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Outline

In this paper we investigate the possible self-similar metrics on self-similar
sets. Traditionally, a self-similar set is associated with a family of contractions
on a metric space. One often finds two of these self-similar sets are homeomor-
phic to each other, for example, the unit interval and the Koch curve (Figure
1). These two self-similar sets have the same topological structure but the dif-
ferent ‘metric structures’. Moreover, we will later see that there exist many
metric structures on this ‘topological’ self-similar set (Example 1.16). Roughly
speaking, our question is the following: What metric does a self-similar set
admit?

Our notion of self-similar sets is slightly different from the classical one.
We introduce the notion of topological self-similar sets, which is a generaliza-
tion of self-similar sets. While a self-similar set is associated with a family
of contractions on a metric space, a topological self-similar set is abstractly
constructed from the shift space.

By definition, there are no a priori metric on a topological self-similar set
K. Our first aim is to find a distance function which makes K self-similar, which
is called a self-similar metric. We will construct a self-similar pseudometric on
K, however, the existence of a self-similar metric depends on the topology of
K. We will give an example of a topological self-similar set which admits no
self-similar metric. We also discuss some sufficient conditions of the existence
of a self-similar metric.

Secondly, we study a critical property of self-similar metrics. Suppose that
a topological self-similar set K admits a self-similar metric. Then K together
with the metric is a self-similar set associated with contractions. But there is
some restriction, that is, the possible Lipschitz constants of the contractions
are bounded below. We expect that the lower bound, which we call a critical
polyratio, is an important characteristic of topological self-similar sets. Using
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Figure 1: The Koch curve

an analogue of Milnor-Thurston’s kneading theory, we will calculate of critical
polyratios for a certain class of self-similar sets.

Introduction

The idea of self-similar sets has developed gradually. Classically, there are
well-known self-similar figures including Cantor’s ternary set and the Sierpinski
Gasket. One can see that these figures are invariant sets of finitely many
similitudes. Moran’s result [15] is one of the earliest works from this point
of view. This classical notion is refined through the works of Williams [20],
Hutchinson [6] and Hata [4]. Their self-similar sets are constructed from finitely
many contractions instead of similitudes (Definition 0.2). Afterward a purely
topological definition (Definition 0.3) is given by the author [7] and Kigami
[11]. One of the motivation of our study is to clarify the difference between
these notions.

Definition 0.1. Let (X, d) be a metric space. A continuous mapping

F: X — X is called a contraction with respect to the distance d if
. d(F (), F(y))
Lip,(F) = max ——————== < 1.

The constant Lip,(F) is called the Lipschitz constant of F, and it is also called
the contraction ratio of F'.

Definition 0.2. Let (X, d) be a complete metric space. Let Fy, Fy, ...,
Fv be contractions on X. Then there uniquely exists a nonempty compact set
K C X such that

K=F(K)UF(K)U---UFyN(K).
We say that K is the self-similar set associated with Fy, Fy, ..., Fy.

By this definition, one can consider the self-similar set K as the attractor
of the semigroup action generated by Fy, Fy,...,Fy (see [4] for detail). In
fact, for any word w = iyis...ix € {1,2,...,N}* the composition F, =
F;, o F;, 0---0F;, has a global attractive fixed point z,,, that is,

(0.1) Ty = lim F,"(z)
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for any = € X. Then we have an expression

K = closure {xw|w€ U{1,2,...,N}k}.

k=1

Thus a dense subset of K is ‘coded’ by the set of finite words. Moreover, let us
see that self-similar sets have a stronger property called ‘coding property,” the
whole set K is coded by the set of infinite words. We denote by ¥y the one-
sided shift space with IV symbols, i.e. the set of one-sided infinite sequences of
{1,2,..., N}, which is identified with the mapping space {1,2,..., N} = {a:
N — {1,2,...,N}} and is equipped with the topology of the direct product of
the finite set. Then for any a = i1io--+ € Xy, similarly to (0.1), we have a
unique point x, € K such that

ze = lim Fj 4, 4, (2)

k—o0

for any z € K, and also an expression
K ={z,]a€Xn}.

This correspondence between a and z, yields a continuous surjective ‘coding
map’ 7 : X — K such that the diagram

T’l,

T,y
K — K
F;
commute for alli = 1,2,..., N, where 7;(wjws . ..) = twjws . ... In the light of

the coding property, we propose a purely topological description of a self-similar
sets as follows.

Definition 0.3. A compact Hausdorff topological space K is called a
topological self-similar set if there exist continuous maps Fy, Fy, ..., Fy : K —
K and a continuous surjection 7 : ¥y — K such that the diagram

y I

wl lﬂ
K — K
F;
commutes for all i. We say that (K, {F;}}Y ), a topological self-similar set
together with the set of continuous maps as above, is a topological self-similar

system. We call 7 the coding map of (K, {F;}N,).

Clearly, a self-similar set associated with contractions Fy, Fy, ..., Fy is a
topological self-similar set. However it is not easy to see whether the converse
is true or false.
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Problem 1. Let (K,{F;}}V,) be a topological self-similar system. (1)
Is there a distance function d(-,-) on K such that all F; are contractions with
respect to d? (Such a distance is called a self-similar metric.) (2) If the answer
is negative, what kind of topological self-similar sets has a self-similar metric?

The first half of this paper is concerned with this problem. In Section 1 we
construct a standard pseudodistance Dy (-,-) on K for a = (g, an,...,an) €
(0,1)" which satisfies D, (F;(x), Fi(y)) < a;D(z,y) for all i. We say that « is
the polyratio of D,. A standard pseudodistance is the basic tool throughout this
paper. We will show that there exists a self-similar metric if and only if there
is a polyratio such that the standard pseudodistance is a distance. Moreover, if
the standard pseudodistance with polyratio (a1, aa,...,an) is a distance, then
the standard pseudodistance with polyratio (&}, ab, ..., a/y) such that a; < o
for all 7 is also a distance. This fact gives rise to the following problem:

Problem 2. Find critical polyratios, i.e. minimal polyratios such that
the standard pseudodistances are distances if exists.

The set of critical polyratios is considered as a measure of the topological
complexity of a topological self-similar set. We will see in Section 3 that it
has a strong relation to the topological entropy. In Section 1 we also present a
result on totally disconnected topological self-similar sets. For a self-similar set
K associated with one-to-one contractions Fi, Fy, ..., Fi, it is known that the
connectedness of K is restricted by the Lipschitz constants of the contractions:
if Eil Lip(F;) < 1, then K is totally disconnected (see [20] and [4]). Our
result is following: a topological self-similar set is totally disconnected if and
only if the set of critical polyratios consists of only one point (0,0,...,0), i.e.
any standard pseudodistance is a distance.

We also give a counterexample to Problem 1 in Section 1, that is, we
will show that there exists a topological self-similar set without any self-similar
metric. This example is constructed as follows. First we introduce the notion of
the critical set of a topological self-similar system, which will play an important
role in our study. As in the study of interval dynamics, we use the idea of
kneading invariants, which is determined by the behavior of the critical set.
We will see that a topological self-similar set is, in topological sense, a quotient
space of ¥ with respect to a equivalence relation ‘generated’ by the kneading
invariant, moreover, under a certain condition, we can construct a topological
self-similar system with a given kneading invariant. Specifically, we show that
there exists a topological self-similar system which has the kneading invariant
same as that of an irrational rotation on S'. From the fact that an irrational
rotation is volume-preserving, we see that this topological self-similar system
has no self-similar metric.

In Section 2 we consider topological self-similar sets (K, {F;}) satisfying a
certain condition, which are often said to be ‘finitely ramified.” Such a topolog-
ical self-similar set has only finitely many critical points, and hence its ‘dynam-
ics’ resembles to one-dimensional dynamics. Roughly speaking, in this context,
it is natural to consider the dynamics of f, the ‘inverse map’ of {F;}, which
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behaves as a piecewise monotone map on an interval or a rational map on Rie-
mann sphere. With respect to a self-similar metric (if exists), f is an ‘expanding
map.’ Thus the self-similarity is regarded as a kind of the hyperbolicity of the
dynamics. We say that (K, {F;}) is non-recurrent if the orbit of any critical
point does not accumulate in the critical set. Such a condition often appears
in the study of one-dimensional dynamics (see [18], [17] and [14], Chapter 111,
Section 6). For example, in [18], van Strien showed that a Misiurewicz map
on an interval with some assumption is almost hyperbolic. We will prove that
(K,{F;}) has a self-similar metric if it is non-recurrent.

Problem 2 will be studied in Section 3. Under a certain situation, a topo-
logical self-similar set defines a dynamics on a topological tree. In such a case,
if a critical polyratio (aq, s, ..., q,) satisfies « = a3 = ag = --- = ay, then
—log «v is the topological entropy. Thus we can consider the notion of critical
ratios as a generalization of topological entropy. In [7], using matrices asso-
ciated with directed graphs, the author calculated the critical polyratios of
topological self-similar sets with the property called ‘postcritically finite.” In
this paper we will use a version of Milnor-Thurston’s theory (see [16]) in order
to study critical polyratios. Recall that in interval dynamics, the topological
entropy is calculated from the asymptotic behavior of the lap number. In our
case we will define a power series with coefficients corresponding to the lap
numbers, and show that its radius of convergence is a critical polyratio. For
the proof, Milnor-Thurston has used kneading determinants of one variable; we
will use kneading determinants of N variables. (Kneading determinants of N
variables are strongly related to dynamical zeta functions with locally constant
weight. See [1].) We prove that the critical polyratios are zeros of the kneading
determinant, and immediately we see that the set of the critical ratios is a real
analytic set since the kneading determinant is an analytic function.
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1. General theory and examples

In this section we introduce the concept of standard pseudodistances on
topological self-similar sets, which is the main tool throughout this paper. After
that, several preparatory results, including a counterexample, are formulated.

1.1. Basic definitions

In this subsection we formalize our notation and give several examples. We
also see the fundamental fact that a topological self-similar set is metrizable.

Notation and Definition 1.1.

(1) (The space of infinite sequences) We denotes by (X, o) the one-sided sym-
bolic dynamical system with N symbols (N > 2). Namely, Sy = {1,2,..., N}¥
is the space of infinite sequences of {1,2,... N}. We write an element of X as
w = wiws.... The shift map o : ¥y — 3y removes the leading symbol of a
sequence, that is, o(wijws...) = wy... for any wijws --- € X. The shift map
is an N-to-1 map, and we can naturally define the branches 7, 7,..., 7y of
o~ ! such that 7;(wiws ...) = jwqwy ... fori =1,2,... N.

(2) (The space of words) The space of finite sequences of length n is denoted
by

Wir ={1,2,...,N}" ={uguz ... un |ux € {1,2,....N},k=1,2,...,n}.

We write W, = o~ Wy An element of W, is said to be a word of length (or
depth) n. The set W consists of only one element, called the empty word, which
we denote by (). The length of a word U is denoted by |U|. The mapping o
and 7; are also applied on W,. More precisely, we set o(ujus ... u,) =ug...up,
for wyus ... up, € Uy Wha, o(0) = 0, and 7;(uqus ... u,) = iugus ... u, for
1=1,2,...,N and vjus...u, € Ws. A word U is called a successor of U’ if
o*(U") = U for some k.

(3) (Basis) If U = uqug ... u, is a word, then 7y is the composition 7, o 7y, ©
-+ 0T, . For simplicity, we write UV instead of 7¢;(V'). For u = ujus..., we
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write
[u)n = urus ... Up.

We also write
[Uln = wiug...u,

if U=wujus... Uy €W, and m > n. For a word U = ujus...u, € Wy, we
write

2(U) =1 (En) = {u € En [ [u)n = U}.
Then {3(U)|U € W,} is a basis for the open sets of X.
(4) (Order) We define a partial order on W,

U=<u
it 3(U) C 3(U’). Remark that
YU)NBU)#0 <= U<U or U <U.
If m > n, we use the notation

Win(U) = 76(Winen) = IV € Wi | [V]n = U} = {V € W, |V < U}.

Notation 1.2. Let (K,{F;}}Y,) be a topological self-similar system
(Definition 0.3). For U = wyws ... wy, € Wy, we write K(U) = Fy(K), where
Fy=Fy 0F,,0...F, . IfU =1, then Fi; denotes the identity. Remark that
K(U) is compact and K(wjws ... wg—1) C K(wjws ... wy). We write

Ln(z) = U K(U).
= 1(z)NS(U)#0
UeEWn,

Remark 1.3. Let K be a compact Hausdorff set, and let F, Fy, ..., Fy
be continuous maps of K to itself. Then (K,{F;}}¥,) is a topological self-
similar system if and only if (2, K (ujuz . .. u,) consists of only one point for
any ujug--- € Yy. In particular, if (K, {F;}X,) is a topological self-similar
system, then the coding map is uniquely determined.

Indeed, if 7 is the coding map, then it has to satisfy m(ujus...) € K(uy
Ug...u,) for any n > 0. If ﬂflozo K(ujusg ... up,) has more than one point,
then 7 is not surjective. Conversely, suppose ﬂflo:o K(ujusg ... uy) has only one
point for any ujus--- € Y. Then a surjective map 7 : 3, — K is defined
by m(uius...) € (o K(urus ... u,). If O is a neighborhood of (ujus...),
then there exists n such that K(ujus...u,) C O. Since 7 (K (uius ... u,))
includes ¥ (ujusg . .. uy), which is a neighborhood of ujus ..., we conclude that
7 is continuous.

Lemma 1.4.  Let (K,{F;}}.,) be a topological self-similar system with
coding map 7. Then N(z) = {L,(x)|n=0,1,2...} is a fundamental neigh-
borhood system.
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Proof. Note that X = U K(U) is compact. Since x ¢ X, we

= 1(z)n=(U)=0
UEWn

conclude K — X is a neighborhood of = in L, (z).
Conversely, let O be an open neighborhood of z. Then 771(0) is also
open. It is easy to see that

~o)= |J =)

s(U)cx—1(0)
UeWsx

Since 7~ !(z) is compact, there exists a finite subset U C {U € W, | Z(U)
7= 1(O0)} such that 7 1(z) C Upyey E(U). Therefore Ly(z) C O for n
maxyey |U|.

ol n

Theorem 1.5. A topological self-similar set is metrizable.

Proof. From Lemma 1.4, a topological self-similar set K satisfies the sec-
ond countability axiom. Indeed,

{int U K(U)|DCWn,n:0,1,2,...}

UeD
is a basis for the open sets. A Hausdorff space together with the second count-
ability axiom is metrizable (for example see [10]). O

Lemma 1.6.  Let (K,{F;}Y.,) be a topological self-similar system with
coding map w. Let d be any distance on K which is compatible with the original
topology. We denote, by diam X, the diameter of X C K with respect to the
distance d. Then

lim max diam K(U) = 0.
n—oo UeW,

Proof. Suppose there exist a positive number € > 0 and a sequence
Ui,Us,... such that Uy € Wy and diam K(U,) > e. Let us take a point
up € X(Ug). Since ¥y is compact, we can assume that limy_ up = u. For
each n there exists k such that Uy < [u],,. Thus

diam K ([u),) > diam K (Uy) > e.
Since {L,(x)|n =1,2,...} is a fundamental neighborhood system, the €/3-ball
B(m(u),e/3) = {y| D(w(u),y) < €/3}
includes L, (7(u)) for some n. Therefore
diam L, (7(u)) < 2¢/3.
This contradicts the fact that K([u],) C Ln(7(u)). O

As we have seen in Introduction, a self-similar set associated with contrac-
tions is a topological self-similar set. The first problem discussed in this paper
is the following.
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Definition 1.7. Let (K,{F;}¥ ;) be a topological self-similar system.
A distance d on K which is compatible with the original topology of K is
called a self-similar metric if Fy, Fy,..., Fy are contractions with respect to
the distance d.

Problem 1-(1). Does a self-similar system (K, {F;}¥ ;) have any self-
similar metric?

We will consider this problem in the following subsections. For the mo-
ment, we show several examples of self-similar sets, all of which are obtained
from contractions.

Example 1.8. The first four examples are subsets of the unit interval
[0,1]; the last two examples are Julia sets of quadratic polynomials in the
complex plane.

We use the symbols 1,2,...,N instead of 1,2,..., N in order to avoid
confusion. If U is a word, we denote, by U, the infinite periodic sequence
UU--- € Xy. For example, 12 = 121212 ... and 12 = 1222.... Similarly,
if j is a nonnegative integer, we write U/ = UU ...U. For example, (12)® =

N—

j times
121212, 123 = 1222 and 11° = 1.

(1) Let X be the unit interval [0, 1], and we define maps on X by
Fi(z) =x/3, F3(x) = (x + 2)/3.

Then the self-similar set K associated with F} and F3 is Cantor’s ternary set.
The coding map 7 : 3o — K is written as

u1u2 Z 2- 3_k
U= 2

It is easy to see that 7 is a homeomorphism. For x € K, the inverse image
Uiy - - € T 1(x) is obtained by

" { 1 if i (z) €]0,1/3)
"l 2 if i) e[2/3,1]

where f(z) =3z if 0 <z < 1/3, and f(z) =3z —2if 1/3 < 2z < 1. For
example, m(12) = 1/3 and 7(12) = 1/4.

(2) Let X be the unit interval [0, 1], and we define maps on X by
Fi(x) =x/2,Fy(z) = (x 4+ 1)/2.

Then the self-similar set K associated with F; and F5 is the unit interval itself.
The coding map 7 : X9 — K is written as

U1U2 Z 27k,

uk2
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The coding map is not injective. Indeed, m(12) = m(21) = 1/2. Note that
1/2 is the point where K (1) and K (2) intersect. In fact, if #7~*(z) > 1, then
#7n~Y(z) = 2 and there exist a positive integer n and distinct words U,V € W,
such that {z} = K(U)N K (V). Moreover, z has the form k-2~ for some odd
number k. This is verified by the fact that K (U) is the interval with endpoints
Fy(0) and Fy(1). It is easy to see that

7N k27" = {wug . . up 112wy Uy 121,

where

Thus if two distinct words U,V € W, satisfy the condition K(U) N K(V) # 0

and X(U) N X(V) = 0, then {U,V} = {U'12°,U'217} for some nonnegative

integers 4, 7 and some U’ € W,.

(3) Let X be the unit interval [0, 1], and we define maps on X by
Fi(z)=(1-2)/2,Fa(x) = (z+1)/2.

Then the self-similar set K associated with F} and F5 is the unit interval itself.
The coding map 7 : 3o — K is written as

m(uug...) = Z e(k)27k,
k=1
where we set n = #{j|u; =1,7=1,2,...,k— 1} and (k) = (-1)".

(4) Let X be the unit interval [0, 1], and we define maps on X by

x/2 if 0<x<1/3
Fi(z) = 1/6 if 1/3<2<2/3 ,
(x—1/3)/2 if 2/3<z<1
2/2+2/3 if 0<az<1/3
Fy(z) = 5/6 if 1/3<z<2/3

(x—1/3)/2+2/3 if 2/3<z<1

Then the self-similar set K associated with F; and F5 is the union of two
intervals [0,1/3] and [2/3,1]. The coding map 7 : ¥y — K is written as

2
322*’6 ifu; =1

=2
k>2

2 2 e
§+§1LZ22 lf’lL1:2
oo

m(ugug...) =



Distances on topological self-similar sets 613

Figure 2: The Julia set of f(2) —1 = 2%+ v/—1

(5) Let K be the Julia set of the polynomial f_5(z) = 2% — 2. It is known that
K is the interval [—2,2]. The polynomial map f_, has two inverse branches on

K:
Fi(z) = -V +2,Fy(z) =vVr+2.

Then (K, {F1, Fa}) is a self-similar system. Indeed, this is topologically conju-
gate to the third example above. That is to say, the two contractions in the
third example are inverse branches of the map

(= { 1-20 if0<w<1/2
=V 22—1 if1/2<az<1

which is conjugate to the map f_o by the homeomorphism @ : [0,1] — [-2, 2]
defined by
Q(x) = —2cos(mx).

(6) Let K be the Julia set of the polynomial f ,—1(z) = 2* 4+ +/—1. In this case
the map f —7 also has two inverse branches I, [, on K, and (K, {F, F2}) is a
self-similar system (Figure 2). Indeed, there exists a ‘metric’ on a neighborhood
of K for which f is expanding (see [3]). The metric can be written in the
form v(z)|dz|, where v is continuous except at the postcritical set {v/—1,—1 +
v/—1,—v/—1}. Such a polynomial is said to be subhyperbolic. If all critical
points of a given polynomial are not periodic but eventually periodic, then it is
subhyperbolic, and then the Julia set is a topological self-similar set (see [8]).
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1.2. Standard pseudodistances

As we will show an example later, a topological self-similar system does
not always have a self-similar metric. However we can always construct a
pseudodistance, which is a criterion of existence of a self-similar metric.

Let (K,{F;}Y.,) be a topological self-similar system. We say that an or-

dered N-tuple (a1, q9,...,ayn) is a polyratio if all «; are positive numbers
less than one. We denote by Ray the set of polyratios. For a polyratio
a = (ay,as,...,ay), we will construct a pseudodistance D, (-, ) on K, which

satisfies D, (F;(z), Fi(y)) < a;Dy(z,y) for any ¢ = 1,2,..., N. This is called
the standard pseudodistance for «. If the pseudodistance D, is a distance,
then of course it is a solution to Problem 1-(1). The following fact, which will
be proved later, is important: there exists a self-similar metric if and only if
the pseudodistance for some polyratio is a distance.

Definition 1.9. Let (K,{F;}»,) be a topological self-similar system.
We say that an ordered I-tuple (Uy,Us,...,U;) is a pre-chain of (K,{F;}}¥ )
if Uj € W, (j = 1,2,...,1) and K(Uj)ﬁK(UjJrl) 75 ) (j =1,2,...,01— 1) A
pre-chain (Uy,Us, ..., U;) is called a pre-chain of depth n if every U; belongs to
W,,. We say that [ is the length of the pre-chain.

Let z,y € K. We say that (Uy,Us,...,U;) is a pre-chain between z and
yif x € K(Uy) and y € K(U;). A pre-chain (Uy,Us,...,U;) is called a chain
if X(U;) N 3(Uj) = 0 for j # j'. We denote, by G(z,y) (resp. G'(z,y)), the
set of chains (resp. pre-chains) between z and y. The set of chains of depth
n (resp. of depth at most n) between z and y is denoted by Gy, (x,) (resp.
G (x,y)). Since K(0) = K, the set G(z,y) is not empty.

Definition 1.10. Let a = (aq, ag, ..., a,) be a polyratio. We construct

a pseudodistance D(-,-) = D,(-,-) as follows. For a word U = wjws ... w, €
W, we write

A(U) = qupy Qapy -+ -

n

We set A(U) =1 for U = (). For a pre-chain C = (U1, Us, ..., U;), we write
A(C) = A(Uh) + A(Uz) + - - A(hy).

We define
Dlzy) = ceggc,y) A©) = CGClr'r’l(fz,y) AC)-
Remark that it is also described as lim  min A(C), since min A(C) is
n—00 CeGyp(x,y) CeG,(z,y)
decreasing as n — oo.

It is evident that if (U1,Us,...,U;) € G'(z,y) and (U7,Us,...,U]) €
G'(y,z), then (Uy,Us,..., U, U, U, ..., U},) € G'(x,z). Thus we have D(z,y)
+ D(y,z) > D(z,z), and so the function D is a pseudodistance. The pseu-
dodistance D is a distance if and only if D(z,y) > 0 for any distinct point z, y.
We say that D is the standard pseudodistance of (K,{F;}¥ ;) for polyratio a.

From the following proposition, D is compatible with the topology of K.
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Proposition 1.11.  For any € > 0 there exists n > 0 such that L, (x) C
B(x,€) for any x, where B(x,¢) is the e-ball {y| D(x,y) < €}.

Moreover, suppose that D is a distance. Then for any n > 0, there exists
€ > 0 such that B(z,€) C Ly(x).

Proof. If z,y € K(U) for some U € W,, then (U) € G(z,y) and D(z,y)
<A@U) < (max a;)™. Therefore L, (z) C B(z,¢) for n > loge/log(max «;).

Suppose that D is a distance. Assume that there exists a seqzuence 1,
Zg,... outside L, (z) such that lim; . D(x,z;) = 0. We may also assume that
T, converges to some y € K asn — oo in the topology of K. Remark that y # «
since each x; is not contained in a neighborhood L, (z). Then from the first
assertion we have lim;_, ., D(z;,y) = 0. Thus D(z,y) < D(z,x;) + D(z;,y) —
0. This is a contradiction. O

Proposition 1.12.  For eachi=1,2,..., N,
D(Fi(z), Fi(y)) < ci D(,y).

Proof. For any € > 0 there exists a chain C = (U, Us,...,U;) € G(x,y)
satisfies
A(C) < D(z,y) +e.
Then G(F;(x), Fi(y)) contains (iU, iUs, . ..,iU;), and

D(Fy(x), Fi(y)) < A@Uy) + AGU2) + - -+ AGD,)

= o (AU) + A(Do) + - + A(y))

< «i(D(z,y) +e). O
Proposition 1.13.  Suppose that there exists a self-similar metric d.
If we choose positive numbers oy, aq,...,an such that Lipy(F;) < a; < 1

(i =1,2,...,N), then the standard pseudodistance D = D,, for the polyratio
a=(ay,as,...,ay) is a distance.

Proof. We set M = max, ycx d(z,y). Let € > 0 be a positive number.
Choose a chain C = (Uy,Us, ..., U;) € G(z,y) such that
A(C) < D(z,y) + e

Let z; € K(U;)) N K(Ujyq) for i = 1,2,...,1 — 1. We take points a; for i =
0,1,...,1—landb; fori =1,2,...,1lsothat Fy,(a;—1) = z;—1 and Fy, (b;) = ;,
where xg = z,x; = y. Then

d(xi,l,xi) < A(Uz) (az 1, ) < A(U)

Thus
d(:E, y) < d(il? 1) d(xlv 272) ey d(xl*h y)
< (A(UL) + AR) + .. A(U)M
< (D(z,y) +€)M.
Therefore 0 < d(z,y)/M < D(z,y). O
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Corollary 1.14. A topological self-similar system has a self-similar
metric if and only if there exists 0 < a < 1 such that the standard pseu-
dodistance D for the polyratio (o, a, ..., ) is a distance.

Definition 1.15. We say a polyratio a = (a1, s,...,ay) is a met-
ric polyratio if D, is a distance. A critical polyratio is an infimum of metric
polyratios. We denote, by CR = CR(K, {F;},), the set of critical polyratios
of (K, {F;}}N). Precisely, we say that (a1, s,...,ay) € Ray belongs to CR
if

e if 0 <af <a;fori=12,...,N, then (&), a5, ...,a)y) is not a metric
polyratio,

o if ; < of < 1fori = 1,2,...,N, then (af,dh,...,ay) is a metric
polyratio.

The following cases are exceptional: If every polyratio is a metric polyratio,
then we set CR = {(0,0,...,0)}; if every polyratio is not a metric polyratio,
then we set CR = {(1,1,...,1)}.

To study CR is one of the aims in this paper. We will see in Section 3
the properties of CR for some class of topological self-similar systems. Here we
give two examples for which we can easily describe CR.

Example 1.16. (1) Consider the self-similar system (K, {Fi, F5}) in
Example 1.8-(1). Then any (o, a9) is a metric polyratio. Indeed, since the
coding map 7 is a homeomorphism, K(U)NK (V) is empty if Z(U)NE(V) = 0.
Thus

G(z,y) ={(U)|U € W, n™!(z), 77! (y) € B(U)}.
In other words, if = m(ujuz ... Uptpyr...) and y = 7(uiuz ... Ul g ...)
with w41 # ul, 4, then G(z,y) = {(w1), (wiuz2),..., (u1ug ... uy)}. For ex-
ample, G(0,1) = {(0)} and G(2/9,1/3) = {(1),(12)}. Therefore D(x,y) =

Qlyy Qlyy =+ * Oy, > 0.

(2) Consider the self-similar system (K, {F1, F»}) in Example 1.8-(2). We will
show that

CR:{(al,a2)|a1 +a=1,0< 1 <1,0<as < 1}.

This set is seen as the gray region in Figure 3. Suppose that («1,as) € Rag
satisfies a1 + as < 1. Let n be a positive integer, and let k£ be an integer such
that 1 <k < 2" Let Uy = uiusz...u, € W, be the word defined by

k=14 > 277

uj:2
j=1,2,...,n

For example, Uy = 11,Uz9 = 12,Uz3 = 21,Uz 4 = 22. It is clear that
{Unk|1<k<2"} =W,. For any n, the 2"-tuple C,, = (Up,1,Un2,...,Up2n)



Distances on topological self-similar sets 617

is a chain between 0 and 1. Therefore

D(0,1) S ACh) = Y A(U) = (o1 +a2)" = 0 (n — o0),
vew,

and hence (aq, a9) is not a metric ratio.

Suppose that (a1,a2) € Ray satisfies ag + ag = 1. Let C = (U, Us,...,U))
be a chain between 0 and 1. Set n(C) = max; |U;|. If |Ux| = n(C) and Uy, has
the form U1, then k # | and U1 = U2. If |Ui| = n(C) and Uy, has the form
U2, then k # 1 and Uy_; = U1l. Remark that K(U) = K(Uy) U K(Ug+1)
(or K(U) = K(Uk—1) UK (Uy)). Putting U instead of Uy, Ug41 (or U—_1,Ug),
we obtain a new chain C; = (Uy,Us, ..., Uk—1,U, Ugya,...,U;), which satisfies
A(C) = A(Cy) since A(U1)+ A(U2) = A(U) (a1 + a2) = A(U). This procedure
gives us a sequence of chains C,Cy,...,C,, such that A(C) = A(Cy) = -+ =
A(Cp,) and Cpp, = (). Thus A(C) = 1 for any chain C in G(0,1). Consequently,
D(0,1) = 1. Moreover, D(z,y) > 0 for any distinct points z,y € K. To
prove this, we show that if D(z,y) = 0 for some distinct points in K, then
D(0,1) = 0. Indeed, if z < y, then there exist integers n and k such that
x <k-27" (k4 1)27™ < y. Since a chain between x and y includes a chain
between k-2 and (k+1)27", we have D(k-27", (k+1)27™) = 0. There exists
a word U € W, such that K(U) is equal to the interval [k -27", (k4 1)27"].
For any €, there exists a chain C between k- 27" and (k + 1)27" such that
A(C) < e. We can assume C has the form (UUy,UUs,,...,UU;). Clearly,
C' = (U1,Us,...,U;) is a chain between 0 and 1. Thus A(U)A(C’) < e, and
hence D(0,1) = 0. From this, it is follows that D is a distance.

Remark 1.17.  Similar argument shows that the sets of critical polyra-
tios for Example 1.8-(3), (4) and (5) are the same as that of Example 1.8-(2).
The set of critical polyratios for Example 1.8-(6) is

{(a1,02) |aras + afas +af = 1,0 < a; < 1,0 < a; < 1},

which will be shown by the argument in Section 3. See Figure 3.

In Section 3 we will see the relation of critical polyratios to topological
entropies. Here we mention that the above calculation illustrate this relation.
In Example 1.8-(5), the topological entropy of (f_2,[—2,2]) is equal to log2 =
—log2~!; the intersection of the set of critical polyratio and the line o; = s
contains only one point (27%,271). In Example 1.8-(6), the topological entropy
of (f =1,T) is equal to —loga, where T' C K is the Hubbard tree (i.e. T is
the minimal connected tree in K containing all postcritical points) and « is the
positive oot of the equation t? + 2t3 = 1; a critical polyratio (a, az) satisfies
the equation ajas + afas + of = 1, which together with a; = g = t makes
t2+2t3 =1

1.3. Kneading invariants

We introduce an important invariant of topological self-similar systems,
which is called the kneading invariant. The notion of kneading invariants origi-
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Figure 3: The sets of metric polyratios for Example 1.18-(2), (6)

nated in interval dynamics (see [16] and [2]). Recall that the kneading invariant
of an interval map is obtained from the orbit of critical points, and it deter-
mines the combinatorial type of the dynamics. In this subsection we define
kneading invariants A C 2*V from the coding of critical points, and we show
that a topological self-similar set is homeomorphic to a quotient space of the
shift space by an equivalence relation generated from its kneading invariant.
Moreover, if A C 2%~ is given with a suitable condition, we can construct a
topological self-similar system whose kneading invariant is equal to A.

Definition 1.18.  Let (K, {F;}}Y,) be a topological self-similar system
with coding map m. The critical set of (K, {F;} ;) is the union of C; and Cs
defined by

o= | (KGONEG).

1<ij<N
]

C= | {re KO #F (@) = 2},

1<i<N

We denote the critical set by C. A point of C is called a critical point. The
kneading invariant of (K,{F;}¥ ) is defined by

A={r"c)|ce O}
Notation 1.19. For x € K we set
P*(z) = mo*n ().

We also define
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and
Cn)= |J E@)NK(W)).
U,VEWy,
U#AV

Proposition 1.20.  Let (K,{F;}Y,) and (K',{F/}Y.|) be topological
self-similar systems which are conjugate to each other. Namely, there exists
a homeomorphism h : K — K’ such that F{oh = hoF; for anyi=1,2,...,N.
Then their kneading invarinats agree with each other.

Proof. Let us denote by 7 the coding map of (K, {F;}¥ ). The assertion
is obtained by the fact that h o 7 is the coding map of (K', {F/}Y,). O

Example 1.21.  For each self-similar system in Example 1.8, the knead-
ing invariant is as follows.

(1) By the fact that Fy and Fy are injective and that K (1) N K (2) = 0, we have
C = (. Consequently, A = 0.

(2) Since F; and F; are injective, the critical set is equal to C; = K(1)NK(2) =
{1/2}. Thus A = {r~1(1/2)} = {{12,21}}.

(3) Similarly, the critical set is equal to C; = K (1) N K(2) = {1/2}. Consider
the map g(x) = |2z — 1|, of which inverse branches are F; and F». Since 1/2 is
carried as 1/2 — 1 — 1 by iteration of g, we see that the kneading invariant is

A= {r"1(1/2)} = {{112,212}}.

(4) While K(1) N K(2) = 0, the contractions are not injective. Thus the
critical set is equal to Co = {1/6,5/6}. The kneading invariant is A =
{m=1(1/6),771(5/6)} = {{112,121}, {212, 221}}.

(5) The dynamics is conjugate to that of (3). The critical set is C1 = {0}. The
kneading invariant is A = {7~1(0)} = {{112,212}}.

(6) The critical set is {0}. Since the orbit of 0 for the map f —is 0 — v/—1 —
—1+4++/~1— —/~1— —1+ /1, the kneading invariant is A = {771(0)} =
{{1112,2112}}.

Proposition 1.22. (1) If #P'(z) > 2, then z € C.
(2) P*(x) = {y € K| Fy(y) = z for some V € Wj}.
(3) If = ¢ C1, then there exists i such that 7= 1(x) = 7,7~ 1(PY(2)).

Proof. (2) Suppose y € P*(z). Then there exists u € 7~1(z) such that
no*(u) = y. Let V = [u]r. Then we have Fy (y) = Fynok(u) = mryok(u) =
m(u) = x.
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Conversely, suppose Fy(y) = z for some word V. € Wy. Let w € 7 1(y).
Then 77y (w) € mryn (y) = Fyrnt(y) = {x}. Thus 7y (w) € 7~ !(z) and
mot(rv(w)) = y.

(1) Let y1 # y2 € PY(z). By (2) we have x = F;(y1) = Fj(y2) for some i,j. If
i =7, then x € Cy. If i # j, then x € K(i) N K(j) C C1.

(3) Suppose * ¢ C;. Then there exists i such that 7='(x) C X(i). Thus
Pl(z) = F;'(2). Consequently, 77,7~ (P! (x)) = Fynnr~1(P'(z)) = F;(P'(x)) =
{x}. Therefore ;7 ~1(P'(z)) C 7~ 1(x). Since P!(z) = mor~1(z) and 7~ (z) C

% (i), we have
Y (PHz)) = i tron N (x) D mion Hz) = 7 Hw). O

Proposition 1.23.  Letx € K. If #7~1(z) > 2, then there exist a crit-
ical point ¢ and a word U € Wi such that 7y (7=1(c)) = n~Y(x). In particular,
Fy(c) =x.

Proof. Suppose #m~1(z) > 2. Then there exists an integer n > 0 such
that
#{ie{1,2,...,N}|o"r Hx) N S(i) # 0} > 2.

Namely, there exist distinct symbols 4,5 € {1,2,..., N} such that P"(z) N
K(i) # 0 and P"(x) N K(j) # 0. Let m be the smallest nonnegative integer
such that P™(z)NC # (). The integer m is well-defined. Indeed, if P*(x)NC = ()
for any k, then we have #P¥(z) = 1 for any k from (1) of Proposition 1.22. The
unique point ¢ € P™(x) is a critical point, since there exist distinct symbols i, j
such that ¢ € K(¢) N K(j). This is a contradiction.

Now #P*(z) = 1 for k = 1,2,...m. In particular the critical point ¢ €
P™(x) is unique. By (3) of Proposition 1.22, there exists U € W,, such that
7~ x) = iy L (P™(2)). O

Corollary 1.24.  Suppose that K(U1)NK(Us) # 0 and 2(U1)NE(Us) =
0. Then K(Uy) N K(Uz) C C(k), where k = min(|U1], |Us|) — 1. In particular,
C(n) c C(n—1).

Proof. Let x € K(U;) N K(Uz). Then there exists u € 7~ !(z) N X(Uy)
and v € 7~ !(z) N ¥(Uz). By Proposition 1.23, there exists a critical point ¢
and a word U such that |U| < k and = Fy(c). O

Since 7 : Xy — K is surjective, the self-similar set K is considered as a
quotient space of ¥ n. Namely, K is homeomorphic to X/ ~, where we say
w ~ w if 7(w) = m(u). Remark that an equivalence class of ~ is written in
the form 7—!(x). By the previous proposition, all equivalence classes of ~ are
‘generated’ by the kneading invariant A4, that is, X C X is an equivalence
class with #X > 1 if and only if X = 7y (A) for some U € W, and A € A.
Thus the topology of a self-similar set is determined by the kneading invariant.
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Definition 1.25. We call (K, {F;}Y.|) a pre-self-similar system if K is
a compact topological space which satisfies all the condition of a topological
self-similar set except the Hausdorff separation axiom. We call K a pre-self-
similar set.

Lemma 1.28 gives a sufficient condition for a pre-self-similar set to be
Hausdorff. See [7] for a necessary and sufficient condition.

Proposition 1.26.  Let (K,{F;}}Y|) be a topological self-similar sys-
tem. Then the kneading invariant A satisfies the following property:

Let U € W, and let A,B € A. If t7y(A)N B # 0, then 7y (A) C B;
moreover, Ty (A) = B if and only if U = 0 and A = B.

Conversely, let A be a collection of subsets of X satisfies the property
above and the additional condition that any member of A has more than one
elements. Then there exists a pre-self-similar system (K, {F;}Y.) with knead-
ing invariant A.

Proof. Let U € W, be a word, and A and B members of 4. Suppose
Tv(A) N B # (. Let us denote, by ¢ and ¢/, the critical points such that
A =7"1Yc) and B = n71(c/). Note that 7(1y(A) N B) C nry(A) N7w(B) =
{Fu(e)} n{c'}. Thus Fy(c) = ¢. Since nry(A) = {'}, we have 7y(A) C B.
The condition that 77(A) = B and U # ) implies the contradiction that ¢’ is
not a critical point. Indeed, ¢’ ¢ C1, because m~1(c’) = 7 (A) C X(u1), where
uy is the leading symbol of U. By (2) of Proposition 1.22, P*(¢') = F;*(¢/). By
(3) of Proposition 1.22, 771(¢/) = 7, # ' F ('), and so o(B) = 7' F ().
Thus

Fﬁl(c') = 7T7r71Fu711(c’) =10(B) = moty(A) = n7,w(A) = {Fw)(c)}.

U1

Therefore #F,'(¢/) = 1, and hence ¢ ¢ C5. Consequently, 7 (A) is a proper
subset of B if U # ().

Suppose A is given. We define a relation ~ on Xy as x ~ y if £ = y or there
exist U € W, and A € A such that z,y € 77(A). By assumption, this relation
is an equivalence relation. Indeed, suppose  ~ y and y ~ z. Then there exist
words U,V € W, and A, B € A such that z,y € 7y(A) and y,z € 7v(B).
Since 17 (A) N7y (B) # B, we have Z(U) N X(V) # . We can assume U < V.
Let n = |V|. Then 7,ny(A) N B # 0, and hence 7,n)(A) C B. Therefore
T (A) C 7v(B), and so z ~ z. We have a quotient space K = X/ ~ and the
natural surjection 7 : ¥y — K. If maps Fy, F5,..., Fy : K — K are defined
as Fy(x) = mrym—1(x), then F; om = 7o 7;. Their continuity is easily verified
by this commutative diagram. Hence (K, {F;}¥ ) is a pre-self-similar system.
It is clear that A is its kneading invariant. d

Corollary 1.27.  Let (K, {Fi}Y,) and (K',{F/}Y.,) be a topological
self-similar systems. If their kneading invariants agree with each other, then
(K, {F;}Y.)) and (K',{F/}Y.|) are conjugate to each other.
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Proof. Let A be the kneading invariant of (K,{F;}’,). We can con-
struct, from A, a self-similar system (K4, {Fa,}¥ ;) by the method in the last
half of the proof of the previous proposition. It is easy to see that there exists
a homeomorphism % : K — K 4 such that Flq;0h = ho F;. |

1.4. Counterexample

We construct an example of a self-similar system without self-similar met-
ric.

Consider an irrational rotation on the circle T = R/Z which is defined by
R(x) = z+6 mod 1, where 6 is an irrational number in [0, 1]. Divide the circle
into two intervals: J; = [0,1/2] and J; = [1/2,1]. For z € T, we define the
itinerary i(x) = {wjws ..., ujuy ...} C Xy as follows.

Wy = U =1 if R*¥=1(z) € intJ;,
wy =1lu, =2 if R¥"Y(z) =0or 1/2.

Since 0 and 1/2 are not periodic, we see that #{i|w; # u;} < 1. For example,
if i(0) = {wywy...,ugus ...}, then wy # uy but wy = uy for k = 2,3,....
If #i(t) = 2, then there exists U € W, such that either i(t) = 7y(4(0)) or
i(t) = 1 (i(1/2)).

For U = wiws ... w, € W, we write Jy = (;_; R~1(J,,). Then
Ju ={z € T|i(x)NX(U) # 0}.

Since Jy is the intersection of semicircles and 6 is irrational, we see that Jy
is an interval or an empty set. If x # y, then i(z) Ni(y) = 0. Indeed, there
exists n > 0 such that R™(x) € intJ; and R"(y) € intJ, since 6 is irrational.
Therefore, for w = wyws - -+ € X, the length of Jy,w,...w, tends to zero as n
to infinity.

Since R¥(0) # 1/2 for any integer k, we have i(RF(0)) Nni(1/2) = 0.
Consequently, 7(2(0)) Ni(1/2) = @ for any U € W,. By Proposition 1.26,
there exists a pre-self-similar system (K, { F}, F»}) with kneading invariant A =
{i(0),4(1/2)}. We show that K is metrizable in Lemma 1.28 and that any
standard pseudodistance is not a distance.

Lemma 1.28.  Let (K, {F;}},) be a pre-self-similar system with coding
map 7. Suppose the critical set C is a finite set, and #m~1(x) is a compact set
for any v € K. Then (K,{F;}Y.,) is a topological self-similar system.

Proof. We will show that K is Hausdorff. Choose any two points z,y € K.
Then there exists n such that

(U eW, |SU) N7~ () # 0} N {U € W, | S(U) N~ t(y) # 0} = 0.

Then y ¢ L,(x), x ¢ L,(y), and L,(z) N L,(y) contains at most finite points.
Thus there exists m > n such that z,y ¢ L,,(z) for any z € L,(z)N L,(y). We
have Ly, (z) N Ly, (y) =0, and so K is HausdorfT. O
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Next we will show that the standard pseudodistance D = D(, o) is not a
distance for any 0 < @ < 1. We can define h : T — K by h(t) = 7(i(t)), since
either i(t) = 7y (i(0)) or i(t) = 7y (i(1/2)) for some word U if #i(t) = 2. Note
that if two words U,V € W, satisfies a € Jy N Jy, then h(a) € K(U)N K(V).
Now let us consider the pseudodistance between ¢; = h(0) and co = h(1/2). For
any k > 0, the intersection {R~*(0), R=%(1/2)} N J; is one point. For U € W,
the endpoints of the interval Jis is contained in UZ;S {R7%(0), R7%(1/2)}. Since
UZ;S{R_’“(O),R_’“(l/Q)} has exactly n + 1 elements in J;, we have #{U €
Wi |Ju C Ji} = n. Let us denote, by Uy, Us,...,U,, the members of {U €
Wy | Ju C Ji} to satisty Jy, N Jy,., # 0 fori=1,2,...,n—1and 0 € Jy,,
1/2 € Ju,. ThenKUiﬂKUHI #+ Ofori=1,2,...,n—1andc; € Ky, ,c2 € Ky,
Therefore (Uy,Us,...,Uy,) is a chain between ¢; and c¢g. Consequently,

D(Cl,CQ) § A(Ul) + A(UQ) + -+ A(Uk) =na" — 0.

Hence D is not a distance.

We have constructed an abstract topological self-similar system (K, {F},
F5}). In the last of this subsection, we give a possible candidate of a geometric
realization of (K, {Fi, F»}). See Figure 4. This is made by two maps fi, fo
of D = {(z,y) € R? |22 + y? < 1} to itself defined by fi(z,y) = R, " (=, (y +
2v/1—-122)/3) and fo(7,y) = R, ' (2, (y — 2V1 — 22)/3), where Ry is the 0-
rotation Rg(x,y) = (zcosf — ysinh,zsinf + ycosd). We can recognize the
figure to be an invariant set

K= U D),

k=0UeWy,

which includes the circle S' = 9D. On S, the restrictions f1|S* and f»|S* form
two inverse branches of the rotation Ry. Thus f; and f» on S' are considered
to be conjugate to Fy and F» on h(T). Although the figure looks like a self-
similar set, the two maps f; and f; are not contractions. It is very likely that
(K', {f1|K’, f2|]K'}) is a topological self-similar system which is conjugate to
(K,{F, F>}). However we do not succeed to verify it so far.

1.5. Connectedness of self-similar sets

In this subsection we discuss the connection between the self-similarity and
the connectedness of topological self-similar sets. We show that the standard
pseudodistance is positive between two points that belong to distinct connected
components (or component for short). As a corollary, we have a sufficient
conditions for a topological self-similar system to have a self-similar metric:
the case where K is totally disconnected, namely, every connected component
of K has only one point.

Let K be a self-similar set associated with contractions Fi, Fs,..., Fn.
It is known that if Zil Lip(F;) < 1, then K is totally disconnected (see
[4] and [20]). From our viewpoint, it is natural to ask the following inverse
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0.5r

Figure 4: The invariant set K’

problem. Let (K, {F;}},) be a topological self-similar system with K totally
disconnected. Does it have a self-similar metric d such that vazl Lip,(F;) < 17
The following proposition gives an affirmative answer, moreover, that implies
a stronger statement: K is totally disconnected if and only if any polyratio is
a metric polyratio.

Proposition 1.29.  Let (K,{F;}Y,) be a topological self-similar sys-
tem. Two points x and y in K are contained in two distinct components of K
if and only if G, (x,y) = 0 for some n. Recall that G,(z,y) is the set of chains
of depth n between x and y.

Proof. Let x,y € K such that én(x, y) = 0. Then there exist £1,E2 C W,
such that W,, = £, U &, x € K(&1), y € K(&) and K(&) N K(&) = 0, where
K (&) = Upee, K(U). Since each of K(&;) is closed, each of K(&;) = K\ K(&;)
(i # j) is open. Therefore any subset containing « and y is not connected.

Suppose that G, (x,y) # 0 for any n. Let us take (o, ug,..Ur) €

Gn(z,y). We write X, = K(UP") UK(U$) U UK(UP"). We show that

x-Ux,

k=0n=~k

is connected. Assume that X is not connected. Then there exists a subset
Y7 C X such that both of Y7 and Y5 = X \ Y7 are closed and open in the
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relative topology of X. Since X is closed, so are Y; and Y. Consider a
distance function d on K. Since Y; and Y3 are compact, we have d(Y7,Y3) =

inf d(y1,y2) = € > 0. Let O; and Oy be the €/3-neighborhoods of Y;
Y1E€Y1,Y2€Y>

and Ya: O; = {z|d(Y;, 2) < ¢/3}. Then d(O1,03) > €/3. It is easy to see that
there exists a positive integer m such that X,, C O; U Oy for n > m. Since
(o, o, ..., U[Z) is a chain, for any n > m there exists 1 < i,, <, such that
KU!)NOy # () and K(U*)N Oz # 0. Hence the diameter of K(U}") is equal
to or bigger than ¢/3 for any n > m. This is a contradiction to Lemma 1.6.
Therefore X is a connected set which contains x and y. O

Corollary 1.30.  Let (K,{F;}Y.,) be a topological self-similar system.
If two points x and y are contained in distinct connected components of K,
then D(z,y) > 0.

Proof. There exists n such that G,,(z,y) = 0. Therefore if (Uy, Uy, ..., U))
€ G(z,y), then at least one of U; belongs to UZ;S Wy. Thus D(z,y) >
(min; o))"t O

Corollary 1.31.  Let (K,{F;}Y.,) be a topological self-similar system.
Then K 1is totally disconnected, if and only if every polyratio is a metric polyra-
tio, or equivalently CR = {(0,0,...,0)}.

Proof. The sufficiency is an immediate consequence. Suppose that X C
K is a component containing two points x and y. By Proposition 1.29, G’n(x, Y)
# () for any n. Since #W, = N™, we can take a chain C,, € G,,(z,y) with length
at most N™. If we take a polyratio ((2N)~!, (2N)~1,...,(2N)~1), then

A(Cp) < N™(2N)™ =27 — 0.

Thus D(z,y) = 0. O

1.6. Existence of self-similar metrics

As we have seen in Proposition 1.13 and Corollary 1.14, a condition of
the existence of self-similar metrics is described in term of standard pseudodis-
tances. In this subsection, we reduce this condition using critical sets C' and
pre-posteritical sets P under the assumption C' # §).

Definition 1.32.  Let (K, {F;}}Y,) be a topological self-similar system
with kneading invariant A. The pre-postcritical set is defined as

r= J m*@)= |J PHo.
k>0,Ac A k>0,ceC

The posteritical set is the closure of P. A point of P is called a postcritical
point.
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Theorem 1.33.  Let (K,{F;}}Y|) be a topological self-similar system.
Then a is a metric polyratio if and only if Dy (x,y) > 0 for any distinct points

z,yeU,~, C(n).

Theorem 1.34.  Let (K,{F;}}Y|) be a topological self-similar system.
Then (aq, g, ..., ay) is a metric polyratio if and only if there exists a distance
d on C'UP compatible with the original topology such that d(z,y) < a;d(z’,y’)
foranyi € {1,2,...,N}, any z,y € (CUP)NK (i) and any x' € F, *(z),y’ €
F~Y(y), and such that M = sup, ,ecup d(,y) < 0o.

K3

Proof of Theorem 1.33. Let z,y € K be distinct points. Assuming
that D(z,y) = 0, we show a contradiction. Let n be an integer such that
L,(z) N L,(y) = 0. Then M = inf,;, D(a,b) is positive, where the infimum is
taken over all a € C(n)NL,(x) and allb € C(n)NL,(y). Let 0 < e < M. Then
there exists a chain C = (U, Us,...,U;) between x and y such that A(C) < e.
Let 1 < 4; <1 be the minimal integer such that K(U;,) ¢ Ln(x). Then it is
easy to see that K(U;,) N C(n) N Ly, (z) # 0. Similarly, there exists an integer
1 < i9 <1 such that K(Uy,) N C(n) N L,(y) # 0. Therefore (U;,,...,U;,) is
a chain between a € C(n) N L,(x) and b € C(n) N L,(y). Hence we have a
contradiction M < D(a,b) < A(U;,) + -+ A(U;,) < A(C) <e. O

Proof of Theorem 1.34.  We define a function d,, on (P UC(n)) x (P U
C(n)) as follows. First we set dg = d. If d,,_1 is defined, then for z,y €
(PUC(n))NK(i), we set

d (z,y) = oy inf dp_1(z',y").
' €F (2),y €F ()

For z,y € PUC(n), we set
dy(z,y) = inf(dy! (z,21) + di2 (21, 22) + - + djl (21-1,9)),

where the infimum is taken over all pre-chains (i1,1s,...,%;) between z and y
of depth one and all z; € K(i;) N K (ij41) N (PUC(n)). If there does not exist
such a chain, then we set d,(z,y) = sup,,d,(a,b), where the supremum is
taken over all a,b € P U C(n) such that there exists a pre-chain of depth one
between a and b. O

Lemma 1.35. Forn=1,2,..., we have

(1) dy, is a distance on P U C(n) compatible with the original topology.

dp(r,y) < ajdy—1(2',y’) for any i€ {1,2,...,N}, any z,y € (PUC(n))N

)
(2) For z,y € PUC(n—1), we have dp_1(z,y) < dn(z,y).
)
(i) and any ' € F; Y (z),y' € F 1 (y).

(3
K

Proof. We prove the claims by induction. For convenience, we set d_; =
do = d and C(—1) = 0. Then (1), (2) and (3) are satisfied for n = 0. Suppose
that they are satisfied for n = k — 1.
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Let x,y € PUC(k). Then for any ¢ > 0 there exist pre-chain C =
(1,12,...,1;,) between z and y of depth one and points z; € K(i;) N K (3;41)N
(PUC(k)) such that

-1

(1.1) Zdzj(dfj_l,dij) < dk(df,y)—FE,

=1

where © = zo,y = yi. If z; ¢ C, then i; = i1 and #F[l(xj) = 1. Thus

we can assume that a:l, To,...,T;—1 are critical points. By the definition of dl;,
there exist 2_; € F Y(zj_1) and S FZ: (z;) such that a;; dy—1 (21, 27) <

dk (xj_1,25) + €/l From this together with (1.1),

l
(1.2) de Tj_1,1;) gz i1 (21, 27) < di(z,y) + 2e.

If x,y € PUC(k — 1), then

! !
di—1(x,y) S 1(zj-1,x5) Z k(xj—1,25) < di(x,y) + 2e.

Thus we have (2).

To prove that dj is a distance, it is sufficient to show that dp(z,y) > 0
if x # y. Here we prove a stronger fact: Let y be a point in P U C(k) and
let a1, as,... be a sequence in P U C(k). If dp(y,am) — 0 (m — o0), then
am — y (m — o0) (i.e. dg is equivalent to or stronger than the original
topology). Without loss of generality, we assume that a,, converges to some
point in K, say a. We show that a contradiction follows from a # y. Let
O; and O3 be open neighborhoods of a and y such that O; N Oy = (. Then
Q@ = infdy_1(c, ') is positive, where the infimum is taken over all c € C'N Oy

c,c

and all ¢ € CNO,. Let m be an integer such that a,, € O1 if n > m. We write
S = {a} U{am,amy1,...}. Since F; '(S) and F; '(y) are compact, we choose
€’ > 0 so small that

{z€ PUC(k —1)|dg_1(2,2") < € o for some 2’ € F;1(S)} C F;H(0y),
{ze PUC(k—1)|dr_1(2,y') < € /a; for some y' € F (y)} C F;1(Oy)

for any i = 1,2,...,N. We write E(z,¢,i) = {c € CNK(i)|di(c,2) < €} if

€ (PUC(k)) N K(i), and E(z,¢,i) = 0 otherwise. Then |J,.q E(z,€,i) C
01, E(y,€',i) C Oq for any i = 1,2,...,N. We set ¢ = min{Q/4,€'/2}. Let
m’ > m be an integer such that dg(am,y) < e. For x = a,,» we have a pre-
chain C and points z; which satisfy (1.1). Since d (z,21) < €, d}! (x1-1,y) < €,
we have 1 € O1, ;-1 € Os. Therefore [ > 3 and z1,2;—1 € C. From (1.2),

-1

Q < dpa(wr,m1) <Y dia (w1, 2;5) < di(w,y) + 26 < 3Q/4,
=2
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and hence we arrive at a contradiction. Thus dj, is a distance equivalent to or
stronger than the original topology.
Let 2,y € (PUC(k)) N K (i), and let ' € F; '(z),y" € F; ' (y). Then

dk(xvy) < d;’c(l', y) < O‘idkfl(xlv y/)'

Hence (3) is verified.
Finally, we prove that the distance dj is equivalent to or weaker than

the original topology. Note that M = sup  d(z,y) is finite. Therefore
z,ye PUC (k)
sup dp(z,y) < A(U)My, for any x € PUC(k) and any U € W..
ye(PUC(k))NK(U)
Thus for any € > 0, if we take n such that (max; ;)" My < €, then L,(x) N
(PUC(k)) c{ye PUC(k)|dr(z,y) < €}. O

Now we continue the proof of the theorem. By Theorem 1.33, it is sufficient
to show that D(x,y) > 0 for any distinct =,y € C(n). Let z,y € C(n) be
distinct points and let C = (U, Us, ..., U;) be a chain between x and y. Choose
x; € K(U;)) N K(Ujy1) for i = 1,2,...,1 — 1. Then z; € C(m), where m =

max{|U1|,|Us|,...,|Ui]l,n}. Let ai_, € F[jil(xi_l) and zf € Frjl(a:,) for i =
1,2,...,1, where x = xo, y = y;. Note that z}_,,z! € PUC. We have

l l
0 < du(2,9) < dua(@,y) < (1,20 < S AU (), a) < AC)M.
=1 i=1

Thus 0 < dn(z,y)/M < D(z,y).

Remark 1.36. A related topic is discussed by Kigami [12]. He states
a necessary and sufficient condition for a p.c.f. self-similar set K to admit a
strictly self-similar metric (i.e. a metric d satisfying d(F;(x), F;(y)) = a;d(x,y))
such that there exists a ‘geodesic’ between any two points in K.

Example 1.37.  Consider the self-similar system (K, {F1, F>}) of Ex-
ample 1.8-(6). Recall that it has the critical set C = {¢} and the postcritical
set P = {p1,p2,p3} such that Fi(p1) = Fa(p1) = ¢, Fi(p2) = p1, Fi(p3) =
p2, Fo(p2) = ps. Suppose (a1,as) € Ray is a polyratio such that ajas +
das+ai =1. Set d(c,p1) = a,d(c,p2) = af +aqas,d(c,p3) = oz, d(p1,p2) =
1,d(p1,p3) = a1 + aa,d(p2,p3) = 1/a;. Then d is a distance on C' U P which
satisfies the condition of Theorem 1.34. Thus (ay, a2) is a metric polyratio.

2. Non-recurrent self-similar sets

In this section we study a sufficient condition for topological self-similar
systems to have self-similar metrics. We consider topological self-similar sys-
tems (K, {F;}X ) satisfying the following conditions:

(1) The critical set C = C; U Cy is a finite set.
(2) F!(x) is a finite set for any i € {1,2,..., N} and any z € K (i).

7
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Definition 2.1. A topological self-similar system satisfying the above
conditions is said to be finitely ramified.

Remark 2.2. In another context, the word ‘finitely ramified self-similar
sets’ has been used in slightly different formulations (see for example [13], [11]).

Definition 2.3. A topological self-similar system is said to be non-
recurrent if the critical set C' contains no cluster point of the pre-postcritical
set P. That is to say, there is a neighborhood O of C' such that ON P C C.

In this section we prove the following.

Theorem 2.4. A non-recurrent finitely ramified topological self-similar
system has a self-similar metric.

We have seen the prototype of the proof in Example 1.16. In general,
the proof is rather complicated. We will prepare several lemmas in the next
subsection.

2.1. Lemmas
Let (K, {F;}} ) be a finitely ramified topological self-similar system.

Lemma 2.5. Let z1,x2,... be a sequence in K which converges to x,
and let V1, Vs, ... be a sequence of words. Then

lim Fy,(z) =y <= lim Fy,(z;) = y.

11— 00 11— 00

Proof. For any k > 0 there exists ig such that z; € Li(z) if i > .
Clearly,

By, (z;) € Fv,(Li()) C Li(Fyv,(2)).

Hence there exists Uy, € Wj, such that Fy, (z;) and Fy, (z) belong to K(Uy). By
Lemma, 1.6, the assertion is true. ]

Lemma 2.6.  Let ¢ be a critical point, and let x € |Jg—, P*(c). Then
the set

X ={yly=Fv(z),c= Fy(y) for some V,U € W, } C U P*(c)
k=1

is finite.

Proof. Note that Fi_l(x) is finite for any 7 and any z. Hence we see
that P*(c) is finite for each k. Since the critical set C is finite, there exists
n such that C N X C Up_, P*(c). Let By = Up_, P*(c) N X and B; =
(P"i(c) — Z_:lo By) N X for i = 1,2,.... Then Bit1 C Uyep, Pl(y). If
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i’ > 0 and y € By, then #P'(y) = 1 from (1) of Proposition 1.22. Thus
#DBiry1 < #Bis. Let ig be the integer such that x € B;,, and let i = max{1,4p}.
For y € By, there exists m > 0 such that P™(y) C |J;2, B;. This implies that
B; is empty for some large j. Consequently, X = J;~, B; = UZ;& B; is a finite
set. ]

Lemma 2.7.  Let ¢ be a critical point, and let {x} U {a1,aa,...} be an

(oo}
infinite subset of |J P¥(c). If they satisfies the following:
k=1

(2.1) There exist words Vi, Va, ... such that Fy,(x) = Fy,(a;) = ¢ for each i,

then C U {z} contains a cluster point of P.

Proof. By Lemma 2.6, X = {y|y = Fy(z),c = Fy(y) for some V,U €
Wi, } is a finite set. The lengths of V; are not bounded, since P¥(c) is finite
set for any k. Hence for any integer [ > 0, there exist an infinite subset
A; C {a1,az,...} and a word W(l) of length I such that A4g D A1 D A D ...
and that W(l) is a successor of V; if a; € A;. Moreover we can assume that
if a; € A; and if W is a successor of W(l), then Fy(a;) ¢ X. Indeed, it is
sufficient that we take A; — U;ZO Uyex P*k(y) instead of A;.

Note that if a; € A; and if W is a successor of W (l), then Fy (a;) € P
and Fy (z) € X. Let us denote, by Y, the set of points y € X satisfying the
following condition: There exist a sequence of integers [(1) < [(2) < --- and a
sequence of words Uy, Us, ... such that

e Uy is a successor of W (I(k)) for every k,
o y = Fy, (x) for every k,
o |Uy| — o0 as k — oc.

Then y € Y is a cluster point of P. Indeed, let a;y) € Ay for k =1,2,....
Then
Fy, (aig)) € K(Ux) C Ly, (y)-

Since Fy, (a;)) does not belong to X, the point y is a cluster point of
{Fu. (@)} C P.

We will prove that either x € Y or Y NC # (). Suppose Y NC = (). We
use the notation x(l,t) = Fyew ) (x) for each  and 0 <t < 1. If {z(l,t) |t =
0,1,...,1}NC # 0, we define

p(l) = min{t| z(l,t) is a critical point },

and set p(l) = [ + 1 otherwise. Then p(I) (I = 0,1,...) are unbounded. In-
deed, otherwise, |oP) (W (1))| = I — p(l) are unbounded, and so we can choose
1(1) <1(2) < ... and Uy, = o?F)(W(I(k))) to satisfy the above condition for
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some critical point, which have to belong to Y. Thus p(l) (I =0,1,...) are un-
bounded. Note that x(l,t) is contained in X — C for t = 0,1,...,p(l) — 1.
If p(l) > #(X — C), there exist s(1),s(2) € {0,1,...,p(I) — 1} such that
s(1) < s(2) and x(I,s(1)) = =(l,s(2)) = 2. Since z is not a critical point,
we have #P'(z) = 1. Thus

z(l,s()+ 1) ==x(,s(2) +1).
We can also see that

z(l,s(1) +m) = z(l,s(2) + m)
form=1,2,...,p(l) — 1 — s(2). Consequently,

w(l,p(l) = s(2) +s(1) = 1) = z(l,p(1) = 1).

Moreover, if p(l) <, then

a(l,p(l) — 5(2) + s(1)) = (L, p(1)-

This is a contradiction; because x(I, p(l)) is a critical point by definition, but
p(1)—s(2)+s(1) < p(l). Hence p(l) = I+1, and then every z(l, ) is not a critical
point. Therefore we conclude that (x(l,1),z(l,1 —1),...,2(1,0)) is a periodic
sequence containing x. Thus there exists ¢(I) such that 0 < t(I) < #(X — C)
and Fy,(z) = x(1,t(1)) = z, where U; = o*™ (W (1)). Since |U;| — 0o as | — oo,
we have z € Y. O

Lemma 2.8. Let x be a point in K, and let y1,ys2,... be a sequence
in P. Suppose there exists a word U; € W, for each i = 1,2,... such that
Fy.(x), Fv,(y;) € K(V;U;) for some word V; and |U;| — oo asi — oo. Moreover
we suppose that for each i there exists a successor Wy of V; such that Fw, (y;) €
C. Then either of the following properties is satisfied.

o Fy.(z) = Fvy,(y;) for some i.

o CU{x} contains a cluster point of P.

Proof. Choose a; € Fy,”'(Fy,(x)) N K(U;) and b; € Fy,”*(Fy, (y:)) N
K(U;) for each i. There exist a successor V" of V; such that Fy.(b;) € C.
Indeed, if b; = y;, then take V" = W,. If b; # y;, then there exists V; such
that qull(bl) = FV/’ (yz) and Fg(‘/;//)(bi) 7& Fg(‘/;u)(yi). Thus b; € P. Without

loss of generality, we can assume that (1;2, ;2 ; K(U;) consists of only one
point, say z. Note that lim; .. a; = lim; ., b; = z.

To prove the lemma we divide the situation into several cases.
(A) Suppose x = z. If {b;}; is an infinite set, then x is a cluster point of P. If
{b;}: is finite, then b; = z and hence Fy,(z) = Fy, (y;) for large 1.
(B) Suppose x # z. Then = # a; for large i. Hence there exists a successor
V/ of V; such that Fy/(z) = Fy/(a;) € C for large i. Since #C < oo, we may
assume Iy (r) = Fy(a;) = c for each large 7 without loss of generality.
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(B-1) If {a;}; is an infinite set, then {x} U {a;}; satisfies (2.1).
(B-II) Suppose that {a;}; is a finite set. Then a; = z for large i. Note that
lim; o0 FV,i/(bi) = lim; o0 Fyy (z) = ¢ by Lemma 2.5. We have four cases:

(1) {bz}z is finite.
(2) {b;}; is infinite.

(a) The length of V;” is bigger than that of V/ for infinitely many i.
(i) {Fv;(b;)}i is infinite.
(b) The length of V" is bigger than that of V for at most finitely many
1.
(1 {b; }z is a finite set, then b; = z for large i. Thus Fy,(y;) = Fy,(b;) =

If
Fy,(2) = Fy,(2).
(2) We assume that {b;}; is infinite. We may assume that Fy.(b;) = ¢’ for each
1

(2-a) If the length of V" is bigger than that of V/ for infinitely many ¢, then
Vi is a successor of V/, and Fy.(b;) € P for such i.

(2-a-1) If Fy,(b;) = c for large i, then Fy/(z) = Fy/(b;). Thus {z} U {b;};
satisfies (2.1).

(2-a-ii) In the case where {Fy,(b;)}; is a infinite set, ¢ is a cluster point of
P.

(2-b) Suppose that the length of V" is bigger than that of V/ for at most
finitely many i. Then Fy o Fyn(z) = c for large i, where V"' V” = V/. Thus
Fyr(z) € X ={ala = Fy(2),c¢ = Fy(a) for some V,U € W,}. On the other
hand, from Lemma 2.5, we have lim; oo Fy(2) = lim; oo Fy,/(b;) = ¢/. Since
X is finite, Fy(z) = ¢ for large i. Consequently, Fyr(b;) = Fvlm o Fyu(b;) =
FViW (C/) = FViW o FVI//( ) = c. Thus {JJ} @] {b } satlsﬁes (2.1). ]

Definition 2.9. e Let z,y be two points in K. There exists the maxi-
mal integer ¢t = t(x,y) such that x,y € K(U) for some U € W,. Such a word
U is called a bridge between = and y.

o Let W € W, be a word, and let a,b € K be distinct points. We say (W, a, b)
is a p-mesh if a € Fy(C) and there exists a word W’ such that W < W' and
b € Fy.(C)N K(W). The number p is called the depth of the mesh.

e Let W be a word, and let a,b € K be distinct points. We say (W,a,b) is a
p-block if |[W| > p and a,b € K(W)NC(p).

Proposition 2.10.  Let (W,a1,a2) be a p-block. Then there exists a
word W1 such that W < Wy, |Wi| < p and either (W1, a1,a2) or (Wi, a9, a1)
is a |Wi|-mesh.

Proof. Let (W, ay,as) be a p-block. Note that a1,a2 € K(W). Let p; <p
be the smallest integer such that a; € C(p;) (i = 1,2). Say p; > p2. There
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uniquely exist critical points x; € PPi(a;) and words W; € W, such that
Fw,(x;) = a; (i = 1,2). By (3) of Proposition 1.22, 7= 1(a;) = mw, 7 (z4).
Since Ty, 71 (x;) N X(W) # 0, we have W < W,. Consequently, W; < Ws.
Since ag € K(W) C K(W1), we conclude that (W1,a1,az) is a p;-mesh. O

Lemma 2.11.  Let a,b € K. Let U be a bridge between a and b. If
(Uy,Us,...,U) is a chain between a and b with | > 2, then there exists 1 < j <
I —1 such that K(U;) N K(Uj1) C C(|U| +1).

Proof. We write p = |U| 4+ 1. Since K(U;) N K(U;11) € C(min(|Uj,
|Uj+11)), the assertion is true in the case where |U;| < p for some j. We
assume |U;| > p for any j. Let V = [Ui]p, and let ¢ > 1 be the smallest
integer such that V' = [Uy], # V, which is well-defined because |U| < p. Hence
KUi_)) NK(U) c K(V)NK(V") c C(p). O

2.2. Proof
Now we start the proof of Theorem 2.4. The proof consists of several steps.

Proof of Theorem 2.4. Suppose that (K,{F;}¥ ) is non-recurrent and
finitely ramified .

Step 1: In this step we show the following lemma, and then obtain a corollary.

Lemma 2.12.  There exists an integer ny such that |W| < p 4+ ny for
any p and any p-block (W, a,b).

Proof. Let (W,a,b) be a p-mesh. Let us denote, by k = k(W,a,b), the
greatest number such that there exists a word U € W), with a,b € K(U) and
U < W. We first show that k — p are bounded. Otherwise, for each i =1,2, ...
there exist a mesh (W;, a;,b;) of depth p; such that

k(W;,a;,b;) —p; — 00 as i — oo.

Set k; = k(W;,a;,b;). Then there exists a word U; < W; such that |U;| = k;
and a;,b; € K(Ul)

Since (W;, a;, b;) is a p;-mesh, we have points z; and y; which satisfy z;, y; €
C, Fw,(z;) = a, FW/(y;) = b;, where W; < W/. Let us take a point y; such
that y; € F‘;,},(y;), where W; = W/W/'. Since C is finite, we can assume z; =

for each i. The word U; = o?i(U;) has length k; —p;. Thus |[~]z| — 00 as ¢ — 00.
The points a; = Fy, (x),b; = Fw,(y;) are contained in K(U;) = Fy, (K (U;)).
Moreover, Fy(y;) = y; € C. Consequently, the point z and the sequence
Y1, Y2, ... together satisfy the condition of Lemma 2.8. Since the topological
self-similar system is non-recurrent, we have Fyy, (x) = Fw, (y;) for some i. But
this is impossible, because a; # b;. Thus we have proved that k(W, a,b) — p are
bounded by some integer n;.
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Let (W,a,b) be a p-block. From Proposition 2.10, there exists W such
that W < Wy, [Wq| < p and (W1, a,b) is a [Wq|-mesh. Since a,b € K(W), we
have |W|—|W1| < k(W1,a,b) — |[W1| <mny. Thus [W| < |Wi|4+n1 <p+mny. O

In particular, we immediately obtain the following.

Corollary 2.13.  Let a,b € C(p), and let U be a word such that a,b €
K(U). Then |U| <p+ ny.

Proof. It |U| > p+ n1, then (U, a,b) is a p-block. O

Step 2: We set v = 271/ (141 Our goal is to show that D = D4 ... a)
is a distance on K. We will show that D(a,b) > a?™t if a,b € C(p) and a # b
from Step 2 to Step 4. This completes the proof by Theorem 1.33.

Let a,b € C(p) with a # b. Let C = (Uy,Us,...,U;) be a chain between
a and b. It is sufficient to show that A(C) > aP*t™. Let us take agp = a €
K(Uy),a1 € K({U))NK(Us),...,a1—1 € K({U-1)NK(U;),a; = b € K(U;). We
can assume that ag, a1, . .., a; are disjoint. We take a chainC' = (U{,U,,...,U))
such that Ul is a bridge between a;_; and a;. Then A(C') < A(C). Let U
be a bridge between a and b. Then |U| < p + n;. We construct pre-chains
Co,C1,...,C, between a and b such that Co = (U) and C. = C’. The i-th
pre-chain is written as C; = (U{, U3, ...,U}). They are required to satisfy the
following properties.

e For each ¢+ = 0,1,...,r there exists a non-decreasing onto mapping h; :
{1,2,...,1} — {1,2,...,1;}. We denote h; '(§) = {s(5,5) + 1,s(4,5) +
2,...,8(¢,j+1)}. Then U]’f is a bridge between ag(; jy and ag(; j41)-

o Set
FE;, = {as(m—) ‘] =1,2,.. ,ll} U {al}.
Then Ey = {ao,al} CEiC---CE.= {ao,al,...,al}.

eLet 0<i<r—1,1<j <l ands(i,j) < jo < s(i,j+1). Then
Jo = s(i+1,5") for some 5’ € {1,2,...,l;11} if and only if a;, € C(|U}[+1).

First we set a trivial mapping ho : {1,2,...,1} — {1}. Each chain
C; = (UL UL, .. .,Ulil_) and each non-decreasing mapping h; : {1,2,...,{} —
{1,2,...,1;} are inductively determined as follows. Suppose F;, C;; and h; are
determined for ¢’ < 3.

(1) (Construction of E; 1) Every element of E; = {as;j)|j = 1,2,...,L;}U{ai}
is an element of Ej 1. If jo ¢ Ej, then jo € Eiyq if and only if aj, € C(|U}|+1),
where j is the integer such that 1 < j <; and s(i,j) < jo < s(4,5 + 1).

(2) (Construction of h;y1) Let ;41 = #E;+1 — 1. Then we set integers
s(t+1,1) < s(i 4+ 1,2) < --- < s(i + 1,l;41) such that E;pq — {ay} =

{@s(i41,1)5 Qs(i41,2)s - - 5 Qs(i+1,1,41) }- The mapping hiqq 2 {1,2,...,0} — {1,2,...

is defined by his1(j) = ' if s(i +1,5') < j < s(i+ 1,5 +1).

Jliv1}
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(3) (Construction of C; 1) We choose an arbitrary bridge between a(;+1,5) and
s(i+1,j4+1), Which we denote by sz_-s-l_

For j € {1,2,...,l;} we have the subchain C; ; = (U]’-/7 UJ/"+17 ...,UJ’-,,) of
C’, where j" = s(i, j)+1, j" = s(i, j+1). The chain C; ; is a chain between a,(; ;)
and a,(; j+1).- From Lemma 2.11, if j” —j" > 1, then there exists 1 < m < 5" —j"
such that a; 1m-1 € K(U}ry,,,—1) N K(Ujrqm) C C(|U;[+1). This implies that
E; is a proper subset of F;; if #F; <1+ 1. Therefore there exists an integer

r such that #E, = [+ 1, and then each U; is a bridge between a;_; and a;
for each j. Thus we have constructed a sequence of pre-chains Cy,Cy,...,C, as
required.

Step 3: Let 1 < j <land 0 <i < r—1. We write j; = hy(j) and
jo = hix1(j). We show

(2.) U5 < UE |+ + 1.
Lemma 2.14.  If s(i,51 + 1) — s(4,51) > 2, then

L
Ujo 1 < 1U3

Proof. As we have seen above, h;ll (j2) is a proper subset of h; '(ji).

Thus either As(it1,5) #+ Qs(i,j1) OF Qs(it1,55+1) 7é Qs (i,514+1) Say As(i+1,52) #
as(i,jy)- Then the point a1 j,) belongs to C(|Us, |+ 1) but it does not belong

to C(|U !+ 1). Thus [U-| < U |. O
Lemma 2.15.  If s(i,j1 + 1) — s(i,j1) > 2, then both of the point
s(it1,js) WA Qg(iq1j,+1) Delong to C(|UZ | +1).

Proof. Let ¢’ be the minimal integer such that s(i 4+ 1, j2) = s(¢/,j’) for
some j'. Then as(iy1.5,) € C(|U} _/__ll(j)| + 1). Thus by Lemma 2.14, we obtain

ag(it1,5) € CU, 71 ()| +1) € C(IU, | +1) € --- C C(IU}, | +1).
Similarly, as(i+1’j2+1) S C(‘U;J + 1) D

Proof of (2.2). If s(i, j1 +1) — s(i, j1) = 1, then U} and Uj, are bridges
between the same two points, and hence |U;2+1| = |U},|. Suppose (4, j1 + 1) —
s(i,51) > 2. By Lemma 2.15, U;jl is a bridge of two points in C(|U] | + 1).
Therefore we obtain U] < |Uf |+ ny + 1 from Corollary 2.13. O

Step 4: We will show
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foralli=0,1,...,7. Since A(Cy) = A(U) > aP*t™ it is sufficient to show that
AG) < A(Cisr)

for i =0,1,...,7 — 1. This inequality is reduced to

J2
AU < AU,

J'=j1

where ji = hit1(s(4,5) + 1), jo = hiya(s(i, 5 + 1)). If s(i, 5 + 1) — s(i,j) = 1,
then j; = ja, and so |U}| = |U;-1"’1 I s(i,j+1) —s(i,5) > 2, then j; < ja. By
(2.2),

J2 ) i )
STAULT) = AU + AU = 2200 = oIV = A)).

J'=7

This completes the proof of Theorem 2.4. O

When we consider only the case where all F; are injective, the proof is
notably shortened. Almost all the lemmas are unnecessary. In fact, the integer
ny which is obtained in Step 1 is found to be

m =min{n| for all c€ C,L,(c)N(PUC —{c}) =0} — 1.

Indeed, let (W, a,b) be a p-mesh. Then z = Fy'(a) € C and y = Fy,' (b) €
PUC. Since Fyy is injective, the points z and y are distinct. Recall the integer
k = k(W,a,b) which is defined in Step 1. Namely, there exists W’ € Wj such
that W/ < W and a,b € K(W'). Then o?(W’) is a word of length k — p such
that z,y € K(c?(W')). Hence k —p < m.

Consider the self-similar systems of Example 1.8-(2) and (6) again. They
are non-recurrent finitely ramified self-similar systems. For the self-similar
system of (2), we can take the integer n; to be equal to one. For the self-
similar system of (6), we can take the integer n; to be equal to two. By the
estimate in our proof above, we have o = 271/2 and a = 271/3 respectively.
They are far from the critical ratios. In Figure 3, the ratios (o, ) are shown
by black dots.

3. Critical Polyratios

In the previous section we have found a metric polyratio for non-recurrent
cases. That estimate is, however, far from critical polyratios. The aim of this
section is finding exact critical polyratios.

The standard pseudodistance D is determined from G, (x,y), the set of
chains of depth at most n, as

Dix.y)= lm  min A()
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That is not true for én(a,‘, y), the set of chains of depth n; in general,

lim min A(C)
n—=0 CeGy(x,y)
can not form a pseudodistance. In this section, however, we mainly consider
Gn(x,y) instead of G, (x,y). In fact, the set G, (x,y) is so complicated. On
the other hand, G’n(x, y) is related to the lap number, which is familiar to us.
We imagine that the ‘asymptotic behavior’ of én(x,y) is the same as
that of G,(x,y), and hence that it defines the critical polyratio. As for a
finitely ramified topological self-similar system, for a given simple path v be-
tween two points, a chain C) = (U, Us, ..., U)) of depth n between the points is
uniquely determined such that each K (U;) N+~ includes an arc. We expect that
if Y72, A(C}) = oo for any simple path v between z and y, then D(z,y) > 0.
If it is established, then we think of Y ;- ; A(C}) as a power series of variables
Q1,Qo,...,ay, proving its polyradius of convergence to be a critical amount.
In this section we put a restriction. We will assume that (K, {F;}}¥ ) is
a finitely ramified topological self-similar system which satisfies the following
condition:

CONDITION A

(1) Each component of K is simply connected.

(2) There exists a minimal trees T, Ts,...T,, C K which satisfy the follow-
ing: For any simple path v in K there exist T}, and a positive integer p,n
such that T3, < P~ 7%(y), where 7/(5) is the i-the image of ~, which
we will define later.

In Subsection 3.2 we will introduce the notion of invariant trees in K. If
T is an invariant tree, then a (piecewise-continuous) dynamics is defined on
T. A minimal tree is defined as an invariant trees in K that satisfies a certain
condition like topological transitivity.

We will introduce a power series v(T)(X1, Xa,...,Xn) of N variables for
a tree T' C K. For given two points z,y in a component of K there uniquely
exists a simple path + between x and y. Then we will see the power series
v(z,y) = v(7y) satisfies v, (x,y) (a1, g, ..., an) = A(C)), where v, (z,y) is the
homogeneous part of degree n. We say (€1,€2,...,en) (€x’s are non-negative)
is a polyradius of convergence of v(x,y) if the radius of convergence of the
1-variable power series v(z,y)(e1t,eat,...,ent) is equal to one.

Then it is easily seen that the polyradius of convergence of v(T) gives a
lower estimate of critical polyratios (Lemma 3.14). Moreover,

Theorem 3.1.  Let (K,{F;}Y,) be a finitely ramified topological self-
similar system satisfying Condition A. If (a1, s, ...,an) is a polyradius of
convergence of v(x,y) for any two points x,y in a component of K, then
(a1, e, ...,an) is a critical polyratio.

To prove this, we use the kneading determinant for a dynamics on a topo-
logical tree. The kneading determinants is a holomorphic function on the unit
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polydisc

D= {(X1,Xy,...,Xy) € CV||Xi| < 1,i=1,2,...,N}
with a zero point which equals a critical polyratio. That is a simple general-
ization of Milnor-Thurston’s theory.

Precise formulations will be given in Subsection 3.2. Here we only give an
example in advance as a guideline of discussion.

Example 3.2.  Consider the self-similar system (K,{Fi,Fs}) of Ex-
ample 1.8-(2). We have the piecewise-continuous dynamics f = (f1, f2) on
K = [0, 1], which is the pair of continuous maps

{ filz) =2z on [0,1/2],
fo(z) =2z —1 on[1/2,1].

We see that fi = F; ! and fo = . Let v C K be a subinterval not a point.
Then the n-th image of v is deﬁned by
foly) =

[t = fl(f" ) U L")

Then it is easy to see that K is minimal, that is, for any subinterval v not a
point, there exists n such that f?(y) = K. In other words, for any ~ there
exists U € W, such that K(U) C 7.

The power series v(z,y)(X1, X2) of two variables X7, X5 is defined as fol-
lows. Let z,y € K = [0,1] with < y. Consider the interval [z, y] between z
and y. We set

vn(2,9)(X1, X2) = Y Xuy Xuy - X,

ULU2... Un

where ujus . . . u, runs through all words in W, such that [z, y]N K (uius ... up)
contains more than one points. Note that the set of such words forms a chain
C,, of depth n. We set

’U(ZE, y)(leXQ) = Z ’Un($, y)(XhX?)'

n=0
If x =0 and y =1, then
(0, )(X1, X2) = > Xuy Xy o X, = (X1 + Xo)"
ULUD... Uy EWp
Thus
= 1
— n __
0(0,1)(X1, Xp) = > (X7 + Xo)" = TR o o

n=0
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Consequently, the series is convergent on {(X1, X2)| |1 — X7 — Xo| < 1}; it is
not convergent if X; + Xo = 1.

Suppose = k27" and y = (k+1)27", where n, k are nonnegative integers
such that 0 < k < 2™ — 1. Then it is easily seen that

v(z, ) (X1, X2) = Y Xy +Xp Y (X1 +Xy)"
VAU,U=V n=0
Xu
= X —_—
>, Xviio X — Xy

VAU,U<V

where K(U) = [z,y] and Xoyuy..u, = Xy Xup * - Xu,, - Thus v(z, y) (X1, Xa) is
convergent on {(X1, X2) | |[1—X1—X2| < 1}; it is not convergent if X1+ Xo = 1.
That is true for any z,y € K; because [z, y] is included in an interval of the form
[k27", (k+1)27"], and also it includes such an interval. In fact, v(x, y)(X1, X2)
is written in the form

ZU Xy

v(zr,y) (X1, Xo) = Z Xv+my

Vilz,y|CK(V)

where U runs through all words satisfying the properties that K(U) C [z,y]
and that if U < V then K(V) ¢ [z,y]. From the minimality of K, we
see that >, Xy does not vanish. It is clear that ), Xy is convergent if
|X1] < 1 and |X3| < 1. For this reason, we consider H(z,y)(X1,Xs2) =
(1-X1—X2)v(x,y)(X1, X2) as an analytic function on D = {(X1, X5) | |X1] <
1,]X2| < 1}. Note that

v(Fi(z), Fi(y)) (X1, X2) = 1 + Xv(z, y) (X1, X2)
for ¢ = 1,2, and hence
(31) H(FZ(CE),FZ(y))(Xl,XQ) =1- X1 - X2 + XZH(il',y)(Xl,Xg)

For a polyratio (aq,as), we can see v, (z,y)(a1,a2) = A(Cy). If the se-
ries v(z,y)(a1, ag) is convergent, then v, (z,y)(a1,a2) — 0 as n — oo, and
so D(ay,a9)(x,y) = 0. Conversely, if v(x,y)(a1, @) is not convergent, then
(a1, ap) is a metric polyratio. Although this have been proved in Example 1.16,
we give another proof. Indeed, suppose a; + ag = 1. Consider the function

d(z,y) = lim LYt azt)

=H
t—1— ’U(O, 1)(0[1t, Oégt) (-737 y)(ah 042)7

which takes a positive value for x # y. The function d is a distance on K
compatible with the topology of [0, 1] because of the fact that if z; < xo9 < x3
in K, then d(z1,z3) < d(x1,z2) + d(x2, x3), the fact that if 1 < zo < x5 < 24,
then d(z2, z3) < d(z1,x4), and the fact that d(k27", (k+1)27") = A(U), where
U is the word satisfying K(U) = [k27", (k + 1)27"]. By (3.1), we can see that
d is a self-similar metric with polyratio (o, az).
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3.1. Preliminaries — dynamics of self-similar system

If a topological self-similar system (K, {F;}Y ;) satisfies

for any z € K, then there exists a continuous map g : K — K such that F;
(i=1,2,...,N) are the inverse branches of g, namely, the diagram

ﬂ lw
K T K

commutes. Then we consider (g, K) as the dynamics of (K, {F;}¥ ).
The set

N
C={#JF'@>11cC
=1

is, however, not always empty. In general, the continuous map g is defined only
on K — C'. For example, recall Example 3.2. Only the point 1/2 € K satisfies
# Ufil F71(1/2) > 1. We have a continuous map g : K — {1/2} — K which is
defined by

2x ifo<z<1/2
g(x):{ 201 if1/2<z<1

If the dynamics is extended on the whole space K, then ambiguity appears
at 1/2. When we consider 1/2 as a member of [0,1/2], the value of g(1/2)
is one; when we consider 1/2 as a member of [1/2,1], the value of ¢(1/2) is
zero. To avoid the ambiguity, we write g(1/27) = 1, the left-hand limit, and
g(1/2%) = 0, the right-hand limit.

In general, the left(right)-hand limit at a discontinuity point € C” is not
well-defined, since there is no natural linear order on K. Thus we consider a
point = in K together with a simple path 7 : [0,1] — K which passes through
z. We will examine a dynamics working on the set of ordered pairs (z,7).

Let (K, {F;}}Y) be a finitely ramified topological self-similar system. Let
~ be a simple path, and a a point in 7. By the symbol ~, we may denote not
only the mapping [0,1] — K but also the image of the mapping. (For example,
we write a € 7 instead of a € ([0, 1]).) Considering the topological self-similar
system (K, {F;}Y ;) as a complex of dynamics on paths, we can treat it as some
kind of interval dynamics.

Remark 3.3. Precisely, we consider equivalent classes of paths. We
identify « with +/, say v ~ 4/, if vy o h = 4’ for some orientation-preserving
homeomorphism 4 : [0, 1] — [0, 1].
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Notation 3.4. The set of simple paths in K is denoted by
Qo = {v:10,1] — K|~ is injective and continuous}.

We set
E'O:{(a,’Y)€KXQ0|’Y€Q(J;G'€PY}'

Usually, an element of =y will be referred by a symbol &.
In this section we will define many functions with argument (a*, ), where
* is +, — or empty. If &€ = (a,7), the argument is written as £*.

Definition 3.5. Let v € Qg be a simple path. We say a € 7 is a turning
point of 7 if for any € > 0 there is no i € {1,2,..., N} such that y([y~!(a) —
6,7 (a) + ¢]) C K (i), in other words, if v N K (i) is not a neighborhood of a
in v for any symbol i. We say a is k-turning point of v if for some ¢ > 0 there
is U € Wy, such that y([y~!(a) — e,77'(a) + €]) € K(U), but if for any € > 0
there is no U € Wy, 41 such that v([y"1(a) —e,71(a) +€]) € K(U). A turning
point is a O-turning point. We denote, by Turg(vy) C -, the set of k-turning
points of 4. For convenience, we set Tur_;(y) = (). We say that (a,v) € Ey is
a k-turning point if a is a k-turning point of ~.

A turning point of v is a critical point. Since the critical set is finite, even
if a € 7 is a turning point there exist e > 0 and 4,5 € {1,2,..., N} such that
Y([ta — € ta]) € K(3) and v([tq,tq + €]) C K(j), where y(t,) = a. We use the
notation

Y(aiv’}/) = Y(é.i) =1, Y(a+77) = Y(§+) =7
where £ = (a,7). If € is not a turning point, then Y (£7) = Y(£1), so it is
denoted by Y (&) = Y(a,v). We call Y(¢%) the address of £*.

Since the critical set is finite, #F,} . (a) = 1 except for finitely many a.

Thus )
gla™,y) =9(&7) = lim F7'(v(ta —€))
glat,7) =g(6") = lim F7 ' (y(ta+¢))

are well-defined, where y(t,) = a and y(t,—¢) € K(3), v(to+€) € K(j) for small
e. We simply write g(&) if g(¢7) = g(¢1). The point g(a™,7) is considered as
the image of a® by the ‘map’ g(-, 7).

Definition 3.6. We say a € 7y is an essential critical point of ~, that is
to say & = (a,y) is an essential critical point, if either £ is a turning point or
g(€7) # g(€1). Tt is clear that an essential critical point is a critical point and
that a turning point is an essential critical point. Then the number of essential
critical points of v is clearly finite.

Remark 3.7. If Cy = Ufil{x € K|#F '(x) > 2} is empty, then
(a,7) is a turning point if and only if (a,~) is an essential critical point.

The essential critical points of « divide the path -~y into finite sub-paths on
which we can define a continuous map g. Precisely speaking, the unit interval
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[0,1] is divided to subintervals I = I} U Iy U--- U I;, where I = [ty—1,tk]
(k=1,2,...,1),t0 =0, t;, = 1 and where y(tx) (k =1,2,...,1—1) are essential
critical points. Then for any k = 1,2,...,1 there exists iy, € {1,2,..., N} such
that v(Ix) C K(iy). Moreover, g(v(t)~,7) = g(y(t)*,~) for any ¢ € intly.
Consequently, a continuous map gi : y(Ix) — K is defined as gi(a) = g(a,7).
We use the notation

i(a,7) =i(a*,y) =1, if a €intly
and

i(y(tk—1)",7) = 1(v(tk) 7, 7) = L

For a € v, we take hj(,+ ), an orientation-preserving homeomorphism of
[0,1] onto i(a®,~). Then we obtain a simple path
1(a*,7) = g0y 0hit ) [0,1] — K.

Notation 3.8. For £ = (a,7), we define

n°(65) =7, ¢°(€5) = a, p°(6F) = ¢ L(€F) =~([0,1]),

and we inductively define for k = 1,2,...

nt(EE) = pphl(EH)H),
i) = guFiEn)E),
prEEE) = (g(EE) R (Eh)),
L(¢) = Fyes@oa(pr(€H)h),
Vi1(€%) = Y(prl(¢h)).

For £k =0,1,..., we write

Vi(€F) = Yo(§5W(65) .. Yi(EF) € Wiyt
If k= —1, we set
V-1(£5) =0 € Wo.
If T,(67) = T (€T), Vi(€7) = Ve(€T), ete, then we also use the notation
I (&), Tr—1 (&), etc, respectively.
By definition,

L (€F) = Fy e (n(€5)([0,1])) = v(i(£F)) € 7([0,1]) = To(¢¥).
If £ >0, then
L(€F) = Fy, e To(u"(€5)™))
and
L1 (€5) = Py, ey (T (1" (€5)%)).
Thus
L") DL(EF) D .
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By definition we know that {I;(a,~) | a € v} is a decomposition of Iy(§) =
~([0,1]) into subarcs by essential critical points. Thus {Ix(a,v)|a € v} is also
a decomposition of ([0, 1]). It is evident that if & = (a,7),

a €I (65) C K(Vi_1(£%))

Clearly,
(3.2) nFrT(EE) = nF (™ (EF)F),
(3.3) gFTm(ER) = gF (W™ (€)F),
(3.4) Yirm (65) = Y (u™(€5)F),
and
(3.5) Vierm (€5) = Vil€5) Vi1 (11 (€5)5).

The following is clear.

Proposition 3.9. (1) Let £ € Zp. The point £ is a k-turning point if
and only if
Vi—1(€7) = Ve—1(€F), Ve(€7) # Vu(€7).

The point £ is an essential critical point if and only if
L) #Li(EF).
(2) For a,beyand k =1,2,...
Ii(a*,7) = Li(0°,7) = Lr—1(a”, ) = L—1(b%,7),
Vi-1(a*,7) = Ve-1(6%,7), 0" (a*,7) = n*(0°, ),

where x,¢ € {—,+}. Moreover, if a = b, we see that if Iy(a™,v) = Ix(a™,7),
then g*(a™,7) = g*(a™,).

Notation 3.10. If a is a k-turning point, then by Proposition 3.9 we
can take the minimal integer 0 < s < k such that Iy, q(a™,7) # Isii(a™, 7).
Then g®(a,y) is an essential critical point of n*(a,~y). We write

s(a,y) = s.
We set
Bi(v) = A{ala€Upy_oTurm(y),k = s(a,v)}
= {aev|L(a™,y) =Te(a",7), Ies1(a™,7) # Leya(a™, 7))}

fork=0,1,.... Then Bi(v) is a finite set, since By (y) C C(k) = U,yy<x Fu (C).
In fact, Ufn:O B, (7) U{v(0),~(1)} is the set of endpoints of arcs in the form
Iit1(a, 7).
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Remark 3.11.  If C5 is empty, then s(a,~) = k for any k-turning point
(a,7). Thus By(7) is the set of k-turning points of +.

Example 3.12.  Consider the self-similar system (K, {F1, F>}) of Ex-
ample 1.8-(3). Let 7 : [0,1] — K be the simple path v(t) = ¢ between 0 and 1.
Note that ([0, 1]) = [0,1] = K. The critical set C' = {1/2} is equal to the set
of turning points of v and equal to the set of essential critical points of «y. The
interval v is divided into two subintervals: v = [0,1/2]U[1/2,1] = K(1)UK(2).
It is easy to see that

(@)= “20+1 Hac(o1/2
KL= 2a—1  ifac(/2,1] °

and
1 ifa€l0,1/2)ora=1/2"
Y(a,’Y){ 2 ifae(l/Q,l] 0r1:1/2+
Since
. [0,1/2] ifa€0,1/2) ora=1/2"
l(a’v){ [1/2,1] ifac(1/2,1] or 1 =1/2+ °

taking homeomorphisms hjg 1/9)(t) = t/2 and hpy211(t) = (t + 1)/2, we have

—t+1 ifael0,1/2)ora=1/2"
”(a”)(t){ t ifaeEl/Q/,l)} 0ra:1?2+

In the same way, we see that

. [ —t+1 ifnisodd
0" (a,7)(t) = { ¢ if n is even

where n = #{0 <1<k —1|Y(a,v) = 1}.

3.2. Main results

Let (K,{F;}Y)) be a finitely ramified self-similar set such that every com-
ponent of K is simply connected. Let x,y be points in a component of K.
From Corollaries A.2 and A.5 there uniquely exists a simple path v, , be-
tween x and y. The set of at most n — 1-turning points of v, ,, denoted by
Ur —o Tury,—1(7a,y), divides the path v, ,, into subpaths Ly, Lo, ..., L;. We can
define a set

‘C(Vﬂc,ya n) = {(Lla Ul)r (LQ’ U2)7 R (Lla Ul)}y

where (U1, Us, ..., U;) is a chain between « and y, Uy € Wi, L, C Yoy VK (Ug),
and {Ly}x is a set of simple arcs, satisfying J, Lr = 7z,y, which are mutually
disjoint but one point. Using that, we define a homogeneous polynomial

l
on (7, 9)(X1, Xa,.., Xn) =Y X,
=1
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where Xo uy.u, = Xuy Xuy -+ X, . Note that vo(z,y)(X1, X2,...,Xn) = L.
Now we define a formal power series

oo
U(Iay)(XhXQa' .- 7XN) = Z’Uk(xvy)(XlaXQV' 7XN)
k=0

Definition 3.13. A set T is called a topological tree if T is homeomor-
phic to a 1-dimensional simplicial complex each component of which is simply
connected.

We also define a formal power series v for a topological tree T in K. A topo-
logical tree T'is divided into subtrees Ly, Lo, ..., Ly by U _, U’yCT Tur,,—1(7).
We write

E(T, n) = {(Ll, Ul), (LQ, Ug), ey (Ll, UZ)},

where Uy € W, L, C K(Ux) NT, and {Ly}x is a set of connected topological
trees, satisfying |J, Ly = T, which are mutually disjoint but one point. Then
we set

l
Un(T)(X17X27"'7XN) = ZXU”
igol
U(T)(XlaX2a"'aXN) = ka(xay)(XhXQa"'aXN)'
k=0

The following lemma is easy.

Lemma 3.14.  Let (K,{F;}Y,) be a finitely ramified topological self-
similar system such that every component of K is simply connected. Let o =
(a1,a9,...,an) € Ray be a polyratio such that the power series v(x,y)(«)
converges for some x £y € K. Then the standard pseudodistance D, is not a
distance.

Proof. Since v(z,y)(a) converges, Dy (z,y) < vp(z,y)(a) — 0 as n —
Q. o

Thus, if the pseudodistance D, is a distance, then v(z,y)(«) is not con-
vergent for any x,y. Our main theorem is the converse.

Notation 3.15. Let (K, {F;}Y ) be a finitely ramified topological self-
similar system. For a simple path v in K, we write

() = U n"(a7) = {d" (", 7) |aer,t =~ +}
acy
for k=1,2,... If T is a topological tree, we use the notation
" (T) = U 7" (7)
~v: simple path in T

fork=1,2,....
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Definition 3.16. A topological tree T in the topological self-similar
set K is called an invariant tree if n*(y) C T for any simple path v in 7. An
invariant tree is said to be minimal if for any simple path v in 7', there exist p
and n such that J/ 7P~ ni(y) =T

Recall that the main theorem has been stated as follows.

CONDITION A
(1) Each component of K is simply connected.

(2) There exists a minimal trees 77,75, ...T,, C K which satisfy the follow-
ing: For any simple path v in K there exist T} and a positive integer p,n
such that T}, < U P~ i ().

Theorem 3.1. Let (K,{F;}Y,) be a finitely ramified topological self-
similar system satisfying Condition A. If « = (a1, e, ..., an) is a polyradius
of convergence of v(x,y) for any two points x,y in a component of K, then «
is a critical polyratio.

In more detail, we will prove:

Theorem 3.17.  Let (K,{F;}}V,) be a finitely ramified topological self-
similar system satisfying Condition A. Suppose that o = (a1, 2, ..., an) sat-
isfies the following. There exists a polyradius of convergence (o], ad, ... o)
of v(Tj) for each j =1,2,...,m such that ag < «; for any i and any j, where
T; is the minimal tree in Condition A. Then o is a metric polyratio.

Remark 3.18. One of sufficient conditions for a finitely ramified topo-
logical self-similar system to satisfy Condition A is the following. We say that
an invariant tree T is a Hubbard tree if the critical set C' and the pre-postcritical
set P are included in T'. If non-recurrent finitely ramified topological self-similar
system has a Hubbard tree, then it satisfies Condition A. This claim, which is
not proved in this paper, will be discussed in another paper of the author [9].
In particular, if the pre-postcritical set P of a finitely ramified topological self-
similar system is finite, then Condition A is fulfilled. All self-similar systems
in Example 1.8 satisfy Condition A.

Now let us start the proof of Theorem 3.17.

To construct a self-similar metric on K, we consider a distance on a mini-
mal tree as follows. Let T be a minimal tree in K, and let & = (o, g, ..., an)
be a polyradius of convergence of v(T"). We write X = (X1, Xo,..., Xn). We

will define (2. 9)(X)
. ULy
RN eI

for x,y in a component of T. In fact, in the next section we will prove the
following.
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Lemma 3.19.  Let T be a minimal tree in K, and let o = (aq, aa, .. .,
ay) be a polyradius of convergence of v(T). Then for any x # y in T, the
series v(x,y) () diverges, and the limit

_ v y)(at)
(3.6) d(z,y) = tlﬂnlni () (at)

exists, where at = (a1t, ast, ..., ant).
Note that if (3.6) converges for any z,y, then

T (at)
W= @ at)

converges for any subtree 77 C T. We continue the proof, assuming Lemma
3.19.

Proposition 3.20. Under the above assumption, we have
(1) Let Ty, Ty be subtrees of T. If Ty C Ts, then
d(Ty) < d(Ty).
In particular, d(T") < 1 for any subtree T' C T.
(2) Let Ty, Ty be subtrees of T' such that Ty NTy is at most one point. Then

d(T)) + d(Ty) = d(Ty UTy).

(3) Let T be a subtree of T. Then

miin a;d(n™(T")) < d(T").

Moreover, if T' C K (i) for some i € {1,2,...,N}, then

aid(n' (T")) = d(T")

Proof. (1) Let Ty and T be a subtree of T with 77 C T5. Then there
exists an integer ng > 0 such that if n > ny then L N7 is either connected
or empty for any (L,U) € L(T»,n). The mapping h, : L(T1,n) — L(Ts,n)
defined by h,(L',U’) = (L,U) it U = U’ and L' C L is well-defined, and it is
injective if n > ng. Consequently,

o (T1) (X1, X2, ..., XN) < 0p(T2) (X1, Xo, ..., XN)

for 0 < X; < 1if n > ng. Since 332 oe(Th)(at) < 3772 oe(To)(at)
for 0 <t <1, and since 327 vx(T)(at) — oo as t — 1—, we have d(T1) <
d(Ty). The second assertion is verified by d(T") = 1.
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(2) Suppose T3 NT5 is at most one point. Let r be the number of branches at
the intersection point a € Ty NT5, that is, S— {a} has r connected components,
where S a small connected neighborhood of @ in T'. Then there exists an integer
ng > 0 such that if n > ng then

(E(Tl,n) U L(Tg,n) U ,C(Tl U Tg,n)) — ((,C(Tl, n) U L(TQ,TL)) N E(Tl U Tg,n))

consists of at most 3r /2 members. Therefore the difference between v,, (T ) (at)+
v (To)(at) and v, (Th U T3)(at) is bounded by 3r(max; a;)"/2 for 0 < t < 1.
Since 0 < a; < 1, we have >37 . 3r(max; a;)"/2 is finite, and hence
d(Tl) + d(Tg) = d(T1 @] TQ)

(3) Let T’ be a subtree in T. If (L,U) € L(n*(T'),k), then there exist i €
{1,2,...,N} and (L', 7;(U)) € L(T",k + 1) such that L' C F;(L). Thus

miin ait v (N (T)) (at) < ve 1 (T') ()

for k =0,1,.... Consequently,
minaga (LI o(T)(at) — v (T")(at)
i () (at) T o(T)(at)

if a <t < 1. Since vo(7") is bounded, we have min; a;d(n*(1")) < d(T").

Moreover, suppose T C K (i) for some i € {1,2,...,N}. Then (L,U) €

L(n*(T"), k) if and only if (F;(L),7;(U)) € L(T",k + 1). Consequently,
Xivp(n' (T))(X) = viea (T7)(X)

for k =1,2,.... The last assertion can be proved similarly.

|

Proposition 3.21.  Under the above assumption, d(-,-) is a distance on
each component of T which is compatible with the topology of T .

Proof. 1t is clear that d(x,y) = d(y, ). In the case x = y, although we
have not defined d(x, x), it is natural and reasonable to set d(z,x) = 0.

Let x,y, z be points in a component of 7. Then v, , = Yoy — HUvyy,, — H,
where H = 7,4 Ny, Since v, — H N7y, . — H consists of at most one point,
we have

d(z, z) < d(z,y) + d(y, 2).

Assume that there exists « # y such that d(x,y) = 0. Since T is mini-
mal, there exists a positive integer p,n such that |77 9 (Yey) = T. From
Proposition 3.20,

n+p—1 n+p—1

dT) < 37 dir' () < 3 (minay) ™ d(y) = 0.

1=n
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This is a contradiction to the fact d(T) = 1. Therefore d(z,y) > 0 if = # y.

Let € T, and let {y1,ya,...} be a sequence in T such that d(z,y;) — 0
as k — oo. Then {yi} converges to z. Indeed, we can assume that there exists
a simple path v such that x is one of its endpoints and that {y1,y2,...} C 7.
If Yoy € Yoy, then d(z,ypx) < d(z,yx). Thus we can assume that v, ,, D
Yoy D +++. We conclude (7o Vzy, = {#} from the fact that d(z,y) > 0 if
T #y.

Let z € T, and let {y1,y2,...} be a sequence in T which converges to
. We will show that d(z,yx) — 0 as k — oo. We can assume that v;,, D
Voo O -+ and d(z,y1) > d(x,y2) > ---. Assume there exists a positive
number § such that d(z,y;) > 0 for every k. Let n be a positive integer such
that (max; ;)™ < d. Then there exists k such that v, ,, NC(n) = 0. From (3)
of Proposition 3.20, we have

(miaX az‘)”d(ﬁn(%%,yk)) > d(%c,yk) > 0.

Therefore
1 < (maxo;) "6 < d(n™(@,Va,y,)) < d(T) =1,

and this is a contradiction. O

To sum up, we have proved the following proposition. Let (K,{F;}Y ;)
be a finitely ramified topological self-similar system satisfying Condition A.
Let T (j = 1,2,...,m) be the minimal trees in Condition A. We denote, by
le,TjQ, . ,quj, the component of Tj. Let (af,ad,...,ad) be a polyradius of
convergence of v(T}).

Proposition 3.22.  There ewists a function d on J;_, Ui (17 < T7)
which is a distance on each T such that for any j, if two points x,y belong to T}

and if 7z, contains no essential critical point, then agd(g(x, Vo) 9, Vay)) =
d(x,y) for somei € {1,2,...,N}.

The next step is to show the following. Suppose that a polyratio @ =

(a1, q,...,ay) satisfies a] < «; for any i and any j.
Lemma 3.23.  There exists a positive integer 3 which satisfies the fol-
lowing:

(1) Let a,b € T} such that v, contains an essential critical point. If C =
(U1,Us,...,U,) is a chain between a and b such that K(U;—1)NK(U;)NT}] =0
fori=23,...,1, then min; |U;| < 5.

(2) Let a,b e T}. If C = (Uy,Us,...,Up) is a chain between a and b such that
KU )NKU)NTL =0 fori=2,3,...,1, and K(Uj—1)NK((U;)NC # 0 for
some i, then min, |U;| < 8.

Consequently, if two points a,b € T and a chain C satisfy either (1) or (2),
then d(a,b) < A(C)/(min; o;)”.
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Proof. Let
ng = max{n |for any a,b as (1), a,b € K(U) for some U € W, }.

If C is a chain as (1) such that [ > 2, then there exists ¢ such that K(U;—1) N
K(U;) N (C(ng + 1) —T}) # 0 by Lemma 2.11. Note that C(ng + 1) — T} is a
finite set. Therefore, if min; |U;| is not bounded, then using the same argument
as Proposition 1.29 we obtain a connected set X containing a,b and a point in
C(ng +1) — T}. This is a contradiction.

Suppose two points a,b € T} and a chain C satisfy either (1) or (2). Let
U; be a word such that |U;] < 3. Then d(a,b) < 1 < A(U;)/(min; a;)? <
A(C)/(min; a;)P. O

Proposition 3.24. « is a metric polyratio.

Proof. Let z # y € K. If x,y are contained in distinct connected com-
ponents, then D(z,y) > 0. Suppose that they are contained in the same
components and D(z,y) = 0. Then for any ¢ > 0, there exists a chain
C. = (Uf,Us,...,Uf) between z and y such that A(C.) < e. By the same

discussion as Proposition 1.29, we see that X = (N oo U. .. UZ':I K(Uf) is
connected. Thus v, , C X, and so D(a,b) = 0 for any two points a,b € 4.
By (2) of Condition A, the path 7, , includes a subpath ~ such that v € K(U)
and ¢g"(y) C T} for some n, some U € W,, and some j. Therefore it is easy to
see that there exists a’,y" € T} such that D(z’,y") = 0.

It suffices to show that D(z,y) > 0if x #y € T]. Let C = (U1, Us, ..., Us)
be a chain between = and y. We set

{iv i, .. i} = {i| K(Uima) N K (U) N T} # 03,

io = 0,44.41 = l. Choose z¢p = z,z; € K(U;) N K(Uj+1),2; = y such that
x; € T] if i € {iy,d,...,4t}. Let 0 < k < t. Then there exists n > 0 such
that intg’ ('yg;ik,wikﬂ) contains no essential critical point (j = 0,1,...,n — 1),
Pi(z)NC =0 (j=0,1,...,n—1,ix <i <iry1) and either intg” (Yo, i, ,, )
contains an essential critical point or P™(z;) N C # () for some iy < i < ip41.
Then there exists a word Vi, € W, such that U; < Vi (ix < i <igy1). Thus by
Proposition 3.22 and Lemma 3.23,

d(xik ) 'I:ik+1) < A(Vk)d(gn (xik » Vwiy iy )7 g" (xik+1 y Vaiy iy ))
Tk+1

<SAW) Y A(G”(Ui))/(mjinaj)ﬁ
i=ip+1

= Y A(U)/(miney)”.

imipt+1 J
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Therefore
t t Th41
0<da,y) <3 dwiswi) <3 Y AW/ (minay)? = AC)/(minay)”.
k=0 k=0 i=ip+1 J J
Hence A(C) > 0. O

To complete the proof of Theorem 3.17, we have to only show Lemma 3.19.
We consider the function
v(y)(at)

v(T)(at)

as a function of complex variable. Then it will be proved to be holomorphic.

The proof will be done by using kneading determinants. In [16], Milnor
and Thurston have introduced a holomorphic function of one variable, called a
kneading determinant, which is defined by the kneading sequence of an interval
dynamics. In our case we extend it as a function of several variables. Although
our kneading determinant is more complicated than the original one, the proof
is almost parallel to that of Milnor-Thurston. There is no essential difference.

An interval naturally has a linearly order, which makes the kneading theory
on the interval successful, but a tree is not so. Our new idea to settle the
difficulty is the following: Considering all subintervals in the tree, we can treat
the tree dynamics as a system of interval dynamics. On every interval of the
system a linearly order is independently defined.

Furthermore, we will prove

Theorem 3.25.  Let (K, {F;}}V,) be a finitely ramified topological self-
similar system satisfying Condition A. Let T1,T5,...,T,, be minimal trees
which satisfy Condition A. Then there exist analytic functions Aq, ,Ar,,. ..,
Az, on Ray = {(X1,X2,...,Xn) € RV|0 < X; < 1} such that the set
of metric polyratios is equal to the set of « = (a1, 9, ...,ay) € Ray which
satisfies the condition that for each i = 1,2,...,m there exists B(i) = (81(7),
B2(i), ..., 0n(9)) in Ran such that Bx(i) < ay (k=1,2,...,N) and Ar,(5(i))
=0.

3.3. Kneading determinants

Let (K,{F;}¥,) be a finitely ramified topological self-similar system. In
this subsection we will prove Lemma 3.19.

3.3.1. Orientations
Notation 3.26.  Let 7,7’ be simple paths in K. We say

v <

if the image of 4/ includes that of v, and v/~ o~ : [0, 1] — [0, 1] is orientation-
preserving. For a simple path v, we define a simple path —y : [0,1] — K

(=) =~(1 —1).
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If &€ = (a,v) € Zp, we write
—&=(a,—), —(€5) = (a¥, =), (=6)* = (¥, ).
The following is easy.

Proposition 3.27. (1) Let £ € Zy. Then
g (&%) = " (= (&), n"(€) = =" (=(€5)), V(&) = Yi(=(€%)).

(2) Let v,+" be a simple path in K satisfying v < +/, and let a € v. Then
-y <=
and
9" (a*,7) = ¢"(@*, ), n*(@*,7) <n*(a*,7), Yi(a®,7) = Yi(a™,7").

Definition 3.28. Let T be an invariant tree of (K, {F;}}¥,). Note that
we have a natural one-to-one correspondence between

Q1 =Q1(7T)
={(z,y) €T xT|x #y, x and y belongs to the same component of T}

and
{a simple path in T}
by identifying (x,y) with v, ,. (Precisely, (z,y) € Q1 is identified with the
equivalence class including 7 ,.) For (z,y) and (2/,v’) in Q1, we say (z,y) <
(@, y') if vz < Yaryr- For (z,y) € Q1, we denote —(x,y) = (y, x).
First we define the finite set Q' to be

Q' ={(z,y) € Q1| = and y are endpoints of T'}.
There exists a mapping
xX:Q1— Q'
which satisfies the conditions that x(y,z) = —x(z,y), (z,y) < x(z,y), and

the restriction x|Q’ is the identity. We fix such a function x. Then we fix a
function o : Q' — {—1, 1} satisfying o(z,y) = —o(y, z), and we obtain the sets

Q=Q(T)={(z,y) € Q1|o(x(z,y)) = 1}
and
Q" =Q"(T)={(z,y) € Q' |o(z,y) = 1}.
The function o, said to be an orientation on T, is extended on @ by o(x,y) =

o(x(,y)).
We use the notation

E={(a,7) €Zo|y € Q}.
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Example 3.29. (1) Let (K, {F, F}) be the self-similar system of Ex-
ample 1.8-(2). The unit interval K = [0,1] is a minimal tree. Since K has two
endpoints 0 and 1, we see that Q" = {v, —y}, where v : [0,1] — K is defined
by v(t) = t. Setting o(y) = 1,0(—v) = —1, we have Q* = {v}. The mapping
X : @1 — Q' is necessarily defined by x(I) = vifl < v, x(I) = =y ifl < —.

(2) Let (K, {F1, F5}) be the self-similar system of Example 1.8-(6). Recall that
it has the critical set C' = {c} and the postcritical set P = {p1,p2,ps} such
that Fy(p1) = Fa(p1) = ¢, Fi(p2) = p1, F1(ps) = pa, Fa(p2) = ps. There exists
a minimal tree T in K. The tree T, which is Y-figured, has three endpoints
p1, p2 and p3. (Remark that T has a branch point p, and the critical point ¢ is
contained in the simple path 7/ between p3 and p. See Figure 5.) Thus Q' has
six members, and Q* has three members. Set Q* = {7v1,72,73}, where v; is a
simple path between p3 and p1; 72 between ps and ps; v3 between p; and ps.
There are several possibilities for the mapping x. We choose x as follows. Let
[:]0,1] — T be a simple path. If #{y € Q" |l <~} = 1, then x(I) is uniquely
determined. We set x(I) = +v; if I < £v; and I < Fvys3; x(I) = £71 if | < £
and I < +v9; x(I) = £y if | < £y9 and | < £ns.

~P3 Pz Bk} Pz- s Pz
M s
\\ //
. s
™ e
~,
|
¢ = ic
|
71 Y2 Y3
Jo D1 P

Figure 5: The minimal tree T" and the curves v1,v2, 73

Definition 3.30. Let £ € =. Then either n(£*) € @ or —n(&*) € Q for
each x = —, +. We write

ey _ [ om(EF) i o(n(6F) =1,
n(gi){ —n(€F) i o(n(¢*)) =—1.

Namely,

(3.7) 7(E5) = o(n(€)) n(¢™).

For £ = (a,v) € E, we inductively define

(€)= x()s eo(€F) =1, 3°(€5) = a*,
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and for k=1,2,...,

en(€®) = [ oln((€)) € {-1,1},
m=0

e = e

- if e =1,

#e = { e 1 e

FHEE) = (ER) k().

We say p¥ (&%) is the k-th successor of £€*, n¥ (&%) the path component of the
k-th successor of ¢, and e, (¢F) the k-th sign of €.

From (3.2) and the definition of e,
(3.8) T ER) = i (™ (E)),
(3.9) €k+m(£i) = €7rz(§i) ek(ﬁm(gi))

Proposition 3.31. Let{ € E. Then

(6%) <ni(€F)  if ex(€r)

n* 1,
—nF(€E) <nk () ifen(€)

—1.

Proof. We will prove the assertion by induction. Let £ = (a,v). If k =0,
then n°(¢%) = v and 72(¢F) = x(v). We suppose the assertion is true when
k =n. Then

en(E5)0"(EF) <l (EF).
By Proposition 3.27 and (3.7),

en1(E)NTHER) = o(n(a™(€F)))en(€F (™ (€5)F)
= o(n(E"(E5))n(g"(£F), en(E5)n™(€F))
< o(n(a"(E)))n(g" (), nH(ED))
= o(n(E"(£%))* (A" (&*))
= q(a"(&r))
< nrtiEE).
This completes the proof. O

Corollary 3.32. Let{ €=. Then
YVierm(€5) = Y (B (67)) and Virm-1(6%) = Vso1(§%) Y (B (€7))
fork=0,1,... andm=0,1,....
The element of

I = {(11(%’7),7) |’7 € Q*’a’ € ’7}
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is called an extended subinterval. For £ € 2, we define for £k =0,1,...

Je(€5) = (L(A"(€5)), ni(€F)) eII™.

We say Jy is the extended address of the k-th successor of £*. From (3.8) we
have

(3.10) Jerm(E5) = Ju(@™ (€%)).
If p = (Ii(a,7),7), then we write

I(p) = Li(a,7), v(p) =17.

There uniquely exists Y(p) € {1,2,...,N} such that I(p) C K(Y(p)). It is
clear Y(p) =Y (a,v(p)) for a € intI(p). We write

1(p) = n(a,v(p)), 1e(p) = 1:(a,7(p), e(p) = ei(a,v(p))
where a € intI(p). This is independent of a.

Example 3.33.  This is continued from Example 3.29.

(1) Consider the self-similar system (K, {Fi, F>}) of Example 1.8-(2). If 0 <
a < 1/2, then I (a,v) = [0,1/2]; if 1/2 < a < 1, then I;(a,7y) = [1/2,1]. Thus
IT* = {1, Ix}, where I} = ([0,1/2],7), > = ([1/2,1],7).

Let us calculate eg(c*,v) and Jy(ct,) for the critical point ¢ = 1/2. We
write p; = 0 and py = 1. Since pF(c™,v) = (p2,7) for k = 1,2,... and
uF(ct,y) = (p1,) for k=1,2,..., we have e,(ct,y) =1for k=0,1,... and

Jo(e™,v) =T, Ji(c,v)=
JO(C+;7):123 Jk( 7)711 (k: 5 ,)
(

For convenience, we write eq(ct, ) =
Joo(ciyfy):(llaI_Q)v JOO(C+7’Y):(I%I_1)'

(2) Consider the self-similar system (K, {F1, F»}) of Example 1.8-(6). We de-
note by L; the simple path between ps and ¢, by Lo the simple path be-
tween ¢ and p;, by L3 the simple path between ¢ and ps, by L4 the sim-
ple path between p; and ps. We consider Li’s as sets. Remark that L4
is the image of ~3. It is easy to see that IT* {pl,pg,p3,p4,p5} where

= (L1,m),p1 = (L2,m),p1 = (L1,72),p (L3772) = (L4,73)-
Let us calculate er and Jy for the critical pomt c. Since

pr(e™,m) = (p1,—3), 1 (p1,73) = (P2, —2), 1 (p2.72) = (p3, —1),
pr(ps, ) = (P2, =3), 1 (P2, 73) = (P3, —72),  p'(P3,72) = (P2, —73),
we have
elcm) = (L-D)=(1,-1,1,—-1,1,-1,1,...),
Jolc™sm) = (p1,p5,pa,p1,(P5,P3))-
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Similarly,
6OO(C+371) = (17 (L _1))7 JOO(C+771) = (anp57p4ap17 (p5ap3))a
600(0_7’72) = ((17 _1))7 JOC(C_u’YQ) = (P3>P57P4>P11 (P57p3))7
€OO(C+,’}/2) = (17 _1a (_17 1))a JOO(C+772) = (P4a,027 (p5ap3))-

3.3.2. Formal kneading matrices

Considering W, as a monoid, we denote, by R, the ring of formal infinite
sums of W, over Z. Namely, R, is the set of all functions f : W, — Z. For
fif' € Roo, the sum f + f' is defined as (f + f/)(U) = f(U) + f/(U) and the
product ff’ is defined as (ff")(U) = >y v/—y f(V)f(V'). We may consider
W, as a subset of R, that is, U € W, is considered as the mapping fy which
satisfies fy(U) =1 and fy(V) =0if U # V. We set

Ri={f € Reo | J(U) = 0 it [U] # k).

For f € R, we define (f)r € Ry as

U%@D:{fW)iﬂm:h

0 otherwise.

If f1, f2,... are elements of R such that #{i| (fi)r # 0} < oo for each k, then
Yooy fi € Reo is naturally defined. Thus f = >"7,(f)x- If ay = f(U), then
the element f is usually written in the form

f=> al,

UeW.

It is clear that (f)r = (f')x for all k if and only if f = f’. Remark that the unit
element for addition is 0 and the unit element for multiplication is identified
with @ € Wy:

0(U) =0 for any U € Wi,

1 ifU =0,
WW{O if U # 0.

Definition 3.34. Let £ € Z and p € II*. For £ =0,1,..., we define an
element of Ry,

0 otherwise,

on(¢*) - { er(§5) Ve1(6F)  if Ju(€F) = p
where Y_1(£%) = ), and we define a formal infinite sum

0r(¢F) = > On(E).

k=0
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Proposition 3.35. Let £ € Z and p € II*. Then

(3.11) OF 41 (€5) = €r(€5) Vo1 (€%) ©4,_ 1 (iF(€%)).

fork=0,1,... andm=1,2,....

Proof. From Corollary 3.32,

or (%) = ehtm-1(65) Verm—2(65)  if Jopm-1(65) =p
ktm—1 0 otherwise,

:{ htm—1(ET) Vi1 (6F) Vo2 (% (%)) if Jpym—1(EF) =p

0 otherwise.

On the other hand, by (3.10),

otherwise.

0r,_ (iF(Er) = {em_1(ﬂk(éinoym_z(ﬂk(gi)) i T 1(€5) = p

From (3.9), we have

errm—1(6%) = ex(6F) em_1 (B*(€5)).

Thus
er(€F) = eppm—1(65) em—1 (A" (€F)),
and we obtain (3.11). O

The following is an immediate consequence.

Corollary 3.36. Let & € = and p € II*. Then

k—1
OF(£5) =D O5(EF) + en(6F) Veor (£5) ©° (¥ (6%))
j=0

fork=1,2,....

Lemma 3.37. Let s : Q* — Z be an arbitrary function. For p € II*,
we define mg and ng as

ms(p) = s(v(p)) and ns(p) = s(n.(p))-

Let £ € Z. Then for every p € 11",

Y 07(€F) (ms(p) — e(p)ns(p)Y (p)) = 5()0.

peIl*
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Proof. Since ) € Wy and Y (p) € Wy, we have

(©7(£F) (ms(p) 0 — e(p) ns(p) Y (),
_{ ms(p) OF(£F) if k=0
T malp) OL(ER) — e(p) ns(p) ©F 4 (E5)Y(p) itk =1

Thus
(Z @P(fﬂ(ms(p)@—e<p>ns<p>Y(p>>) = my(Jo(6%) O (¢
peIl*
D= s

If k> 1,

( D 07(6F) (ma(p) 0 — e(p) nalp) Y(P)))

peIl* k

= my (Ju(€5)) 0 (¢)
— (1 (E5) s (Teo1 (€5)) O 7 € (6%) Y (a1 (6%))

= ex () s (65)) Ve (€5)
— er (FFTHEE))s(nF (€5)) en—1(65) Vi—a(€F) Vi1 (£%)
=0.

This complete the proof. 1
Definition 3.38. We set
Cr =C3(T) =A{(c,7) € E|y € Q",cis an essential critical point of v}.

An element of C7 is referred by a symbol ¢.
For ¢ = (¢,7) € C¥ and p € IT*, we define

M¢p = @P(C+7,Y) - @p(civv)'
We say (Mg,)g¢ec: pen- is the formal kneading matriz of T.

Corollary 3.39. Let o € C and vy € Q*. Then

D7 My, (h9(p)0 — e(p) R} ()Y (p)) =0,

pell*

where we set

1 i) =~ 1 ifnl(p) =~
hg(p){O if v(p) # and hi(p){o ifni(p) #~
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Proof. When we consider the function s : @* — Z defined by s(v') =
ey
{ (1) g 3, ; va , the functions mg, and ng defined in Lemma 3.37 are equal to
hg and h}/ respectively. Thus if ¢ = (¢, d), then

Y My, (h°(p)0 = e(p)h ()Y (p)) = 5(8)0 — 5(8)0 = 0.

pell* O

Example 3.40. This is continued from Example 3.33. Let us calculate
the formal kneading matrix (My,)s p-

(1) Set ¢ = (¢,). Then we have C¥ = {¢}. Since

eh(¢7) =10, Oli(pt)y=2+21+212 4.,
OL(p)=1+12+12%+..., OL(¢+) =9,

the formal kneading matrix is given by

o0

My;, =—@+221k, My;, :@-122’“.

k=0

(2) We have CJf = {¢1, ¢2}, where ¢1 = (¢,71), d2 = (¢,72). Since
Or (¢7) = (z) 211, O~ (¢]) =111,

or2(¢7) = 02 (¢y) = @

ors (¢;) = —21121 — 2112121 —

03 () = 11121 + 1112121 + -

@”4 (¢1) =21, 01 (¢7) = 1,
07 (¢]) = —2+ 2112 + 211212 + -

05 (¢f)=1-1112 - 111212 — - - - |

Or(gy) =—211, O (¢f) =0,

07 (¢3) =0, 072 (¢y) = —1,

Or3 () =0 —21121 — 2112121 — - - - |

O3 (¢3) =111+ 11121 + -

Ori(¢y) = 21, 9”4(%) 0,

075 (¢y ) = —2 + 2112 4+ 211212 + - - - |,

05 (pg) = —11 — 1112 — - - - |

the formal kneading matrix is given by

M¢1P1 =-0+ (1 + 2)11’ M¢2P1 =211,
M¢1P2 =0, Mdizpz =-1
M¢1P3 - (1 + 2)11 Zk 1(21)

Mg,p, = =0 +111 4+ (1 + 2)11 S, (21)F,
M¢1P4 = (1 + 2)1 M¢2P4 0 — 21,
M¢1P5 =1+2- (1 + 2)1 Ek 1(12)k7
Mg,ps =2 —11— (1+2)1357,(12)".
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Definition 3.41. For v € Q, ¢ € C¥ and a € Bi(y) we set

Z‘b(a,v) _ { yk—l(aa’Y) if Hf(aﬁ) =0 )

0 otherwise

Let v € Q1, v € Q and ¢ € C¥. Suppose v < +v'. We define

A =Y. Z%a) € Ry,
a€Br ()

and

=Y M) eER
k=0

The following is the essential equality.

Proposition 3.42.  Let v € Q1,7 € Q and p € II*. Suppose v = (z,y)
and v <. Then

O (y~,v) - = > A%(1,9) My,.
peC

Proof. For ¢ = (c,9) € C¥,
(A®(7,7)Myp) = ZA 7:7) (Mep)i-

Z Y Z2%(a) (Mop)—;

J 0 aeB;(v)

Z S Yica(a) (Myp)i—j-

a€B;(v)

n*(a ~v)=8
g9 (a,y")=c

If '
1 (a, ') = (c,0) = ¢,
then by definition

By Proposition 3.35,

On(a®,y) —0r(a™, ) = ¢;(a,7) Vj—1(a,y) (Oh_; (3 (a*,7),0)
- 0] (7 (a™,7),9))

= Yj-1(a,7) (©F_;(c",8) —=0F_;(c,9))
=Vj-1(a,7") (Myp)k—j-
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Thus

ST A )My, | =D (Ot y) - O4a, ),

peCy & a

where the sum is over all a € U?:o Bj(v). Let us divide « into finite arcs
I, I,.... 1 by US_y B;(7). Then

{Ii}izs = {Tx(a,y") Nyla € 7} = {Tk(a,7) [a €7}

Let us denote by a; the unique point in I; N [;11 (i = 1,2,...,1 —1). Then
{a;}\21 = U§:1 Bj(7y). Consequently,

-1
DAY ) My, | =D (04(af, ) - O4(a; 7))
peCle i=1

k

al 7’}/ + Z 1 77
- 07 (a1, )) +03(a,,7)
= 07(a;,7") = ©f(ag, ),
because Iy (aj” |,7") = Ix(a;,7'). Hence we obtain
Oy~ 7) ~ = > A1) Mgy
¢eC,

This completes the proof. O

Deﬁnltlon 3.43. Let v € @1, and let k£ be a positive integer. Then the
set U Turm( ) divides the path v into a finite arcs Iy, I, . .., I; such that I;
nelghbors Iivi (i=1,2,...,1 —1). There exist Uy, Us,...,U; € Wy such that
I; ¢ K(U;). In the other Word Ui =Yr-1(a,7) ifa € 1ntI This partition has
been given in Subsection 3.2. Recall that the set £(v, k) is given by

{(I1,Uh), (I2,U2), ..., (I, Up) }.

We define
l
= Ui € R
i=1
and

= Z Vi ()
k=0

For a subtree T" C T', we similarly define V(T").
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For ¢ € =, we define

=) Vea(€5).
k=0

For ¢ = (a,7y) € C¥, we denote, by m = m(¢), the minimal positive integer
such that Y, (c¢t,7y) # Vm(c™,v). We define

oo

(o)=Y (Ve(6™)+ (o).
k=m(¢)

Lemma 3.44. Let (z,y) =7 € Q1, and v <~ € Q. Then

V() =t )+ 2y, + D A7) (9).
peC*

Proof. Let
L(v,k) = {(L1,Uh), (L2, U2), ..., (L, U)},

where the arc L; neighbors the arc L;11 (i = 1,2,...,1 —1). We denote a; €
Lz’ n Li+1 (Z = 1,2, .. .,l — 1) Note that

yk 1(1 17 ):yk—l(ai_vryl):U’i (i:1727"'7l)7
where ag = x,a; = y. By the definition of L(v, k),
{a1,a2,... a1} = {a € v| Vhe1(a™, %) # Veor(a™, )} = | Tur;(v)
§=0

We have defined 0 < s = s(a;,7’) < k — 1 as the minimal integer such that
g°(a;,') is an essential critical point of n°(a;,7’). Then

Ui = Vk-1(a;,v) = Ysor(ai, V) Ve—s—1(pilai,v')7),
Ui+1 = yk—l(a;ryfyl) = ysfl(aiv'yl)ykfsfl(/ii(ai7’yl)+)7

where pf(a;,v'") € C¥. Since U; # U;41, we have 0 < m(us(a;,v')) <k—s—1.
Conversely, let a € B,(7y) such that 0 < m(us(a,v")) < k—s—1. Then
Vi-1(a™,7") # Ye—1(a™,5’). Thus

k—1
{a1,a9,...,a;_ 1}—U{aeB )10 < m(pi(a,y)) <k—s—1}.

We denote this set by E(v,k), and we denote E(v,k,s) = E(v,k) N Bs(y).
Note that E(v,0) is empty.
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We write ¢; = psi(a;,7') € CF, where s; = s(a;,7"). Then

Ui+ Uit1 = Vsi—1(ai, ") Vh—si—1(65 ) + Vs, —1(67))-

Therefore
-1
Ve =D Ui+ Uin1) + U1 + U
i=1

-1
:Zysi—l(au V) Vhesi—1(97) + Vs, —1(87))

+ Vo1 (2t ) + Ve (y™,7)
-1

=3 2% (a1,7) (W(0))h-s, + (QaT,7) + Q5™ 7

i=1

If we write ¢(a) = us(a,v’) for a € Bs(y), we have

(3.12) ZZ@ @i ) (U (6:))k-s, Z Y. Z2%@(ay)(P(d(a)))k-

s=0 a€E(y,k,s)

If a € Bs(y) — E(v,k,s), then m(¢(a)) > k — s, and so (¥(¢(a)))k—s = 0.
Therefore (3.12) is equal to

k—

—

Z% (a,7') (¥ (6(a))) s,

s=0a€eBs(7)
and hence it is equal to
k-1
DD D Z%a ) (D))r-s,
¢eCy s=0a€eB;(v)
because Z%(a,v') = 0 if ¢ # ¢(a). Consequently,
k-1
V) = (a™7) + Q™D+ 2 D (AP (,7)s((6)s.
¢peCy s=0
This completes the proof. d
Example 3.45. This is continued from Example 3.40.
(1) From Lemma 3.42, we have ©%(p;,v) — ©%(pf,v) = A®(y,v)Myz, for

i =1,2. Considering i = 1, we obtain — Y j | 1¥ = A®(y,7)(—0+2 >, 1%).
Consequently, A?(7y,7) = Y ;= (1 + 2)*. By Lemma 3.44, V(v) = > p2, (1 + 2)*.
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(2) From Lemma 3.42,

O (p~,7) — 7 (¢, ) = AP (,7) My, p, + A% (7,7) Mo, p,

for v =(q,p) € Q1 and i =1,2,3,4,5. Since

or (P;;’Yl) = 0’@/)1 (pl_a71) = Oa @pz(p;_af}/l) = 07®p2(p1_371) == ma

we have

—0 = A% (1, 1) (—0 + 13+ 212) + A% (31, 71)212,
0 =A% (y1,7) = A% (1, 1)1

Consequently,

AP (y,y) = (12421) 377 (21 + 121 + 13)F,
A% (y,m) = O+ A% (v, 7)1

Since W(p1) = U(¢o) = (1 +2)(0+ 1 +11 +112+---),

V() = (Q0p3,m) + 21, m)
FA (1, 71) W (h1) + A2 (71, 71) ¥ (¢2)) /2
= (Qp3,71) + Qpy,m) + D+ A% (31, 7) (0 + 1)) U (¢1))/2
=0+1+2+1%+21+1% 4122 4 217 4 212
+1* 4+ 1%2 41721 + 21% + 2122 + (21)2 + - - - .

Similarly,

V(v) =0+1+2+1% 4124214+ 1% 4121 4 21° + 212
+1t 41532+ 1217 + (12)2 + 21% + 2172+ (21)2 + -+,
V(ys) =0+1+1°+12+1° + 172+ 121 + 1* + 121° + 1721
+(12)2 4.

Thus we have

VIT)=0+1+2+1%+12+21+ 1% +1%2 4121 + 21% + 212
+14 132+ 1221 + 1212 + (12)2 + 213 + 2122 4 (21)%> 4 - .
3.3.3. Kneading determinants
Let X3, X5, ..., Xy be commutative variables. Consider the abelization

ﬁZW* — <X1,X2,...,XN>,

where (X7, Xs,...,Xy) is the free commutative monoid generated by X,
X5, ..., Xy, and which is defined by
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For f € R, we define a power series

f=> ruxv.
Uew.

Then _

f=f
is considered as the abelization map from R to the formal power series ring
C[[X]] = C[[X1, X2, ... XN]]. For f € C[[X]], we denote, by (f)s, its homoge-
neous part of degree k.

The power series

0°(a*t,v; X1, X, ..., Xn) = Or(at, )
is a holomorphic function on D = {(X1, Xo,..., Xn)||X;| < 1}; because the

absolute value of
> epat,y)(U)
UewWwy

is1, =1 or 0.
We set #Q* = | and #II* = n, then #C = n —[. We define for p €
I, ¢ € C¢,

Ryp = Mgp.

Then R = R(T) = (Rgp)pecs pen- is a n — I X n-matrix in C[[X]], which is
called the kneading matriz of T. We define for p € IT* and v € @*,

Hyy = hy((p)) — €(p) by (1+(p) Xy (),

where ;
_ )1 ity=¢,
Let us consider a n x [-matrix
H= H(T) = (Hp'v)pGH*ryGQ*

in C[[X]]. From Corollary 3.39, we have

RH =0.
Definition 3.46. Let
911 912 9in Ju fiz o fu
G = 921 922 92n JF = Jor fa2 oo fa
Gatt Gatz - Gu-tn T T
be an n—1I x n-matrix and an n x [-matrix. Suppose that {1,2,...,n} is divided

into B = {k(1),k(2),...,k(1)} and B¢ = {1,2,....,n} — B = {K'(1),K'(2), ...,
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kE'(n—1)}. We assume that k(1) < k(2) < --- < k(l) and ¥'(1) < k'(2) < --- <
E'(n —1). Then we write

91k (1) g1k (2) S 91k (n—1)
G|B _ 92k (1) 92k’ (2) e 92k’ (n—1)
In—1k'(1) YGn—-1k'(2) " YGn-lk'(n-1)
freyr feeyz oo fran
F|B = fren fe@2 - fren
frr ez 0 fran

Lemma 3.47. There exists a subset B C II* such that #B = [ and
det R|B # 0.

Proof. Choose B = {py|¢ € C;} such that py = (Ii(¢"),7), where
¢ = (¢,7). Then the constant term of R|B is equal to the unit matrix by
permutations of the row vectors. Hence the constant term of det R|B is 1 or
—1. O

We fix
By = {p'y |'7 € Q*}a

a subset of IT* such that v(p,) = 7.

Lemma 3.48.  The holomorphic function det H|By has no zero in D.

Proof. The matrix H|Byj has the form E + G, where E is the unit matrix
(by permutations of the row vectors) and each row vector of G has only one
nonzero component +Xj. From this, it follows that det H|By # 0 at X =
(a1,a2,...,an) if |ag| < 1 for any k. O

The following is an immediate corollary of a known result (for example,
see [5], Chapter VII, Section 3, Theorem I).

Lemma 3.49. Let G be an n — I X n-matriz, and F be a n X l-matrizx.
Suppose that each component of these matrices is a holomorphic function on
D, and suppose that GF = 0. If B, B’ are subsets of {1,2,...,n} such that
#B = #B' =1, then there exists sgn(B, B") € {1, —1} such that

det G|Bdet F|B’ = sgn(B, B') det G| B’det F|B.
Lemma 3.50. Let B C II* be a subset such that #B =1. Then R\B #*
0 if and only if H|B # 0.

Proof.  Suppose that R|B = 0 and H|B # 0. From Lemma 3.49, we sce
that R|B’ = 0 for any B’ C II*. This contradicts Lemma 3.47. The converse is
also verified by Lemma 3.48. O
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Dgﬁnition 3.51. Let B be a subset of II* such that #B = [ and
det R|B # 0. Remark that det R|B and det H|B are non-zero holomorphic
functions on D. Then the meromorphic function

_ ,detR|B

A=Ar= det H|B

is said to be the kneading determinant of T', where we choose + or — so that
Alx—(0,0,...,00 = 1. By Lemma 3.49, the kneading determinant is independent
of B.

Lemma 3.52.  The kneading determinant A is holomorphic on D.

Proof. Consider the case B = By. O

We define for ¢ € C¥,v € Q1,7 € Q with v </

N (7,7 X1, Xa, ., Xnv) = A% (7,7).
Then A?(v,~') is a holomorphic function on
{(X1,Xo,....XN) || Xi] <1/N,i=1,2,...,N};
because >y, A®(y,¥)(U) < #C (k) < NF#C.

Lemma 3.53.  The function \*(~y,v') can be extended to a meromorphic
function on D. Moreover,

U {X € D[N (7,7:X) = o0} = {X € D|A(X) = 0}.
PeCr vEQ1,Y EQ:v<Y

Proof. Let v = (z,y) € @1, and v < ' € Q. From Lemma 3.42,

0°(y~,7) = 0°(x", ) = > A(7,7) Rgp
pecs

on {(X1,Xsa,...,Xn) || Xi| <1/N,i=1,2,...,N}.
Consider the subset B = By. There exists an n — [ x n — [-matrix

R = (Ryp)pecs pen—B

which is the inverse of R|B. Remark that each component of (R,4) is a mero-
morphic function on D. We have for any ¢ € C?

(3.13)
Z (ep(y—y,y/) - ep(x-‘r’ '7/))Rp¢ = Z Z )\dj/ (’7, ’YI)R¢/pRp¢
pell*—B pEll*—B ¢'€Cy

A2(7,7).
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Thus A?(7,v’) is a meromorphic function on D. Moreover,

AN (y,y) = A YT (0°(y 7)) = 0°(2",9) Ry
pell*—B ~
= S @A) — 0" ) Ry det RIB/ det H|B.
pell*—B

Since Rp<z> det R|B is holomorphic on D, we conclude that AA?(v,') is holo-
morphic on D. Hence a pole of A\?(,7’) is a zero of A.

Suppose A(aq,as,...,ay) = 0. Then there is a column vector a =
[ay]pen- € C7, at least one of a, is nonzero, such that g = [Gylecc: = Ra
is a vector each component of which is holomorphic function with zero at
(o1, 9,...,an). We can assume that a, = 0 for p € B. It is clear that

Rg = [a,]pen-—B- By (3.13),

Y GX (A )= D 0Py, = 07Ty ))a,

$eC* pEIl*—B

for any 7/ € Q and any v = (x,y) < 7. Suppose A\?(~y,7’) does not have a pole
at (a1, e,...,ay) for any ¢ € C¥ and any 7' € Q*. Then

3 (0°(y.A) - 07t A))a, =0

pell*—B

at (a1, s, ...,ay) for any v/ € Q* and any x # y € /. From this, it follows
that

S(’yl): Z ep(xiv'y/;alaa27---7aN)ap
pell*—B

is independent of = € +/'.
Let p € IT*, and v € Q*,z € . From Corollary 3.36 we have

7)) e =p

, !
” (xi’w:{ L o (Zl( v) e #p

x*,
e(p) Xy ()07 (i (z*,

Thus

S(y) = ap + e(p)ay () S (ni(x™,7)).
Consequently, if we take v = v(p), then we have

> (hy(1(p)) S(1(p)) — e(p)ary (pyhoy (n:(p)) S(7(n:(p))) = a,

v'eRQ*
or equivalently
(3.14) HS =a,
where S = [S(v(p))]pen~ € C". In particular,

(H|B)S = [a,],e = 0.
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Since a # 0, we have S # 0 from (3.14). But det H|B # 0. This is a contradic-
tion. O

Proof of Lemma 3.19. From Lemma 3.44,

20(7) = Q@ V) + Q) + > A (1.7)T(%).
¢eCs

Thus v(7) is extended to a meromorphic function on D. Similarly, we can prove
that v(T) is also extended to be meromorphic on D. When we consider

w(T)(t) = v(T)(art, ant, ..., ant) and u(v)(t) = v(v)(a1t, ast, ..., ant)

as functions of one variable ¢, they are meromorphic on {|t| < 1/(max; a;)}.

Therefore
u(y)

u(T)
is meromorphic on {|¢| < 1/(max; «;)}. But this function does not have a pole
at t = 1, because u(vy)/u(T") is bounded for 0 < ¢t < 1. Hence it is holomorphic
near t = 1, and so the limit lim;_;_ u(y)/u(T) exists.

Suppose that w(T')(t) converges at t = 1. Then it also converges on the
circle |t| = 1, since the coefficients of u(T') are non-negative. Therefore u(T) is
holomorphic near |¢t| = 1. This contradicts the fact that the radius of conver-
gence of u(T') is one. This completes the proof.

Theorem 3.25 is a consequence of the following.

Lemma 3.54.  Let (a1, aa,...,an) be a polyratio. If A(ay,as,...,an)
=0 and if Ao, o, ..., a)y) #0 for any 0 < of < o, then there exists v € Q
such that (a1, e, ...,an) is a polyradius of convergence of the power series
v(7)-

Proof. By Lemma 3.53, a = (a1,qs,...,ay) is a pole of A\?(y,~’) for
some ¢,7, ', moreover o = (a4, ah, ..., aly) is not a pole of A?(v,4’) for any
#,v' if 0 < ol < a;. Thus the series A?(7,7';’) is convergent for any ¢,~" if
0 < o} < a;. Note that A\?(y,7;a’) > 0 for any ¢,~" if 0 < o} < ;. Therefore
the series v(7y)(a’) is convergent if 0 < o < v, and v(y)(«) is divergent. O

Example 3.55. This is continued from Example 3.45.
(1) From

R= (—1+XQZXf 1—X12X§> ande( }:2 )

k=1 k=1

we have
1-X; — Xy

(1-X)(1-Xz)
Thus the set of critical ratios is CR = {(a1, @2) € Rag | a1 + ag = 1}.

A:
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(2) From
R =
<—1+(X1+X2)Xf 1 X.G —(X1 + X2) X7 X, +X2—G)
X2X, ~X; 1+ X34+ XG 1-X1Xy Xo—X2-G

and

1 0 X

1 0 -Xi

H=] 0 1 Xo |,
X; 1 0
0 X3 1

where G = (Xl + Xg)Xl Zz’;l(Xng)k, we have

_1- XX, — X} - XX,

A
1-X1X,

Thus the set of critical ratios is CR = {(a1, a2) € Rag | ayaa + a3 +afay = 1}.

Appendix

In Appendix, we prove results on the arcwise connectedness of topological
self-similar sets and the uniqueness of paths in self-similar sets. These result
are used in Section 3 to construct a self-similar metric.

First we show the arcwise connectedness of connected components of self-
similar sets. Recall that a connected and locally connected metric space is
arcwise connected (for example, see [19]).

Proposition A.1.  Let (K, {F;}Y.,) be a topological self-similar system.
Suppose that K(U) N K(V) has at most finite number of components for any
n and any distinct words U,V € W,. Then each component of K is locally
connected. In particular, each component of K is arcwise connected.

Proof. Let x € K. Note that for n > 0,

Qo= |J EU)NLy(2)
UeWw,
s K(U)
has at most finite components by assumption. We denote, by X, the component
of K containing x, and by X,,, the component of L, (x) containing z. Clearly,
X, is a subset of X. We show that X,, is a neighborhood of = in X. If X
consists of one point, then X is locally connected. We assume that X contains
more than one point.
Assume that X, is not a neighborhood of z in X. Then for any integer
k > 0 there exists a point y; in (X N Lg(x)) — X,,. Let Y (k) denote the
component of L, (x)NX containing yi. Since y, ¢ X,,, we see that Y (k)UX,, is
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not connected. If A is an open and closed subset in L, (z)NX, then ANQ,, # 0.
Indeed, let B be an open set such that BN L,(x)NX = A. If ANQ,, = 0, then

B- |J EO)|nx=|B- |J KU |NL(z)NX=A.

Uew, vew,
¢ K(U) zgK(U)

Thus A is open in X. Since A is closed, it is closed in X. This contradicts the
connectedness of X, and hence ANQ,, # (). For any open set B including Y (k),
there exists an open and closed set A in L, (z) N X such that Y (k) C A C B.
Therefore Y (k) N Q,, # 0.

Since (),, has at most finite components, there exists a component P of
Q@ such that Y(k;) N @, C P for a sequence k; < ky < ---. Then Y (k) =
U2, Y (k;). The sequence {y, }; converges to z, but « ¢ Y (ki). This is a
contradiction. Consequently, X, is a neighborhood of x in X. That means the
local connectedness of X at x. O

Immediately, by the above proposition we obtain the following.

Corollary A.2. If the critical set is finite, then each component of K
is arcwise connected.

For a finitely ramified topological self-similar system (K, {F;}} ;) with
Condition A, we show the uniqueness of a simple path between two points in
K.

Lemma A.3. Let X = X7 UXoU---UX, be an arcwise connected
metric space. Suppose that each X; is compact and that C = U#j X;NXjisa
finite set. Let~:[0,1] = X be a continuous path between x € X1 and y € X,,.
Then [0, 1] is divided into finite intervals I,(1),1,(2),...,I,(l,) such that L, (k)
is a mazimal interval satisfying v(I,(k)) C X; for some i =i (k). We write

C(’Y) = (7;’7(1); Z‘W(?)a oo ai’y(l’v);’}/(al)af}/(a@)a o 37(‘117—1))7

where I,(k) = [ag—1,ar]. If v is a simple path between x and y which is
homotopic to v with the endpoints x,y fized, then C(y) = C(v').

Proof. Let us consider, for i =1,2,...n, the set

N PP S i1 = 1,041 = 0,0 7 Ipt1, Tk 7 Thil,
Q) = {(“’22""’”“"”’31’”32’”"“”)|xk € Xy N Xy, (h=1,2,...,1)

in

=0
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where we set X° = {()}. Note that Q(1) contains the member (1;(). The set
Q(i) has the discrete topology. We define

X = <U X; % Q(i)> /

where the equivalence relation ~ is defined by

(21, (11,02, oy lg13 @1, @2y ooy 20)) ~ (@, (G0, 2, -0y Gy g5 21, T2, ., 27))
and
($l+1,(i1,'é2,...,il+1;x1,x2,...,xl))
~ (@41, (31,92, o Q41,42 T1, T2y oo, T, Tig1))-

Then the projection p : X > (z,%) — x € X is a covering, that is, for z € X
there exists a neighborhood U such that p~1(U) is a union of disjoint open sets
on each of which p is homeomorphic. Indeed, it suffices to take U to be the
e-neighborhood of x, where € is the minimum of the distances between x and a
point in Uy _4,,, (Xx N Xin) — {z}.

For z € X, we take & = (z,(1;0)) € X. If 4 is a path between z and
y, then there uniquely exists a path 4 : [0,1] — X such that 5(0) = & and
pod =~. Moreover if h: [0,1] x [0,1] — X is a homotopy between v and ~/,
then there exists a homotopy A : [0,1] x [0,1] — X between 4 and 4’ such that
po h=h.
Let 7 d ~" be simple paths between x and y. Then § = A(1) =
(y,C(), 7 =4 (1) = (y,C(®)). If v and v are homotopic, then §=¢'. Thus
Cln) = O(). 0

Let v : [0,1] — K be a simple path between x and y. For n = 1,2,...,

the interval [0,1] is uniquely divided into finite intervals {I,(n, 1) 17(1 ), where

I,(n,i) is a maximal interval such that v(I,(n,i)) C K(U) for some U =
Ufy(n, i) € Wh.

Proposition A.4. Let (K,{F;}Y,) be a finitely ramified topological
self-similar system. If two simple paths v,~' are homotopic with the endpoints
fized, then ~([0,1]) = ~'([0,1]).

Proof. For any n the partition K = (Jy¢)y, K(U) satisfies the con-
dition of Lemma A.3. Therefore I,(n) = Ly(n) and U,(n,i) = Uy (n,i)
(t=1,2,...,14(n)). Consequently,

ly(n)

- N U W, m.i) =+([0,1])-

n>0 i=1 ™
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Corollary A.5.  Let (K,{F;}Y.,) be a finitely ramified topological self-

similar system. Suppose each component of K is simply connected. Then for
two points x,y in a component of K there uniquely exists a simple path joining

x and y.
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