︸ ︷︷ ︸

j times

. For example, (12)3 =

121212, 123 = 1222 and 110 = 1.

(1) Let X be the unit interval [0, 1], and we define maps on X by

F1(x) = x/3, F2(x) = (x + 2)/3.

Then the self-similar set K associated with F1 and F2 is Cantor’s ternary set.
The coding map π : Σ2 → K is written as

π(u1u2 . . . ) =
∑

uk=2

2 · 3−k.

It is easy to see that π is a homeomorphism. For x ∈ K, the inverse image
u1u2 · · · ∈ π−1(x) is obtained by

un =
{

1 if fn−1(x) ∈ [0, 1/3]
2 if fn−1(x) ∈ [2/3, 1] ,

where f(x) = 3x if 0 ≤ x ≤ 1/3, and f(x) = 3x − 2 if 1/3 ≤ x ≤ 1. For
example, π(12) = 1/3 and π(12) = 1/4.

(2) Let X be the unit interval [0, 1], and we define maps on X by

F1(x) = x/2, F2(x) = (x + 1)/2.

Then the self-similar set K associated with F1 and F2 is the unit interval itself.
The coding map π : Σ2 → K is written as

π(u1u2 . . . ) =
∑

uk=2

2−k.
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The coding map is not injective. Indeed, π(12) = π(21) = 1/2. Note that
1/2 is the point where K(1) and K(2) intersect. In fact, if #π−1(x) > 1, then
#π−1(x) = 2 and there exist a positive integer n and distinct words U, V ∈ Wn

such that {x} = K(U)∩K(V ). Moreover, x has the form k · 2−n for some odd
number k. This is verified by the fact that K(U) is the interval with endpoints
FU (0) and FU (1). It is easy to see that

π−1(k · 2−n) = {u1u2 . . . un−112, u1u2 . . . un−121},

where
k = 1 +

∑
uj=2

j=1,2,...,n−1

2n−j .

Thus if two distinct words U, V ∈ W∗ satisfy the condition K(U) ∩ K(V ) �= ∅
and Σ(U) ∩ Σ(V ) = ∅, then {U, V } = {U ′12i, U ′21j} for some nonnegative
integers i, j and some U ′ ∈ W∗.

(3) Let X be the unit interval [0, 1], and we define maps on X by

F1(x) = (1 − x)/2, F2(x) = (x + 1)/2.

Then the self-similar set K associated with F1 and F2 is the unit interval itself.
The coding map π : Σ2 → K is written as

π(u1u2 . . . ) =
∞∑

k=1

ε(k)2−k,

where we set n = #{j |uj = 1, j = 1, 2, . . . , k − 1} and ε(k) = (−1)n.

(4) Let X be the unit interval [0, 1], and we define maps on X by

F1(x) =




x/2 if 0 ≤ x ≤ 1/3
1/6 if 1/3 < x ≤ 2/3

(x − 1/3)/2 if 2/3 < x ≤ 1
,

F2(x) =




x/2 + 2/3 if 0 ≤ x ≤ 1/3
5/6 if 1/3 < x ≤ 2/3

(x − 1/3)/2 + 2/3 if 2/3 < x ≤ 1
.

Then the self-similar set K associated with F1 and F2 is the union of two
intervals [0, 1/3] and [2/3, 1]. The coding map π : Σ2 → K is written as

π(u1u2 . . . ) =




2
3

∑
uk=2

k≥2

2−k if u1 = 1

2
3

+
2
3

∑
uk=2

k≥2

2−k if u1 = 2
.



�

�

�

�

�

�

�

�

Distances on topological self-similar sets 613

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 2: The Julia set of f(z)√−1 = z2 +
√−1

(5) Let K be the Julia set of the polynomial f−2(z) = z2 − 2. It is known that
K is the interval [−2, 2]. The polynomial map f−2 has two inverse branches on
K:

F1(x) = −√
x + 2, F2(x) =

√
x + 2.

Then (K, {F1, F2}) is a self-similar system. Indeed, this is topologically conju-
gate to the third example above. That is to say, the two contractions in the
third example are inverse branches of the map

g(x) =
{

1 − 2x if 0 ≤ x ≤ 1/2
2x − 1 if 1/2 < x ≤ 1 ,

which is conjugate to the map f−2 by the homeomorphism Q : [0, 1] → [−2, 2]
defined by

Q(x) = −2 cos(πx).

(6) Let K be the Julia set of the polynomial f√−1(z) = z2 +
√−1. In this case

the map f√−1 also has two inverse branches F1, F2 on K, and (K, {F1, F2}) is a
self-similar system (Figure 2). Indeed, there exists a ‘metric’ on a neighborhood
of K for which f is expanding (see [3]). The metric can be written in the
form v(z)|dz|, where v is continuous except at the postcritical set {√−1,−1 +√−1,−√−1}. Such a polynomial is said to be subhyperbolic. If all critical
points of a given polynomial are not periodic but eventually periodic, then it is
subhyperbolic, and then the Julia set is a topological self-similar set (see [8]).
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1.2. Standard pseudodistances

As we will show an example later, a topological self-similar system does
not always have a self-similar metric. However we can always construct a
pseudodistance, which is a criterion of existence of a self-similar metric.

Let (K, {Fi}N
i=1) be a topological self-similar system. We say that an or-

dered N -tuple (α1, α2, . . . , αN ) is a polyratio if all αi are positive numbers
less than one. We denote by RaN the set of polyratios. For a polyratio
α = (α1, α2, . . . , αN ), we will construct a pseudodistance Dα(·, ·) on K, which
satisfies Dα(Fi(x), Fi(y)) ≤ αiDα(x, y) for any i = 1, 2, . . . , N . This is called
the standard pseudodistance for α. If the pseudodistance Dα is a distance,
then of course it is a solution to Problem 1-(1). The following fact, which will
be proved later, is important: there exists a self-similar metric if and only if
the pseudodistance for some polyratio is a distance.

Definition 1.9. Let (K, {Fi}N
i=1) be a topological self-similar system.

We say that an ordered l-tuple (U1, U2, . . . , Ul) is a pre-chain of (K, {Fi}N
i=1)

if Uj ∈ W∗ (j = 1, 2, . . . , l) and K(Uj) ∩ K(Uj+1) �= ∅ (j = 1, 2, . . . , l − 1). A
pre-chain (U1, U2, . . . , Ul) is called a pre-chain of depth n if every Ui belongs to
Wn. We say that l is the length of the pre-chain.

Let x, y ∈ K. We say that (U1, U2, . . . , Ul) is a pre-chain between x and
y if x ∈ K(U1) and y ∈ K(Ul). A pre-chain (U1, U2, . . . , Ul) is called a chain
if Σ(Uj) ∩ Σ(Uj′) = ∅ for j �= j′. We denote, by G(x, y) (resp. G′(x, y)), the
set of chains (resp. pre-chains) between x and y. The set of chains of depth
n (resp. of depth at most n) between x and y is denoted by G̃n(x, y) (resp.
Gn(x, y)). Since K(∅) = K, the set G(x, y) is not empty.

Definition 1.10. Let α = (α1, α2, . . . , αn) be a polyratio. We construct
a pseudodistance D(·, ·) = Dα(·, ·) as follows. For a word U = w1w2 . . . wn ∈
Wn, we write

A(U) = αw1αw2 · · ·αwn
.

We set A(U) = 1 for U = ∅. For a pre-chain C = (U1, U2, . . . , Ul), we write

A(C) = A(U1) + A(U2) + · · ·A(Ul).

We define
D(x, y) = inf

C∈G(x,y)
A(C) = inf

C∈G′(x,y)
A(C).

Remark that it is also described as lim
n→∞ min

C∈Gn(x,y)
A(C), since min

C∈Gn(x,y)
A(C) is

decreasing as n → ∞.
It is evident that if (U1, U2, . . . , Ul) ∈ G′(x, y) and (U ′

1, U
′
2, . . . , U

′
l′) ∈

G′(y, z), then (U1, U2, . . . , Ul, U
′
1, U

′
2, . . . , U

′
l′) ∈ G′(x, z). Thus we have D(x, y)

+ D(y, z) ≥ D(x, z), and so the function D is a pseudodistance. The pseu-
dodistance D is a distance if and only if D(x, y) > 0 for any distinct point x, y.
We say that D is the standard pseudodistance of (K, {Fi}N

i=1) for polyratio α.

From the following proposition, D is compatible with the topology of K.



�

�

�

�

�

�

�

�

Distances on topological self-similar sets 615

Proposition 1.11. For any ε > 0 there exists n ≥ 0 such that Ln(x) ⊂
B(x, ε) for any x, where B(x, ε) is the ε-ball {y |D(x, y) < ε}.

Moreover, suppose that D is a distance. Then for any n ≥ 0, there exists
ε > 0 such that B(x, ε) ⊂ Ln(x).

Proof. If x, y ∈ K(U) for some U ∈ Wn, then (U) ∈ G(x, y) and D(x, y)
≤ A(U) ≤ (max

i
αi)n. Therefore Ln(x) ⊂ B(x, ε) for n ≥ log ε/ log(max

i
αi).

Suppose that D is a distance. Assume that there exists a sequence x1,
x2, . . . outside Ln(x) such that limi→∞ D(x, xi) = 0. We may also assume that
xn converges to some y ∈ K as n → ∞ in the topology of K. Remark that y �= x
since each xi is not contained in a neighborhood Ln(x). Then from the first
assertion we have limi→∞ D(xi, y) = 0. Thus D(x, y) ≤ D(x, xi) + D(xi, y) →
0. This is a contradiction.

Proposition 1.12. For each i = 1, 2, . . . , N ,

D(Fi(x), Fi(y)) ≤ αiD(x, y).

Proof. For any ε > 0 there exists a chain C = (U1, U2, . . . , Ul) ∈ G(x, y)
satisfies

A(C) < D(x, y) + ε.

Then G(Fi(x), Fi(y)) contains (iU1, iU2, . . . , iUl), and

D(Fi(x), Fi(y)) ≤ A(iU1) + A(iU2) + · · · + A(iUl)
= αi(A(U1) + A(U2) + · · · + A(Ul))
< αi(D(x, y) + ε).

Proposition 1.13. Suppose that there exists a self-similar metric d.
If we choose positive numbers α1, α2, . . . , αN such that Lipd(Fi) ≤ αi < 1
(i = 1, 2, . . . , N), then the standard pseudodistance D = Dα for the polyratio
α = (α1, α2, . . . , αN ) is a distance.

Proof. We set M = maxx,y∈K d(x, y). Let ε > 0 be a positive number.
Choose a chain C = (U1, U2, . . . , Ul) ∈ G(x, y) such that

A(C) < D(x, y) + ε.

Let xi ∈ K(Ui) ∩ K(Ui+1) for i = 1, 2, . . . , l − 1. We take points ai for i =
0, 1, . . . , l−1 and bi for i = 1, 2, . . . , l so that FUi

(ai−1) = xi−1 and FUi
(bi) = xi,

where x0 = x, xl = y. Then

d(xi−1, xi) ≤ A(Ui)d(ai−1, bi) ≤ A(Ui)M.

Thus
d(x, y) ≤ d(x, x1) + d(x1, x2) + · · · + d(xl−1, y)

≤ (A(U1) + A(U2) + . . . A(Ul))M
< (D(x, y) + ε)M.

Therefore 0 < d(x, y)/M ≤ D(x, y).
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Corollary 1.14. A topological self-similar system has a self-similar
metric if and only if there exists 0 < α < 1 such that the standard pseu-
dodistance D for the polyratio (α, α, . . . , α) is a distance.

Definition 1.15. We say a polyratio α = (α1, α2, . . . , αN ) is a met-
ric polyratio if Dα is a distance. A critical polyratio is an infimum of metric
polyratios. We denote, by CR = CR(K, {Fi}N

i=1), the set of critical polyratios
of (K, {Fi}N

i=1). Precisely, we say that (α1, α2, . . . , αN ) ∈ RaN belongs to CR
if

• if 0 < α′
i < αi for i = 1, 2, . . . , N , then (α′

1, α
′
2, . . . , α

′
N ) is not a metric

polyratio,

• if αi < α′
i < 1 for i = 1, 2, . . . , N , then (α′

1, α
′
2, . . . , α

′
N ) is a metric

polyratio.

The following cases are exceptional: If every polyratio is a metric polyratio,
then we set CR = {(0, 0, . . . , 0)}; if every polyratio is not a metric polyratio,
then we set CR = {(1, 1, . . . , 1)}.

To study CR is one of the aims in this paper. We will see in Section 3
the properties of CR for some class of topological self-similar systems. Here we
give two examples for which we can easily describe CR.

Example 1.16. (1) Consider the self-similar system (K, {F1, F2}) in
Example 1.8-(1). Then any (α1, α2) is a metric polyratio. Indeed, since the
coding map π is a homeomorphism, K(U)∩K(V ) is empty if Σ(U)∩Σ(V ) = ∅.
Thus

G(x, y) = {(U) |U ∈ W∗, π−1(x), π−1(y) ∈ Σ(U)}.
In other words, if x = π(u1u2 . . . unun+1 . . . ) and y = π(u1u2 . . . unu′

n+1 . . . )
with un+1 �= u′

n+1, then G(x, y) = {(u1), (u1u2), . . . , (u1u2 . . . un)}. For ex-
ample, G(0, 1) = {(∅)} and G(2/9, 1/3) = {(1), (12)}. Therefore D(x, y) =
αu1αu2 · · ·αun

> 0.

(2) Consider the self-similar system (K, {F1, F2}) in Example 1.8-(2). We will
show that

CR = {(α1, α2) |α1 + α2 = 1, 0 < α1 < 1, 0 < α2 < 1}.
This set is seen as the gray region in Figure 3. Suppose that (α1, α2) ∈ Ra2

satisfies α1 + α2 < 1. Let n be a positive integer, and let k be an integer such
that 1 ≤ k ≤ 2n. Let Un,k = u1u2 . . . un ∈ W∗ be the word defined by

k = 1 +
∑
uj=2

j=1,2,...,n

2n−j .

For example, U2,1 = 11, U2,2 = 12, U2,3 = 21, U2,4 = 22. It is clear that
{Un,k | 1 ≤ k ≤ 2n} = Wn. For any n, the 2n-tuple Cn = (Un,1, Un,2, . . . , Un,2n)
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is a chain between 0 and 1. Therefore

D(0, 1) ≤ A(Cn) =
∑

U∈Wn

A(U) = (α1 + α2)n → 0 (n → ∞),

and hence (α1, α2) is not a metric ratio.

Suppose that (α1, α2) ∈ Ra2 satisfies α1 + α2 = 1. Let C = (U1, U2, . . . , Ul)
be a chain between 0 and 1. Set n(C) = maxi |Ui|. If |Uk| = n(C) and Uk has
the form U1, then k �= l and Uk+1 = U2. If |Uk| = n(C) and Uk has the form
U2, then k �= 1 and Uk−1 = U1. Remark that K(U) = K(Uk) ∪ K(Uk+1)
(or K(U) = K(Uk−1) ∪ K(Uk)). Putting U instead of Uk, Uk+1 (or Uk−1, Uk),
we obtain a new chain C1 = (U1, U2, . . . , Uk−1, U, Uk+2, . . . , Ul), which satisfies
A(C) = A(C1) since A(U1)+A(U2) = A(U)(α1 +α2) = A(U). This procedure
gives us a sequence of chains C, C1, . . . , Cm such that A(C) = A(C1) = · · · =
A(Cm) and Cm = (∅). Thus A(C) = 1 for any chain C in G(0, 1). Consequently,
D(0, 1) = 1. Moreover, D(x, y) > 0 for any distinct points x, y ∈ K. To
prove this, we show that if D(x, y) = 0 for some distinct points in K, then
D(0, 1) = 0. Indeed, if x < y, then there exist integers n and k such that
x ≤ k · 2−n, (k + 1)2−n ≤ y. Since a chain between x and y includes a chain
between k ·2−n and (k+1)2−n, we have D(k ·2−n, (k+1)2−n) = 0. There exists
a word U ∈ W∗ such that K(U) is equal to the interval [k · 2−n, (k + 1)2−n].
For any ε, there exists a chain C between k · 2−n and (k + 1)2−n such that
A(C) < ε. We can assume C has the form (UU1, UU2, . . . , UUl). Clearly,
C′ = (U1, U2, . . . , Ul) is a chain between 0 and 1. Thus A(U)A(C′) < ε, and
hence D(0, 1) = 0. From this, it is follows that D is a distance.

Remark 1.17. Similar argument shows that the sets of critical polyra-
tios for Example 1.8-(3), (4) and (5) are the same as that of Example 1.8-(2).
The set of critical polyratios for Example 1.8-(6) is

{(α1, α2) |α1α2 + α2
1α2 + α3

1 = 1, 0 < α1 < 1, 0 < α1 < 1},
which will be shown by the argument in Section 3. See Figure 3.

In Section 3 we will see the relation of critical polyratios to topological
entropies. Here we mention that the above calculation illustrate this relation.
In Example 1.8-(5), the topological entropy of (f−2, [−2, 2]) is equal to log 2 =
− log 2−1; the intersection of the set of critical polyratio and the line α1 = α2

contains only one point (2−1, 2−1). In Example 1.8-(6), the topological entropy
of (f√−1, T ) is equal to − log α, where T ⊂ K is the Hubbard tree (i.e. T is
the minimal connected tree in K containing all postcritical points) and α is the
positive root of the equation t2 + 2t3 = 1; a critical polyratio (α1, α2) satisfies
the equation α1α2 + α2

1α2 + α3
1 = 1, which together with α1 = α2 = t makes

t2 + 2t3 = 1.

1.3. Kneading invariants

We introduce an important invariant of topological self-similar systems,
which is called the kneading invariant. The notion of kneading invariants origi-
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Figure 3: The sets of metric polyratios for Example 1.18-(2), (6)

nated in interval dynamics (see [16] and [2]). Recall that the kneading invariant
of an interval map is obtained from the orbit of critical points, and it deter-
mines the combinatorial type of the dynamics. In this subsection we define
kneading invariants A ⊂ 2ΣN from the coding of critical points, and we show
that a topological self-similar set is homeomorphic to a quotient space of the
shift space by an equivalence relation generated from its kneading invariant.
Moreover, if A ⊂ 2ΣN is given with a suitable condition, we can construct a
topological self-similar system whose kneading invariant is equal to A.

Definition 1.18. Let (K, {Fi}N
i=1) be a topological self-similar system

with coding map π. The critical set of (K, {Fi}N
i=1) is the union of C1 and C2

defined by

C1 =
⋃

1≤i,j≤N
i�=j

(K(i) ∩ K(j)),

C2 =
⋃

1≤i≤N

{x ∈ K(i) |#F−1
i (x) ≥ 2}.

We denote the critical set by C. A point of C is called a critical point. The
kneading invariant of (K, {Fi}N

i=1) is defined by

A = {π−1(c) | c ∈ C}.
Notation 1.19. For x ∈ K we set

P k(x) = πσkπ−1(x).

We also define

C(n) =
n⋃

k=0

⋃
V ∈Wk

FV (C)
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and
C̃(n) =

⋃
U,V ∈Wn

U �=V

(K(U) ∩ K(V )).

Proposition 1.20. Let (K, {Fi}N
i=1) and (K ′, {F ′

i}N
i=1) be topological

self-similar systems which are conjugate to each other. Namely, there exists
a homeomorphism h : K → K ′ such that F ′

i ◦h = h◦Fi for any i = 1, 2, . . . , N .
Then their kneading invarinats agree with each other.

Proof. Let us denote by π the coding map of (K, {Fi}N
i=1). The assertion

is obtained by the fact that h ◦ π is the coding map of (K ′, {F ′
i}N

i=1).

Example 1.21. For each self-similar system in Example 1.8, the knead-
ing invariant is as follows.

(1) By the fact that F1 and F2 are injective and that K(1)∩K(2) = ∅, we have
C = ∅. Consequently, A = ∅.
(2) Since F1 and F2 are injective, the critical set is equal to C1 = K(1)∩K(2) =
{1/2}. Thus A = {π−1(1/2)} = {{12,21}}.
(3) Similarly, the critical set is equal to C1 = K(1) ∩ K(2) = {1/2}. Consider
the map g(x) = |2x− 1|, of which inverse branches are F1 and F2. Since 1/2 is
carried as 1/2 → 1 → 1 by iteration of g, we see that the kneading invariant is
A = {π−1(1/2)} = {{112,212}}.
(4) While K(1) ∩ K(2) = ∅, the contractions are not injective. Thus the
critical set is equal to C2 = {1/6, 5/6}. The kneading invariant is A =
{π−1(1/6), π−1(5/6)} = {{112,121}, {212,221}}.
(5) The dynamics is conjugate to that of (3). The critical set is C1 = {0}. The
kneading invariant is A = {π−1(0)} = {{112,212}}.
(6) The critical set is {0}. Since the orbit of 0 for the map f√−1 is 0 → √−1 →
−1 +

√−1 → −√−1 → −1 +
√−1, the kneading invariant is A = {π−1(0)} =

{{1112,2112}}.

Proposition 1.22. (1) If #P 1(x) ≥ 2, then x ∈ C.

(2) P k(x) = {y ∈ K | FV (y) = x for some V ∈ Wk}.
(3) If x /∈ C1, then there exists i such that π−1(x) = τiπ

−1(P 1(x)).

Proof. (2) Suppose y ∈ P k(x). Then there exists u ∈ π−1(x) such that
πσk(u) = y. Let V = [u]k. Then we have FV (y) = FV πσk(u) = πτV σk(u) =
π(u) = x.
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Conversely, suppose FV (y) = x for some word V ∈ Wk. Let w ∈ π−1(y).
Then πτV (w) ∈ πτV π−1(y) = FV ππ−1(y) = {x}. Thus τV (w) ∈ π−1(x) and
πσk(τV (w)) = y.

(1) Let y1 �= y2 ∈ P 1(x). By (2) we have x = Fi(y1) = Fj(y2) for some i, j. If
i = j, then x ∈ C2. If i �= j, then x ∈ K(i) ∩ K(j) ⊂ C1.

(3) Suppose x /∈ C1. Then there exists i such that π−1(x) ⊂ Σ(i). Thus
P 1(x) = F−1

i (x). Consequently, πτiπ
−1(P 1(x)) = Fiππ−1(P 1(x)) = Fi(P 1(x)) =

{x}. Therefore τiπ
−1(P 1(x)) ⊂ π−1(x). Since P 1(x) = πσπ−1(x) and π−1(x) ⊂

Σ(i), we have

τiπ
−1(P 1(x)) = τiπ

−1πσπ−1(x) ⊃ τiσπ−1(x) = π−1(x).

Proposition 1.23. Let x ∈ K. If #π−1(x) ≥ 2, then there exist a crit-
ical point c and a word U ∈ W∗ such that τU (π−1(c)) = π−1(x). In particular,
FU (c) = x.

Proof. Suppose #π−1(x) ≥ 2. Then there exists an integer n ≥ 0 such
that

#{i ∈ {1, 2, . . . , N} |σnπ−1(x) ∩ Σ(i) �= ∅} ≥ 2.

Namely, there exist distinct symbols i, j ∈ {1, 2, . . . , N} such that Pn(x) ∩
K(i) �= ∅ and Pn(x) ∩ K(j) �= ∅. Let m be the smallest nonnegative integer
such that Pm(x)∩C �= ∅. The integer m is well-defined. Indeed, if P k(x)∩C = ∅
for any k, then we have #P k(x) = 1 for any k from (1) of Proposition 1.22. The
unique point c ∈ Pn(x) is a critical point, since there exist distinct symbols i, j
such that c ∈ K(i) ∩ K(j). This is a contradiction.

Now #P k(x) = 1 for k = 1, 2, . . .m. In particular the critical point c ∈
Pm(x) is unique. By (3) of Proposition 1.22, there exists U ∈ Wm such that
π−1(x) = τUπ−1(Pm(x)).

Corollary 1.24. Suppose that K(U1)∩K(U2) �= ∅ and Σ(U1)∩Σ(U2) =
∅. Then K(U1) ∩ K(U2) ⊂ C(k), where k = min(|U1|, |U2|) − 1. In particular,
C̃(n) ⊂ C(n − 1).

Proof. Let x ∈ K(U1) ∩ K(U2). Then there exists u ∈ π−1(x) ∩ Σ(U1)
and v ∈ π−1(x) ∩ Σ(U2). By Proposition 1.23, there exists a critical point c
and a word U such that |U | ≤ k and x = FU (c).

Since π : ΣN → K is surjective, the self-similar set K is considered as a
quotient space of ΣN . Namely, K is homeomorphic to ΣN/ ∼, where we say
w ∼ u if π(w) = π(u). Remark that an equivalence class of ∼ is written in
the form π−1(x). By the previous proposition, all equivalence classes of ∼ are
‘generated’ by the kneading invariant A, that is, X ⊂ ΣN is an equivalence
class with #X > 1 if and only if X = τU (A) for some U ∈ W∗ and A ∈ A.
Thus the topology of a self-similar set is determined by the kneading invariant.
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Definition 1.25. We call (K, {Fi}N
i=1) a pre-self-similar system if K is

a compact topological space which satisfies all the condition of a topological
self-similar set except the Hausdorff separation axiom. We call K a pre-self-
similar set.

Lemma 1.28 gives a sufficient condition for a pre-self-similar set to be
Hausdorff. See [7] for a necessary and sufficient condition.

Proposition 1.26. Let (K, {Fi}N
i=1) be a topological self-similar sys-

tem. Then the kneading invariant A satisfies the following property:

Let U ∈ W∗ and let A, B ∈ A. If τU (A) ∩ B �= ∅, then τU (A) ⊂ B;
moreover, τU (A) = B if and only if U = ∅ and A = B.

Conversely, let A be a collection of subsets of ΣN satisfies the property
above and the additional condition that any member of A has more than one
elements. Then there exists a pre-self-similar system (K, {Fi}N

i=1) with knead-
ing invariant A.

Proof. Let U ∈ W∗ be a word, and A and B members of A. Suppose
τU (A) ∩ B �= ∅. Let us denote, by c and c′, the critical points such that
A = π−1(c) and B = π−1(c′). Note that π(τU (A) ∩ B) ⊂ πτU (A) ∩ π(B) =
{FU (c)} ∩ {c′}. Thus FU (c) = c′. Since πτU (A) = {c′}, we have τU (A) ⊂ B.
The condition that τU (A) = B and U �= ∅ implies the contradiction that c′ is
not a critical point. Indeed, c′ /∈ C1, because π−1(c′) = τU (A) ⊂ Σ(u1), where
u1 is the leading symbol of U . By (2) of Proposition 1.22, P 1(c′) = F−1

u1
(c′). By

(3) of Proposition 1.22, π−1(c′) = τu1π
−1F−1

u1
(c′), and so σ(B) = π−1F−1

u1
(c′).

Thus

F−1
u1

(c′) = ππ−1F−1
u1

(c′) = πσ(B) = πστU (A) = πτσ(U)(A) = {Fσ(U)(c)}.
Therefore #F−1

u1
(c′) = 1, and hence c′ /∈ C2. Consequently, τU (A) is a proper

subset of B if U �= ∅.
Suppose A is given. We define a relation ∼ on ΣN as x ∼ y if x = y or there

exist U ∈ W∗ and A ∈ A such that x, y ∈ τU (A). By assumption, this relation
is an equivalence relation. Indeed, suppose x ∼ y and y ∼ z. Then there exist
words U, V ∈ W∗ and A, B ∈ A such that x, y ∈ τU (A) and y, z ∈ τV (B).
Since τU (A) ∩ τV (B) �= ∅, we have Σ(U) ∩ Σ(V ) �= ∅. We can assume U ≺ V .
Let n = |V |. Then τσn(U)(A) ∩ B �= ∅, and hence τσn(U)(A) ⊂ B. Therefore
τU (A) ⊂ τV (B), and so x ∼ z. We have a quotient space K = ΣN/ ∼ and the
natural surjection π : ΣN → K. If maps F1, F2, . . . , FN : K → K are defined
as Fi(x) = πτiπ

−1(x), then Fi ◦ π = π ◦ τi. Their continuity is easily verified
by this commutative diagram. Hence (K, {Fi}N

i=1) is a pre-self-similar system.
It is clear that A is its kneading invariant.

Corollary 1.27. Let (K, {Fi}N
i=1) and (K ′, {F ′

i}N
i=1) be a topological

self-similar systems. If their kneading invariants agree with each other, then
(K, {Fi}N

i=1) and (K ′, {F ′
i}N

i=1) are conjugate to each other.
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Proof. Let A be the kneading invariant of (K, {Fi}N
i=1). We can con-

struct, from A, a self-similar system (KA, {FA,i}N
i=1) by the method in the last

half of the proof of the previous proposition. It is easy to see that there exists
a homeomorphism h : K → KA such that FA,i ◦ h = h ◦ Fi.

1.4. Counterexample

We construct an example of a self-similar system without self-similar met-
ric.

Consider an irrational rotation on the circle T = R/Z which is defined by
R(x) = x+ θ mod 1, where θ is an irrational number in [0, 1]. Divide the circle
into two intervals: J1 = [0, 1/2] and J2 = [1/2, 1]. For x ∈ T, we define the
itinerary i(x) = {w1w2 . . . , u1u2 . . . } ⊂ Σ2 as follows.

wk = uk = i if Rk−1(x) ∈ intJi,
wk = 1, uk = 2 if Rk−1(x) = 0 or 1/2.

Since 0 and 1/2 are not periodic, we see that #{i |wi �= ui} ≤ 1. For example,
if i(0) = {w1w2 . . . , u1u2 . . . }, then w1 �= u1 but wk = uk for k = 2, 3, . . . .
If #i(t) = 2, then there exists U ∈ W∗ such that either i(t) = τU (i(0)) or
i(t) = τU (i(1/2)).

For U = w1w2 . . . wn ∈ W∗, we write JU =
⋂n

i=1 R−i+1(Jwi
). Then

JU = {x ∈ T | i(x) ∩ Σ(U) �= ∅}.
Since JU is the intersection of semicircles and θ is irrational, we see that JU

is an interval or an empty set. If x �= y, then i(x) ∩ i(y) = ∅. Indeed, there
exists n ≥ 0 such that Rn(x) ∈ intJ1 and Rn(y) ∈ intJ2 since θ is irrational.
Therefore, for w = w1w2 · · · ∈ ΣN , the length of Jw1w2...wn

tends to zero as n
to infinity.

Since Rk(0) �= 1/2 for any integer k, we have i(Rk(0)) ∩ i(1/2) = ∅.
Consequently, τU (i(0)) ∩ i(1/2) = ∅ for any U ∈ W∗. By Proposition 1.26,
there exists a pre-self-similar system (K, {F1, F2}) with kneading invariant A =
{i(0), i(1/2)}. We show that K is metrizable in Lemma 1.28 and that any
standard pseudodistance is not a distance.

Lemma 1.28. Let (K, {Fi}N
i=1) be a pre-self-similar system with coding

map π. Suppose the critical set C is a finite set, and #π−1(x) is a compact set
for any x ∈ K. Then (K, {Fi}N

i=1) is a topological self-similar system.

Proof. We will show that K is Hausdorff. Choose any two points x, y ∈ K.
Then there exists n such that

{U ∈ Wn |Σ(U) ∩ π−1(x) �= ∅} ∩ {U ∈ Wn |Σ(U) ∩ π−1(y) �= ∅} = ∅.
Then y /∈ Ln(x), x /∈ Ln(y), and Ln(x) ∩ Ln(y) contains at most finite points.
Thus there exists m ≥ n such that x, y /∈ Lm(z) for any z ∈ Ln(x)∩Ln(y). We
have Lm(x) ∩ Lm(y) = ∅, and so K is Hausdorff.
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Next we will show that the standard pseudodistance D = D(α,α) is not a
distance for any 0 < α < 1. We can define h : T → K by h(t) = π(i(t)), since
either i(t) = τU (i(0)) or i(t) = τU (i(1/2)) for some word U if #i(t) = 2. Note
that if two words U, V ∈ W∗ satisfies a ∈ JU ∩ JV , then h(a) ∈ K(U) ∩ K(V ).
Now let us consider the pseudodistance between c1 = h(0) and c2 = h(1/2). For
any k > 0, the intersection {R−k(0), R−k(1/2)} ∩ J1 is one point. For U ∈ Wn

the endpoints of the interval JU is contained in
⋃n−1

k=0{R−k(0), R−k(1/2)}. Since⋃n−1
k=0{R−k(0), R−k(1/2)} has exactly n + 1 elements in J1, we have #{U ∈

Wn | JU ⊂ J1} = n. Let us denote, by U1, U2, . . . , Un, the members of {U ∈
Wn | JU ⊂ J1} to satisfy JUi

∩ JUi+1 �= ∅ for i = 1, 2, . . . , n − 1 and 0 ∈ JU1 ,
1/2 ∈ JUk

. Then KUi
∩KUi+1 �= ∅ for i = 1, 2, . . . , n−1 and c1 ∈ KU1 , c2 ∈ KUn

.
Therefore (U1, U2, . . . , Un) is a chain between c1 and c2. Consequently,

D(c1, c2) ≤ A(U1) + A(U2) + · · · + A(Uk) = nαn → 0.

Hence D is not a distance.
We have constructed an abstract topological self-similar system (K, {F1,

F2}). In the last of this subsection, we give a possible candidate of a geometric
realization of (K, {F1, F2}). See Figure 4. This is made by two maps f1, f2

of D = {(x, y) ∈ R2 |x2 + y2 ≤ 1} to itself defined by f1(x, y) = R−1
θ (x, (y +

2
√

1 − x2)/3) and f2(x, y) = R−1
θ (x, (y − 2

√
1 − x2)/3), where Rθ is the θ-

rotation Rθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ). We can recognize the
figure to be an invariant set

K ′ =
∞⋂

k=0

⋃
U∈Wk

fU (D),

which includes the circle S1 = ∂D. On S1, the restrictions f1|S1 and f2|S1 form
two inverse branches of the rotation Rθ. Thus f1 and f2 on S1 are considered
to be conjugate to F1 and F2 on h(T). Although the figure looks like a self-
similar set, the two maps f1 and f2 are not contractions. It is very likely that
(K ′, {f1|K ′, f2|K ′}) is a topological self-similar system which is conjugate to
(K, {F1, F2}). However we do not succeed to verify it so far.

1.5. Connectedness of self-similar sets

In this subsection we discuss the connection between the self-similarity and
the connectedness of topological self-similar sets. We show that the standard
pseudodistance is positive between two points that belong to distinct connected
components (or component for short). As a corollary, we have a sufficient
conditions for a topological self-similar system to have a self-similar metric:
the case where K is totally disconnected, namely, every connected component
of K has only one point.

Let K be a self-similar set associated with contractions F1, F2, . . . , FN .
It is known that if

∑N
i=1 Lip(Fi) < 1, then K is totally disconnected (see

[4] and [20]). From our viewpoint, it is natural to ask the following inverse
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Figure 4: The invariant set K ′

problem. Let (K, {Fi}N
i=1) be a topological self-similar system with K totally

disconnected. Does it have a self-similar metric d such that
∑N

i=1 Lipd(Fi) < 1?
The following proposition gives an affirmative answer, moreover, that implies
a stronger statement: K is totally disconnected if and only if any polyratio is
a metric polyratio.

Proposition 1.29. Let (K, {Fi}N
i=1) be a topological self-similar sys-

tem. Two points x and y in K are contained in two distinct components of K
if and only if G̃n(x, y) = ∅ for some n. Recall that G̃n(x, y) is the set of chains
of depth n between x and y.

Proof. Let x, y ∈ K such that G̃n(x, y) = ∅. Then there exist E1, E2 ⊂ Wn

such that Wn = E1 ∪ E2, x ∈ K(E1), y ∈ K(E2) and K(E1) ∩ K(E2) = ∅, where
K(Ei) =

⋃
U∈Ei

K(U). Since each of K(Ei) is closed, each of K(Ei) = K \K(Ej)
(i �= j) is open. Therefore any subset containing x and y is not connected.

Suppose that G̃n(x, y) �= ∅ for any n. Let us take (Un
1 , Un

2 , . . . , Un
ln

) ∈
G̃n(x, y). We write Xn = K(Un

1 ) ∪ K(Un
2 ) ∪ · · · ∪ K(Un

ln
). We show that

X =
∞⋂

k=0

∞⋃
n=k

Xn

is connected. Assume that X is not connected. Then there exists a subset
Y1 ⊂ X such that both of Y1 and Y2 = X \ Y1 are closed and open in the
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relative topology of X. Since X is closed, so are Y1 and Y2. Consider a
distance function d on K. Since Y1 and Y2 are compact, we have d(Y1, Y2) =

inf
y1∈Y1,y2∈Y2

d(y1, y2) = ε > 0. Let O1 and O2 be the ε/3-neighborhoods of Y1

and Y2: Oi = {z | d(Yi, z) ≤ ε/3}. Then d(O1, O2) ≥ ε/3. It is easy to see that
there exists a positive integer m such that Xn ⊂ O1 ∪ O2 for n > m. Since
(Un

1 , Un
2 , . . . , Un

ln
) is a chain, for any n > m there exists 1 ≤ in ≤ ln such that

K(Un
in

)∩O1 �= ∅ and K(Un
in

)∩O2 �= ∅. Hence the diameter of K(Un
in

) is equal
to or bigger than ε/3 for any n > m. This is a contradiction to Lemma 1.6.
Therefore X is a connected set which contains x and y.

Corollary 1.30. Let (K, {Fi}N
i=1) be a topological self-similar system.

If two points x and y are contained in distinct connected components of K,
then D(x, y) > 0.

Proof. There exists n such that G̃n(x, y) = ∅. Therefore if (U1, U2, . . . , Ul)
∈ G(x, y), then at least one of Ui belongs to

⋃n−1
k=0 Wk. Thus D(x, y) >

(mini αi)n−1.

Corollary 1.31. Let (K, {Fi}N
i=1) be a topological self-similar system.

Then K is totally disconnected, if and only if every polyratio is a metric polyra-
tio, or equivalently CR = {(0, 0, . . . , 0)}.

Proof. The sufficiency is an immediate consequence. Suppose that X ⊂
K is a component containing two points x and y. By Proposition 1.29, G̃n(x, y)
�= ∅ for any n. Since #Wn = Nn, we can take a chain Cn ∈ G̃n(x, y) with length
at most Nn. If we take a polyratio ((2N)−1, (2N)−1, . . . , (2N)−1), then

A(Cn) ≤ Nn(2N)−n = 2−n → 0.

Thus D(x, y) = 0.

1.6. Existence of self-similar metrics

As we have seen in Proposition 1.13 and Corollary 1.14, a condition of
the existence of self-similar metrics is described in term of standard pseudodis-
tances. In this subsection, we reduce this condition using critical sets C and
pre-postcritical sets P under the assumption C �= ∅.

Definition 1.32. Let (K, {Fi}N
i=1) be a topological self-similar system

with kneading invariant A. The pre-postcritical set is defined as

P =
⋃

k>0,A∈A
πσk(A) =

⋃
k>0,c∈C

P k(c).

The postcritical set is the closure of P . A point of P is called a postcritical
point.
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Theorem 1.33. Let (K, {Fi}N
i=1) be a topological self-similar system.

Then α is a metric polyratio if and only if Dα(x, y) > 0 for any distinct points
x, y ∈ ⋃∞

n=1 C(n).

Theorem 1.34. Let (K, {Fi}N
i=1) be a topological self-similar system.

Then (α1, α2, . . . , αN ) is a metric polyratio if and only if there exists a distance
d on C ∪P compatible with the original topology such that d(x, y) ≤ αid(x′, y′)
for any i ∈ {1, 2, . . . , N}, any x, y ∈ (C ∪ P ) ∩K(i) and any x′ ∈ F−1

i (x), y′ ∈
F−1

i (y), and such that M = supx,y∈C∪P d(x, y) < ∞.

Proof of Theorem 1.33. Let x, y ∈ K be distinct points. Assuming
that D(x, y) = 0, we show a contradiction. Let n be an integer such that
Ln(x) ∩ Ln(y) = ∅. Then M = infa,b D(a, b) is positive, where the infimum is
taken over all a ∈ C(n)∩Ln(x) and all b ∈ C(n)∩Ln(y). Let 0 < ε < M . Then
there exists a chain C = (U1, U2, . . . , Ul) between x and y such that A(C) < ε.
Let 1 ≤ i1 ≤ l be the minimal integer such that K(Ui1) �⊂ Ln(x). Then it is
easy to see that K(Ui1) ∩ C(n) ∩ Ln(x) �= ∅. Similarly, there exists an integer
1 ≤ i2 ≤ l such that K(Ui2) ∩ C(n) ∩ Ln(y) �= ∅. Therefore (Ui1 , . . . , Ui2) is
a chain between a ∈ C(n) ∩ Ln(x) and b ∈ C(n) ∩ Ln(y). Hence we have a
contradiction M ≤ D(a, b) ≤ A(Ui1) + · · · + A(Ui2) < A(C) < ε.

Proof of Theorem 1.34. We define a function dn on (P ∪ C(n)) × (P ∪
C(n)) as follows. First we set d0 = d. If dn−1 is defined, then for x, y ∈
(P ∪ C(n)) ∩ K(i), we set

di
n(x, y) = αi inf

x′∈F−1
i (x),y′∈F−1

i (y)
dn−1(x′, y′).

For x, y ∈ P ∪ C(n), we set

dn(x, y) = inf(di1
n (x, x1) + di2

n (x1, x2) + · · · + dil
n (xl−1, y)),

where the infimum is taken over all pre-chains (i1, i2, . . . , il) between x and y
of depth one and all xj ∈ K(ij)∩K(ij+1)∩ (P ∪C(n)). If there does not exist
such a chain, then we set dn(x, y) = supa,b dn(a, b), where the supremum is
taken over all a, b ∈ P ∪ C(n) such that there exists a pre-chain of depth one
between a and b.

Lemma 1.35. For n = 1, 2, . . . , we have

(1) dn is a distance on P ∪ C(n) compatible with the original topology.

(2) For x, y ∈ P ∪ C(n − 1), we have dn−1(x, y) ≤ dn(x, y).

(3) dn(x, y) ≤ αidn−1(x′, y′) for any i ∈ {1, 2, . . . , N}, any x, y ∈ (P ∪C(n))∩
K(i) and any x′ ∈ F−1

i (x), y′ ∈ F−1
i (y).

Proof. We prove the claims by induction. For convenience, we set d−1 =
d0 = d and C(−1) = ∅. Then (1), (2) and (3) are satisfied for n = 0. Suppose
that they are satisfied for n = k − 1.



�

�

�

�

�

�

�

�

Distances on topological self-similar sets 627

Let x, y ∈ P ∪ C(k). Then for any ε > 0 there exist pre-chain C =
(i1, i2, . . . , il1) between x and y of depth one and points xj ∈ K(ij)∩K(ij+1)∩
(P ∪ C(k)) such that

l−1∑
j=1

d
ij

k (xj−1, xj) < dk(x, y) + ε,(1.1)

where x = x0, y = yl. If xj /∈ C, then ij = ij+1 and #F−1
j (xj) = 1. Thus

we can assume that x1, x2, . . . , xl−1 are critical points. By the definition of di
k,

there exist x′
j−1 ∈ F−1

ij
(xj−1) and x′′

j ∈ F−1
ij

(xj) such that αij
dk−1(x′

j−1, x
′′
j ) <

d
ij

k (xj−1, xj) + ε/l. From this together with (1.1),

l∑
j=1

dk(xj−1, xj) ≤
l∑

j=1

αij
dk−1(x′

j−1, x
′′
j ) ≤ dk(x, y) + 2ε.(1.2)

If x, y ∈ P ∪ C(k − 1), then

dk−1(x, y) ≤
l∑

j=1

dk−1(xj−1, xj) ≤
l∑

j=1

dk(xj−1, xj) ≤ dk(x, y) + 2ε.

Thus we have (2).
To prove that dk is a distance, it is sufficient to show that dk(x, y) > 0

if x �= y. Here we prove a stronger fact: Let y be a point in P ∪ C(k) and
let a1, a2, . . . be a sequence in P ∪ C(k). If dk(y, am) → 0 (m → ∞), then
am → y (m → ∞) (i.e. dk is equivalent to or stronger than the original
topology). Without loss of generality, we assume that am converges to some
point in K, say a. We show that a contradiction follows from a �= y. Let
O1 and O2 be open neighborhoods of a and y such that O1 ∩ O2 = ∅. Then
Q = inf

c,c′
dk−1(c, c′) is positive, where the infimum is taken over all c ∈ C ∩ O1

and all c′ ∈ C ∩O2. Let m be an integer such that an ∈ O1 if n ≥ m. We write
S = {a} ∪ {am, am+1, . . . }. Since F−1

i (S) and F−1
i (y) are compact, we choose

ε′ > 0 so small that

{z ∈ P ∪ C(k − 1) | dk−1(z, x′) < ε′/αi for some x′ ∈ F−1
i (S)}⊂F−1

i (O1),
{z ∈ P ∪ C(k − 1) | dk−1(z, y′) < ε′/αi for some y′ ∈ F−1

i (y)} ⊂F−1
i (O2)

for any i = 1, 2, . . . , N . We write E(z, ε, i) = {c ∈ C ∩ K(i) | di
k(c, z) < ε} if

z ∈ (P ∪ C(k)) ∩ K(i), and E(z, ε, i) = ∅ otherwise. Then
⋃

x∈S E(x, ε′, i) ⊂
O1, E(y, ε′, i) ⊂ O2 for any i = 1, 2, . . . , N . We set ε = min{Q/4, ε′/2}. Let
m′ > m be an integer such that dk(am′ , y) < ε. For x = am′ we have a pre-
chain C and points xi which satisfy (1.1). Since di1

k (x, x1) < ε′, dil

k (xl−1, y) < ε′,
we have x1 ∈ O1, xl−1 ∈ O2. Therefore l ≥ 3 and x1, xl−1 ∈ C. From (1.2),

Q ≤ dk−1(x1, xl−1) ≤
l−1∑
j=2

dk−1(xj−1, xj) ≤ dk(x, y) + 2ε < 3Q/4,



�

�

�

�

�

�

�

�

628 Atsushi Kameyama

and hence we arrive at a contradiction. Thus dk is a distance equivalent to or
stronger than the original topology.

Let x, y ∈ (P ∪ C(k)) ∩ K(i), and let x′ ∈ F−1
i (x), y′ ∈ F−1

i (y). Then

dk(x, y) ≤ di
k(x, y) ≤ αidk−1(x′, y′).

Hence (3) is verified.
Finally, we prove that the distance dk is equivalent to or weaker than

the original topology. Note that Mk = sup
x,y∈P∪C(k)

dk(x, y) is finite. Therefore

sup
y∈(P∪C(k))∩K(U)

dk(x, y) ≤ A(U)Mk for any x ∈ P ∪ C(k) and any U ∈ W∗.

Thus for any ε > 0, if we take n such that (maxi αi)nMk < ε, then Ln(x) ∩
(P ∪ C(k)) ⊂ {y ∈ P ∪ C(k) | dk(x, y) < ε}.

Now we continue the proof of the theorem. By Theorem 1.33, it is sufficient
to show that D(x, y) > 0 for any distinct x, y ∈ C(n). Let x, y ∈ C(n) be
distinct points and let C = (U1, U2, . . . , Ul) be a chain between x and y. Choose
xi ∈ K(Ui) ∩ K(Ui+1) for i = 1, 2, . . . , l − 1. Then xi ∈ C(m), where m =
max{|U1|, |U2|, . . . , |Ul|, n}. Let x′

i−1 ∈ F−1
Ui

(xi−1) and x′′
i ∈ F−1

Ui
(xi) for i =

1, 2, . . . , l, where x = x0, y = yl. Note that x′
i−1, x

′′
i ∈ P ∪ C. We have

0 < dn(x, y) ≤ dm(x, y) ≤
l∑

i=1

dm(xi−1, xi) ≤
l∑

i=1

A(Ui)d(x′
i−1, x

′′
i ) ≤ A(C)M.

Thus 0 < dn(x, y)/M ≤ D(x, y).

Remark 1.36. A related topic is discussed by Kigami [12]. He states
a necessary and sufficient condition for a p.c.f. self-similar set K to admit a
strictly self-similar metric (i.e. a metric d satisfying d(Fi(x), Fi(y)) = αid(x, y))
such that there exists a ‘geodesic’ between any two points in K.

Example 1.37. Consider the self-similar system (K, {F1, F2}) of Ex-
ample 1.8-(6). Recall that it has the critical set C = {c} and the postcritical
set P = {p1, p2, p3} such that F1(p1) = F2(p1) = c, F1(p2) = p1, F1(p3) =
p2, F2(p2) = p3. Suppose (α1, α2) ∈ Ra2 is a polyratio such that α1α2 +
α2

1α2+α3
1 = 1. Set d(c, p1) = α1, d(c, p2) = α2

1+α1α2, d(c, p3) = α2, d(p1, p2) =
1, d(p1, p3) = α1 + α2, d(p2, p3) = 1/α1. Then d is a distance on C ∪ P which
satisfies the condition of Theorem 1.34. Thus (α1, α2) is a metric polyratio.

2. Non-recurrent self-similar sets

In this section we study a sufficient condition for topological self-similar
systems to have self-similar metrics. We consider topological self-similar sys-
tems (K, {Fi}N

i=1) satisfying the following conditions:

(1) The critical set C = C1 ∪ C2 is a finite set.

(2) F−1
i (x) is a finite set for any i ∈ {1, 2, . . . , N} and any x ∈ K(i).
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Definition 2.1. A topological self-similar system satisfying the above
conditions is said to be finitely ramified.

Remark 2.2. In another context, the word ‘finitely ramified self-similar
sets’ has been used in slightly different formulations (see for example [13], [11]).

Definition 2.3. A topological self-similar system is said to be non-
recurrent if the critical set C contains no cluster point of the pre-postcritical
set P . That is to say, there is a neighborhood O of C such that O ∩ P ⊂ C.

In this section we prove the following.

Theorem 2.4. A non-recurrent finitely ramified topological self-similar
system has a self-similar metric.

We have seen the prototype of the proof in Example 1.16. In general,
the proof is rather complicated. We will prepare several lemmas in the next
subsection.

2.1. Lemmas

Let (K, {Fi}N
i=1) be a finitely ramified topological self-similar system.

Lemma 2.5. Let x1, x2, . . . be a sequence in K which converges to x,
and let V1, V2, . . . be a sequence of words. Then

lim
i→∞

FVi
(x) = y ⇐⇒ lim

i→∞
FVi

(xi) = y.

Proof. For any k ≥ 0 there exists i0 such that xi ∈ Lk(x) if i ≥ i0.
Clearly,

FVi
(xi) ∈ FVi

(Lk(x)) ⊂ Lk(FVi
(x)).

Hence there exists Uk ∈ Wk such that FVi
(xi) and FVi

(x) belong to K(Uk). By
Lemma 1.6, the assertion is true.

Lemma 2.6. Let c be a critical point, and let x ∈ ⋃∞
k=1 P k(c). Then

the set

X = {y | y = FV (x), c = FU (y) for some V, U ∈ W∗} ⊂
∞⋃

k=1

P k(c)

is finite.

Proof. Note that F−1
i (x) is finite for any i and any x. Hence we see

that P k(c) is finite for each k. Since the critical set C is finite, there exists
n such that C ∩ X ⊂ ⋃n

k=1 P k(c). Let B0 =
⋃n

k=1 P k(c) ∩ X and Bi =
(Pn+i(c) − ⋃i−1

k=0 Bk) ∩ X for i = 1, 2, . . . . Then Bi+1 ⊂ ⋃
y∈Bi

P 1(y). If
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i′ > 0 and y ∈ Bi′ , then #P 1(y) = 1 from (1) of Proposition 1.22. Thus
#Bi′+1 ≤ #Bi′ . Let i0 be the integer such that x ∈ Bi0 , and let i′ = max{1, i0}.
For y ∈ Bi′ , there exists m > 0 such that Pm(y) ⊂ ⋃i0

i=0 Bi. This implies that
Bj is empty for some large j. Consequently, X =

⋃∞
i=0 Bi =

⋃j−1
i=0 Bi is a finite

set.

Lemma 2.7. Let c be a critical point, and let {x} ∪ {a1, a2, . . . } be an

infinite subset of
∞⋃

k=1

P k(c). If they satisfies the following:

There exist words V1, V2, . . . such that FVi
(x) = FVi

(ai) = c for each i,(2.1)

then C ∪ {x} contains a cluster point of P .

Proof. By Lemma 2.6, X = {y | y = FV (x), c = FU (y) for some V, U ∈
W∗, } is a finite set. The lengths of Vi are not bounded, since P k(c) is finite
set for any k. Hence for any integer l ≥ 0, there exist an infinite subset
Al ⊂ {a1, a2, . . . } and a word W (l) of length l such that A0 ⊃ A1 ⊃ A2 ⊃ . . .
and that W (l) is a successor of Vi if ai ∈ Al. Moreover we can assume that
if ai ∈ Al and if W is a successor of W (l), then FW (ai) /∈ X. Indeed, it is
sufficient that we take Al −

⋃l
k=0

⋃
y∈X P k(y) instead of Al.

Note that if ai ∈ Al and if W is a successor of W (l), then FW (ai) ∈ P
and FW (x) ∈ X. Let us denote, by Y , the set of points y ∈ X satisfying the
following condition: There exist a sequence of integers l(1) < l(2) < · · · and a
sequence of words U1, U2, . . . such that

• Uk is a successor of W (l(k)) for every k,

• y = FUk
(x) for every k,

• |Uk| → ∞ as k → ∞.

Then y ∈ Y is a cluster point of P . Indeed, let ai(k) ∈ Al(k) for k = 1, 2, . . . .
Then

FUk
(ai(k)) ∈ K(Uk) ⊂ L|Uk|(y).

Since FUk
(ai(k)) does not belong to X, the point y is a cluster point of

{FUk
(ai(k))} ⊂ P .
We will prove that either x ∈ Y or Y ∩ C �= ∅. Suppose Y ∩ C = ∅. We

use the notation x(l, t) = Fσt(W (l))(x) for each l and 0 ≤ t ≤ l. If {x(l, t) | t =
0, 1, . . . , l} ∩ C �= ∅, we define

p(l) = min{t |x(l, t) is a critical point },

and set p(l) = l + 1 otherwise. Then p(l) (l = 0, 1, . . . ) are unbounded. In-
deed, otherwise, |σp(l)(W (l))| = l − p(l) are unbounded, and so we can choose
l(1) < l(2) < . . . and Uk = σp(l(k))(W (l(k))) to satisfy the above condition for
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some critical point, which have to belong to Y . Thus p(l) (l = 0, 1, . . . ) are un-
bounded. Note that x(l, t) is contained in X − C for t = 0, 1, . . . , p(l) − 1.
If p(l) > #(X − C), there exist s(1), s(2) ∈ {0, 1, . . . , p(l) − 1} such that
s(1) < s(2) and x(l, s(1)) = x(l, s(2)) = z. Since z is not a critical point,
we have #P 1(z) = 1. Thus

x(l, s(1) + 1) = x(l, s(2) + 1).

We can also see that

x(l, s(1) + m) = x(l, s(2) + m)

for m = 1, 2, . . . , p(l) − 1 − s(2). Consequently,

x(l, p(l)− s(2) + s(1) − 1) = x(l, p(l) − 1).

Moreover, if p(l) ≤ l, then

x(l, p(l)− s(2) + s(1)) = x(l, p(l)).

This is a contradiction; because x(l, p(l)) is a critical point by definition, but
p(l)−s(2)+s(1) < p(l). Hence p(l) = l+1, and then every x(l, t) is not a critical
point. Therefore we conclude that (x(l, l), x(l, l − 1), . . . , x(l, 0)) is a periodic
sequence containing x. Thus there exists t(l) such that 0 ≤ t(l) ≤ #(X − C)
and FUl

(x) = x(l, t(l)) = x, where Ul = σt(l)(W (l)). Since |Ul| → ∞ as l → ∞,
we have x ∈ Y .

Lemma 2.8. Let x be a point in K, and let y1, y2, . . . be a sequence
in P . Suppose there exists a word Ui ∈ W∗ for each i = 1, 2, . . . such that
FVi

(x), FVi
(yi) ∈ K(ViUi) for some word Vi and |Ui| → ∞ as i → ∞. Moreover

we suppose that for each i there exists a successor Wi of Vi such that FWi
(yi) ∈

C. Then either of the following properties is satisfied.

• FVi
(x) = FVi

(yi) for some i.

• C ∪ {x} contains a cluster point of P .

Proof. Choose ai ∈ FVi

−1(FVi
(x)) ∩ K(Ui) and bi ∈ FVi

−1(FVi
(yi)) ∩

K(Ui) for each i. There exist a successor V ′′
i of Vi such that FV ′′

i
(bi) ∈ C.

Indeed, if bi = yi, then take V ′′
i = Wi. If bi �= yi, then there exists V ′′

i such
that FV ′′

i
(bi) = FV ′′

i
(yi) and Fσ(V ′′

i )(bi) �= Fσ(V ′′
i )(yi). Thus bi ∈ P . Without

loss of generality, we can assume that
⋂∞

j=1

⋃∞
i=j K(Ui) consists of only one

point, say z. Note that limi→∞ ai = limi→∞ bi = z.
To prove the lemma we divide the situation into several cases.

(A) Suppose x = z. If {bi}i is an infinite set, then x is a cluster point of P . If
{bi}i is finite, then bi = x and hence FVi

(x) = FVi
(yi) for large i.

(B) Suppose x �= z. Then x �= ai for large i. Hence there exists a successor
V ′

i of Vi such that FV ′
i
(x) = FV ′

i
(ai) ∈ C for large i. Since #C < ∞, we may

assume FV ′
i
(x) = FV ′

i
(ai) = c for each large i without loss of generality.
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(B-I) If {ai}i is an infinite set, then {x} ∪ {ai}i satisfies (2.1).
(B-II) Suppose that {ai}i is a finite set. Then ai = z for large i. Note that
limi→∞ FV ′

i
(bi) = limi→∞ FV ′

i
(z) = c by Lemma 2.5. We have four cases:

(1) {bi}i is finite.

(2) {bi}i is infinite.

(a) The length of V ′′
i is bigger than that of V ′

i for infinitely many i.

(i) {FV ′
i
(bi)}i is finite.

(ii) {FV ′
i
(bi)}i is infinite.

(b) The length of V ′′
i is bigger than that of V ′

i for at most finitely many
i.

(1) If {bi}i is a finite set, then bi = z for large i. Thus FVi
(yi) = FVi

(bi) =
FVi

(z) = FVi
(x).

(2) We assume that {bi}i is infinite. We may assume that FV ′′
i

(bi) = c′ for each
i.

(2-a) If the length of V ′′
i is bigger than that of V ′

i for infinitely many i, then
V ′

i is a successor of V ′′
i , and FV ′

i
(bi) ∈ P for such i.

(2-a-i) If FV ′
i
(bi) = c for large i, then FV ′

i
(x) = FV ′

i
(bi). Thus {x} ∪ {bi}i

satisfies (2.1).
(2-a-ii) In the case where {FV ′

i
(bi)}i is a infinite set, c is a cluster point of

P .
(2-b) Suppose that the length of V ′′

i is bigger than that of V ′
i for at most

finitely many i. Then FV ′′′
i

◦ FV ′′
i

(z) = c for large i, where V ′′′
i V ′′

i = V ′
i . Thus

FV ′′
i

(z) ∈ X = {a | a = FV (z), c = FU (a) for some V, U ∈ W∗}. On the other
hand, from Lemma 2.5, we have limi→∞ FV ′′

i
(z) = limi→∞ FV ′′

i
(bi) = c′. Since

X is finite, FV ′′
i

(z) = c′ for large i. Consequently, FV ′
i
(bi) = FV ′′′

i
◦ FV ′′

i
(bi) =

FV ′′′
i

(c′) = FV ′′′
i

◦ FV ′′
i

(z) = c. Thus {x} ∪ {bi}i satisfies (2.1).

Definition 2.9. • Let x, y be two points in K. There exists the maxi-
mal integer t = t(x, y) such that x, y ∈ K(U) for some U ∈ Wt. Such a word
U is called a bridge between x and y.

• Let W ∈ Wp be a word, and let a, b ∈ K be distinct points. We say (W, a, b)
is a p-mesh if a ∈ FW (C) and there exists a word W ′ such that W ≺ W ′ and
b ∈ FW ′(C) ∩ K(W ). The number p is called the depth of the mesh.

• Let W be a word, and let a, b ∈ K be distinct points. We say (W, a, b) is a
p-block if |W | ≥ p and a, b ∈ K(W ) ∩ C(p).

Proposition 2.10. Let (W, a1, a2) be a p-block. Then there exists a
word W1 such that W ≺ W1, |W1| ≤ p and either (W1, a1, a2) or (W1, a2, a1)
is a |W1|-mesh.

Proof. Let (W, a1, a2) be a p-block. Note that a1, a2 ∈ K(W ). Let pi ≤ p
be the smallest integer such that ai ∈ C(pi) (i = 1, 2). Say p1 ≥ p2. There
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uniquely exist critical points xi ∈ P pi(ai) and words Wi ∈ Wpi
such that

FWi
(xi) = ai (i = 1, 2). By (3) of Proposition 1.22, π−1(ai) = τWi

π−1(xi).
Since τWi

π−1(xi) ∩ Σ(W ) �= ∅, we have W ≺ Wi. Consequently, W1 ≺ W2.
Since a2 ∈ K(W ) ⊂ K(W1), we conclude that (W1, a1, a2) is a p1-mesh.

Lemma 2.11. Let a, b ∈ K. Let U be a bridge between a and b. If
(U1, U2, . . . , Ul) is a chain between a and b with l ≥ 2, then there exists 1 ≤ j ≤
l − 1 such that K(Uj) ∩ K(Uj+1) ⊂ C̃(|U | + 1).

Proof. We write p = |U | + 1. Since K(Uj) ∩ K(Uj+1) ⊂ C̃(min(|Uj |,
|Uj+1|)), the assertion is true in the case where |Uj | < p for some j. We
assume |Uj | ≥ p for any j. Let V = [U1]p, and let t > 1 be the smallest
integer such that V ′ = [Ut]p �= V , which is well-defined because |U | < p. Hence
K(Ut−1) ∩ K(Ut) ⊂ K(V ) ∩ K(V ′) ⊂ C̃(p).

2.2. Proof

Now we start the proof of Theorem 2.4. The proof consists of several steps.

Proof of Theorem 2.4. Suppose that (K, {Fi}N
i=1) is non-recurrent and

finitely ramified .

Step 1: In this step we show the following lemma, and then obtain a corollary.

Lemma 2.12. There exists an integer n1 such that |W | ≤ p + n1 for
any p and any p-block (W, a, b).

Proof. Let (W, a, b) be a p-mesh. Let us denote, by k = k(W, a, b), the
greatest number such that there exists a word U ∈ Wk with a, b ∈ K(U) and
U ≺ W . We first show that k−p are bounded. Otherwise, for each i = 1, 2, . . .
there exist a mesh (Wi, ai, bi) of depth pi such that

k(Wi, ai, bi) − pi → ∞ as i → ∞.

Set ki = k(Wi, ai, bi). Then there exists a word Ui ≺ Wi such that |Ui| = ki

and ai, bi ∈ K(Ui).
Since (Wi, ai, bi) is a pi-mesh, we have points xi and y′

i which satisfy xi, y
′
i ∈

C, FWi
(xi) = ai, FW ′

i
(y′

i) = bi, where Wi ≺ W ′
i . Let us take a point yi such

that yi ∈ F−1
W ′′

i
(y′

i), where Wi = W ′
iW

′′
i . Since C is finite, we can assume xi = x

for each i. The word Ũi = σpi(Ui) has length ki−pi. Thus |Ũi| → ∞ as i → ∞.
The points ai = FWi

(x), bi = FWi
(yi) are contained in K(Ui) = FWi

(K(Ũi)).
Moreover, FW ′′

i
(yi) = y′

i ∈ C. Consequently, the point x and the sequence
y1, y2, . . . together satisfy the condition of Lemma 2.8. Since the topological
self-similar system is non-recurrent, we have FWi

(x) = FWi
(yi) for some i. But

this is impossible, because ai �= bi. Thus we have proved that k(W, a, b)−p are
bounded by some integer n1.
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Let (W, a, b) be a p-block. From Proposition 2.10, there exists W1 such
that W ≺ W1, |W1| ≤ p and (W1, a, b) is a |W1|-mesh. Since a, b ∈ K(W ), we
have |W |−|W1| ≤ k(W1, a, b)−|W1| ≤ n1. Thus |W | ≤ |W1|+n1 ≤ p+n1.

In particular, we immediately obtain the following.

Corollary 2.13. Let a, b ∈ C(p), and let U be a word such that a, b ∈
K(U). Then |U | ≤ p + n1.

Proof. If |U | > p + n1, then (U, a, b) is a p-block.

Step 2: We set α = 2−1/(n1+1). Our goal is to show that D = D(α,α,...,α)

is a distance on K. We will show that D(a, b) ≥ αp+n1 if a, b ∈ C(p) and a �= b
from Step 2 to Step 4. This completes the proof by Theorem 1.33.

Let a, b ∈ C(p) with a �= b. Let C = (U1, U2, . . . , Ul) be a chain between
a and b. It is sufficient to show that A(C) ≥ αp+n1 . Let us take a0 = a ∈
K(U1), a1 ∈ K(U1) ∩ K(U2), . . . , al−1 ∈ K(Ul−1) ∩ K(Ul), al = b ∈ K(Ul). We
can assume that a0, a1, . . . , al are disjoint. We take a chain C′ = (U ′

1, U
′
2, . . . , U

′
l )

such that U ′
j is a bridge between aj−1 and aj . Then A(C′) ≤ A(C). Let U

be a bridge between a and b. Then |U | ≤ p + n1. We construct pre-chains
C0, C1, . . . , Cr between a and b such that C0 = (U) and Cr = C′. The i-th
pre-chain is written as Ci = (U i

1, U
i
2, . . . , U

i
li
). They are required to satisfy the

following properties.

• For each i = 0, 1, . . . , r there exists a non-decreasing onto mapping hi :
{1, 2, . . . , l} → {1, 2, . . . , li}. We denote h−1

i (j) = {s(i, j) + 1, s(i, j) +
2, . . . , s(i, j + 1)}. Then U i

j is a bridge between as(i,j) and as(i,j+1).

• Set
Ei = {as(i,j) | j = 1, 2, . . . , li} ∪ {al}.

Then E0 = {a0, al} ⊂ E1 ⊂ · · · ⊂ Er = {a0, a1, . . . , al}.
• Let 0 ≤ i ≤ r − 1, 1 ≤ j ≤ li and s(i, j) < j0 < s(i, j + 1). Then

j0 = s(i+1, j′) for some j′ ∈ {1, 2, . . . , li+1} if and only if aj0 ∈ C(|U i
j |+1).

First we set a trivial mapping h0 : {1, 2, . . . , l} → {1}. Each chain
Ci = (U i

1, U
i
2, . . . , U

i
li
) and each non-decreasing mapping hi : {1, 2, . . . , l} →

{1, 2, . . . , li} are inductively determined as follows. Suppose Ei′ , Ci′ and hi′ are
determined for i′ ≤ i.

(1) (Construction of Ei+1) Every element of Ei = {as(i,j) | j = 1, 2, . . . , li}∪{al}
is an element of Ei+1. If j0 /∈ Ei, then j0 ∈ Ei+1 if and only if aj0 ∈ C(|U i

j |+1),
where j is the integer such that 1 ≤ j ≤ li and s(i, j) < j0 < s(i, j + 1).

(2) (Construction of hi+1) Let li+1 = #Ei+1 − 1. Then we set integers
s(i + 1, 1) < s(i + 1, 2) < · · · < s(i + 1, li+1) such that Ei+1 − {al} =
{as(i+1,1), as(i+1,2), . . . , as(i+1,li+1)}. The mapping hi+1 : {1, 2, . . . , l} → {1, 2, . . . , li+1}
is defined by hi+1(j) = j′ if s(i + 1, j′) < j ≤ s(i + 1, j′ + 1).
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(3) (Construction of Ci+1) We choose an arbitrary bridge between as(i+1,j) and
as(i+1,j+1), which we denote by U i+1

j .

For j ∈ {1, 2, . . . , li} we have the subchain Ci,j = (U ′
j′ , U ′

j′+1, . . . , U ′
j′′) of

C′, where j′ = s(i, j)+1, j′′ = s(i, j+1). The chain Ci,j is a chain between as(i,j)

and as(i,j+1). From Lemma 2.11, if j′′−j′ ≥ 1, then there exists 1 ≤ m ≤ j′′−j′

such that aj′+m−1 ∈ K(U ′
j′+m−1)∩K(Uj′+m) ⊂ C(|U i

j |+1). This implies that
Ei is a proper subset of Ei+1 if #Ei < l + 1. Therefore there exists an integer
r such that #Er = l + 1, and then each Ur

j is a bridge between aj−1 and aj

for each j. Thus we have constructed a sequence of pre-chains C0, C1, . . . , Cr as
required.

Step 3: Let 1 ≤ j ≤ l and 0 ≤ i ≤ r − 1. We write j1 = hi(j) and
j2 = hi+1(j). We show

|U i+1
j2

| ≤ |U i
j1 | + n1 + 1.(2.2)

Lemma 2.14. If s(i, j1 + 1) − s(i, j1) ≥ 2, then

|U i−1
j0

| < |U i
j1 |.

Proof. As we have seen above, h−1
i+1(j2) is a proper subset of h−1

i (j1).
Thus either as(i+1,j2) �= as(i,j1) or as(i+1,j2+1) �= as(i,j1+1). Say as(i+1,j2) �=
as(i,j1). Then the point as(i+1,j2) belongs to C(|U i

j1
|+1) but it does not belong

to C(|U i−1
j0

| + 1). Thus |U i−1
j0

| < |U i
j1
|.

Lemma 2.15. If s(i, j1 + 1) − s(i, j1) ≥ 2, then both of the point
as(i+1,j2) and as(i+1,j2+1) belong to C(|U i

j1
| + 1).

Proof. Let i′ be the minimal integer such that s(i + 1, j2) = s(i′, j′) for
some j′. Then as(i+1,j2) ∈ C(|U i′−1

hi′−1(j)
| + 1). Thus by Lemma 2.14, we obtain

as(i+1,j2) ∈ C(|U i′−1
hi′−1(j)

| + 1) ⊂ C(|U i′
hi′ (j)

| + 1) ⊂ · · · ⊂ C(|U i
j1 | + 1).

Similarly, as(i+1,j2+1) ∈ C(|U i
j1
| + 1).

Proof of (2.2). If s(i, j1 + 1) − s(i, j1) = 1, then U i+1
j2

and U i
j1

are bridges
between the same two points, and hence |U i+1

j2
| = |U i

j1
|. Suppose s(i, j1 + 1) −

s(i, j1) ≥ 2. By Lemma 2.15, U i+1
j2

is a bridge of two points in C(|U i
j1
| + 1).

Therefore we obtain |U i+1
j2

| ≤ |U i
j1
| + n1 + 1 from Corollary 2.13.

Step 4: We will show

A(Ci) =
li∑

j=1

A(U i
j) ≥ αp+n1
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for all i = 0, 1, . . . , r. Since A(C0) = A(U) ≥ αp+n1 , it is sufficient to show that

A(Ci) ≤ A(Ci+1)

for i = 0, 1, . . . , r − 1. This inequality is reduced to

A(U i
j) ≤

j2∑
j′=j1

A(U i+1
j′ ),

where j1 = hi+1(s(i, j) + 1), j2 = hi+1(s(i, j + 1)). If s(i, j + 1) − s(i, j) = 1,
then j1 = j2, and so |U i

j | = |U i+1
j1

|. If s(i, j + 1) − s(i, j) ≥ 2, then j1 < j2. By
(2.2),

j2∑
j′=j1

A(U i+1
j′ ) ≥ A(U i+1

j1
) + A(U i+1

j2
) ≥ 2α|Ui

j |+n1+1 = α|Ui
j | = A(U i

j).

This completes the proof of Theorem 2.4.

When we consider only the case where all Fi are injective, the proof is
notably shortened. Almost all the lemmas are unnecessary. In fact, the integer
n1 which is obtained in Step 1 is found to be

m = min{n | for all c ∈ C, Ln(c) ∩ (P ∪ C − {c}) = ∅} − 1.

Indeed, let (W, a, b) be a p-mesh. Then x = F−1
W (a) ∈ C and y = F−1

W (b) ∈
P ∪C. Since FW is injective, the points x and y are distinct. Recall the integer
k = k(W, a, b) which is defined in Step 1. Namely, there exists W ′ ∈ Wk such
that W ′ ≺ W and a, b ∈ K(W ′). Then σp(W ′) is a word of length k − p such
that x, y ∈ K(σp(W ′)). Hence k − p ≤ m.

Consider the self-similar systems of Example 1.8-(2) and (6) again. They
are non-recurrent finitely ramified self-similar systems. For the self-similar
system of (2), we can take the integer n1 to be equal to one. For the self-
similar system of (6), we can take the integer n1 to be equal to two. By the
estimate in our proof above, we have α = 2−1/2 and α = 2−1/3 respectively.
They are far from the critical ratios. In Figure 3, the ratios (α, α) are shown
by black dots.

3. Critical Polyratios

In the previous section we have found a metric polyratio for non-recurrent
cases. That estimate is, however, far from critical polyratios. The aim of this
section is finding exact critical polyratios.

The standard pseudodistance D is determined from Gn(x, y), the set of
chains of depth at most n, as

D(x, y) = lim
n→∞ min

C∈Gn(x,y)
A(C).
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That is not true for G̃n(x, y), the set of chains of depth n; in general,

lim
n→∞ min

C∈G̃n(x,y)
A(C)

can not form a pseudodistance. In this section, however, we mainly consider
G̃n(x, y) instead of Gn(x, y). In fact, the set Gn(x, y) is so complicated. On
the other hand, G̃n(x, y) is related to the lap number, which is familiar to us.

We imagine that the ‘asymptotic behavior’ of G̃n(x, y) is the same as
that of Gn(x, y), and hence that it defines the critical polyratio. As for a
finitely ramified topological self-similar system, for a given simple path γ be-
tween two points, a chain Cγ

n = (U1, U2, . . . , Ul) of depth n between the points is
uniquely determined such that each K(Ui)∩γ includes an arc. We expect that
if
∑∞

k=1 A(Cγ
k ) = ∞ for any simple path γ between x and y, then D(x, y) > 0.

If it is established, then we think of
∑∞

k=1 A(Cγ
k ) as a power series of variables

α1, α2, . . . , αN , proving its polyradius of convergence to be a critical amount.
In this section we put a restriction. We will assume that (K, {Fi}N

i=1) is
a finitely ramified topological self-similar system which satisfies the following
condition:

Condition A

(1) Each component of K is simply connected.

(2) There exists a minimal trees T1, T2, . . . Tm ⊂ K which satisfy the follow-
ing: For any simple path γ in K there exist Tk and a positive integer p, n
such that Tk ⊂ ⋃n+p−1

i=n ηi(γ), where ηi(γ) is the i-the image of γ, which
we will define later.

In Subsection 3.2 we will introduce the notion of invariant trees in K. If
T is an invariant tree, then a (piecewise-continuous) dynamics is defined on
T . A minimal tree is defined as an invariant trees in K that satisfies a certain
condition like topological transitivity.

We will introduce a power series v(T )(X1, X2, . . . , XN ) of N variables for
a tree T ⊂ K. For given two points x, y in a component of K there uniquely
exists a simple path γ between x and y. Then we will see the power series
v(x, y) = v(γ) satisfies vn(x, y)(α1, α2, . . . , αN ) = A(Cγ

n), where vn(x, y) is the
homogeneous part of degree n. We say (ε1, ε2, . . . , εN ) (εk’s are non-negative)
is a polyradius of convergence of v(x, y) if the radius of convergence of the
1-variable power series v(x, y)(ε1t, ε2t, . . . , εN t) is equal to one.

Then it is easily seen that the polyradius of convergence of v(T ) gives a
lower estimate of critical polyratios (Lemma 3.14). Moreover,

Theorem 3.1. Let (K, {Fi}N
i=1) be a finitely ramified topological self-

similar system satisfying Condition A. If (α1, α2, . . . , αN ) is a polyradius of
convergence of v(x, y) for any two points x, y in a component of K, then
(α1, α2, . . . , αN ) is a critical polyratio.

To prove this, we use the kneading determinant for a dynamics on a topo-
logical tree. The kneading determinants is a holomorphic function on the unit
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polydisc

D = {(X1, X2, . . . , XN ) ∈ CN | |Xi| < 1, i = 1, 2, . . . , N}

with a zero point which equals a critical polyratio. That is a simple general-
ization of Milnor-Thurston’s theory.

Precise formulations will be given in Subsection 3.2. Here we only give an
example in advance as a guideline of discussion.

Example 3.2. Consider the self-similar system (K, {F1, F2}) of Ex-
ample 1.8-(2). We have the piecewise-continuous dynamics f = (f1, f2) on
K = [0, 1], which is the pair of continuous maps{

f1(x) = 2x on [0, 1/2],
f2(x) = 2x − 1 on [1/2, 1].

We see that f1 = F−1
1 and f2 = F−1

2 . Let γ ⊂ K be a subinterval not a point.
Then the n-th image of γ is defined by

f0(γ) = γ,
fn(γ) = f1(fn−1(γ)) ∪ f2(fn−1(γ)).

Then it is easy to see that K is minimal, that is, for any subinterval γ not a
point, there exists n such that fn(γ) = K. In other words, for any γ there
exists U ∈ W∗ such that K(U) ⊂ γ.

The power series v(x, y)(X1, X2) of two variables X1, X2 is defined as fol-
lows. Let x, y ∈ K = [0, 1] with x < y. Consider the interval [x, y] between x
and y. We set

vn(x, y)(X1, X2) =
∑

u1u2...un

Xu1Xu2 · · ·Xun
,

where u1u2 . . . un runs through all words in Wn such that [x, y]∩K(u1u2 . . . un)
contains more than one points. Note that the set of such words forms a chain
Cn of depth n. We set

v(x, y)(X1, X2) =
∞∑

n=0

vn(x, y)(X1, X2).

If x = 0 and y = 1, then

vn(0, 1)(X1, X2) =
∑

u1u2...un∈Wn

Xu1Xu2 · · ·Xun
= (X1 + X2)n.

Thus

v(0, 1)(X1, X2) =
∞∑

n=0

(X1 + X2)n =
1

1 − X1 − X2
.
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Consequently, the series is convergent on {(X1, X2) | |1 − X1 − X2| < 1}; it is
not convergent if X1 + X2 = 1.

Suppose x = k2−n and y = (k+1)2−n, where n, k are nonnegative integers
such that 0 ≤ k ≤ 2n − 1. Then it is easily seen that

v(x, y)(X1, X2) =
∑

V �=U,U≺V

XV + XU

∞∑
n=0

(X1 + X2)n

=
∑

V �=U,U≺V

XV +
XU

1 − X1 − X2
,

where K(U) = [x, y] and Xu1u2...un
= Xu1Xu2 · · ·Xun

. Thus v(x, y)(X1, X2) is
convergent on {(X1, X2) | |1−X1−X2| < 1}; it is not convergent if X1+X2 = 1.
That is true for any x, y ∈ K; because [x, y] is included in an interval of the form
[k2−n, (k+1)2−n], and also it includes such an interval. In fact, v(x, y)(X1, X2)
is written in the form

v(x, y)(X1, X2) =
∑

V :[x,y]�K(V )

XV +
∑

U XU

1 − X1 − X2
,

where U runs through all words satisfying the properties that K(U) ⊂ [x, y]
and that if U ≺ V then K(V ) �⊂ [x, y]. From the minimality of K, we
see that

∑
U XU does not vanish. It is clear that

∑
U XU is convergent if

|X1| < 1 and |X2| < 1. For this reason, we consider H(x, y)(X1, X2) =
(1−X1−X2)v(x, y)(X1, X2) as an analytic function on D = {(X1, X2) | |X1| <
1, |X2| < 1}. Note that

v(Fi(x), Fi(y))(X1, X2) = 1 + Xiv(x, y)(X1, X2)

for i = 1, 2, and hence

H(Fi(x), Fi(y))(X1, X2) = 1 − X1 − X2 + XiH(x, y)(X1, X2).(3.1)

For a polyratio (α1, α2), we can see vn(x, y)(α1, α2) = A(Cn). If the se-
ries v(x, y)(α1, α2) is convergent, then vn(x, y)(α1, α2) → 0 as n → ∞, and
so D(α1, α2)(x, y) = 0. Conversely, if v(x, y)(α1, α2) is not convergent, then
(α1, α2) is a metric polyratio. Although this have been proved in Example 1.16,
we give another proof. Indeed, suppose α1 + α2 = 1. Consider the function

d(x, y) = lim
t→1−

v(x, y)(α1t, α2t)
v(0, 1)(α1t, α2t)

= H(x, y)(α1, α2),

which takes a positive value for x �= y. The function d is a distance on K
compatible with the topology of [0, 1] because of the fact that if x1 ≤ x2 ≤ x3

in K, then d(x1, x3) ≤ d(x1, x2)+d(x2, x3), the fact that if x1 ≤ x2 ≤ x3 ≤ x4,
then d(x2, x3) ≤ d(x1, x4), and the fact that d(k2−n, (k+1)2−n) = A(U), where
U is the word satisfying K(U) = [k2−n, (k + 1)2−n]. By (3.1), we can see that
d is a self-similar metric with polyratio (α1, α2).



�

�

�

�

�

�

�

�

640 Atsushi Kameyama

3.1. Preliminaries — dynamics of self-similar system

If a topological self-similar system (K, {Fi}N
i=1) satisfies

#
N⋃

i=1

F−1
i (x) = 1

for any x ∈ K, then there exists a continuous map g : K → K such that Fi

(i = 1, 2, . . . , N) are the inverse branches of g, namely, the diagram

ΣN
σ−−−−→ ΣN�π �π

K −−−−→
g

K

commutes. Then we consider (g, K) as the dynamics of (K, {Fi}N
i=1).

The set

C ′ = {x |#
N⋃

i=1

F−1
i (x) > 1} ⊂ C

is, however, not always empty. In general, the continuous map g is defined only
on K − C ′. For example, recall Example 3.2. Only the point 1/2 ∈ K satisfies
#
⋃N

i=1 F−1
i (1/2) > 1. We have a continuous map g : K −{1/2} → K which is

defined by

g(x) =
{

2x if 0 ≤ x < 1/2
2x − 1 if 1/2 < x ≤ 1 .

If the dynamics is extended on the whole space K, then ambiguity appears
at 1/2. When we consider 1/2 as a member of [0, 1/2], the value of g(1/2)
is one; when we consider 1/2 as a member of [1/2, 1], the value of g(1/2) is
zero. To avoid the ambiguity, we write g(1/2−) = 1, the left-hand limit, and
g(1/2+) = 0, the right-hand limit.

In general, the left(right)-hand limit at a discontinuity point x ∈ C ′ is not
well-defined, since there is no natural linear order on K. Thus we consider a
point x in K together with a simple path γ : [0, 1] → K which passes through
x. We will examine a dynamics working on the set of ordered pairs (x, γ).

Let (K, {Fi}N
i=1) be a finitely ramified topological self-similar system. Let

γ be a simple path, and a a point in γ. By the symbol γ, we may denote not
only the mapping [0, 1] → K but also the image of the mapping. (For example,
we write a ∈ γ instead of a ∈ γ([0, 1]).) Considering the topological self-similar
system (K, {Fi}N

i=1) as a complex of dynamics on paths, we can treat it as some
kind of interval dynamics.

Remark 3.3. Precisely, we consider equivalent classes of paths. We
identify γ with γ′, say γ � γ′, if γ ◦ h = γ′ for some orientation-preserving
homeomorphism h : [0, 1] → [0, 1].
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Notation 3.4. The set of simple paths in K is denoted by

Q0 = {γ : [0, 1] → K | γ is injective and continuous}.
We set

Ξ0 = {(a, γ) ∈ K × Q0 | γ ∈ Q0, a ∈ γ}.
Usually, an element of Ξ0 will be referred by a symbol ξ.

In this section we will define many functions with argument (a�, γ), where
� is +, − or empty. If ξ = (a, γ), the argument is written as ξ�.

Definition 3.5. Let γ ∈ Q0 be a simple path. We say a ∈ γ is a turning
point of γ if for any ε > 0 there is no i ∈ {1, 2, . . . , N} such that γ([γ−1(a) −
ε, γ−1(a) + ε]) ⊂ K(i), in other words, if γ ∩ K(i) is not a neighborhood of a
in γ for any symbol i. We say a is k-turning point of γ if for some ε > 0 there
is U ∈ Wk such that γ([γ−1(a) − ε, γ−1(a) + ε]) ⊂ K(U), but if for any ε > 0
there is no U ∈ Wk+1 such that γ([γ−1(a)− ε, γ−1(a)+ ε]) ⊂ K(U). A turning
point is a 0-turning point. We denote, by Turk(γ) ⊂ γ, the set of k-turning
points of γ. For convenience, we set Tur−1(γ) = ∅. We say that (a, γ) ∈ Ξ0 is
a k-turning point if a is a k-turning point of γ.

A turning point of γ is a critical point. Since the critical set is finite, even
if a ∈ γ is a turning point there exist ε > 0 and i, j ∈ {1, 2, . . . , N} such that
γ([ta − ε, ta]) ⊂ K(i) and γ([ta, ta + ε]) ⊂ K(j), where γ(ta) = a. We use the
notation

Y (a−, γ) = Y (ξ−) = i, Y (a+, γ) = Y (ξ+) = j,

where ξ = (a, γ). If ξ is not a turning point, then Y (ξ−) = Y (ξ+), so it is
denoted by Y (ξ) = Y (a, γ). We call Y (ξ±) the address of ξ±.

Since the critical set is finite, #F−1
Y (a�,γ)(a) = 1 except for finitely many a.

Thus
g(a−, γ) = g(ξ−) = lim

ε→0
F−1

i (γ(ta − ε))

g(a+, γ) = g(ξ+) = lim
ε→0

F−1
j (γ(ta + ε))

are well-defined, where γ(ta) = a and γ(ta−ε) ∈ K(i), γ(ta+ε) ∈ K(j) for small
ε. We simply write g(ξ) if g(ξ−) = g(ξ+). The point g(a±, γ) is considered as
the image of a± by the ‘map’ g(·, γ).

Definition 3.6. We say a ∈ γ is an essential critical point of γ, that is
to say ξ = (a, γ) is an essential critical point, if either ξ is a turning point or
g(ξ−) �= g(ξ+). It is clear that an essential critical point is a critical point and
that a turning point is an essential critical point. Then the number of essential
critical points of γ is clearly finite.

Remark 3.7. If C2 =
⋃N

i=1{x ∈ K |#F−1
i (x) ≥ 2} is empty, then

(a, γ) is a turning point if and only if (a, γ) is an essential critical point.

The essential critical points of γ divide the path γ into finite sub-paths on
which we can define a continuous map g. Precisely speaking, the unit interval
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[0, 1] is divided to subintervals I = I1 ∪ I2 ∪ · · · ∪ Il, where Ik = [tk−1, tk]
(k = 1, 2, . . . , l), t0 = 0, tl = 1 and where γ(tk) (k = 1, 2, . . . , l−1) are essential
critical points. Then for any k = 1, 2, . . . , l there exists ik ∈ {1, 2, . . . , N} such
that γ(Ik) ⊂ K(ik). Moreover, g(γ(t)−, γ) = g(γ(t)+, γ) for any t ∈ intIk.
Consequently, a continuous map gk : γ(Ik) → K is defined as gk(a) = g(a, γ).
We use the notation

i(a, γ) = i(a±, γ) = Ik if a ∈ intIk

and
i(γ(tk−1)+, γ) = i(γ(tk)−, γ) = Ik.

For a ∈ γ, we take hi(a±,γ), an orientation-preserving homeomorphism of
[0, 1] onto i(a±, γ). Then we obtain a simple path

η(a±, γ) = g ◦ γ ◦ hi(a±,γ) : [0, 1] → K.

Notation 3.8. For ξ = (a, γ), we define

η0(ξ±) = γ, g0(ξ±) = a, µ0(ξ±) = ξ, I0(ξ±) = γ([0, 1]),

and we inductively define for k = 1, 2, . . .

ηk(ξ±) = η(µk−1(ξ±)±),
gk(ξ±) = g(µk−1(ξ±)±),
µk(ξ±) = (gk(ξ±), ηk(ξ±)),
Ik(ξ±) = FY (ξ±)(Ik−1(µ1(ξ±)±)),

Yk−1(ξ±) = Y (µk−1(ξ±)±).

For k = 0, 1, . . . , we write

Yk(ξ±) = Y0(ξ±)Y1(ξ±) . . . Yk(ξ±) ∈ Wk+1.

If k = −1, we set
Y−1(ξ±) = ∅ ∈ W0.

If Ik(ξ−) = Ik(ξ+), Yk(ξ−) = Yk(ξ+), etc, then we also use the notation
Ik(ξ), Ik−1(ξ), etc, respectively.

By definition,

I1(ξ±) = FY (ξ±)(η(ξ±)([0, 1])) = γ(i(ξ±)) ⊂ γ([0, 1]) = I0(ξ±).

If k ≥ 0, then
Ik(ξ±) = FYk−1(ξ±)(I0(µk(ξ±)±))

and
Ik+1(ξ±) = FYk−1(ξ±)(I1(µk(ξ±)±)).

Thus
I0(ξ±) ⊃ I1(ξ±) ⊃ · · · .
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By definition we know that {I1(a, γ) | a ∈ γ} is a decomposition of I0(ξ) =
γ([0, 1]) into subarcs by essential critical points. Thus {Ik(a, γ) | a ∈ γ} is also
a decomposition of γ([0, 1]). It is evident that if ξ = (a, γ),

a ∈ Ik(ξ±) ⊂ K(Yk−1(ξ±))

Clearly,

ηk+m(ξ±) = ηk(µm(ξ±)±),(3.2)
gk+m(ξ±) = gk(µm(ξ±)±),(3.3)
Yk+m(ξ±) = Yk(µm(ξ±)±),(3.4)

and

Yk+m(ξ±) = Yk(ξ±)Ym−1(µk+1(ξ±)±).(3.5)

The following is clear.

Proposition 3.9. (1) Let ξ ∈ Ξ0. The point ξ is a k-turning point if
and only if

Yk−1(ξ−) = Yk−1(ξ+), Yk(ξ−) �= Yk(ξ+).

The point ξ is an essential critical point if and only if

I1(ξ−) �= I1(ξ+).

(2) For a, b ∈ γ and k = 1, 2, . . .

Ik(a�, γ) = Ik(b�, γ) =⇒ Ik−1(a�, γ) = Ik−1(b�, γ),
Yk−1(a�, γ) = Yk−1(b�, γ), ηk(a�, γ) = ηk(b�, γ),

where �, � ∈ {−, +}. Moreover, if a = b, we see that if Ik(a−, γ) = Ik(a+, γ),
then gk(a−, γ) = gk(a+, γ).

Notation 3.10. If a is a k-turning point, then by Proposition 3.9 we
can take the minimal integer 0 ≤ s ≤ k such that Is+1(a−, γ) �= Is+1(a+, γ).
Then gs(a, γ) is an essential critical point of ηs(a, γ). We write

s(a, γ) = s.

We set

Bk(γ) = {a | a ∈ ⋃∞
m=0 Turm(γ), k = s(a, γ)}

= {a ∈ γ | Ik(a−, γ) = Ik(a+, γ), Ik+1(a−, γ) �= Ik+1(a+, γ)}.

for k = 0, 1, . . . . Then Bk(γ) is a finite set, since Bk(γ) ⊂ C(k) =
⋃

|U|≤k FU (C).

In fact,
⋃k

m=0 Bm(γ) ∪ {γ(0), γ(1)} is the set of endpoints of arcs in the form
Ik+1(a, γ).
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Remark 3.11. If C2 is empty, then s(a, γ) = k for any k-turning point
(a, γ). Thus Bk(γ) is the set of k-turning points of γ.

Example 3.12. Consider the self-similar system (K, {F1, F2}) of Ex-
ample 1.8-(3). Let γ : [0, 1] → K be the simple path γ(t) = t between 0 and 1.
Note that γ([0, 1]) = [0, 1] = K. The critical set C = {1/2} is equal to the set
of turning points of γ and equal to the set of essential critical points of γ. The
interval γ is divided into two subintervals: γ = [0, 1/2]∪ [1/2, 1] = K(1)∪K(2).
It is easy to see that

g(a, γ) =
{ −2a + 1 if a ∈ [0, 1/2]

2a − 1 if a ∈ [1/2, 1] ,

and

Y (a, γ) =
{

1 if a ∈ [0, 1/2) or a = 1/2−

2 if a ∈ (1/2, 1] or 1 = 1/2+ .

Since

i(a, γ) =
{

[0, 1/2] if a ∈ [0, 1/2) or a = 1/2−

[1/2, 1] if a ∈ (1/2, 1] or 1 = 1/2+ ,

taking homeomorphisms h[0,1/2](t) = t/2 and h[1/2,1](t) = (t + 1)/2, we have

η(a, γ)(t) =
{ −t + 1 if a ∈ [0, 1/2) or a = 1/2−

t if a ∈ (1/2, 1] or a = 1/2+ .

In the same way, we see that

ηk(a, γ)(t) =
{ −t + 1 if n is odd

t if n is even ,

where n = #{0 ≤ l ≤ k − 1 |Yl(a, γ) = 1}.

3.2. Main results

Let (K, {Fi}N
i=1) be a finitely ramified self-similar set such that every com-

ponent of K is simply connected. Let x, y be points in a component of K.
From Corollaries A.2 and A.5 there uniquely exists a simple path γx,y be-
tween x and y. The set of at most n − 1-turning points of γx,y, denoted by⋃n

m=0 Turm−1(γx,y), divides the path γx,y into subpaths L1, L2, . . . , Ll. We can
define a set

L(γx,y, n) = {(L1, U1), (L2, U2), . . . , (Ll, Ul)},
where (U1, U2, . . . , Ul) is a chain between x and y, Uk ∈ Wn, Lk ⊂ γx,y∩K(Uk),
and {Lk}k is a set of simple arcs, satisfying

⋃
k Lk = γx,y, which are mutually

disjoint but one point. Using that, we define a homogeneous polynomial

vn(x, y)(X1, X2, . . . , XN ) =
l∑

i=1

XUi
,
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where Xu1u2...un
= Xu1Xu2 · · ·Xun

. Note that v0(x, y)(X1, X2, . . . , XN ) = 1.
Now we define a formal power series

v(x, y)(X1, X2, . . . , XN ) =
∞∑

k=0

vk(x, y)(X1, X2, . . . , XN ).

Definition 3.13. A set T is called a topological tree if T is homeomor-
phic to a 1-dimensional simplicial complex each component of which is simply
connected.

We also define a formal power series v for a topological tree T in K. A topo-
logical tree T is divided into subtrees L1, L2, . . . , Ll by

⋃n
m=0

⋃
γ⊂T Turm−1(γ).

We write
L(T, n) = {(L1, U1), (L2, U2), . . . , (Ll, Ul)},

where Uk ∈ Wn, Lk ⊂ K(Uk) ∩ T , and {Lk}k is a set of connected topological
trees, satisfying

⋃
k Lk = T , which are mutually disjoint but one point. Then

we set

vn(T )(X1, X2, . . . , XN ) =
l∑

i=1

XUi
,

v(T )(X1, X2, . . . , XN ) =
∞∑

k=0

vk(x, y)(X1, X2, . . . , XN ).

The following lemma is easy.

Lemma 3.14. Let (K, {Fi}N
i=1) be a finitely ramified topological self-

similar system such that every component of K is simply connected. Let α =
(α1, α2, . . . , αN ) ∈ RaN be a polyratio such that the power series v(x, y)(α)
converges for some x �= y ∈ K. Then the standard pseudodistance Dα is not a
distance.

Proof. Since v(x, y)(α) converges, Dα(x, y) ≤ vn(x, y)(α) → 0 as n →
∞.

Thus, if the pseudodistance Dα is a distance, then v(x, y)(α) is not con-
vergent for any x, y. Our main theorem is the converse.

Notation 3.15. Let (K, {Fi}N
i=1) be a finitely ramified topological self-

similar system. For a simple path γ in K, we write

ηk(γ) =
⋃
a∈γ

ηk(a, γ) = {gk(a†, γ) | a ∈ γ, † = −, +}

for k = 1, 2, . . . If T is a topological tree, we use the notation

ηk(T ) =
⋃

γ: simple path in T

ηk(γ)

for k = 1, 2, . . . .
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Definition 3.16. A topological tree T in the topological self-similar
set K is called an invariant tree if η1(γ) ⊂ T for any simple path γ in T . An
invariant tree is said to be minimal if for any simple path γ in T , there exist p
and n such that

⋃n+p−1
i=n ηi(γ) = T

Recall that the main theorem has been stated as follows.

Condition A

(1) Each component of K is simply connected.

(2) There exists a minimal trees T1, T2, . . . Tm ⊂ K which satisfy the follow-
ing: For any simple path γ in K there exist Tk and a positive integer p, n
such that Tk ⊂ ⋃n+p−1

i=n ηi(γ).

Theorem 3.1. Let (K, {Fi}N
i=1) be a finitely ramified topological self-

similar system satisfying Condition A. If α = (α1, α2, . . . , αN ) is a polyradius
of convergence of v(x, y) for any two points x, y in a component of K, then α
is a critical polyratio.

In more detail, we will prove:

Theorem 3.17. Let (K, {Fi}N
i=1) be a finitely ramified topological self-

similar system satisfying Condition A. Suppose that α = (α1, α2, . . . , αN ) sat-
isfies the following. There exists a polyradius of convergence (αj

1, α
j
2, . . . , α

j
N )

of v(Tj) for each j = 1, 2, . . . , m such that αj
i ≤ αi for any i and any j, where

Tj is the minimal tree in Condition A. Then α is a metric polyratio.

Remark 3.18. One of sufficient conditions for a finitely ramified topo-
logical self-similar system to satisfy Condition A is the following. We say that
an invariant tree T is a Hubbard tree if the critical set C and the pre-postcritical
set P are included in T . If non-recurrent finitely ramified topological self-similar
system has a Hubbard tree, then it satisfies Condition A. This claim, which is
not proved in this paper, will be discussed in another paper of the author [9].
In particular, if the pre-postcritical set P of a finitely ramified topological self-
similar system is finite, then Condition A is fulfilled. All self-similar systems
in Example 1.8 satisfy Condition A.

Now let us start the proof of Theorem 3.17.
To construct a self-similar metric on K, we consider a distance on a mini-

mal tree as follows. Let T be a minimal tree in K, and let α = (α1, α2, . . . , αN )
be a polyradius of convergence of v(T ). We write X = (X1, X2, . . . , XN ). We
will define

d(x, y) = lim
X→α

v(x, y)(X)
v(T )(X)

for x, y in a component of T . In fact, in the next section we will prove the
following.
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Lemma 3.19. Let T be a minimal tree in K, and let α = (α1, α2, . . . ,
αN ) be a polyradius of convergence of v(T ). Then for any x �= y in T , the
series v(x, y)(α) diverges, and the limit

d(x, y) = lim
t→1−

v(x, y)(αt)
v(T )(αt)

.(3.6)

exists, where αt = (α1t, α2t, . . . , αN t).

Note that if (3.6) converges for any x, y, then

d(T ′) = lim
t→1−

v(T ′)(αt)
v(T )(αt)

converges for any subtree T ′ ⊂ T . We continue the proof, assuming Lemma
3.19.

Proposition 3.20. Under the above assumption, we have

(1) Let T1, T2 be subtrees of T . If T1 ⊂ T2, then

d(T1) ≤ d(T2).

In particular, d(T ′) ≤ 1 for any subtree T ′ ⊂ T .

(2) Let T1, T2 be subtrees of T such that T1 ∩ T2 is at most one point. Then

d(T1) + d(T2) = d(T1 ∪ T2).

(3) Let T ′ be a subtree of T . Then

min
i

αid(η1(T ′)) ≤ d(T ′).

Moreover, if T ′ ⊂ K(i) for some i ∈ {1, 2, . . . , N}, then

αid(η1(T ′)) = d(T ′)

Proof. (1) Let T1 and T2 be a subtree of T with T1 ⊂ T2. Then there
exists an integer n0 ≥ 0 such that if n > n0 then L ∩ T1 is either connected
or empty for any (L, U) ∈ L(T2, n). The mapping hn : L(T1, n) → L(T2, n)
defined by hn(L′, U ′) = (L, U) if U = U ′ and L′ ⊂ L is well-defined, and it is
injective if n > n0. Consequently,

vn(T1)(X1, X2, . . . , XN ) ≤ vn(T2)(X1, X2, . . . , XN )

for 0 < Xi < 1 if n > n0. Since
∑∞

k=n0+1 vk(T1)(αt) ≤ ∑∞
k=n0+1 vk(T2)(αt)

for 0 < t < 1, and since
∑∞

k=n0+1 vk(T )(αt) → ∞ as t → 1−, we have d(T1) ≤
d(T2). The second assertion is verified by d(T ) = 1.
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(2) Suppose T1 ∩ T2 is at most one point. Let r be the number of branches at
the intersection point a ∈ T1∩T2, that is, S−{a} has r connected components,
where S a small connected neighborhood of a in T . Then there exists an integer
n0 ≥ 0 such that if n > n0 then

(L(T1, n) ∪ L(T2, n) ∪ L(T1 ∪ T2, n)) − ((L(T1, n) ∪ L(T2, n)) ∩ L(T1 ∪ T2, n))

consists of at most 3r/2 members. Therefore the difference between vn(T1)(αt)+
vn(T2)(αt) and vn(T1 ∪ T2)(αt) is bounded by 3r(maxi αi)n/2 for 0 < t < 1.
Since 0 < αi < 1, we have

∑∞
k=n0+1 3r(maxi αi)n/2 is finite, and hence

d(T1) + d(T2) = d(T1 ∪ T2).

(3) Let T ′ be a subtree in T . If (L, U) ∈ L(η1(T ′), k), then there exist i ∈
{1, 2, . . . , N} and (L′, τi(U)) ∈ L(T ′, k + 1) such that L′ ⊂ Fi(L). Thus

min
i

αit vk(η1(T ′))(αt) ≤ vk+1(T ′)(αt)

for k = 0, 1, . . . . Consequently,

min
i

αia
v(η1(T ′))(αt)

v(T )(αt)
≤ v(T ′)(αt) − v0(T ′)(αt)

v(T )(αt)

if a < t < 1. Since v0(T ′) is bounded, we have mini αid(η1(T ′)) ≤ d(T ′).

Moreover, suppose T ′ ⊂ K(i) for some i ∈ {1, 2, . . . , N}. Then (L, U) ∈
L(η1(T ′), k) if and only if (Fi(L), τi(U)) ∈ L(T ′, k + 1). Consequently,

Xivk(η1(T ′))(X) = vk+1(T ′)(X)

for k = 1, 2, . . . . The last assertion can be proved similarly.

Proposition 3.21. Under the above assumption, d(·, ·) is a distance on
each component of T which is compatible with the topology of T .

Proof. It is clear that d(x, y) = d(y, x). In the case x = y, although we
have not defined d(x, x), it is natural and reasonable to set d(x, x) = 0.

Let x, y, z be points in a component of T . Then γx,z = γx,y − H∪γy,z − H ,
where H = γx,y ∩γy,z. Since γx,y − H ∩γy,z − H consists of at most one point,
we have

d(x, z) ≤ d(x, y) + d(y, z).

Assume that there exists x �= y such that d(x, y) = 0. Since T is mini-
mal, there exists a positive integer p, n such that

⋃n+p−1
i=n ηi(γx,y) = T . From

Proposition 3.20,

d(T ) ≤
n+p−1∑

i=n

d(ηi(γx,y)) ≤
n+p−1∑

i=n

(min
j

αj)−id(γx,y) = 0.
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This is a contradiction to the fact d(T ) = 1. Therefore d(x, y) > 0 if x �= y.
Let x ∈ T , and let {y1, y2, . . . } be a sequence in T such that d(x, yk) → 0

as k → ∞. Then {yk} converges to x. Indeed, we can assume that there exists
a simple path γ such that x is one of its endpoints and that {y1, y2, . . . } ⊂ γ.
If γx,yk

⊂ γx,yk′ , then d(x, yk) ≤ d(x, yk′). Thus we can assume that γx,y1 ⊃
γx,y2 ⊃ · · · . We conclude

⋂∞
k=1 γx,yk

= {x} from the fact that d(x, y) > 0 if
x �= y.

Let x ∈ T , and let {y1, y2, . . . } be a sequence in T which converges to
x. We will show that d(x, yk) → 0 as k → ∞. We can assume that γx,y1 ⊃
γx,y2 ⊃ · · · and d(x, y1) ≥ d(x, y2) ≥ · · · . Assume there exists a positive
number δ such that d(x, yk) > δ for every k. Let n be a positive integer such
that (maxi αi)n < δ. Then there exists k such that γx,yk

∩C(n) = ∅. From (3)
of Proposition 3.20, we have

(max
i

αi)nd(ηn(x, γx,yk
)) ≥ d(γx,yk

) > δ.

Therefore
1 < (max

i
αi)−nδ < d(ηn(x, γx,yk

)) ≤ d(T ) = 1,

and this is a contradiction.

To sum up, we have proved the following proposition. Let (K, {Fi}N
i=1)

be a finitely ramified topological self-similar system satisfying Condition A.
Let Tj (j = 1, 2, . . . , m) be the minimal trees in Condition A. We denote, by
T 1

j , T 2
j , . . . , T

qj

j , the component of Tj . Let (αj
1, α

j
2, . . . , α

j
n) be a polyradius of

convergence of v(Tj).

Proposition 3.22. There exists a function d on
⋃m

j=1

⋃qj

r=1(T
r
j × T r

j )
which is a distance on each T r

j such that for any j, if two points x, y belong to T r
j

and if γx,y contains no essential critical point, then αj
i d(g(x, γx,y), g(y, γx,y)) =

d(x, y) for some i ∈ {1, 2, . . . , N}.

The next step is to show the following. Suppose that a polyratio α =
(α1, α2, . . . , αN ) satisfies αj

i ≤ αi for any i and any j.

Lemma 3.23. There exists a positive integer β which satisfies the fol-
lowing:

(1) Let a, b ∈ T r
k such that γa,b contains an essential critical point. If C =

(U1, U2, . . . , Ul) is a chain between a and b such that K(Ui−1)∩K(Ui)∩T r
k = ∅

for i = 2, 3, . . . , l, then mini |Ui| ≤ β.

(2) Let a, b ∈ T r
k . If C = (U1, U2, . . . , Ul) is a chain between a and b such that

K(Ui−1)∩K(Ui)∩T r
k = ∅ for i = 2, 3, . . . , l, and K(Ui−1)∩K(Ui)∩C �= ∅ for

some i, then mini |Ui| ≤ β.

Consequently, if two points a, b ∈ T r
k and a chain C satisfy either (1) or (2),

then d(a, b) ≤ A(C)/(mini αi)β.
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Proof. Let

n0 = max{n | for any a, b as (1), a, b ∈ K(U) for some U ∈ Wn}.

If C is a chain as (1) such that l ≥ 2, then there exists i such that K(Ui−1) ∩
K(Ui) ∩ (C̃(n0 + 1) − T r

k ) �= ∅ by Lemma 2.11. Note that C̃(n0 + 1) − T r
k is a

finite set. Therefore, if mini |Ui| is not bounded, then using the same argument
as Proposition 1.29 we obtain a connected set X containing a, b and a point in
C̃(n0 + 1) − T r

k . This is a contradiction.
Suppose two points a, b ∈ T r

k and a chain C satisfy either (1) or (2). Let
Ui be a word such that |Ui| ≤ β. Then d(a, b) ≤ 1 ≤ A(Ui)/(minj αj)β ≤
A(C)/(minj αj)β.

Proposition 3.24. α is a metric polyratio.

Proof. Let x �= y ∈ K. If x, y are contained in distinct connected com-
ponents, then D(x, y) > 0. Suppose that they are contained in the same
components and D(x, y) = 0. Then for any ε > 0, there exists a chain
Cε = (U ε

1 , U ε
2 , . . . , U ε

lε
) between x and y such that A(Cε) < ε. By the same

discussion as Proposition 1.29, we see that X =
⋂

ε>0

⋃
ε′<ε

⋃lε′
k=1 K(U ε′

k ) is
connected. Thus γx,y ⊂ X, and so D(a, b) = 0 for any two points a, b ∈ γa,b.
By (2) of Condition A, the path γx,y includes a subpath γ such that γ ∈ K(U)
and gn(γ) ⊂ Tj for some n, some U ∈ Wn and some j. Therefore it is easy to
see that there exists x′, y′ ∈ Tj such that D(x′, y′) = 0.

It suffices to show that D(x, y) > 0 if x �= y ∈ T r
j . Let C = (U1, U2, . . . , Ul)

be a chain between x and y. We set

{i1, i2, . . . , it} = {i |K(Ui−1) ∩ K(Ui) ∩ T r
j �= ∅},

i0 = 0, it+1 = l. Choose x0 = x, xi ∈ K(Ui) ∩ K(Ui+1), xl = y such that
xi ∈ T r

j if i ∈ {i1, i2, . . . , it}. Let 0 ≤ k ≤ t. Then there exists n ≥ 0 such
that intgj(γxik

,xik+1
) contains no essential critical point (j = 0, 1, . . . , n − 1),

P j(xi) ∩ C = ∅ (j = 0, 1, . . . , n − 1, ik < i < ik+1) and either intgn(γxik
,xik+1

)
contains an essential critical point or Pn(xi) ∩ C �= ∅ for some ik < i < ik+1.
Then there exists a word Vk ∈ Wn such that Ui ≺ Vk (ik < i ≤ ik+1). Thus by
Proposition 3.22 and Lemma 3.23,

d(xik
, xik+1) ≤ A(Vk)d(gn(xik

, γxik
,xik+1

), gn(xik+1 , γxik
,xik+1

))

≤ A(Vk)
ik+1∑

i=ik+1

A(σn(Ui))/(min
j

αj)β

=
ik+1∑

i=ik+1

A(Ui)/(min
j

αj)β.
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Therefore

0 < d(x, y) ≤
t∑

k=0

d(xik
, xik+1) ≤

t∑
k=0

ik+1∑
i=ik+1

A(Ui)/(min
j

αj)β = A(C)/(min
j

αj)β.

Hence A(C) > 0.

To complete the proof of Theorem 3.17, we have to only show Lemma 3.19.
We consider the function

v(γ)(αt)
v(T )(αt)

as a function of complex variable. Then it will be proved to be holomorphic.
The proof will be done by using kneading determinants. In [16], Milnor

and Thurston have introduced a holomorphic function of one variable, called a
kneading determinant, which is defined by the kneading sequence of an interval
dynamics. In our case we extend it as a function of several variables. Although
our kneading determinant is more complicated than the original one, the proof
is almost parallel to that of Milnor-Thurston. There is no essential difference.

An interval naturally has a linearly order, which makes the kneading theory
on the interval successful, but a tree is not so. Our new idea to settle the
difficulty is the following: Considering all subintervals in the tree, we can treat
the tree dynamics as a system of interval dynamics. On every interval of the
system a linearly order is independently defined.

Furthermore, we will prove

Theorem 3.25. Let (K, {Fi}N
i=1) be a finitely ramified topological self-

similar system satisfying Condition A. Let T1, T2, . . . , Tm be minimal trees
which satisfy Condition A. Then there exist analytic functions ∆T1 , ∆T2 , . . . ,
∆Tm

on RaN = {(X1, X2, . . . , XN ) ∈ RN | 0 < Xi < 1} such that the set
of metric polyratios is equal to the set of α = (α1, α2, . . . , αN ) ∈ RaN which
satisfies the condition that for each i = 1, 2, . . . , m there exists β(i) = (β1(i),
β2(i), . . . , βN (i)) in RaN such that βk(i) ≤ αk (k = 1, 2, . . . , N) and ∆Ti

(β(i))
= 0.

3.3. Kneading determinants

Let (K, {Fi}N
i=1) be a finitely ramified topological self-similar system. In

this subsection we will prove Lemma 3.19.

3.3.1. Orientations
Notation 3.26. Let γ, γ′ be simple paths in K. We say

γ < γ′

if the image of γ′ includes that of γ, and γ′−1 ◦ γ : [0, 1] → [0, 1] is orientation-
preserving. For a simple path γ, we define a simple path −γ : [0, 1] → K
as

(−γ)(t) = γ(1 − t).
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If ξ = (a, γ) ∈ Ξ0, we write

−ξ = (a,−γ), −(ξ±) = (a∓,−γ), (−ξ)± = (a±,−γ).

The following is easy.

Proposition 3.27. (1) Let ξ ∈ Ξ0. Then

gk(ξ±) = gk(−(ξ±)), ηk(ξ±) = −ηk(−(ξ±)), Yk(ξ±) = Yk(−(ξ±)).

(2) Let γ, γ′ be a simple path in K satisfying γ < γ′, and let a ∈ γ. Then

−γ < −γ′

and

gk(a±, γ) = gk(a±, γ′), ηk(a±, γ) < ηk(a±, γ′), Yk(a±, γ) = Yk(a±, γ′).

Definition 3.28. Let T be an invariant tree of (K, {Fi}N
i=1). Note that

we have a natural one-to-one correspondence between

Q1 = Q1(T )
= {(x, y) ∈ T × T |x �= y, x and y belongs to the same component of T}

and
{a simple path in T}

by identifying (x, y) with γx,y. (Precisely, (x, y) ∈ Q1 is identified with the
equivalence class including γx,y.) For (x, y) and (x′, y′) in Q1, we say (x, y) <
(x′, y′) if γx,y < γx′,y′ . For (x, y) ∈ Q1, we denote −(x, y) = (y, x).

First we define the finite set Q′ to be

Q′ = {(x, y) ∈ Q1 | x and y are endpoints of T}.
There exists a mapping

χ : Q1 → Q′

which satisfies the conditions that χ(y, x) = −χ(x, y), (x, y) < χ(x, y), and
the restriction χ|Q′ is the identity. We fix such a function χ. Then we fix a
function o : Q′ → {−1, 1} satisfying o(x, y) = −o(y, x), and we obtain the sets

Q = Q(T ) = {(x, y) ∈ Q1 | o(χ(x, y)) = 1}
and

Q∗ = Q∗(T ) = {(x, y) ∈ Q′ | o(x, y) = 1}.
The function o, said to be an orientation on T , is extended on Q by o(x, y) =
o(χ(x, y)).

We use the notation

Ξ = {(a, γ) ∈ Ξ0 | γ ∈ Q}.
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Example 3.29. (1) Let (K, {F1, F2}) be the self-similar system of Ex-
ample 1.8-(2). The unit interval K = [0, 1] is a minimal tree. Since K has two
endpoints 0 and 1, we see that Q′ = {γ,−γ}, where γ : [0, 1] → K is defined
by γ(t) = t. Setting o(γ) = 1, o(−γ) = −1, we have Q∗ = {γ}. The mapping
χ : Q1 → Q′ is necessarily defined by χ(l) = γ if l < γ, χ(l) = −γ if l < −γ.

(2) Let (K, {F1, F2}) be the self-similar system of Example 1.8-(6). Recall that
it has the critical set C = {c} and the postcritical set P = {p1, p2, p3} such
that F1(p1) = F2(p1) = c, F1(p2) = p1, F1(p3) = p2, F2(p2) = p3. There exists
a minimal tree T in K. The tree T , which is Y-figured, has three endpoints
p1, p2 and p3. (Remark that T has a branch point p, and the critical point c is
contained in the simple path γ′ between p3 and p. See Figure 5.) Thus Q′ has
six members, and Q∗ has three members. Set Q∗ = {γ1, γ2, γ3}, where γ1 is a
simple path between p3 and p1; γ2 between p3 and p2; γ3 between p1 and p2.
There are several possibilities for the mapping χ. We choose χ as follows. Let
l : [0, 1] → T be a simple path. If #{γ ∈ Q′ | l < γ} = 1, then χ(l) is uniquely
determined. We set χ(l) = ±γ1 if l < ±γ1 and l < ∓γ3; χ(l) = ±γ1 if l < ±γ1

and l < ±γ2; χ(l) = ±γ2 if l < ±γ2 and l < ±γ3.

Figure 5: The minimal tree T and the curves γ1, γ2, γ3

Definition 3.30. Let ξ ∈ Ξ. Then either η(ξ�) ∈ Q or −η(ξ�) ∈ Q for
each � = −, +. We write

η̃(ξ±) =
{

η(ξ±) if o(η(ξ±)) = 1,
−η(ξ±) if o(η(ξ±)) = −1.

Namely,

η̃(ξ±) = o(η(ξ±)) η(ξ±).(3.7)

For ξ = (a, γ) ∈ Ξ, we inductively define

η0
∗(ξ

±) = χ(γ), e0(ξ±) = 1, g̃0(ξ±) = a±,
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and for k = 1, 2, . . . ,

ηk
∗ (ξ±) = χ(η̃(µ̃k−1(ξ±))),

ek(ξ±) =
k−1∏
m=0

o(η(µ̃m(ξ±))) ∈ {−1, 1},
µk
∗(ξ

±) = (gk(ξ±), ηk
∗(ξ±)),

g̃k(ξ±) =
{

gk(ξ±)± if ek(ξ±) = 1,
gk(ξ±)∓ if ek(ξ±) = −1,

µ̃k(ξ±) = (g̃(ξ±), ηk
∗ (ξ±)).

We say µk
∗(ξ

±) is the k-th successor of ξ±, ηk
∗ (ξ±) the path component of the

k-th successor of ξ±, and ek(ξ±) the k-th sign of ξ±.

From (3.2) and the definition of ek,

ηk+m
∗ (ξ±) = ηk

∗ (µ̃m(ξ±)),(3.8)
ek+m(ξ±) = em(ξ±) ek(µ̃m(ξ±)).(3.9)

Proposition 3.31. Let ξ ∈ Ξ. Then

ηk(ξ±) < ηk
∗ (ξ±) if ek(ξ±) = 1,

−ηk(ξ±) < ηk
∗ (ξ±) if ek(ξ±) = −1.

Proof. We will prove the assertion by induction. Let ξ = (a, γ). If k = 0,
then η0(ξ±) = γ and η0

∗(ξ
±) = χ(γ). We suppose the assertion is true when

k = n. Then
en(ξ±)ηn(ξ±) < ηn

∗ (ξ±).

By Proposition 3.27 and (3.7),

en+1(ξ±)ηn+1(ξ±) = o(η(µ̃n(ξ±)))en(ξ±)η(µn(ξ±)±)
= o(η(µ̃n(ξ±)))η(g̃n(ξ±), en(ξ±)ηn(ξ±))
< o(η(µ̃n(ξ±)))η(g̃n(ξ±), ηn

∗ (ξ±))
= o(η(µ̃n(ξ±)))2 η̃(µ̃n(ξ±))
= η̃(µ̃n(ξ±))
< ηn+1

∗ (ξ±).

This completes the proof.

Corollary 3.32. Let ξ ∈ Ξ. Then

Yk+m(ξ±) = Ym(µ̃k(ξ±)) and Yk+m−1(ξ±) = Yk−1(ξ±)Ym−1(µ̃k(ξ±))

for k = 0, 1, . . . and m = 0, 1, . . . .

The element of

Π∗ = {(I1(a, γ), γ) | γ ∈ Q∗, a ∈ γ}
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is called an extended subinterval. For ξ ∈ Ξ, we define for k = 0, 1, . . .

Jk(ξ±) = (I1(µ̃k(ξ±)), ηk
∗ (ξ±)) ∈ Π∗.

We say Jk is the extended address of the k-th successor of ξ±. From (3.8) we
have

Jk+m(ξ±) = Jk(µ̃m(ξ±)).(3.10)

If ρ = (I1(a, γ), γ), then we write

I(ρ) = I1(a, γ), γ(ρ) = γ.

There uniquely exists Y (ρ) ∈ {1, 2, . . . , N} such that I(ρ) ⊂ K(Y (ρ)). It is
clear Y (ρ) = Y (a, γ(ρ)) for a ∈ intI(ρ). We write

η(ρ) = η(a, γ(ρ)), η∗(ρ) = η1
∗(a, γ(ρ)), e(ρ) = e1(a, γ(ρ))

where a ∈ intI(ρ). This is independent of a.

Example 3.33. This is continued from Example 3.29.

(1) Consider the self-similar system (K, {F1, F2}) of Example 1.8-(2). If 0 ≤
a < 1/2, then I1(a, γ) = [0, 1/2]; if 1/2 < a ≤ 1, then I1(a, γ) = [1/2, 1]. Thus
Π∗ = {I1, I2}, where I1 = ([0, 1/2], γ), I2 = ([1/2, 1], γ).

Let us calculate ek(c±, γ) and Jk(c±, γ) for the critical point c = 1/2. We
write p1 = 0 and p2 = 1. Since µk(c−, γ) = (p2, γ) for k = 1, 2, . . . and
µk(c+, γ) = (p1, γ) for k = 1, 2, . . . , we have ek(c±, γ) = 1 for k = 0, 1, . . . and

J0(c−, γ) = I1, Jk(c−, γ) = I2 (k = 1, 2, . . . )
J0(c+, γ) = I2, Jk(c+, γ) = I1 (k = 1, 2, . . . ).

For convenience, we write e∞(c±, γ) = (1) = (1, 1, . . . ) and

J∞(c−, γ) = (I1, I2), J∞(c+, γ) = (I2, I1).

(2) Consider the self-similar system (K, {F1, F2}) of Example 1.8-(6). We de-
note by L1 the simple path between p3 and c, by L2 the simple path be-
tween c and p1, by L3 the simple path between c and p2, by L4 the sim-
ple path between p1 and p2. We consider Li’s as sets. Remark that L4

is the image of γ3. It is easy to see that Π∗ = {ρ1, ρ2, ρ3, ρ4, ρ5}, where
ρ1 = (L1, γ1), ρ1 = (L2, γ1), ρ1 = (L1, γ2), ρ1 = (L3, γ2), ρ1 = (L4, γ3).

Let us calculate ek and Jk for the critical point c. Since

µ1(c−, γ1) = (p1,−γ3), µ1(p1, γ3) = (p2,−γ2), µ1(p2, γ2) = (p3,−γ1),
µ1(p3, γ1) = (p2,−γ3), µ1(p2, γ3) = (p3,−γ2), µ1(p3, γ2) = (p2,−γ3),

we have

e∞(c−, γ1) = ((1,−1)) = (1,−1, 1,−1, 1,−1, 1, . . . ),
J∞(c−, γ1) = (ρ1, ρ5, ρ4, ρ1, (ρ5, ρ3)).
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Similarly,

e∞(c+, γ1) = (1, (1,−1)), J∞(c+, γ1) = (ρ2, ρ5, ρ4, ρ1, (ρ5, ρ3)),
e∞(c−, γ2) = ((1,−1)), J∞(c−, γ2) = (ρ3, ρ5, ρ4, ρ1, (ρ5, ρ3)),
e∞(c+, γ2) = (1,−1, (−1, 1)), J∞(c+, γ2) = (ρ4, ρ2, (ρ5, ρ3)).

3.3.2. Formal kneading matrices
Considering W∗ as a monoid, we denote, by R∞, the ring of formal infinite

sums of W∗ over Z. Namely, R∞ is the set of all functions f : W∗ → Z. For
f, f ′ ∈ R∞, the sum f + f ′ is defined as (f + f ′)(U) = f(U) + f ′(U) and the
product ff ′ is defined as (ff ′)(U) =

∑
V V ′=U f(V )f ′(V ′). We may consider

W∗ as a subset of R∞, that is, U ∈ W∗ is considered as the mapping fU which
satisfies fU (U) = 1 and fU (V ) = 0 if U �= V . We set

Rk = {f ∈ R∞ | f(U) = 0 if |U | �= k}.

For f ∈ R∞, we define (f)k ∈ Rk as

(f)k(U) =
{

f(U) if |U | = k,
0 otherwise.

If f1, f2, . . . are elements of R such that #{i | (fi)k �= 0} < ∞ for each k, then∑∞
i=1 fi ∈ R∞ is naturally defined. Thus f =

∑∞
k=0(f)k. If aU = f(U), then

the element f is usually written in the form

f =
∑

U∈W∗

aUU,

It is clear that (f)k = (f ′)k for all k if and only if f = f ′. Remark that the unit
element for addition is 0 and the unit element for multiplication is identified
with ∅ ∈ W0:

0(U) = 0 for any U ∈ W∗,

∅(U) =
{

1 if U = ∅,
0 if U �= ∅.

Definition 3.34. Let ξ ∈ Ξ and ρ ∈ Π∗. For k = 0, 1, . . . , we define an
element of Rk

Θρ
k(ξ±) =

{
ek(ξ±)Yk−1(ξ±) if Jk(ξ±) = ρ

0 otherwise,

where Y−1(ξ±) = ∅, and we define a formal infinite sum

Θρ(ξ±) =
∞∑

k=0

Θρ
k(ξ±).
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Proposition 3.35. Let ξ ∈ Ξ and ρ ∈ Π∗. Then

Θρ
k+m−1(ξ

±) = ek(ξ±)Yk−1(ξ±) Θρ
m−1(µ̃

k(ξ±)).(3.11)

for k = 0, 1, . . . and m = 1, 2, . . . .

Proof. From Corollary 3.32,

Θρ
k+m−1(ξ

±) =
{

ek+m−1(ξ±)Yk+m−2(ξ±) if Jk+m−1(ξ±) = ρ
0 otherwise,

=
{

ek+m−1(ξ±)Yk−1(ξ±)Ym−2(µ̃k(ξ±)) if Jk+m−1(ξ±) = ρ
0 otherwise.

On the other hand, by (3.10),

Θρ
m−1(µ̃

k(ξ±)) =
{

em−1(µ̃k(ξ±))Ym−2(µ̃k(ξ±)) if Jk+m−1(ξ±) = ρ
0 otherwise.

From (3.9), we have

ek+m−1(ξ±) = ek(ξ±) em−1(µ̃k(ξ±)).

Thus
ek(ξ±) = ek+m−1(ξ±) em−1(µ̃k(ξ±)),

and we obtain (3.11).

The following is an immediate consequence.

Corollary 3.36. Let ξ ∈ Ξ and ρ ∈ Π∗. Then

Θρ(ξ±) =
k−1∑
j=0

Θρ
j (ξ

±) + ek(ξ±)Yk−1(ξ±) Θρ(µ̃k(ξ±))

for k = 1, 2, . . . .

Lemma 3.37. Let s : Q∗ → Z be an arbitrary function. For ρ ∈ Π∗,
we define ms and ns as

ms(ρ) = s(γ(ρ)) and ns(ρ) = s(η∗(ρ)).

Let ξ ∈ Ξ. Then for every ρ ∈ Π∗,∑
ρ∈Π∗

Θρ(ξ±) (ms(ρ)∅ − e(ρ)ns(ρ)Y (ρ)) = s(γ)∅.
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Proof. Since ∅ ∈ W0 and Y (ρ) ∈ W1, we have(
Θρ(ξ±)(ms(ρ) ∅ − e(ρ) ns(ρ) Y (ρ))

)
k

=
{

ms(ρ) Θρ
0(ξ

±) if k = 0
ms(ρ) Θρ

k(ξ±) − e(ρ) ns(ρ) Θρ
k−1(ξ

±) Y (ρ) if k ≥ 1 .

Thus
∑

ρ∈Π∗
Θρ(ξ±)(ms(ρ) ∅ − e(ρ) ns(ρ) Y (ρ))




0

= ms(J0(ξ±)) ΘJ0(ξ
±)

0 (ξ±)

= s(χ(γ))∅.

If k ≥ 1,
∑

ρ∈Π∗
Θρ(ξ±)(ms(ρ) ∅ − e(ρ) ns(ρ) Y (ρ))




k

= ms(Jk(ξ±)) ΘJk(ξ±)
k (ξ±)

− e(Jk−1(ξ±))ns(Jk−1(ξ±)) ΘJk−1(ξ
±)

k−1 (ξ±) Y (Jk−1(ξ±))

= ek(ξ±) s(ηk
∗(ξ±))Yk−1(ξ±)

− e1(µ̃k−1(ξ±))s(ηk
∗(ξ±)) ek−1(ξ±)Yk−2(ξ±) Yk−1(ξ±)

= 0.

This complete the proof.

Definition 3.38. We set

C∗
e = C∗

e (T ) = {(c, γ) ∈ Ξ | γ ∈ Q∗, c is an essential critical point of γ}.

An element of C∗
e is referred by a symbol φ.

For φ = (c, γ) ∈ C∗
e and ρ ∈ Π∗, we define

Mφρ = Θρ(c+, γ) − Θρ(c−, γ).

We say (Mφρ)φ∈C∗
e ,ρ∈Π∗ is the formal kneading matrix of T .

Corollary 3.39. Let φ ∈ C∗
e and γ ∈ Q∗. Then∑

ρ∈Π∗
Mφρ(h0

γ(ρ)∅ − e(ρ)h1
γ(ρ)Y (ρ)) = 0,

where we set

h0
γ(ρ) =

{
1 if γ(ρ) = γ
0 if γ(ρ) �= γ

and h1
γ(ρ) =

{
1 if η1

∗(ρ) = γ
0 if η1

∗(ρ) �= γ
.
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Proof. When we consider the function s : Q∗ → Z defined by s(γ′) ={
1 if γ′ = γ
0 if γ′ �= γ

, the functions ms and ns defined in Lemma 3.37 are equal to

h0
γ and h1

γ respectively. Thus if φ = (c, δ), then∑
ρ∈Π∗

Mφρ(h0(ρ)∅ − e(ρ)h1(ρ)Y (ρ)) = s(δ)∅ − s(δ)∅ = 0.

Example 3.40. This is continued from Example 3.33. Let us calculate
the formal kneading matrix (Mφρ)φ,ρ.

(1) Set φ = (c, γ). Then we have C∗
e = {φ}. Since

ΘI1(φ−) = ∅, ΘI1(φ+) = 2 + 21 + 212 + · · · ,
ΘI2(φ−) = 1 + 12 + 122 + · · · , ΘI2(φ+) = ∅,

the formal kneading matrix is given by

MφI1 = −∅ + 2
∞∑

k=0

1k, MφI2 = ∅ − 1
∞∑

k=0

2k.

(2) We have C+
e = {φ1, φ2}, where φ1 = (c, γ1), φ2 = (c, γ2). Since

Θρ1(φ−
1 ) = ∅ − 211, Θρ1(φ+

1 ) = 111,
Θρ2(φ−

1 ) = 0, Θρ2(φ+
1 ) = ∅,

Θρ3(φ−
1 ) = −21121 − 2112121 − · · · ,

Θρ3(φ+
1 ) = 11121 + 1112121 + · · · ,

Θρ4(φ−
1 ) = 21, Θρ4(φ+

1 ) = −11,
Θρ5(φ−

1 ) = −2 + 2112 + 211212 + · · · ,
Θρ5(φ+

1 ) = 1− 1112 − 111212 − · · · ,

Θρ1(φ−
2 ) = −211, Θρ1(φ+

2 ) = 0,
Θρ2(φ−

2 ) = 0, Θρ2(φ+
2 ) = −1,

Θρ3(φ−
2 ) = ∅ − 21121 − 2112121 − · · · ,

Θρ3(φ+
2 ) = 111 + 11121 + · · · ,

Θρ4(φ−
2 ) = 21, Θρ4(φ+

2 ) = ∅,
Θρ5(φ−

2 ) = −2 + 2112 + 211212 + · · · ,
Θρ5(φ+

2 ) = −11 − 1112 − · · · ,

the formal kneading matrix is given by

Mφ1ρ1 = −∅ + (1 + 2)11, Mφ2ρ1 = 211,
Mφ1ρ2 = ∅, Mφ2ρ2 = −1
Mφ1ρ3 = (1 + 2)11

∑∞
k=1(21)k,

Mφ2ρ3 = −∅ + 111 + (1 + 2)11
∑∞

k=1(21)k,
Mφ1ρ4 = −(1 + 2)1, Mφ2ρ4 = ∅ − 21,
Mφ1ρ5 = 1 + 2− (1 + 2)1

∑∞
k=1(12)k,

Mφ2ρ5 = 2 − 11 − (1 + 2)1
∑∞

k=1(12)k.
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Definition 3.41. For γ ∈ Q, φ ∈ C∗
e and a ∈ Bk(γ) we set

Zφ(a, γ) =
{ Yk−1(a, γ) if µk

∗(a, γ) = φ
0 otherwise .

Let γ ∈ Q1, γ′ ∈ Q and φ ∈ C∗
e . Suppose γ < γ′. We define

Λφ
k(γ, γ′) =

∑
a∈Bk(γ)

Zφ(a, γ′) ∈ Rk,

and

Λφ(γ, γ′) =
∞∑

k=0

Λφ
k(γ, γ′) ∈ R∞.

The following is the essential equality.

Proposition 3.42. Let γ ∈ Q1, γ
′ ∈ Q and ρ ∈ Π∗. Suppose γ = (x, y)

and γ < γ′. Then

Θρ(y−, γ′) − Θρ(x+, γ′) =
∑

φ∈C∗
e

Λφ(γ, γ′)Mφρ.

Proof. For φ = (c, δ) ∈ C∗
e ,

(Λφ(γ, γ′)Mφρ)k =
k∑

j=0

Λφ
j (γ, γ′) (Mφρ)k−j

=
k∑

j=0

∑
a∈Bj(γ)

Zφ(a, γ′) (Mφρ)k−j

=
k∑

j=0

∑
a∈Bj (γ)

η
j∗(a,γ′)=δ

gj(a,γ′)=c

Yj−1(a, γ′) (Mφρ)k−j .

If
µj
∗(a, γ′) = (c, δ) = φ,

then by definition

g̃j(a±, γ′) =
{

c± if ej(a, γ′) = 1,
c∓ if ej(a, γ′) = −1.

By Proposition 3.35,

Θρ
k(a+, γ′) − Θρ

k(a−, γ′) = ej(a, γ′)Yj−1(a, γ′) (Θρ
k−j(g̃

j(a+, γ′), δ)

− Θρ
k−j(g̃

j(a−, γ′), δ))

= Yj−1(a, γ′) (Θρ
k−j(c

+, δ) − Θρ
k−j(c

−, δ))

= Yj−1(a, γ′) (Mφρ)k−j .
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Thus 
∑

φ∈C∗
e

Λφ(γ, γ′)Mφρ




k

=
∑

a

(Θρ
k(a+, γ′) − Θρ

k(a−, γ′)),

where the sum is over all a ∈ ⋃k
j=0 Bj(γ). Let us divide γ into finite arcs

I1, I2, . . . , Il by
⋃k

j=0 Bj(γ). Then

{Ii}l
i=1 = {Ik(a, γ′) ∩ γ | a ∈ γ} = {Ik(a, γ) | a ∈ γ}.

Let us denote by ai the unique point in Ii ∩ Ii+1 (i = 1, 2, . . . , l − 1). Then
{ai}l−1

i=1 =
⋃k

j=1 Bj(γ). Consequently,
∑

φ∈Ce

Λφ(γ, γ′) Mφρ




k

=
l−1∑
i=1

(Θρ
k(a+

i , γ′) − Θρ
k(a−

i , γ′))

= −Θρ
k(a−

1 , γ′) +
l−2∑
i=1

(Θρ
k(a+

i , γ′)

− Θρ
k(a−

i+1, γ
′)) + Θρ

k(a+
l−1, γ

′)

= Θρ
k(a−

l , γ′) − Θρ
k(a+

0 , γ′),

because Ik(a+
i−1, γ

′) = Ik(a−
i , γ′). Hence we obtain

Θρ(y−, γ′) − Θρ(x+, γ′) =
∑

φ∈Ce

Λφ(γ, γ′)Mφρ.

This completes the proof.

Definition 3.43. Let γ ∈ Q1, and let k be a positive integer. Then the
set

⋃k−1
m=0 Turm(γ) divides the path γ into a finite arcs I1, I2, . . . , Il such that Ii

neighbors Ii+1 (i = 1, 2, . . . , l − 1). There exist U1, U2, . . . , Ul ∈ Wk such that
Ii ⊂ K(Ui). In the other word, Ui = Yk−1(a, γ) if a ∈ intIi. This partition has
been given in Subsection 3.2. Recall that the set L(γ, k) is given by

{(I1, U1), (I2, U2), . . . , (Il, Ul)}.

We define

Vk(γ) =
l∑

i=1

Ui ∈ Rk

and

V (γ) =
∞∑

k=0

Vk(γ).

For a subtree T ′ ⊂ T , we similarly define V (T ′).
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For ξ ∈ Ξ, we define

Ω(ξ±) =
∞∑

k=0

Yk−1(ξ±).

For φ = (a, γ) ∈ C∗
e , we denote, by m = m(φ), the minimal positive integer

such that Ym(c+, γ) �= Ym(c−, γ). We define

Ψ(φ) =
∞∑

k=m(φ)

(Yk(φ+) + Yk(φ−)).

Lemma 3.44. Let (x, y) = γ ∈ Q1, and γ < γ′ ∈ Q. Then

2V (γ) = Ω(x+, γ′) + Ω(y−, γ′) +
∑

φ∈C∗
e

Λφ(γ, γ′)Ψ(φ).

Proof. Let

L(γ, k) = {(L1, U1), (L2, U2), . . . , (Ll, Ul)},

where the arc Li neighbors the arc Li+1 (i = 1, 2, . . . , l − 1). We denote ai ∈
Li ∩ Li+1 (i = 1, 2, . . . , l − 1). Note that

Yk−1(a+
i−1, γ

′) = Yk−1(a−
i , γ′) = Ui (i = 1, 2, . . . , l),

where a0 = x, al = y. By the definition of L(γ, k),

{a1, a2, . . . , al−1} = {a ∈ γ | Yk−1(a−, γ′) �= Yk−1(a+, γ′)} =
k−1⋃
j=0

Turj(γ).

We have defined 0 ≤ s = s(ai, γ
′) ≤ k − 1 as the minimal integer such that

gs(ai, γ
′) is an essential critical point of ηs(ai, γ

′). Then

Ui = Yk−1(a−
i , γ′) = Ys−1(ai, γ

′)Yk−s−1(µs
∗(ai, γ

′)−),
Ui+1 = Yk−1(a+

i , γ′) = Ys−1(ai, γ
′)Yk−s−1(µs

∗(ai, γ
′)+),

where µs
∗(ai, γ

′) ∈ C∗
e . Since Ui �= Ui+1, we have 0 ≤ m(µs

∗(ai, γ
′)) ≤ k− s− 1.

Conversely, let a ∈ Bs(γ) such that 0 ≤ m(µs
∗(a, γ′)) ≤ k − s − 1. Then

Yk−1(a−, γ′) �= Yk−1(a+, γ′). Thus

{a1, a2, . . . , al−1} =
k−1⋃
s=0

{a ∈ Bs(γ) | 0 ≤ m(µs
∗(a, γ′)) ≤ k − s − 1}.

We denote this set by E(γ, k), and we denote E(γ, k, s) = E(γ, k) ∩ Bs(γ).
Note that E(γ, 0) is empty.
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We write φi = µsi∗ (ai, γ
′) ∈ C∗

e , where si = s(ai, γ
′). Then

Ui + Ui+1 = Ysi−1(ai, γ
′) (Yk−si−1(φ−

i ) + Yk−si−1(φ+
i )).

Therefore

(2V (γ))k =
l−1∑
i=1

(Ui + Ui+1) + U1 + Ul

=
l−1∑
i=1

Ysi−1(ai, γ
′) (Yk−si−1(φ−

i ) + Yk−si−1(φ+
i ))

+ Yk−1(x+, γ′) + Yk−1(y−, γ′)

=
l−1∑
i=1

Zφi(ai, γ
′) (Ψ(φi))k−si

+ (Ω(x+, γ′) + Ω(y−, γ′))k.

If we write φ(a) = µs
∗(a, γ′) for a ∈ Bs(γ), we have

l−1∑
i=1

Zφi(ai, γ
′) (Ψ(φi))k−si

=
k−1∑
s=0

∑
a∈E(γ,k,s)

Zφ(a)(a, γ′)(Ψ(φ(a)))k−s.(3.12)

If a ∈ Bs(γ) − E(γ, k, s), then m(φ(a)) ≥ k − s, and so (Ψ(φ(a)))k−s = 0.
Therefore (3.12) is equal to

k−1∑
s=0

∑
a∈Bs(γ)

Zφ(a)(a, γ′)(Ψ(φ(a)))k−s,

and hence it is equal to

∑
φ∈C∗

e

k−1∑
s=0

∑
a∈Bs(γ)

Zφ(a, γ′)(Ψ(φ))k−s,

because Zφ(a, γ′) = 0 if φ �= φ(a). Consequently,

(2V (γ))k = (Ω(a+, γ′) + Ω(y−, γ′))k +
∑

φ∈C∗
e

k−1∑
s=0

(Λφ(γ, γ′))s(Ψ(φ))k−s.

This completes the proof.

Example 3.45. This is continued from Example 3.40.

(1) From Lemma 3.42, we have ΘIi(p−2 , γ) − ΘIi(p+
1 , γ) = Λφ(γ, γ)MφIi

for
i = 1, 2. Considering i = 1, we obtain −∑∞

k=1 1k = Λφ(γ, γ)(−∅+2
∑∞

k=0 1k).
Consequently, Λφ(γ, γ) =

∑∞
k=1(1 + 2)k. By Lemma 3.44, V (γ) =

∑∞
k=1(1 + 2)k.
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(2) From Lemma 3.42,

Θρi(p−, γ) − Θρi(q+, γ) = Λφ1(γ, γ)Mφ1ρi
+ Λφ2(γ, γ)Mφ2ρi

for γ = (q, p) ∈ Q1 and i = 1, 2, 3, 4, 5. Since

Θρ1(p+
3 , γ1) = ∅, Θρ1(p−1 , γ1) = 0, Θρ2(p+

3 , γ1) = 0, Θρ2(p−1 , γ1) = ∅,
we have

−∅ = Λφ1(γ1, γ1)(−∅ + 13 + 212) + Λφ2(γ1, γ1)212,

∅ = Λφ1(γ1, γ1) − Λφ2(γ1, γ1)1.

Consequently,

Λφ2(γ1, γ1) = (12 + 21)
∑∞

k=0(21 + 121 + 13)k,
Λφ1(γ1, γ1) = ∅ + Λφ2(γ1, γ1)1.

Since Ψ(φ1) = Ψ(φ2) = (1 + 2)(∅ + 1 + 11 + 112+ · · · ),
V (γ1) = (Ω(p+

3 , γ1) + Ω(p−1 , γ1)
+Λφ1(γ1, γ1)Ψ(φ1) + Λφ2(γ1, γ1)Ψ(φ2))/2

= (Ω(p+
3 , γ1) + Ω(p−1 , γ1) + (∅ + Λφ1(γ1, γ1)(∅ + 1))Ψ(φ1))/2

= ∅ + 1 + 2 + 12 + 21 + 13 + 122 + 212 + 212

+14 + 132 + 1221 + 213 + 2122 + (21)2 + · · · .

Similarly,

V (γ2) = ∅ + 1 + 2 + 12 + 12 + 21 + 13 + 121 + 212 + 212

+ 14 + 132 + 1212 + (12)2 + 213 + 2122 + (21)2 + · · · ,

V (γ3) = ∅ + 1 + 12 + 12 + 13 + 122 + 121 + 14 + 1212 + 1221

+ (12)2 + · · · .

Thus we have

V (T ) = ∅ + 1 + 2 + 12 + 12 + 21 + 13 + 122 + 121 + 212 + 212

+14 + 132 + 1221 + 1212 + (12)2 + 213 + 2122 + (21)2 + · · · .

3.3.3. Kneading determinants
Let X1, X2, . . . , XN be commutative variables. Consider the abelization

β : W∗ → 〈X1, X2, . . . , XN 〉,
where 〈X1, X2, . . . , XN 〉 is the free commutative monoid generated by X1,
X2, . . . , XN , and which is defined by

β(U) = XU .
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For f ∈ R∞, we define a power series

f =
∑

U∈W∗

f(U)XU .

Then
f �→ f

is considered as the abelization map from R∞ to the formal power series ring
C[[X]] = C[[X1, X2, . . .XN ]]. For f ∈ C[[X]], we denote, by (f)k, its homoge-
neous part of degree k.

The power series

θρ(a±, γ; X1, X2, . . . , XN ) = Θρ(a±, γ)

is a holomorphic function on D = {(X1, X2, . . . , XN ) | |Xi| < 1}; because the
absolute value of ∑

U∈Wk

Θρ
k(a±, γ)(U)

is 1, −1 or 0.
We set #Q∗ = l and #Π∗ = n, then #C∗

e = n − l. We define for ρ ∈
Π∗, φ ∈ C∗

e ,
Rφρ = Mφρ.

Then R = R(T ) = (Rφρ)φ∈C∗
e ,ρ∈Π∗ is a n − l × n-matrix in C[[X]], which is

called the kneading matrix of T . We define for ρ ∈ Π∗ and γ ∈ Q∗,

Hργ = hγ(γ(ρ)) − e(ρ) hγ(η∗(ρ)) XY (ρ),

where

hγ(ξ) =
{

1 if γ = ξ,
0 if γ �= ξ.

Let us consider a n × l-matrix

H = H(T ) = (Hργ)ρ∈Π∗,γ∈Q∗

in C[[X]]. From Corollary 3.39, we have

RH = 0.

Definition 3.46. Let

G =




g11 g12 . . . g1n

g21 g22 . . . g2n

. . . . . . . . . . . . . . . . . . . . . . . . . .
gn−l 1 gn−l 2 · · · gn−l n


 , F =




f11 f12 . . . f1l

f21 f22 . . . f2l

. . . . . . . . . . . . . . . . . . .
fn1 fn2 · · · fnl




be an n−l×n-matrix and an n×l-matrix. Suppose that {1, 2, . . . , n} is divided
into B = {k(1), k(2), . . . , k(l)} and Bc = {1, 2, . . . , n} − B = {k′(1), k′(2), . . . ,
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k′(n − l)}. We assume that k(1) < k(2) < · · · < k(l) and k′(1) < k′(2) < · · · <
k′(n − l). Then we write

G|B̌ =




g1k′(1) g1k′(2) . . . g1k′(n−l)

g2k′(1) g2k′(2) . . . g2k′(n−l)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
gn−l k′(1) gn−l k′(2) · · · gn−l k′(n−l)


 ,

F |B =




fk(1)1 fk(1)2 . . . fk(1)l

fk(2)1 fk(2)2 . . . fk(2)l

. . . . . . . . . . . . . . . . . . . . . . . . .
fk(l)1 fk(l)2 · · · fk(l)l


 .

Lemma 3.47. There exists a subset B ⊂ Π∗ such that #B = l and
det R|B̌ �= 0.

Proof. Choose B = {ρφ |φ ∈ C∗
e } such that ρφ = (I1(φ+), γ), where

φ = (c, γ). Then the constant term of R|B̌ is equal to the unit matrix by
permutations of the row vectors. Hence the constant term of det R|B̌ is 1 or
−1.

We fix
B0 = {ργ | γ ∈ Q∗},

a subset of Π∗ such that γ(ργ) = γ.

Lemma 3.48. The holomorphic function detH|B0 has no zero in D.

Proof. The matrix H|B0 has the form E +G, where E is the unit matrix
(by permutations of the row vectors) and each row vector of G has only one
nonzero component ±Xk. From this, it follows that detH|B0 �= 0 at X =
(a1, a2, . . . , aN ) if |ak| < 1 for any k.

The following is an immediate corollary of a known result (for example,
see [5], Chapter VII, Section 3, Theorem I).

Lemma 3.49. Let G be an n − l × n-matrix, and F be a n × l-matrix.
Suppose that each component of these matrices is a holomorphic function on
D, and suppose that GF = 0. If B, B′ are subsets of {1, 2, . . . , n} such that
#B = #B′ = l, then there exists sgn(B, B′) ∈ {1,−1} such that

det G|B̌ det F |B′ = sgn(B, B′) detG|B̌′detF |B.

Lemma 3.50. Let B ⊂ Π∗ be a subset such that #B = l. Then R|B̌ �=
0 if and only if H|B �= 0.

Proof. Suppose that R|B̌ = 0 and H|B �= 0. From Lemma 3.49, we see
that R|B̌′ = 0 for any B′ ⊂ Π∗. This contradicts Lemma 3.47. The converse is
also verified by Lemma 3.48.
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Definition 3.51. Let B be a subset of Π∗ such that #B = l and
det R|B̌ �= 0. Remark that detR|B̌ and detH|B are non-zero holomorphic
functions on D. Then the meromorphic function

∆ = ∆T = ± det R|B̌
detH|B

is said to be the kneading determinant of T , where we choose + or − so that
∆|X=(0,0,...,0) = 1. By Lemma 3.49, the kneading determinant is independent
of B.

Lemma 3.52. The kneading determinant ∆ is holomorphic on D.

Proof. Consider the case B = B0.

We define for φ ∈ C∗
e , γ ∈ Q1, γ

′ ∈ Q with γ < γ′

λφ(γ, γ′; X1, X2, . . . , XN ) = Λφ(γ, γ′).

Then λφ(γ, γ′) is a holomorphic function on

{(X1, X2, . . . , XN ) | |Xi| < 1/N, i = 1, 2, . . . , N};
because

∑
U∈Wk

Λφ(γ, γ′)(U) ≤ #C(k) ≤ Nk#C.

Lemma 3.53. The function λφ(γ, γ′) can be extended to a meromorphic
function on D. Moreover,⋃

φ∈C∗
e ,γ∈Q1,γ′∈Q:γ<γ′

{X ∈ D |λφ(γ, γ′; X) = ∞} = {X ∈ D |∆(X) = 0}.

Proof. Let γ = (x, y) ∈ Q1, and γ < γ′ ∈ Q. From Lemma 3.42,

θρ(y−, γ′) − θρ(x+, γ′) =
∑

φ∈C∗
e

λφ(γ, γ′)Rφρ

on {(X1, X2, . . . , Xn) | |Xi| < 1/N, i = 1, 2, . . . , N}.
Consider the subset B = B0. There exists an n − l × n − l-matrix

R̃ = (R̃ρφ)φ∈C∗
e ,ρ∈Π∗−B

which is the inverse of R|B̌. Remark that each component of (R̃ρφ) is a mero-
morphic function on D. We have for any φ ∈ C∗

e

∑
ρ∈Π∗−B

(θρ(y−, γ′) − θρ(x+, γ′))R̃ρφ =
∑

ρ∈Π∗−B

∑
φ′∈C∗

e

λφ′
(γ, γ′)Rφ′ρR̃ρφ

= λφ(γ, γ′).

(3.13)
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Thus λφ(γ, γ′) is a meromorphic function on D. Moreover,

∆λφ(γ, γ′) = ∆
∑

ρ∈Π∗−B

(θρ(y−, γ′) − θρ(x+, γ′))R̃ρφ

=
∑

ρ∈Π∗−B

(θρ(y−, γ′) − θρ(x+, γ′))R̃ρφ det R|B/ detH|B.

Since R̃ρφ detR|B is holomorphic on D, we conclude that ∆λφ(γ, γ′) is holo-
morphic on D. Hence a pole of λφ(γ, γ′) is a zero of ∆.

Suppose ∆(α1, α2, . . . , αN ) = 0. Then there is a column vector a =
[aρ]ρ∈Π∗ ∈ CΠ∗

, at least one of aρ is nonzero, such that g = [Gφ]φ∈C∗
e

= Ra
is a vector each component of which is holomorphic function with zero at
(α1, α2, . . . , αN ). We can assume that aρ = 0 for ρ ∈ B. It is clear that
R̃g = [aρ]ρ∈Π∗−B. By (3.13),∑

φ∈C∗
e

Gφλφ(γ, γ′) =
∑

ρ∈Π∗−B

(θρ(y−, γ′) − θρ(x+, γ′))aρ

for any γ′ ∈ Q and any γ = (x, y) < γ′. Suppose λφ(γ, γ′) does not have a pole
at (α1, α2, . . . , αN ) for any φ ∈ C∗

e and any γ′ ∈ Q∗. Then∑
ρ∈Π∗−B

(θρ(y−, γ′) − θρ(x+, γ′))aρ = 0

at (α1, α2, . . . , αN ) for any γ′ ∈ Q∗ and any x �= y ∈ γ′. From this, it follows
that

S(γ′) =
∑

ρ∈Π∗−B

θρ(x±, γ′; α1, α2, . . . , αN )aρ

is independent of x ∈ γ′.
Let ρ ∈ Π∗, and γ ∈ Q∗, x ∈ γ. From Corollary 3.36 we have

θρ′
(x±, γ) =

{
1 + e(ρ)XY (ρ)θ

ρ′
(µ̃1(x±, γ)) if ρ′ = ρ

e(ρ)XY (ρ)θ
ρ′

(µ̃1(x±, γ)) if ρ′ �= ρ
.

Thus
S(γ) = aρ + e(ρ)αY (ρ)S(η1

∗(x
±, γ)).

Consequently, if we take γ = γ(ρ), then we have∑
γ′∈Q∗

(
hγ′(γ(ρ)) S(γ(ρ))− e(ρ)αY (ρ)hγ′(η∗(ρ)) S(γ(η∗(ρ))

)
= aρ,

or equivalently

HS = a,(3.14)

where S = [S(γ(ρ))]ρ∈Π∗ ∈ CΠ∗
. In particular,

(H|B)S = [aρ]ρ∈B = 0.
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Since a �= 0, we have S �= 0 from (3.14). But detH|B �= 0. This is a contradic-
tion.

Proof of Lemma 3.19. From Lemma 3.44,

2v(γ) = Ω(x+, γ′) + Ω(y−, γ′) +
∑

φ∈C∗
e

λφ(γ, γ′)Ψ(φ).

Thus v(γ) is extended to a meromorphic function on D. Similarly, we can prove
that v(T ) is also extended to be meromorphic on D. When we consider

u(T )(t) = v(T )(α1t, α2t, . . . , αN t) and u(γ)(t) = v(γ)(α1t, α2t, . . . , αN t)

as functions of one variable t, they are meromorphic on {|t| < 1/(maxi αi)}.
Therefore

u(γ)
u(T )

is meromorphic on {|t| < 1/(maxi αi)}. But this function does not have a pole
at t = 1, because u(γ)/u(T ) is bounded for 0 < t < 1. Hence it is holomorphic
near t = 1, and so the limit limt→1− u(γ)/u(T ) exists.

Suppose that u(T )(t) converges at t = 1. Then it also converges on the
circle |t| = 1, since the coefficients of u(T ) are non-negative. Therefore u(T ) is
holomorphic near |t| = 1. This contradicts the fact that the radius of conver-
gence of u(T ) is one. This completes the proof.

Theorem 3.25 is a consequence of the following.

Lemma 3.54. Let (α1, α2, . . . , αN ) be a polyratio. If ∆(α1, α2, . . . , αN )
= 0 and if ∆(α′

1, α′
2, . . . , α

′
N ) �= 0 for any 0 < α′

i < αi, then there exists γ ∈ Q
such that (α1, α2, . . . , αN ) is a polyradius of convergence of the power series
v(γ).

Proof. By Lemma 3.53, α = (α1, α2, . . . , αN ) is a pole of λφ(γ, γ′) for
some φ, γ, γ′, moreover α′ = (α′

1, α
′
2, . . . , α

′
N ) is not a pole of λφ(γ, γ′) for any

φ, γ′ if 0 < α′
i < αi. Thus the series λφ(γ, γ′; α′) is convergent for any φ, γ′ if

0 < α′
i < αi. Note that λφ(γ, γ′; α′) > 0 for any φ, γ′ if 0 < α′

i < αi. Therefore
the series v(γ)(α′) is convergent if 0 < α′

i < αi, and v(γ)(α) is divergent.

Example 3.55. This is continued from Example 3.45.

(1) From

R =

(
−1 + X2

∞∑
k=1

Xk
1 1 − X1

∞∑
k=1

Xk
2

)
and H =

(
1 − X1

1 − X2

)
,

we have
∆ =

1 − X1 − X2

(1 − X1)(1 − X2)
.

Thus the set of critical ratios is CR = {(α1, α2) ∈ Ra2 |α1 + α2 = 1}.
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(2) From

R =( −1 + (X1 + X2)X2
1 1 X1G −(X1 + X2)X1 X1 + X2 − G

X2
1X2 −X1 −1 + X3

1 + X1G 1 − X1X2 X2 − X2
1 − G

)
and

H =




1 0 X2

1 0 −X1

0 1 X2

X1 1 0
0 X1 1


 ,

where G = (X1 + X2)X1

∑∞
k=1(X1X2)k, we have

∆ =
1 − X1X2 − X3

1 − X2
1X2

1 − X1X2
.

Thus the set of critical ratios is CR = {(α1, α2) ∈ Ra2 |α1α2 +α3
1 +α2

1α2 = 1}.

Appendix

In Appendix, we prove results on the arcwise connectedness of topological
self-similar sets and the uniqueness of paths in self-similar sets. These result
are used in Section 3 to construct a self-similar metric.

First we show the arcwise connectedness of connected components of self-
similar sets. Recall that a connected and locally connected metric space is
arcwise connected (for example, see [19]).

Proposition A.1. Let (K, {Fi}N
i=1) be a topological self-similar system.

Suppose that K(U) ∩ K(V ) has at most finite number of components for any
n and any distinct words U, V ∈ Wn. Then each component of K is locally
connected. In particular, each component of K is arcwise connected.

Proof. Let x ∈ K. Note that for n ≥ 0,

Qn =
⋃

U∈Wn
x/∈K(U)

K(U) ∩ Ln(x)

has at most finite components by assumption. We denote, by X, the component
of K containing x, and by Xn, the component of Ln(x) containing x. Clearly,
Xn is a subset of X. We show that Xn is a neighborhood of x in X. If X
consists of one point, then X is locally connected. We assume that X contains
more than one point.

Assume that Xn is not a neighborhood of x in X. Then for any integer
k ≥ 0 there exists a point yk in (X ∩ Lk(x)) − Xn. Let Y (k) denote the
component of Ln(x)∩X containing yk. Since yk /∈ Xn, we see that Y (k)∪Xn is



�

�

�

�

�

�

�

�

Distances on topological self-similar sets 671

not connected. If A is an open and closed subset in Ln(x)∩X, then A∩Qn �= ∅.
Indeed, let B be an open set such that B∩Ln(x)∩X = A. If A∩Qn = ∅, then

B −
⋃

U∈Wn

x/∈K(U)

K(U)


 ∩ X =


B −

⋃
U∈Wn

x/∈K(U)

K(U)


 ∩ Ln(x) ∩ X = A.

Thus A is open in X. Since A is closed, it is closed in X. This contradicts the
connectedness of X, and hence A∩Qn �= ∅. For any open set B including Y (k),
there exists an open and closed set A in Ln(x) ∩ X such that Y (k) ⊂ A ⊂ B.
Therefore Y (k) ∩ Qn �= ∅.

Since Qn has at most finite components, there exists a component P of
Qn such that Y (ki) ∩ Qn ⊂ P for a sequence k1 < k2 < · · · . Then Y (k1) =⋃∞

i=1 Y (ki). The sequence {yki
}i converges to x, but x /∈ Y (k1). This is a

contradiction. Consequently, Xn is a neighborhood of x in X. That means the
local connectedness of X at x.

Immediately, by the above proposition we obtain the following.

Corollary A.2. If the critical set is finite, then each component of K
is arcwise connected.

For a finitely ramified topological self-similar system (K, {Fi}N
i=1) with

Condition A, we show the uniqueness of a simple path between two points in
K.

Lemma A.3. Let X = X1 ∪ X2 ∪ · · · ∪ Xn be an arcwise connected
metric space. Suppose that each Xi is compact and that C =

⋃
i �=j Xi ∩Xj is a

finite set. Let γ : [0, 1] → X be a continuous path between x ∈ X1 and y ∈ Xn.
Then [0, 1] is divided into finite intervals Iγ(1), Iγ(2), . . . , Iγ(lγ) such that Iγ(k)
is a maximal interval satisfying γ(Iγ(k)) ⊂ Xi for some i = iγ(k). We write

C(γ) = (iγ(1), iγ(2), . . . , iγ(lγ); γ(a1), γ(a2), . . . , γ(alγ−1)),

where Iγ(k) = [ak−1, ak]. If γ′ is a simple path between x and y which is
homotopic to γ with the endpoints x, y fixed, then C(γ) = C(γ′).

Proof. Let us consider, for i = 1, 2, . . . n, the set

Q(i) =
{

(i1, i2, . . . , il+1; x1, x2, . . . , xl) | i1 = 1, il+1 = i, ik �= ik+1, xk �= xk+1,
xk ∈ Xik

∩ Xik+1 (k = 1, 2, . . . , l)

}

in
∞⋃

l=0

({1, 2, . . . , n}l+1 × X l),
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where we set X0 = {∅}. Note that Q(1) contains the member (1; ∅). The set
Q(i) has the discrete topology. We define

X̃ =

(
n⋃

i=1

Xi × Q(i)

)
/ ∼,

where the equivalence relation ∼ is defined by

(xl, (i1, i2, . . . , il+1; x1, x2, . . . , xl)) ∼ (xl, (i1, i2, . . . , i′l+1; x1, x2, . . . , xl))

and

(xl+1, (i1, i2, . . . , il+1; x1, x2, . . . , xl))
∼ (xl+1, (i1, i2, . . . , il+1, il+2; x1, x2, . . . , xl, xl+1)).

Then the projection ρ : X̃ � (x, ∗) �→ x ∈ X is a covering, that is, for x ∈ X
there exists a neighborhood U such that ρ−1(U) is a union of disjoint open sets
on each of which ρ is homeomorphic. Indeed, it suffices to take U to be the
ε-neighborhood of x, where ε is the minimum of the distances between x and a
point in

⋃
k �=m(Xk ∩ Xm) − {x}.

For x ∈ X1 we take x̃ = (x, (1; ∅)) ∈ X̃. If γ is a path between x and
y, then there uniquely exists a path γ̃ : [0, 1] → X̃ such that γ̃(0) = x̃ and
ρ ◦ γ̃ = γ. Moreover if h : [0, 1] × [0, 1] → X is a homotopy between γ and γ′,
then there exists a homotopy h̃ : [0, 1]× [0, 1] → X̃ between γ̃ and γ̃′ such that
ρ ◦ h̃ = h.

Let γ and γ′ be simple paths between x and y. Then ỹ = γ̃(1) =
(y, C(γ)), ỹ′ = γ̃′(1) = (y, C(γ′)). If γ and γ′ are homotopic, then ỹ=ỹ′. Thus
C(γ) = C(γ′).

Let γ : [0, 1] → K be a simple path between x and y. For n = 1, 2, . . . ,
the interval [0, 1] is uniquely divided into finite intervals {Iγ(n, i)}lγ(n)

i=1 , where
Iγ(n, i) is a maximal interval such that γ(Iγ(n, i)) ⊂ K(U) for some U =
Uγ(n, i) ∈ Wn.

Proposition A.4. Let (K, {Fi}N
i=1) be a finitely ramified topological

self-similar system. If two simple paths γ, γ′ are homotopic with the endpoints
fixed, then γ([0, 1]) = γ′([0, 1]).

Proof. For any n the partition K =
⋃

U∈Wn
K(U) satisfies the con-

dition of Lemma A.3. Therefore lγ(n) = lγ′(n) and Uγ(n, i) = Uγ′(n, i)
(i = 1, 2, . . . , lγ(n)). Consequently,

γ([0, 1]) =
⋂
n>0

lγ(n)⋃
i=1

K(Uγ(n, i)) = γ′([0, 1]).
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Corollary A.5. Let (K, {Fi}N
i=1) be a finitely ramified topological self-

similar system. Suppose each component of K is simply connected. Then for
two points x, y in a component of K there uniquely exists a simple path joining
x and y.
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