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On a Certain Extended Galois Action on the
Space of Arithmetic Modular Forms with
respect to a Unitary Group

By

Atsuo YAMAUCHI

Introduction

In his work [8, Theorem 1.5], G. Shimura proved the existence of a certain
Galois action on the graded ring of Hilbert modular forms. A holomorphic
Hilbert modular form f with respect to SL(2, F') (where F is a totally real
algebraic number field of finite degree) can be expressed as a Fourier series of
complex variables uy,... ,u;

!
(0.1) flug, ... ,u) = Zcz exp <2Wﬁ2x#u#> ,

where the coefficients ¢, € C and x runs over a lattice. It is shown first that,
for any o € Aut(C), there exists a holomorphic modular form f? whose Fourier
expansion is

!
(0.2) folur, ... ,u) = ch exp (27r\/—_12xuuu> .
T p=1

A Hilbert modular form with respect to SL(2, F') has the weight in > __Z-v,
where a is the set of all embeddings of F'into R. If f is of weight k = >, k,-v,
then f7 is of weight k7 = >  _ k, -vo. It is also shown that, there exists a
certain closed subgroup & of GL(2, Fi4) x Gal(Q/Q) which acts on the graded
ring of meromorphic Hilbert modular forms which can be expressed as a quo-
tient of holomorphic Hilbert modular forms with Q-rational Fourier coefficients.
An important aspect here is that the action of & on Hilbert modular forms of
weight 0 coincides with that of & in the theory of canonical models constructed
in [2].

In this paper we shall study such a Galois action on modular forms in the
case of unitary groups. On unitary groups, modular forms have no Fourier

vea
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expansions. But in the case when the signatures of the group at the infinite
places are all equal, they have Fourier-Jacobi expansions. We shall consider
such cases in this paper. To be more concrete, let F', a be as above and K be a
CM-extension (i.e. a totally imaginary quadratic extension) of F', and consider
a non-degenerate skew-hermitian matrix R with coefficients in K as

1 51
R= S , S =

Sn

where si,...,S, are pure imaginary for any embeddings of K into C and
si/sj (1 <i,j < n) are totally positive. Then —/—1R is a hermitian ma-
trix of signature (¢,n + ¢) or (n+ g, q) for any embedding of K into C. Define
the group G of unitary similitudes with respect to R by

G(Q) = {’y € GL(2¢ +n, K) ’W”Rv =v(y)R with v(y) e F* } ,

where p stands for the non-trivial element of Gal(K/F); p is the complex conju-
gation for any embedding of K into C. We can define the natural holomorphic
action of G(R) on the symmetric domain

p=Iie= ()

where U, is the embedding of K into C which lies above v such that Im(SY) >
0. Here Ap, for a ring A, denotes the set of all n x g-matrices with entries in
A. Then a holomorphic modular form f on D with respect to a congruence
subgroup of G(Q) has a Fourier-Jacobi expansion of the form

09 1(( o)) = Totwceo <2w¢—_1 Ztr(r“l’vm),

vea

zy € Cl, w, € Cy,
V1w, 8w, + 2y — z,) > 0

where r runs over non-negative hermitian matrices (for any embeddings of K
into C) belonging to a Z-lattice in K. Let ¥ = (V¥,),ca be the CM-type of
K and regard ¥ as an embedding of K into C® by b¥ = (b¥*),ca. Then for
a lattice L of K/, the Fourier coefficients g, are theta functions on 11 Cy
with respect to the lattice LY. We call g, arithmetic if the value

vea

(gr)*((ww)an) = exp <Wﬁztr(rwvtws‘puw1))> gr((w@)an)

vea

is algebraic at each (wy)yea € (K!")¥. The main theorem of [4] defines a certain
Galois action of 0 € Aut(C) on the arithmetic theta functions when o is trivial
on the reflex field K* of ¥. In the case when K is an imaginary quadratic field
and o is trivial on K, the Galois action on the modular forms are constructed
in [7, Section 4] (but with no proof). In this paper we first generalize the main
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theorem of [4] to all ¢ € Aut(C). To be more concrete, for such g, and o, there
exists a certain theta function gﬁo ¥.a) (the symbol a denotes an element of the
idele group of K depending on o and ¥) with respect to the lattice (aL)¥? of

[[,ca C; which satisfies

(9477) (@)™ = {(g.) (™)}

for any u € K7}, where Wo means the CM-type defined by Vo = {V¥,0lv € a}.
The main theorem (Theorem 6.1) is as follows.

Let f be a holomorphic modular form given by (0.3) and (o,V,a) be as
above. Then there exists b € F* and another modular form f(&% @ with re-
spect to another group G of unitary similitudes and symmetric domain D corre-

1
sponding to a skew-hermitian form bS (be F* is determined
~1,
by o,V and a) whose Fourier-Jacobi expansion is

f(a\Il a) Zg(alll ,a) ((6y)vea) exp 2774/ Ztr r¥oo—10 5 ),

vea

where 3= ( 5;’ ) eD.
v/ vea

In the case o is trivial on K*, we can show (cf. (7.1)) that f(¥) can be
identified with the modular form fl”%% on D whose Fourier-Jacobi expansion
is

Pl = 3D ai wm@)exp(zwf S tr((br)” )>,

vea

2y

where 5(111 > eD.
v/ vea

Using the main theorem, we can construct a certain action of the group

—L(Nt! pyn q X T X
(z,¢,0) det(z) " (Ng (c)?)" N+ jg(c)! € K*KZ,

— v(z) " Nk g(c) EF*FL .,
€ Gy x K% xCGal(Q/K*) [(5_3 K]K:/%ﬁig +
’ ab

6:

on the graded ring of Q-rational modular forms. The action of (x,c, o) on the
arithmetic modular functions in the sense of [1] coincides with that of z in the
sense of canonical models. Moreover, the action of [0, ¥, a] described above
1y
coincides with that of a1, ,¢,0 | if a = Ny (c). When K
aafl,
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is an imaginary quadratic field, this action of & is a generalization of that given
in [7, Section 4].

We shall study basic properties of modular forms with respect to unitary
groups in Section 1. In Section 2, we define some equivariant embeddings of
algebraic groups and symmetric domains into different ones. We will study the
relation of arithmetic modular forms on respective domains for these embed-
dings to use Shimura’s many results in symplectic case. In Section 3, we shall
generalize the main theorem of [4] to the case of arbitrary o € Aut(C) using the
results in [10, Chapter 7] and [11]. In Section 4, we shall consider the embed-
dings of canonical models and their inverse rational maps precisely. In Section
5, the relation between the arithmeticity defined from Fourier coefficients and
that defined from canonical models will be discussed. In Section 6, the main
theorem will be proved using all the results till Section 5. In Section 7, we
construct the action of & on the space of Q-rational modular forms using the
results in Section 6.

Notation

For a ring A, we define A} as above, and denote A7} simply by A", 1,
denotes the identity matrix of degree n. The transpose of a matrix X is denoted
by *X. We denote as usual by Z, N, Q, R and C the ring of rational integers, the
set of all positive rational integers, the field of rational numbers, real numbers,
and complex numbers, respectively. For any subfields K, Ko of an arbitrary
field K, we denote by K; V Ky the composite field of K; and Ks. If K is an
algebraic number field, K,;, denotes the maximal abelian extension of K, and
we denote by K4 (resp. K ) the adele ring (resp. the idele group) of K. By
class field theory, every element = of K defines an element of Gal(K,/K).
We denote this by [z, K]. We denote by Ok and O the ring of algebraic
integers of K and its unit group. For each finite prime p of K, we denote the
p-completion of K and its maximal compact subring by K, and O,. In the
same way, Q, and Z, denote the p-completion of Q and Z for each rational
prime number p. For an algebraic group G defined over a field k, we denote by
G(K) the group of K-rational elements of G if K is an extension field of k. We
denote by G 4,G s, and G; the adelization of G, the archimedean component of
G 4, and the non-archimedean component of G4. By a variety, we understand
a Zariski open subset of an absolutely irreducible projective variety.

1. Modular forms and the arithmeticity

Let F be a totally real algebraic number field of finite degree and K be
its CM-extension (namely, a totally imaginary quadratic extension of F'). Put
g = [F : Q], then [K : Q] = 2g. As is well known, the non-trivial element
of Gal(K/F) is the complex conjugation for any embedding of K into C. We
denote this by p. For any b € K, we denote (b+ b”)/2 € F by Re(b). We
define a CM-type of K to be a set of g different embeddings of K into C whose
restrictions to F' are all the embeddings of F' into R.
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Define a non-degenerate skew-hermitian matrix R € K (m = n + 2g,
n,q > 1) by

1, 51
(1.1) R= S where S = ,

14 Sn

sf = —s; € K* and s; /sy, are totally positive (1 < j,k <n).

By the Hasse principle for hermitian forms, for any skew-hermitian matrix
R € K™, if the signature of /—1R is (¢,n + q) or (n + ¢,q) at each infinite
place of K, we can write it in the form of (1.1) with some S if we take a suitable
basis of K™. Determine the CM-type ¥ of K so that Im(sg’) >0(1<j5<n)

for any 1) € W. Let G(¢™) (S, ¥) be the group of unitary similitudes with respect
to R, and we view G(q’”)(S, U) as an algebraic group defined over Q. Then

Gl™(S, 7)(Q)

(1.2) ={y € GL(m,K) |"yRy =v(y)R with v(y) € F*}.

We have v(y) > 0 (> 0 means totally positive from now on) for any v €
G(@") (S, ¥)(Q), since the hermitian form —y/—1*y”Ry must have the same
signature as —/—1R, that is (¢,n + q) or (n + ¢, q) for any embedding of K
into C. Note that for any v € G(@™)(S, ¥)(Q), det(y)det(y)? = v(y)™. Next,
we define an algebraic subgroup Ggq’n)(S, ) of G4 (S, W) as follows.

(13)  GUS Q) = {7 €GOS, W)(Q) v(y) = det(r) = 1}

Then G:(lq’n)(S, ¥) has the strong approximation property. Hereafter we write
G@) (S, ) (resp. GI@™ (S, W)) as G (vesp. Gy) if there is no fear of confusion.

We denote by a the set of all archimedean primes of F. For v € a and
b € F, we denote by b, the image of b by the embedding v : F — R. For
o € Aut(C) and v € a, we denote by vo an element of a so that b,, = (b,)°.
We write a = {v1,...,v4} and denote an element of a by v. Given a set X,
we denote by X? the set of all indexed elements (z,)yeca with z, € X. For
= (Ty)pea € X?® and o € Aut(C), we denote by 27 the element y = (y,)vea
such that y,e = xy.

For a CM-type ¥ of K and v € a, let ¥,, be the only element 1) of ¥ whose
restriction to F is v. Then we can view ¥ as an embedding of K into C? such
that b¥ = (b¥%),ea for any b € K. Through ¥, we can view K as a dense
subset of C®. When b € F, we drop the symbol ¥ (since b¥ does not depend
on ¥) and regard b as the element (b,)yca in R®. For z = (z,)ca € C?, we
write ea(x) = exp <27r\/—_1 > a:y>.

vea

For each v € a, we can define the v-component G, = G(@™) (S, ), of the

algebraic group G as follows.

Gy = {7 € GL(m,C)

tyRY v = v(y)RY"  with v(y) € RX } .
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Note that for any v € G,, v(y) > 0. We can define the corresponding sym-
metric domain D, = D(@™) (S, ¥), as
zeCl, weC?, }

_ _[ Z n+q ) _
D”_{5_<w)ecq \/—1(th‘l'”w+tz—z)>0

where > 0 means positive definite. Now let us define the action of G, on

5 ar b
D,. For any 3 = ( w > € D, and o = az by o € (G, with blocks
as bg C3

corresponding to those of R, put

ol 7)) 2 (@12 + byw + c1)(azz + baw + ¢3) 71
w )\ (agz +bow +co)(azz +bzw +c3)”t )

Then the group G, acts on D, as a group of holomorphic automorphism by
3 — «(3). The automorphic factors are

M) = (AT atw = B(SV) L
v\ &, 3) = —S‘I'”a_gtz _ S\P”@ fS‘I””a_Qtw + S\D,ub2(S\Il,u)71 )
(0, 3) = azz + bzw + cs.

By a simple calculation we get

(1.4) det(\y(a,3)) = det(a) " tv(a)" T det(py (v, 3)),
,uv(a2a173) = uﬂ(a27 al(ﬁ))ﬂv(al,ﬁ) for any oi, S G’U'
Put

G (S, W) = [ G9(S, W)y,
vea
Dl (8,w) = [[ D™ (S, W),

vea

and Go = G(q’")(S, U)o acts on D = D(‘”‘)(S, ¥) componentwise. We can
define an embedding of G(Q) = G@™ (S, ¥)(Q) into G by @ — (a¥)yea
and also define an action of G(Q) onto D, a(3) = (a¥* (;,v))ﬂEa where o €
G(Q), 3= (Zv)an € D. Set

(v, 3) = Nv(a\yuvﬁv)» Ao(a,3) = )‘v(a\yvaﬁv)'

All these conventions are basically same as those of [7].
Now let us define a congruence subgroup of G(Q). For any positive integer
N, put

(15)  I';v ={y € Gi(Q)NSL(m,Ok) |y =1, mod (NOk), 1},

where O is the ring of integers of K. By a congruence subgroup of G(Q), we
understand a subgroup I' of G(Q) which contains I'y for some positive integer
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N and K*T'y is a subgroup of K*T' of finite index. Any element (except a
scalar matrix) of a congruence subgroup I' of G(Q) has no fixed points in D if
and only if the group K*T'/K™* is torsion free. As is well known, K*T'y/K*
is torsion free if N is sufficiently large.

Set k = (ky)vea € Z2. For o € G(Q) and a C-valued function f on D, we
define a C-valued function f|ya on D by

(Flke) (3) = (H det <uv<a,a>>"“v> flas) for 3€D.

vea

If f is holomorphic on D, so is f|ra. For any congruence subgroup I' of
G(Q) = G@™(S,1)(Q), we denote by M,(f’")(S,\I/)(F), the set of all holo-
morphic functions f on D = D@ (S, ¥) such that f|yy = f for any v € T.
An element of ./\/l,(cq’n) (S, U)(T) is called a holomorphic modular form of weight

k with respect to I'. We denote by M,(Cq’n) (S, ), the union of ./\/l,(cq’n)(S, o))
for all congruence subgroups I' of G(Q) = G(@™) (S, ¥)(Q). Next we put

A e = | {nst | eMEDs 0, 02 peM (s},

ez

A8, )(T) = { f € AL (S, ) | fly = forany y €T .

We write simply M\™ (S, @), M{®™ (8, w)(T), A2 (5, W), A™ (S w)(T)
by My, Mi(T), A, Ag(T), respectively if there is no fear of confusion. An
element of Ay, is called a meromorphic modular form of weight k.

Hereafter we identify Z? with the free module Y Zv by putting (ky)yea =

vea
> kyv. Also put 1 = (1)yea = D v. We can define the action of o € Aut(C)
vEa vea
on Z* by (Z kw) = Y ky(vo). For any k € Z2, we denote by F(k) the
vEa veEa

algebraic number field corresponding to {o € Gal(Q/Q) [k =k }. Then F(k)
is contained in the Galois closure of F' over Q.

We can define a certain parabolic subgroup of G' = G(©™) (S, ¥) and con-
sider corresponding Fourier-Jacobi expansions of holomorphic modular forms.
Put

1, PSS b+ 3'yrSy

q n q
N@ED(S U@ =Sh={ 0 1, y pe g beki
0 0 1, -
(@
H@™ (S, ¥)(Q) = N@™) (S, ¥)(Q) - 1, a €GL(¢,K) ¢y,

(far)™!
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P (S, 0)(Q)

ce >,

a € GL(gq, K),
B € GL(n, K),
13,88 = cS

= N@(S,9)(Q) - Z

c(tar)™!

Then P(@™)(S W) is a parabolic subgroup of G' and N(¢™ (S, ¥) is its unipo-
tent radical. We write simply N(@™) (S, ¥), H(@™) (S, W), P@™) (S, W) by N,H, P
respectively.

Given a congruence subgroup I', we can find a Z-lattice L in K and a
Z-lattice L, in a vector space

Hy={be KI|'b" = b}
1, 'yPS b+ 3'y*Sy

q
such that 'NN(Q) contains all elements of the form | 0 1, Y
0 0 1,

v
with y € L and b € L,. Therefore, if f € My (T'), we have f( Ztﬂb ) =

f( Z} ) (z € ((Cg)a, w € ((Cg)a) for all b € L,, and hence f( Z ) has the
following expansion.

(16) 1(5)= X stwe (i)

reLy
where L; is the Z-lattice in ‘H, defined by
L) ={r e Hy|Trpq (tr(rLy)) CZ},

and every g, is a holomorphic function on ((Cg)a. Define a hermitian form
H, sv on ((Cg)a by

(17) HT,S,\IJ ((wlv)vea; (w2v)v€a) =—-2v-1 Z tr (T\Ilvtw—h)S\P“va) .

veEa
1, 'yrS 3'yrSy
For any y € L, consider h = 0o 1, Y € I'n N(Q). Since
0 0 14
z 2+ (yP8) w+ 5 'y Sy)” ; ~
h = 7 , the function g, satisfies
w w+y

1
(1.8) gr(w+y") =exp <7THT,S,‘II <y““w + 51/@)) gr(w) for any y € L.

We denote by T, s w)(L) the set of all holomorphic functions g, on ((Cg)a
satisfying (1.8) and by %, s ¢) the union of T, g ¢)(L) for all Z-lattices L in
K. Now we have the following lemma.
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Lemma 1.1.  For %, g w) # {0}, it is necessary that r is totally semi-
positive definite (i.e. T is semi-positive definite for any embedding of K into

C).

This lemma follows from the classical theory of theta functions as H, s v
is semi-positive definite on (C2)® if and only if 7 is so on C? for any embedding
of K into C. Hence we can rewrite (1.6) as

(1.9) fG)=) gr(w)ea (tr(r"2))

0<reL),

where 0 < r means that r is totally semi-positive definite. We often write
this expansion without specifying the lattice Lf] employing the convention that
gr=0ifr ¢ L :

(1.10) G =Y gr(wea (tx(r¥z)).

0<reH,

Now let us define the arithmeticity of modular forms. Before doing that,
we must review the reflex of CM-type. For a CM-field K, its CM-type ¥,
and any o € Gal(Q/Q), we can define another CM-type Vo = {0 |yp € ¥}
of K. We denote by K}, (or simply K* if there is no fear of confusion), the
corresponding algebraic number field to {0 € Gal(Q/Q) |Vo = \I/} which is a
finite index subgroup of Gal(Q/Q). As is well known, K3, is a CM-field con-
tained in the Galois closure of K. Viewing ¥ as a union of g different right
Gal(Q/K)-cosets in Gal(Q/Q), we define a CM-type ¥* of K}, as follows

e * * o) -1

Gal(Q/K3) 0" = (Gal(@/K)¥) .
We call ¥ by “the reflex of ¥” and the couple (Kg,¥*) by “the reflex of
(K,¥)”. From the definition, we have (K})” = K}, for any o € Gal(Q/Q)
(or € Aut(C)). By Ny, we denote the group homomorphism = — [ . cy- z¥”

from K3 to K*. It is a morphism of algebraic groups if we view K;* and
K* as algebraic groups defined over Q, and so it can naturally be extended to
the homomorphism of (K3)} to K ;.

For any g, € %, 5w, we define a function (g, ). on ((Cg)a (which may be
non-holomorphic) by

(9:):(w) = exp (=5 Hpsw(w,w)) g-(w)  (we (€)%,

Now for every subfield Q of C containing K3, (i.e. the maximal abelian ex-
tension of K} ), we define

Trsw(L,0) = {g: € Trsu(D)] (). (w) €9 forany we (k7))

and put T, 5,9 () the union of T, s ¢ (L, Q) for all Z-lattices L in K. Sim-
ilarly put My(T,Q) = M,(Cqm)(S,\IJ)(F,Q) the set of all f € My(T') whose
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Fourier-Jacobi coefficients g, belong to ¥, s ¢ () for all r, and put M(Q) =

M,gq’") (S, ¥)(€2) the union of My(T", Q) for all congruence subgroups I' of G(Q).
Set

(g:n)
A (Q) = Al2™) S, W) (Q) = 1| fr e ML(S,9) (), }’
k() = A (S, W)(Q) ZELZJa{sz 0% fr € MO (5, 0)(9)

AR(T, Q) = A (8, 0)(T, Q) = A" (S, )(Q) 1 A" (S, w)(D).

Lemma 1.2. Let Q be as above.

(1) Take g, € T, 5,w. Suppose that there exists a non-empty open subset
U of (C;’)a such that (gr)«(w) € Q for any w € (K;’)\P NU, then we have
gr € ‘IT,S’,\I/(KE;Q;)) KK Q.

Yab

(2) Trsw(Q) =% sw(Ki,) Oy, O

Proof. The assertion (2) follows from (1) immediately. Let us prove

(1). We get T, 55(C) = T, 50(Ky,,) @k, C by [4, Propositions 1.2, 2.4

and 2.5]. Hence for g, € %, sw(C), we can write g, = c19,1 + -+ + cgry

with gr1,...,9r1 € Trsw(K},,) and ¢1,...,¢ € C. Take g,1,...,9,; and

c1,...,¢c € C so that gr1,...,gr; are linearly independent over C. Put
l

h = (9r)l(xpyvnv, hy = (grj)l(xpyvav (1 < j < 1). Since h = 3~ cfh;
j=1

for any o € Aut(C/Q), we have ¢1,...,¢ € Q. O

From this lemma, we obtain the following proposition.

Proposition 1.3.  For any subfield Q of C containing Ky,,,, and for
any k € Z*, we have
Ak (Q) N Mg = Mg ().

Proof. Let f € Ap(2) N M. Then we can write f = f1/fs with f; €
Mi41(), 0# fo € My(Q) (I € Z*). Let their Fourier-Jacobi expansions be

AG) = Y glwea (tr(r’2)),

0<r€EH,
RG) =Y. gwea(tr(r'z2)),
0<r€EH,
fG)= Y gr(wea(tr(r’2)).
0<rEH,

Then g}, g2 € Tr.5,w(Q) for all r. Take ro € Hg so that g2 # 0, and put

U= {w € ((Cg)a g?o(w) # 0}.
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Then U is a non-empty open subset of ((Cg)a. For w € (K;L)‘I' NU, we put

fu= Y (g)«(wea (tr(r?2)),

0<reH,

fom Y (@) (w)ea (t:(r2))
0<reH,

fo= Y (90):(wea (tr(r"2)).
0<reH,

By a formal calculation of ff,, we have Y.  g;(w)g?_,(w) = g.(w) for each
0<teH,

r € Hy. Thisimplies > (g¢)«(w)(g2_;)«(w) = (gr)«(w) and hence we obtain
0<teH,

fefox = f1.. Since f., fa. and f1, can be regarded as formal power series of

¢?[F : Ql]-variables such that fi, and fo. with coefficients in ©, the coefficients

of f. must also be in Q. Hence we get g, € T, 5¢(2) from Lemma 1.2. So we

obtain f € M (). O

Lemma 1.4. (1) Let Q be a subfield of C containing K3, ., and k €
Z2. Then for any f € My(Q) and for any h € N(Q), we have

fleh = foh e My(Q).

(2) For any k € Z?, take any subfield Q of C containing F(k) V K},
Then for any f € Mk(Q) and any h € H(Q), we have

flkh € Mg ().

(3) Let f € My, whose Fourier-Jacobi expansion is

fG)= Y. g(wea(tr(r¥z)).

0<reH,
1, 'y*S b+ %ty”Sy o
For h = 0 1, y 1, € HQ) (y €
0 0 1y (far)™!

K7, beHy, aeGL(q, K)), we have

i (5)

:<H(det(ap)‘l’”)k”>- > ealtr(rd) {(9:)«(y")} €a (tr (("afra)¥z)) .

vea 0<reH,

Proof. By a straightforward calculation, we have

Fom (5 )= X eatntrt) {(an)- (")} ea (i ((arra)")

0<reH,
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This implies (3). Since es(tr(rd)) € Qgup, for any subfield 2 of C containing
K3, we have

z

Mu(Q) =4 f e My (th)(o

) has Q-rational Fourier coefficients

for any h € H(Q)

Hence we get (1). As the constant [] (det(a”)¥»)"> is stable under the action

vea
of Gal(Q/F (k) V K3},,;), We get (2). O
For any 0 < b € F*, we can define the isomorphism I(.S,b) of algebraic
groups G4 (S, ¥) — G@™) (bS, ¥) by
b1, b1, !
(1.11) I(S,b)(a) = 1n a 1n
Ly Ly

This is compatible with the biholomorphic bijection (S, b) of D(4™) (S, ¥) onto
D@ (pS, ¥) defined by

w(2)-(5)

po (1(S;0)(),e(S,0)(3)) = po(a3),
for a € G@™ (S, ¥)(Q), 3 € D@™(S,¥) and v € a. Hence we can iden-

tify /\/l,(f’")(bS, ¥) and M,gq’")(S, ). In terms of Fourier-Jacobi expansion, an
element

Then we have

Z gr(w)ea(tr(r?z)) GM,(gq’n)(S,\I/)

0<reH,

is identified with
S gr(w)ealtr(pr¥2)) € MM (1S, W)

0<reH,

through £(5,b). Using these expressions by Fourier-Jacobi expansions, we can
identify M{"™ (S, 0)(Q) with M{"™ (S, ¥)(2) (and clearly A"™ (S, ¥)(Q)
with .lél,(f’n)(bS7 U)(Q) ) for any subfield Q of C containing K3 ;.

If b (¢ F*) is not totally positive, we can define the group isomorphism
G (S, W) — G@™ (bS, ¥ (of course ¥ # ¥) by (1.11). But in this case the
corresponding bijection of D™ (S, ¥) onto D(@™ (bS, ') is not holomorphic.
So we cannot identify modular forms on both symmetric domains.

In [1], the canonical models of D = D(@™ (S, ¥) modulo congruence sub-
groups of G(Q) are constructed. Consider the adelization G 4 =G(@™) (S, W) 4
of G = G@™) (S, V). That is,

Ga = {z € GL(m,K,) "2’ Rz = v(z)R with v(z) € F} }.
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Note that z;,, the p-component of z, belongs to GL(m, O,) for almost all non-
archimedean primes p of K. Put

Ja € (K*)’; such that
G, =G0 (5, W) = { v € G | detlr) (N ()" (Ni-jo(@))' € KXKE, .

V()N jg(a) € FXFX |

where K% (resp. FJ) denotes the infinite component of the idele group K}
(resp. F}) and FZ, means the connected component of the identity of FZ.
The overlines mean the topological closures in the idele groups. Clearly we
have G4 D G(Q).

Let 2 = 2@ (S, W) be the set of all subgroups of G4 which contain
Goo, the infinite component of G4, and whose projections to Gf, the non-
archimedean component of G 4, are open compact. Then for any Y € Z, Y N
G(Q) is a congruence subgroup, which will be denoted by I'y. For each Y € Z
we have a variety (more precisely, a Zariski open subset of a projective variety)
Vy defined over Ky, and a holomorphic map ¢y : D — Vy so that ¢y
defines a biregular isomorphism of I'y \ D onto Vy. For X, Y € Z and =z € G4
so that X D 2Yz~ !, we take the morphism Jxy(x) of Vy to V;;(x), where
o(z) € Aut(C/K*) is determined by x, as in [1].

Define W = W(&m) (S, ) by

(1.12) W={;€Dl|;=(b") withsome be KI™"}.

Then ¢y (3) is Kj,,-rational for any 3 € W. Let & = &™) (S, ¥) denote the
function field £;, of [1, Section 4.2]. The function field £ is contained in the
union of K}, (Vy) (ie. the field of all rational functions on V3 defined over
K3,,p) for all Y € Z. Now we have Ay(C) = &V C.

The function field K determines a certain arithmeticity on Ag. The relation
between the arithmeticity defined in this section and that of K will be made
precise in Section 5.

2. On some embeddings of symmetric domains

To analyze the arithmeticity of modular forms with respect to G =
G(@™)(S, W), we need to use Shimura’s many results in the symplectic case
through some embeddings. So we define three kinds of embeddings of groups
and symmetric domains in this section.

First let us review symplectic groups and corresponding symmetric do-
mains. Let F, K, a be as in Section 1. For any positive integer {, put G(”(Q) =

GSp(l, F), G\"(Q) = Sp(, F), that is,

a"(Q)
ty (—Oll g) v=v(y) (—(iz 10l> with v(y) € FX} :

= {7 € GL(2l, F)
(A e)= (D))

G Q)= {7 € GL(2L, F)
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We view GO, Ggl) as algebraic groups defined over Q. Then Ggl) has the strong
approximation property. As is well known, we have det(y) = 1 for any v €

GD(Q). Set
V@ = {yeGV@Iv() >0},

where > 0 means totally positive, and set
97 ={2=(2v)vea € (Cha ‘tzq, = zy, Im(2,) >0 forany vea},

where > 0 means positive definite. Then G()(Q); acts on H2 as a((2y)vea) =

((avzv + bv)(C'L;Zv + dv)_l)vea with a = ( CCL Z > S G(l)(Q)-i- and a,b, C,d €

F}. The automorphic factor is defined by

jgl)(aa (Zv)UEa) = Cyzy +dy

for each v € a. We define congruence subgroups of G)(Q) and modular forms

on H? with respect to them as in [9]. Let M,(Cl) (k € Z?) denote the space of
holomorphic modular forms on H* of weight k. Set

A= U {pst e Ml 07 emO ).

ecZ?

Now for any subfield €2 of C, we denote by M\” (€) the space of all holomorphic
modular forms of weight k with Q-rational Fourier coefficients. (See, [9, Section
25].) Put

A2@ = U {af A embu@. 0zhemP@].

ecZa

For any 0 € Aut(C) and f € Mg) whose Fourier expansion is
(2.1) () = 3 crealti(r2)).
relL

where L is a certain lattice in the space of symmetric matrices of degree [ with
coefficients in F', there exists f7 € /\/lffg whose Fourier expansion is

(2.2) fo(z) = Z clea(tr(rz)).

This fact is proved in [3] (cf. also in [9, Section 26]), and this implies ./\/l,(cl) Q) =
{0} if Q 2 F(k).

In [2], the canonical models for symplectic cases are constructed. Take
G0 = GSp(l, F4) and set

gﬁ) = {x € Gy ‘v(m) € F*FX Q4, wv(x),>0 foreach ve a}
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and denote by Z() the Z defined in [2]. For any T € Z"), we denote the
congruence subgroup 7N GV (Q) by Fg). We denote by J;l,)T, VT(l)7 Lpgf), 80,
the Jrr, Vi, or, £ defined in [2] respectively, for T,T" € Z(). Take 0 #
fi, fo € /\/lg) and f7, f§ in the sense of (2.2). Then for any Y € Z® such that
(f1/f2) 0 (gpg))’l is defined as a rational function on Vy), we have

et = [sme ) sl (1 o ) oe?

where x(o) € [[,Z; so that [x(0)~", Q] = olqg,, and

~1
~ 1 0 1 0
Y = Y .
( 0 X(O’)].l ) ( 0 X(J)ll >
(See, [8, Theorem 1.5].)
For any CM-extension K of F' and its CM-type ¥, put
W(l {ZGYJZ ’277‘1' forsomeTEKg}.
Then go( )( ) is K},,-rational for any z € W (W) and T € Z. For any

z=71Yc WO (¥), we define the group injection <I>g) (K — GX) as

O A L it Vel I

(a—a?)(T —7P)1 (1 — 7)Y aPT — at?)
[ times
namely the h(a,...,a) in [9, Section 24.10] with h corresponding to z. Then
it satisfies @gl)(a) ( I— > = < s-; ) and V(@gl)(a)) =aa’. If a € K*, then
1 Ry

o (a) € GN(Q)4 and B (a)(z) = =,
Now let us define the first embedding. For z = (2,)yea € “62’ put

e (S, W)(2) = ( 0 ) - ( o )e

Then a(q’ )(S ) gives an embeddmg of §7 into D(@™) (S W). This is compat-
ible with the injection 1™ (S, ¥) of G<q>(@) = Sp(q, F) into GY2™ (S, 0)(Q)
defined by

0

a b

s oy (¢ 2 Y = 0 1, 0, where abe,de Fo.

0 c d 0 d !
C

As I (a.n (S ) can be viewed as a homomorphlsm of algebraic groups, we can
extend I{7™ (S, ¥) to the map G\%) — G\9™ (S, ) 4. We denote I9™ (S, ¥),
séq’n)(S, U) by Ip, e if there is no fear of confusion. We have

Io(a)(e0(2)) = eo(a(2)),
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oy (In(@),e0(2)) = qu)(a, z) for any a € Gﬁ”(@), z € 9y

Hence we can consider the pull-back of modular forms on D.

Lemma 2.1. (1) Forany f € My, foe € M,gq) (ke z?).
(2) Let Q be a subfield of C containing K3,,,. Then for any f € My (Q),

we have
foege MP(Q) (kezZ?).

Proof. (1) is clear except for the case when F' = Q and ¢ = 1. Put the
Fourier-Jacobi expansion of f as

0= Y atwent)  s=( 7 )en,

0<reL,

where L, is a lattice in H,. Then we have

(2.3) (foep)(z) = Z gr(0)eq (tr(Re(r)z)), z € 9.

0<reL,

Now Re(r) is a symmetric matrix contained in FJ. Equivalently,

(2.4) (foeo)z) =D | > 9:(0) | ealtr(bz)).

b 0<reLgq
Re(r)=b

If Re(r) = b, we have r 4+ r? = 2b. This implies 20 — r is semi-positive definite
for any embedding of K into C. If we embed H, into {X e C X = X}a,
then L, is a lattice (hence discrete) in it, and the subset

I {X S (Cg tX = X, 20, —X2>0, X > O} is compact. Hence the set

vea
{r € L,|Re(r) =b} is a finite set. This implies (2). As (2.4) is the Fourier
expansion of f oeg, we get (1) even if = Q and ¢ = 1. O

Combining this lemma with Lemma 1.4, we have the following lemma.

Lemma 2.2. (1) Let Q be a subfield of C containing K},,,. For any
f € Mg(R) and any h € H(Q), we have

(foh)oeg e MP(Q) (ke Z?).

(2) Take any k € Z*. Let Q be a subfield of C containing F (k) V K3,
For any f € Mg(Q) and any h € H(Q), we have

(f]xh) 0 g0 € MP(Q).

Further, we have the following lemma.
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Lemma 2.3. Take any k € Z*. Let Q be a subfield of C containing
F(k)VK}, - Let f € My. Then f € My(Q) if and only if (f|xh)oeo € MI(C‘Z)(Q)
for any h € H(Q).

To prove this, we need the following lemma.

Lemma 2.4.  Let L, be a lattice in Hy. For any r € L, which is semi-
positive definite in any embedding of K into C, we can take some o € GL(q, K)
so that

{0<r" € Ly |Re(*a’r’a) = Re(*a’ra) } = {r}.
Proof. The condition Re(*a’r’a) = Re(*a’ra) implies that v < r +

(tar) MarParat. Viewing GL(q, K) as a dense subset of GL(q,C)?, we can
take a compact neighborhood C of the identity in GL(g, C)? such that

{o<r eL, |7“’ <7+ (a’) arfaPa™!  for some € C}
is a finite set. Hence we can choose a suitable oo € C'N GL(q, K) satisfying the

condition of this lemma. O

Proof of Lemma 2.3. The “only if” part has been proved in Lemma 2.2.
For any f € My, take the Fourier-Jacobi expansion of f as

@)= Y gr(wlealtr(r’2))

0<reL,

with some lattice L, of H,. Assume f|zhogg € M,(Cq)(Q) for any h € H(Q).
Fix r € L,y € K and let us prove (g-)«(y¥) € Q. Take a as in Lemma 2.4

g 'S 3"y Sy a
andputh=| 0 1, Y 1, . From Lemma, 1.4
0 0 1, (tar)™!
(3), (2.4) and Lemma 2.4, [] (det(a”)‘l’“)k” (g-)«(yY) is a Fourier coefficient
vea
of flxhoeg, hence (g,)«(y¥) € Q since [] (det(a”)‘l’“)k” € F(k) v K},. This
vea
completes the proof. O

Next we define the embedding of D = D(@™) (S, ¥) into H2,. Take § € K*
such that ” = —4. Put

(S, 9)(3)

L+t —twSYw) tw 16Y(z =tz —twSYw)
= w (=Ss—hH¥ §¥w
26% ("2 — 2 — 'wSYw) 5%ty —%(z—i-tz—kth‘I’w)

where 3 — ( : > with z € (C9)*, w e (C1)°.
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Then g5 = 5((;1’”)(5, V) is an embedding of D into $2,. This is compatible
with the injection I; = I{"™ (S, ¥) of G(Q) = G (S, ¥)(Q) into G™(Q) =
GSp(m, F') defined by

p
s e = o0 (40 ) s
1, 0 0 , 0 0
0 1, 0 0 1, 0
s, 0 0 51, 0 0
whereC' (S, 9) = 0 0 1, 0 0 1,
0 -5 0 0 S 0
0 0 —61'-1, 0 0 &'-1,
Then we have
I5(a)(e5(3)) = e5(a(3)),
(2.5) v(Is(a)) =v(a), det(I5(a)) = det(c) det()”.

Put, for each v € a

1 0 3671, B
wy(3) = 0 1, %5‘1”)5‘1’”11)” for 3 = ( w” > € D.
(=6~ H¥e .1 0 1, v /wvea

Then we have

I O N Y L G A [T

where o € G(Q), 3 € D. From (1.4) we obtain det (\,(,3)) = det (py(a,3))
for any @ € G1(Q), hence det (jvm)(l5(a),55(3))) = det (puo(e, 3))? for each
v e aif o € G1(Q) (since det(wy,(3)) = 1 for any 3 € D ). Therefore for any
fe M we have f o™ (S, w) e M (S,W) (k € Z*). Through the
embedding €5, arithmetic modular forms on H2, and D are related by a certain
proportionality factor, which is essentially a CM-period.

Lemma 2.5. Let k € Z2, and Q be a subfield of C containing F (k) V
K} ,p- Then for any f € M,gm)(Q), we have

ROED) - (foel™(8,0)) € MM (5, w)(Q),

where h® € MY (F(k)V K3,,,) and 20 € WD(W) so that kW (2(D) £0

Proof. For any h € H(Q), consider (f oes)|axhoegg € ./\/lg‘i). Then for
any z € W@ (W), we have (f o &5)|axh 0 g0(2) € R (z)™ . Q since e5(h o
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g0(2)) € W™ (T). As stated in [8], Mg‘?(@) is spanned by Mé‘;@) (F(k)) (clearly
F(2k) = F(k)) and so we have

h(l)(z(l))’" ~(foes)akhoeg =crhy + -+ + cthe

with ¢1,...,¢¢ € C and hy,... , h € Mg?c)(F(k)) Now we have h;(z)
RO ()20 ¢ F(k) v K}, for any 2 € W@(¥) (1 < j < t). Taking

hi,...,hs linearly independent over C and moving z all over W (@) (), we have
c1,... ¢ € Qand hence h(D(z(0)=" . (fogs)|axhoeg € Mé‘?(Q) Taking any
h € H(Q), we get AV (z())=" . (foe;) € Mop(Q) from Lemma 2.3. O

We can consider embeddings of canonical models corresponding to 5. For
Y € Zand T € Z(™ if I5(Y) C T then we can define the map from V3 to
V:ﬁm) which is compatible with 5. We denote this by Ery. Namely, we have
the commutative diagram as follows.

D —=2 . 9
(PYJ, J,W(Tm) .
(m)
Vy Vi
TY

The map Ery is a rational map from Vy to VT(m). Take W = W(q’”)(S, U) as

in (1.12). Then we have £5(W) C W) (W), and ¢y (3), gogpm)(z) (3eW, z¢€
W) (0)) are K3,,,-rational. This implies Ery is defined over K3, since W
is dense in D. In the same way as in [7, Section 4], we have

(27) E7 o Jxy (@) = Iy (Is(@)) o Bry,
where z € G, X,Y € Z and T,U € Z(™) if the both hands sides are defined.
The properties of Ery will be mentioned more precisely in Section 4.

The last embedding is that of Sp(l, F') into Sp(lg, Q) where g = [F : Q),
stated in [8, Section 1]. Take a basis {£1,...,0y} of F over Q and put

(B)oy = (Bg)w B)o i (Bglw Lt
BW —
(B)vy, = (Bg)o, Br)o, 1t -+ (Bg)v, L

B =

Let {ﬂi, . 7%} be the dual basis of {1, ..., 3y} with respect to Trp/q, that

is,
(ﬂi)m T (5{/;)1)1

(tB)*lz
(B)v, - (B,
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We define the embedding Ig) of Sp(l, F) into Sp(lg, Q) as

ey W ((25)=("% o)

Gy, by,

« Ay, bvg (tB(l))_l 0
Coy dy, 0 BW )

dy

Co

9 9

where a,b, c,d € F}. Then Sp(lg,Q) acts on

oy ={zec'z=2 m(2z)>0}

as

( Ccl Z ) (Z) = (aZ +b)(cZ +d)™* (a,b,c,de(@ég).

The corresponding embedding Eg) of H} into $;, is defined by

eD((20)vea) = 'BY BO.
ng

This embedding is compatible with Ig). For any « € Sp(l, F'), put ( Za Za )
(6% (6%

= IJ(BI)(Q) with aq, ba, o, da € Qig. Then we have

(1

i (@, 2)
(2.9) caeW(z) +dy = (BO)! B®

b (. 2)

for any z € $*. Hence we can consider the pull-back of modular forms again
in this case. For any modular form f on $);, of weight x, we have f o Eg) €
Mg{ (k € Z). If all the Fourier coefficients of f are )-rational, then fogg) €
MU (Q), for each subfield © of C.

3. Arbitrary conjugation of theta functions

In [4], Shimura formulated complex multiplication theory in terms of theta
functions. In particular, he stated a theorem on conjugation of abelian varieties
with complex multiplication by o € Aut(C) when o|x» = idg~. We shall extend
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this theorem to the case for an arbitrary o € Aut(C) using the results in [10,
Chapter 7] and [11].

First we consider the conjugation of polarized abelian varieties. Let F, K
be as in Section 1 and take a CM-type ¥ of K. Let (A,C,¢) be a polarized
abelian variety of type (K, W, L,t) with respect to O, which is g-dimensional
and End(A) ®z Q 2 K. The Riemann form E corresponding to C is given by

1
E(x\l', y\I’) = §TrK/@(txyp)

for all x,y € K. (See, [9, Section 24] and [10, Chapter 7, Section 3].)
Take any ¢ € Aut(C) and consider (A,C,t)?. We denote by Ao the
subgroup of all torsion elements of A. For any o € Aut(C), take x(o) € [[Z)
J2

so that [x(c)™!,Q] = olg,,. Then we have the following commutative diagram
by virtue of [10, Chapter 7].

K/L _ Oo¥ Avor
XQJ/ lo’
K/aL __ Oao(Wo) | Ac

with some a € K, and (A4,C,t)? is of type (K, Vo, aL, (0, a)t) with respect
to Og; a and o are related by % € F*XFX and i(0,a) € F* so that )fl(;,) €
t(o,a)FY. Now the coset a K * KX is uniquely determined only by (K, ¥) and
o (not depending on A or L). We denote a K*KZX by gg(c). If o is trivial
on K3}, we have gy (o) = Nj(b)K* KX with b € (K3) such that [b~1, K3] =
ok, ,; this fact is a main theorem of complex multiplication theory of [9].
Note that gy (01)gws, (02) = gw(0102). Set

Cy(C)={(0,%,a)|oc € Aut(C), a€ggy(o)}.

For a polarized abelian variety (A,C,¢) of type (K',1¥,L,T) (for some
skew-hermitian form 7 on K'!), we also have the commutative diagram

Kl /L & Ator

A

tor

for a € gy (o). This can be verified by taking A to be a product of I copies of
a polarized abelian variety of type (K, V).

Now let us review classical theta functions. Let V be a finite dimensional
C-vector space and A be a Z-lattice in V. Assume that there exists a semi-
positive definite hermitian form H on V which satisfies Im(H (u1,uz2)) € Z for
any u1,us € A. Then we define

f is holomorphic on V,
E(V7A7H): f:v—==C f(u+$)Zf(u)exp(ﬂ'H(x7u—|—%x))
foreachueV, z€ A
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For any f € T(V, A, H), we define the (non holomorphic) function f, on V as
T
Folw) = exp (=S H(u,u)) f(u).

Consider the case V = C! and H is positive definite. As stated in [4], put

0O (u, Z;p1,p2) = Y exp (rv/=1 ("(z +p1) Z(x + p1) + 2 (x + p1)(u+ p2))) ,
rcZ!

oW (u, Z;p1,p2) = exp (nv/=1'w(Z — Z) " u) 09 (u, Z; p1, pa).
Here u € C!, Z € §; and p1,ps € Q'. As stated in [4], take (w; wo) € (Clgl such
that Z = w;1w1 €9 (w1, we € GL(I,C)) and set
(3.2) W (u, (w1 wa)ip1,p2) = 090, Z; p,0) " oW (wy M, Z; p1, p2)

where p} € Q' so that #()(0,Z;p},0) # 0 (it is possible from [4]). Then
0O (u, (w1 wa);p1,p2) is determined up to the multiplication of non-zero con-
stant. For A and H above, by the theory of elementary divisors, we can take a
Z-basis of A so that the Z-valued alternating form Im(H) on A is expressed as

(3.3) < 0o ) ,

where € = , €1,...,6 €N, eglegyr, e=1, peN.

€
As is well known, if u is even and p > 3, we have

dimT(CY, A, H) = p! det(e).
In this case we can take the basis of T(C, A, H) as

{eO (. @1 w2);3,0)|j € p7e'2Y/2! |

7l
where A = (w1 w2) < €7 )

Now we consider theta functions with complex multiplication. Take a
totally real algebraic number field F of finite degree and put g = [F : Q]. Take
B and B® as in Section 2 and put

Uy,
0% (w2 pr,pa) = 009 | BO || D) |
uvg
Uy,
l . l
@%}B(Uvz;phpz):@(lg) ‘BY : aa(B)(Z);plap2 )

Uy,
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for u € ((Cl)a, z € 92 and p1,ps € QY. Take (w1 we) € ((Clgl)a such that
wy twy € H? (wi, wa € GL(I,C)? ) and set
O35 (u, (w1 w2);p1,p2) = 03050, 259, 0) Lol (w3 Y, 23 p1, pa)

for u € (CH2, 2z = w; 'w; € H? and py, pe, p; € QY so that 9%?3(0, z;p},0) # 0.

The theta function @%?B(u, (w1 wa);p1,p2) is determined up to the constant

multiple. For fixed p1,p2,p] (by the same reason as in [4]), there exists a
congruence subgroup T'") of G)(Q) = GSp(l, F) which satisfies

l l
@%))B(U, (w1 w2)t7;p17p2) = @Sw,)B(% (wl wz);pl,m)

for any v € ') and (w; ws).
Consider a CM-extension K of F' and its CM-type V. Take a Z-lattice L
in K!' and an [-dimensional skew-hermitian matrix T € K ll so that

Tri/o("y{Ty2) € Z for any y1,ys € L.

We can define the hermitian form Hr g on (C!)2 as

Hrw(ui,uz) = —2v—1 Ztu_mT\I’”uzw

vea

Assume that Hrp g is positive definite. This means —2v/—1T"%* is positive
definite for each v € a. Then we can consider T((C")2, LY, Hr y). Take L
sufficiently small so that Im(Hr,y) is expressed as (3.3) for a positive even
integer y > 3 (in this case we must replace [ by Ig). Then we have dim¢ T((C!)2,
LY Hry) = p'9 det(e) and its basis is given by

(34) {oWsu, (@i w2):,0)|j € p~le 'z /2" }

where

_ Bili o+ Bgly 0 0 z's
(3.5) Lw(w1w2)< B % g1 - ﬂ;ll><,ueZlg>'

Hence we have wy,ws € (K})¥. This means z = w; 'w; € WW(¥). Put w; =
¥, wy =1y for 71,1 € K. Since 009 (0,%(2);p},0)/6009)(0,W (2); pl, 0)
(viewed as a function of z on $? ) is contained in A(()l)((@) (for pi,py € QY),
the functions go%’)B (u, (w1 w2);7,0) are determined up to the multiplication of
(K} a) - For any subfield Q of C containing K}, ,, put

T((C)*, LY, Hrw, Q)
={fe T((CH*, LY, Hry) |fo(u) € for any u € (Kl)‘P}
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Let us consider f.(u) when f(u) = @%?B(u, (¥ 75£);4,0) and u € (K')¥. Put

oo o Al o By 0 -0 K1
u—(ﬁ 7'2)< 0 0 ﬁill 5;11 JLERS
for 1, k2 € QY. By [9, Section 27] (or in the same way as in [4]), we have
fe(u)

= exp(—ﬂ\/—1%1/%,%2)9(!9)(0, Eg)(z);j + K1, ,u€f£2)/9(lg)(0, Eg)(z);p'l, 0).

The right hand side belongs to Aél)(Qab) when viewed as a meromorphic
function of z(€ $?). Hence f.(u) € K}, since z € WO (¥). This means

gp%?B(u, (r¥ 75¥);4,0) € T((CH2, LY, Hy v, K},,;,)- Hence we obtain

‘:(((Cl)aaL\IlvHT,‘l’) = ‘I((Cl)a’L\PaHT,‘I’aK\zab) XK C.

*
Wab

For f € T((CH2, LY, Hr ), consider the restriction of f. to (K')¥. Then
it satisfies

fe(y? +27) = ea(—Re('z?Ty)) f(y¥) forany z € L, y € K.
Hence for any Z-lattice M of K', there exists a sublattice M’ of M such that
foly? +2%) = f.(y¥) forany z € M, y € M.

Therefore for any y € (K 4)!, taking M, y; € K' so that y € M ®z(Qu X I, %)
and y € y1 + M' ®z (Quo X Hp Z,) (where Qo denotes the infinite component

of Q4), we can define f,(y¥) to be equal to f.(y{).
We have the following theorem which is an extension of the main theorem
of [4].

Theorem 3.1.  Assume that Hpy is positive definite. Take any f €

T((CH2, LY, Hr ) and (0,V,a) € Cy(C). Then there exists f(@¥®) ¢ T((ChH2,
(aL)(¥), H,(5,0)y1,w5) which satisfies

(1), (@) ) = [£.6") for any y € K.

Proof. It suffices to prove the case f(u) = @%?B(u, (ry¥ 75¥);5,0) where

the right hand side is as in (3.4). Set z = (1, '7)¥ € $2. Take a congruence
subgroup I'V of Ggl)(Q) so that @%’)B(u, (w1 w2)ty;4,0) = @%’)B(u, (w1 we);7,0)
holds for any v € T and (w; ws). Next take X € Z® so that I‘g? C 01O,

Put
L, o \! 1, 0
X=( x| ! e z0),
( 0 x(o)L ) ( 0 x(o)L )
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and take Z € H} so that

0 (2) = lJ;(?X (( Bl x(c(f))ll )_1> (wg?(Z))r

Consider f(u) = go%’)B(u, (2 11);4,0). Take u € (C)2 by

_ (3 puly o Bgly O e 0 "
u(211)< 0 .. % o1y 5;11><”6K“2>

for k1, ko € QY. Then we have

(3.6) fr () = exp(—mv/ =1tk pers)
x 019(0, 5 (2):  + mo, pera) /0090, €55 (2): ). 0)

= [exp (—mV—1 k1 puersy)
x 0090, (') j + r, per) /0199 (0,5) (2'): 4, 0)
B [(@%?B)* (v, (2" 1,);5,0)

Here x5 € QY so that xh = x(0), k2 mod(Zy)"9, "kipe(rh — x(0), k2) €
2(Z,)" for each finite prime p, where x(c), denotes the p-component of x(o),

[ea

o

1

and
o1
(O 0 1 0 1)~
P e - By O o0 K1
w=e 1l)< 0 o 0 BL o L )\ pewy )
-1
- 1 0 - 1 0
O] = L !

forYY € 2V Y ( 0 (o)1, )Y( 0 (o)1, ) such that Y ¢ X

and the first line of the right hand side of (3.6) is defined as a rational function

on Vél) (viewed as a modular function of Z). Now Fg?(z’ ) = Fg?(z). This

implies T (2") = T'V(2). Hence the images of (C)® by the mappings (to the

(u'9 det(e) — 1)-dimensional projective space)
0] TP,

(3.7) u— [@F,B(“v (0 7 )7]’O)Leu—1e—1zm/zm

and

l .
U — |:§0§7',)B(u7 (Z/ 1l>;]a 0>:|j€u*16*12l9/219

are the same abelian varieties (and of course the images of (K')¥ are their
subgroups of all torsion elements). We denote this abelian variety by A. Then
(3.6) means that the image of (C')2 by

l ~ .
u— |:90§7',)B(U, (Z ]-l);]a O)i|j€pﬁ16*1Z19/Zlg
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is A°.
In the commutative diagram (3.1), we view

O) T Wy,
U — [SDF,B(U; (7" 72)3 J, 0)}]'6;1*16*1%9/219

as ©. For X € ZU as above, take

—1
(a1 a2 L 0 (ORAWRIOFI0) 0)
a= < ) € < 0 o), ) (XﬂGlA) GO0 (a) N GO(Q),

Q3 Oy

where aq, o, a3, 04 € Fll . This is possible from the strong approximation
property of Ggl). Then we have

al = (ri'ar + mlas  Tilas + mlay)
. Bl o Byl 0 0 79
0 0 JC TR ﬁ;ll MEZZ‘Q :
For any k1, k2 € QY9, we can take (sufficiently small) X € ZW and correspond-

ing a = ( oo ) above such that
Qg oy

Ou ((mfar + mlas mlag +mlas)?

.(5111 v Bgl 0 O )( o >>

0 - 0 BL - B Li€ka

B 0 Bl - By 0 -0 K

= [(SOF,B)* ((7'1\1] TQW)< 6 % gL - Bl ) ( ,ue:—@’g ) ’

g
v Wy,
(Tl Ta )’]70> :|
jEp—le—17l9 /719

where k € QY and K = x(0), k2 mod(Z,)" for any finite prime p. This fact

can be easily verified from (3.1). Consider the structure of polarized abelian
variety (A,C,¢,{t;};_,) stated in [9], where {¢;};_, is a set of torsion elements

of A. For any {( N/:fliz >} C Q%9, (3.6) implies that we can choose
2,1 i=1

(sufficiently small) X € Z() and corresponding Z so that

O\ ((=1nf Bili - Bl 0 -0 K1
(@F,Bl((“l)( 0 0 g o L )\ pere )0

(2 11);1}0)

_ 0 v _of Bl - Bgly 0 - 0 K1
_li(@F,B)* ((7'1 72)( 0 0 Bl - 5{;1[ /’(‘EK/IQ)'L' )

w 375.0)]
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where IQIQ)i = X(O’)p_lli27i mod(Zp)lg7 t:‘ﬁl’i/.lG(IiIQ)i — X(O’);lfig)i) € Z(Zp)lg for

each 7. Assume that (A,C,¢, {t;}._;) is of type
(0 -1 Bl o Byly 0 e 0 i
’ 1, 0 ’ 0 0 ﬂill ﬂ;ll uEZlg ’

Gl - Bgly 0O .- 0 K1, "
0o ... 0 /L - B ekt ; .
with respect to z in the sense of [9]. Then (A,C,,{t;};_,)7 is of type
(0 =L Bl o Byly 0 e 0 i
’ 1 0 ’ 0 te 0 ﬁill te ﬂ;ll uEZlg ’
Bl - By 0 - 0 ri YU
0 -~ 0 AL - B fiekiy ; -
with respect to Z and ((ay7 + az) (3T + ay) )Y (if we take sufficiently small

X). Take {t;};_, sufficiently large so that TV (((a;7 + aa) (a7 + ) ™1) ) =
') (%). Then we can take

Fer (u) = SD%)B(% (m'ar +7mfar mlas +m'as)¥7:5,0). O
Remark. This theorem holds more generally for the case when Hr v is
semi-positive definite (hence even if T is degenerate). To see this, decompose
K'=W PV, with K-vector spaces Vp, Vs, such that T is non-degenerate on
Vi and zero on V. Then we see that f is (VoNL)¥-periodic and hence V5 ®gR-
invariant for any f € T((CH)®, LY, Hr ). Therefore T((CH)2, LY, Hr ) can be
identified with (Z(Vl 02%0) R, (Vl N L)‘Ij, HT,\II|V1®@]R)~

In this proof we get the following proposition.

Proposition 3.2.  Take any z =¥ ¢ W(V) (7€ K}, ‘71 =7) and
o € Aut(C). For any X € ZW, put

-1
> 1; 0 1, 0 O
X = X €z
( 0 X(O’)].l ) ( 0 X(O’)].l )

and

ljﬁ?x << ¢ xom >1) (@(Q(Z))r “A

Then we have 2 € W (¥o) and

@2?(5) = wﬁ? (((qu + az)(asT + a4)_1)\yo) ,
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where < a2 ) € GY(Q) (a1,a0,a3,a4 € F}) such that
a3 Oy

a3 oy 0 x(o

-1
(2o )e( b o) EneeLel@nco@.

with a € gy (o).

The T, s,w)(L) in Section 1 is clearly equal to T((C}")?, LY, H, s,w). Hence
we can consider the action of (o, ¥,a) € Cyg(C) on each Fourier-Jacobi coeffi-
cient of modular forms.

Take E € M{%™ (S, ) by
2
(38) =)= (650.(=57)":0.0) 7 63(0.65(3):p1.0))

for p; € Q™9. Note that 9;1?;3(0, (—=S71)%;0,0) # 0. Consider the Fourier-
Jacobi expansion of Z. Put

MB,J = (ﬁllq o '5y1q (551)111 T (559)1q)-

Then by a formal calculation, we have

=(x) — (n) M T1+p11 e A I 0
(3) Z Pr (w Bé( 23+ prs )a(( ) q)7p1,2,

T1,r3€E€ZL99

2
<tr (T($1+p1 1) (@a+p1,3) 7 ) ) } ’

where p11 € Q% (resp. pi12 € Q",p13 € Q%) denotes the Q-coefficients
column vector consisting of the 1,...,¢m+1,... m+q¢,2m+1,... (9 —
1)m + g-th components (resp. ¢+ 1,... ,g+n,m—+q+1,...,(¢g—1)m+qg+n-
th components, g +n+1,... ,m,m+q+n-+1,..., gm-th components) of p;
and

1 Tr+Dp1a1 \ef Ta+Pi1 o \¢
@tpr ) (estprs) = §MB’6 ( T3+ P13 T3+ P13 Mg)(;.

Note that Z € M(q n)(S, U)(K},p)- Set simply

E) = Z Cr(w)ea(tr(r\yz))'

0<reH,

Now 4,0(”) (wMg,”é ( i; iii; ) , ((—Sil)‘p 1q) ;p1,2,0> is a theta function

with respect to a degenerate (in case ¢ > 1) hermitian form. By the proof of
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Theorem 3.1 and a formal calculation, the action of (o, ¥,a) € Cyg(C) to it is
(up to (K:Iklgab)x_times)

(n) Vo [ X1+ P11
wM ’ ,
Yr.B < B.,s ( 3+ D13 )
((—S‘l)q’”tal +lag (=STHY s+ t044) 1D1,2, 0)

-1
[ a1 s 1n 0 (n)y (1) g (n)
where o = ( as oy ) € ( 0 x(o)1n ) (X NG )G (I)(_Sfl)\ll(a/) N

G™ (Q) for a sufficiently small X € zm) (a1,0,a3,04 € F?). Note that
v(a) = t(o,a)~ . For such «, take o’ € Ggm)(Q) by
14
t(o,a)aq Qo
/ Lq
1
t(o,a)as Qy
1

and consider

(0550, [(a1(=871) + ax)(as(—5 1) + ) ]

2
O 0.0 (5™ (10, )8, 90) (3)) 11, 0)]

(j e D@ (4(0,a)S, ‘I/a)) .

Yo _
;ph,0)7 "
(3.9)

It is contained in Mé?in) (t(0,a)S,To) since det(jﬁm)(a',ag(j))) (v € a) are
constants. By a formal calculation, its Fourier-Jacobi expansion is

(3.10) > oV (w)eq(tr(r?7z)), = ( ; ) € D™ (1(0,a)S, Vo).

0<reH,

We denote this modular form by (@%@ For each 3 € D@ (S, V), we can
choose E such that Z(3) # 0 by taking a suitable p; in (3.8).

As stated in [5] (or in [8]), we can define a C}9-valued holomorphic function
T on g by

T(2)
1 m
o0, 2.0 [ 0 Zip{D0) -+ g0, Zip{ ", 0)
— o m... 1 . i
ﬁe( g)(u7 Zapg )a 0) e Wi)mgo( g)(uv Z’p(l 9)7 O) u=0
Uy
where u = € C™9 and pgo), .. .pgmg) € Q™. For each Z € g, we
Umyg

can take suitable pgo), . .pgm‘q) such that det T(Z) # 0. As stated in [5], T is a
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vector-valued modular form which satisfies

T(y(Z2)) = det(v3Z +y4) - (32 +74)T(Z)

for v = ( 11 :;2 ) contained in a certain congruence subgroup of Sp(mg, Q)
3 V4

(71,725 73,74 € Q9). Using this T, we can define a C}}9-valued holomorphic

mg

function A on $H2, by
A(z) = BT () (= € 53).
By (2.9), there exists a congruence subgroup I'™ of G(lm)(Q) such that

(3.11)

3 (7, 2)
) Alz)

A(y(2)) = (H det (5™ (7, 2))

vea

3 (7, 2)

for any v € T'™. Next define a Chng-valued holomorphic function A on
D@ (S W) by

) Woy (5)71

A3) = 650, (=S¥ py,0) 2 A(es(3))-
Wy, (3)_1

Then by (2.6), there exists a congruence subgroup I' of G(Q) = G (S, ¥)(Q)
such that

(3.12) A(a(s))
/\Ul (0‘75)

Moy (a,g)
) g A3)

— (H det(j1, (o 3))?

Av, (@, 3)
Ho, (@,3)

for any o € T' (3 € D(@™) (S, W) ). For each v, (1 <k < g), take Q € Q¢ and
set
mk—q m(g—k)
—N = A~
€, (3) = det [ (0---0140---0)A(3)Q

Then (3.12) implies that £, € Mﬁi’gg_l(s, V) for any v € a. At each 3 € D, we

can choose suitable T and @ so that &,(3) # 0 for any v € a.
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Let us consider the Fourier-Jacobi series of £, . For pgo), ... ,pgmg), take

pﬁ”l,p(fé € Q% and p(lz)2 € Q" (0 <i < myg) as above. Then we have

(0)

xr1+p _ 0

C@=1 > ¥y (wM5,5< G ) ((=57H¥ 1,); pﬁ%,o)
T1,r3€7Z99 x3 +p1 3

q
xeq(tr(r?

(o149 a4 %)

x det Z go(n) (wMg)[; ( o —l—p(z) > 7((—5_1)\1} 1q) P

xq,x3€EL99

=

9, 0)
(1)

B +p
xeq(tr(r? i S Mg ) [ T ) ’
a(tr( (@1+p{) (2s+p1 2 . ( 3 +pgl’)3 1<i<mg ’

where
<z1+p§ ) (@a+pi
z1 +pgi)1 t[ T1 +pgi)1 tage :
T3+ P13 T3t P13
This implies &, € Mv+2q 1 (S, U)(KY v K,,). Put simply

= 3 bus(wealtr(r¥2)), <3:(2)epq) (S@))

0<reH,

ap Qg

Now for any (o, ¥, a) € Cy(C), take o = (
a3 Q4

asg, o € F) so that

) € GM(Q) (av,as,

—1
1n 0 (n)y 1(n) g (n) (n)
ac ( 0 X(O’)ln ) (X n GlA)Goo @(,S—l)\p(a) NG ((@)7

where X € Z(™ satisfies the following condition.

()(

O (u, (w1 w2)'3pi'h, 0) = iy (u, (w1 wa); pi'y, 0)

for any (w1 w2) and any

1, 0 -t A 0 .
76( . X(ann) <XnG§A>>GSX>>( ; X<g>1n)”G‘ @

(0 < i < myg).
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Consider the C}9-valued function A on D@ (4(0,a)S, Vo) by

AG) = 000, [(an (=S 1) + as)(as(=S 1) + au) 1]V pf, 0) 2

W (3) 7! i, 25(3))
X : .
Wi, (37 gy (e e5(3)
x Ad/(£5(3))),
where
1
t(o,a)an %)
o = Ly 1
a
t(o,a)as Qy
Ly

Note that s means sgq’n) (t(c,a)S, Vo) and w, is corresponding to E[(;q’")(

t(c,a)S, ¥o) in this case. In the same way put

mk—q  m(g—k)
~ PN, —— T
£ (3) =det | [(0---0140---0) | AG)Q

Taking T and Q equal to those of &,, the Fourier-Jacobi expansion of &, is

Y WO @ea(tr(r72), (= ( Z) ) e D™ (1(0,a)8, Vo).

0<reH,
We denote this &, by £, Clearly
£l € My iag1 (1(0,0)8, Uo).

4. The embeddings of canonical models

In this section we consider the relation of the embedding &5 = sgq’n)(S, )
(which was defined in Section 2) and the canonical models.

TakeY € Z = Z(&™) (S, V) and T € Z(™) so that I5(Y) C T. Assume that
F XF%m) /F* is torsion free. Note that any element (except scalar) of Fg,wm) has
no fixed points. Then any element (except scalar) of 'y = Y NG(Q) also has no

fixed points and hence K *T'y /K™ is also torsion free. In this case ¢y, @%m) are

locally biholomorphic, Vy, Vq(wm) are non-singular, and we can define a unique
rational map Ery of Vy into Vém) so that Epy opy = gpgwm) ogs. The mapping
Erpy is regular on Vy, and is defined over K}, ,,. The Zariski closure Epy (Vy)
of Ery(Vy) in V:ﬁm) is a subvariety of Vém), which may have singular points
in general. The purpose of this section is to prove the following theorem.
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Theorem 4.1.  Let T € Z(™) and assume that T' satisfies the following
conditions (1) and (ii).

()  FxT{/FX is torsion free.

(ii) C(S,8)71TC(S,0) c [I GL(2m,C) x []GL(2m, O,), where p runs

vea p
over all non-archimedean primes of K.

PutY =1I;1(T) € Z. Then we can take T € Z(m) satisfying (1)-(3).

(1) L(Y)cTcCT.

(2) Epy(Vy) is a non-singular subvariety of VTEm)

(3) Ejy is a (set theorically) injective map on Vy- and its inverse rational
map E__ is regular on Epy (Vy).

Remark. For any 7, € Z(™) satisfying I5(Y) C Ty c T, the as-
sertions (1)—(3) are still valid even if replacing T' by Tp. This is because
Epy = J( )(12m) © B,y and so Efz_"oly =Eg, o J;¥3(12m)/7 where “ 7 means

the restriction of J;:;C))(lgm) to Epy(Vy).

Proof.  From now on till the end of this section, all the varieties and
rational maps are defined over Q, the algebraic closure of Q in C. So the word
“generic” means generic over Q. As is well known, every algebraic set defined
over Q is a finite union of varieties defined over Q.
For any positive integer N, put

(S, 6) L2, C(S, ) = %1 Z?)mod (NO,)Zm
2 )

with some by, by € (Op)7 for any finite prime p of K

Th =<xeT

where z,, denotes the p-component of xz. Then Ty € Z (m) and Ty is a subgroup
of T. From the definition of Is, we have

(4.1) L(Y)= (] Tv,

NeN
(4.2) Ii(Ty) = i,
NeN

For each P € Viﬁm), Ery(P) =y o (sgl((gogwm))’l(P))) is at most countable,
and clearly an algebraic subset of Vy. Hence E:,_Wl, (P) is a finite set.
Take Q € Vy, and put {Q1,...,Qi} = Epy(Ery(Q)). It is clear that

FEFm) (gg(np;l (@Q1))),--- ,ngm)(e(;(np;l (Q1))) are the same elements in ngm) \H2,
and Ty (03 (Q1)), - .- , Ty (93 (Q1)) are mutually disjoint. Note that any ~ €

F( ™) (except scalar) has no fixed points in $H2,, since FXF(m)/F>< is torsion
free. From (4.2) we can find a positive integer N such that F(m)(ag(cp;l(Ql))),
,F( (e5(¢31(Q1))) are all different in FTTV) \ $2,. This means Er,y(Q1),

,ETNy(Ql) are all different in ng;n). So we can get the following lemma.



216 Atsuo Yamauchi

Lemma 4.2. Let T,Y be as in Theorem 4.1. For any Q € Vy, there
exists some T' € Z(™) satisfying (i), (ii).

(i) L(Y)cT cCT.

(i) Eny(Bry(Q) ={Q}.

Put

UY,T)={Q € Vy|3Q" € Vy such that Q' # Q and Ery(Q’) = Ery(Q)}.

The overline means the (Q-)Zariski closure in V™. Set

uy.T) =JUu;,

j=1

where U;(1 < j < r) are subvarieties of Vi defined over Q, and none of them
are contained in the other. Assume that

dimU(Y,T) = dimU; = - - = dim U, > dim Uy41 > - - > dim U,..

Let Q; (1 <j <t) be generic points of U; (over Q ). Using Lemma 4.2
(r times repeatedly), we can find 77 € Z(™ so that I5(Y) c T C T and
ErN (Ery(Q)) = {Q,;} (1 <j<t)hold. Then Ery(U;) (1<j<t)are
subvarieties of Vj(wfn) whose generic points (over Q) are Er/y (Q;).

As Eryly, (1 <j <t)are generically injective, we can define the inverse

rational maps (ET/y|Uj)_l (1<j<t)on Epy(U;) (1<j<t)whichare

regular on some non-empty (Q-)Zariski open subsets X; of Epy (U;) (1 <

j < t) (hence regular at any Q-generic points). Now the restrictions of Epy
to E5 (X)) are injective. Therefore we have

vy, mc | v
t+1<j<r

U O Erly (ET’Y(UJ) \Xj) v U (ET'Y(Uk) N ET'Y(Uj))

Jj=1 1<k<rk#j

As Erry (Ug) and Erry (U;) are different (since B (Ery (Q;)) = {Q;} (1 <
j <t)), we have

dmU(Y,T') < dmU; = --- = dim U, = dim U(Y, T).

By an induction, we can take some 7' € Z(™ such that I;(Y) c T C T and
Ejy is (set theorically) injective on Vy.

So we can define the inverse rational map E;il/ on Ej (Vy) which is regular
on some non-empty Zariski open subset of Ezy (Vy). Hence Ejy (Vy) contains
some non-empty Zariski open subset of E4, (Vy). This implies Epy (Vy) is

dense in E4, (Vy) with respect to the topology of tim) as a complex manifold.



Galois Action on the Space of Arithmetic Modular Forms 217

Clearly
Epy (Vy) = U e (yoes(D)).
ver%’”)/u(ry)
Each v o g5(D) is a complex submanifold of $2, of dimension gg(n + ¢). For
V1,72 € F;m), if 1Is(Ty) # v2Is(Ty), then v1 0 e5(D) N2 0 e5(D) = ¢ (from

the injectivity of E4,- and as FXI‘(TAm)/}*_'X is torsion free). Now we have

W (Era) = U s,
~ery™ /15(Ty)

since Lp;m
the closure with respect to the topology as a complex analytic space.)

As (<,0(Tm))_1 <E:f“y(VY)) is a gg(n + g)-dimensional analytic set in $2,,

) is locally biholomorphic. (The overline in the right hand side means

and so is each yoes(D) (y € Fg:”)/fg(l“y)), there is no limit point of infinite
numbers of different yoes(D) (v € F;m)/lg(ry». Hence we have

T (En ) = U veaslD) = @) (Ber(W)).
'yEF;Z")/Ié(FY)

(m)

As ¢ is locally biholomorphic,we have Ezy (Vy) = Ezy (Vy) and Egy (Vy)

is a non-singular subvariety of VTSm). As the Jacobians of ga%m) and €5 are
—1

non-zero and E;., is injective, we can define E;;, to be ¢y o ((p(TJ”) o 55)

as a holomorphic map on Ejy (Vy), and as Ej, (Vy) is non-singular, E;}l/ is
regular on Ey (Vy) as a rational map. O

5. Canonical models and arithmeticity

In this section we consider the relation of arithmeticity defined in Section 1,
and the canonical models. In case of the modular forms with respect to a
symplectic group, we have &%) = Ag)(@ab) as shown in [9, Section 26.4] (or
[3]). In case of unitary similitude G = G(@™) (S, ¥), we have the following
theorem.

Theorem 5.1.  For any subfield Q of C containing Ky,,,, we have
A (S, W)(Q) = R4 (5, W) v Q.
Proof. (1) proof of Ao(2) C RV Q.

Take W(9) () as in Section 2. For any f € Ay(), write f = f1/fo with
some f1, fo € My(Q) (f2 Z0). For any h € H(Q), we have fjohoeg, faohogy €
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./\/l,(cq)(Q) from Lemma 2.2. Take W as in (1.12). Clearly W is stable under
the action of G(Q) and is dense in D. Now we have W = H(Q) (go(W (@ (1))).
Put

W' ={3€W|f(3) #0}.

Clearly W' is dense in D, and as fi ohogg/faohoeg € A(()q)(Q) =R@ v Qif
faohoeg #£ 0, we have f(3) € Q for any 3 € W'.

As Ap(C) = RV C, we can view f as a rational function on some canonical
model. Put f = po py for some Y € Z and some rational function p on
Vy. Let us prove p is Q-rational. For any o € Aut(C/Q), take p?, which is a
rational function on Vy-. As ¢y (3) is K,,,-rational for any 3 € W', pZoey (3) =
(powy(3))” =powy(3) holds for 3 € W’. As W’ is dense in D, p and p° must
be equal. Hence p is Q-rational. This means f € 8V Q.

(2) proof of Ap(2) D RV

It suffices to prove Ag(K3,,) D R. For any f € R, we can take (sufficiently
small) Y € Z and T € Z(™ as in Theorem 4.1 so that f o go{, is a rational
function on V- defined over K7, ,. Then for T € Z(™ (in Theorem 4.1), Ejy is

injective (hence of course generically injective) rational map defined over K, ;.
Therefore f o <py must be a pull-back of a certain rational function on ym

defined over K3,,,. This rational function can be written in the form (hq/h2) o
-1

(@;m)) with some hy, hy € M](cm)(KE,ab) such that hs|.;(py # 0. Since

F(k) C K}, we obtain f = (hy/hs) o g5 € Ag(K},,) using Lemma 2.5. O

We have the following proposition about the relation of the arithmeticity
and the action of G(Q).

Proposition 5.2. Let k € Z*. Take any subfield Q of C containing
F(k)V K3,,- Then for any f € Mp(Q) and any o € G(Q), we have

f\ka S Mk(Q)

Proof. Take any h € H(Q ) and consider f|x(ah) oep. For each zy €
W@ (¥), we can take z, € W@ ( ) and h' € H(Q) so that ah o eg(zp) =
h’ 0 £9(2f) since W = H(Q) (eo(W ? (¥))). Then we have

(f|k01h 60 Z() [H det /lv / ahaso(zo)))_kv] (f|kh,)(50(26))

veEa

Note that {H det (,uv((h’)_lozh,Eo(zo)))_k“} € F(k) vV K. From Lemma 2.2

veEa

we obtain (f|xh")oeg € ./\/l,(cq)(Q). Hence we have (f|zh)(go(24)) € hM (2(1)7.Q
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with h(Y) € ./\/l,(cl)(F(k:) V K},p) and 21 € WO () which are AV (2(V)) £ 0.
Combining these, we have

(flrah) (20(20)) € KV (z21)e. Q.

We can prove f|;(ah)ogy € M§f) () in the same way as the proof of Lemma 2.5.
Moving h all over H(Q), we can get f|ra € Mp(Q) by using Lemma 2.3. O

6. A certain Galois action

In this section we construct a certain Galois action on the space of modular
forms. The purpose of this section is to prove the following theorem.

Theorem 6.1.  Let f € M,(cq’n)(S, U) and let

1) = Z gr(w)ea(tr(r¥z))  where 3 = ( Z ) e D@ (S W),

0<reH,

be its Fourier-Jacobi expansion. For any (o, ¥, a) € Cy(C), there exists f(7:¥>2)
€ M,(C‘Z,’n) (t(o,a)S, Vo) whose Fourier-Jacobi expansion is

FErOG) = Y g @ea(ir(rY)2)
0<reH,

) € D@ (1(0,a)S, Vo).

SIS

where 3 = (

To prove this, we first consider the relation of two embeddings, €™ (S, ¥)

and qu’n) (t(o,a)S, To). We have the following lemma.

Lemma 6.2. Let (0,%,a) € Cy(C) and T € Z(™). Assume FW“E;”/F><
-1
is torsion free. PutY = (Ig(q’”)(S, \I/)) (T) € 2@™)(S, ). Set

1, 0 0 0 0
0 (Mg 0 0 (=S 0
oo 0 1, 0 0 0
Ale, Toa) = | 0 0 x(o)1, 0 0
0 (ME)s 00 (e, o

0 0 0 0 0 X(0)1,

Then A(o,¥,a) € ggrm) and the following assertions hold.
(1) T (A0, 0, a)) (ETY,(VY)) = (ETy(Vy))
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T = A(o,¥,a) 'TA(0,¥,a) € zm),

Y = (ng”” (u(a,a)S, \Ilor)) B (T)

-1

v(oya)™1, 0 0 t(oya)™ 11, 0 0
= 0 a’l, 0 Y 0 a’l, 0
0 0 aal, 0 0 aa’l,
e 2™ (4(0,a)S, Vo),

and the overlines denote the Zariski closures in VT(m) and in VTEm).
(2)  For any Z € W9 (o), h € H@™ (1(0,a)S, ¥o) (Q) and X € 2@
—1 - —
which satisfies l"g?) C F~ (Iéq’n) (t(o,a)S, \Ilo)) (h=1Y'h), put

—1
1 0 o (1 0
X = q X q c Z(Q)’
( 0 x(0)lq ) ( 0 x(o)lg )

and take zy € WO (W) so that

-1

Aeo=[ (e, ) bra)]
Then we have
() I (A, a) (0 (o5 (hoco(@)))) = [# (es (hoeo(zo))]”
where

(x) heH2M(S5,9)(Q)
-1

t(oya)™'1, 0 0 AL e PR 0
ny 0 a’l, 0 h 0 a’l, 0
0 0 aa’l, 0 0 aal,

(Note that the right hand side of (x) is independent of the choice of zy since
-1
Fgg) C F~* (I(gq’”)(S, \I/)) (h=1Y'h). The gg,e5 in the left hand side mean

Eéq’n) (t(o,a)S, To) ,az(;q’n) (t(0,a)S, ¥o) and those in the right hand side mean
e (5, 0), 65 (8, 9).)

Proof. The assertion (1) follows immediately from (2) since the set

{ﬂ o £0(%) \50 e W@ (Uo), heH@™ ((0,a)s, Vo) (Q)}

is dense in D@ (i(0,a)S, Wo) and Ezy(Vi), Ery (Vy) are subvarieties of
V(m) V(m)
7 ooVT
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It suffices to prove (2). First let us consider the case when h =1,,. Since

20
es™ (1(0,0)S,¥0) 0 "™ (1(0,0)S,W0) ()= | (~u(o,a)15~1)™7)
20
(where ZNO = ((io)v)vea)’ and as
A(J,\I/,a)
1q
a)a a/) —a+a -
(Mogatal),, (s
— 1q 1m
a P 1q X(U)lm 7
o) (—ata ata”
(M) (&)1

we can get (2) by formal calculations of @g?go(io)(a),q)i%)(a) and Proposi-
tion 3.2.

For an arbitrary h, the left hand side of () can be rewritten as

(m) 0 (m) -
S TRC RN (A(”"I”“) ' I‘S(h)) (‘”’u(h-l:ﬁm(ﬁ) (850 60(20))) '
By a computation, we have
A0, %, a) - I (/(5,0)S, W) (R) € T - 1™ (S, W)(h) - A(o, ¥, a).

Hence (#x) is equal to

(m) o
(J[T][Ié(h)’lTI(;(h)] (Ié(h)))

(m) (m) -
© a1z s nizs () - Frs iy (AL T2 0) (“015<ﬁ>—1m<ﬁ> (€50 EO(ZO))) '

By the result when h is identity, replacing T by Is(h)~1T1Is(h), it is equal

to
J[g]l[)fs(h)*lTls(h)] (Z5(h)) (%ﬁﬁ)h)ﬂm(h) (g5 0 50(30)))} U,
hence equal to the right hand side of (x). a
Proof of Theorem 6.1.  First we consider the case when k = k1 with a
positive even integer k. For f € Mffl’")(s, U) and (0, ¥, a) € Cg(C), we define
(6.1)

FOva3) = [(fg—*fﬂ) opyto E:;},r o J:(F’;) (A(0, ¥, a)) (npf‘ﬁm) o 66(3))

X (E(Uﬂlha) (5)) w/2
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—1
where j € D@ (,(0,a)S, ¥o),T € 20My = (ng’")(s, \IJ)) (T) € 2(@m)(S,

¥) so that (f27/2) opy ! can be defined as a rational function on Vy-, F* F(Tm)/

F* is torsion free, and E is a regular rational map on Ery (Vy). (By The-
orem 4.1, we can take such T,Y.) Here

T = A0, %,a) " 'TA(0,¥,a),
~ -1
Y= (Igm (t(o,)S, \I/U)) (T)
t(oya)™1, 0 0 ! t(o,a)™'1, 0 0
= 0 al, 0 Y 0 al, 0
0 0 aal, 0 0 aa’l,

e 29 (1(0,a)S, Vo).

This definition is independent of the choice of T, Y. Next let us prove that
it does not depend on =. For different =;, =5 we have only to prove

(2125Y) 0wy o Bpy)” 0 I (A(0, W, 0)) (91 0 23(3))
-1
—="6) (20106)

viewing both sides as meromorphic functions on D@ (i(o,a)S, Wo), where

(% %)

(2125 1) oy (resp. Ega"p’a)/Eéa"P’a)o((pf/)_l) can be defined as a rational
function on Vi (resp. Vi). Consider the case when 3 = ho ggq’n)(L(U, a)s,
Uo)(20) with 25 € W@ (o) and h € H@™ (1(0,a)S, Vo) (Q). Take h, 2y as in
Lemma 6.2. Then the left hand side of (x % *) is equal to

(B2 0 03 0 Bry 0 ™ 065 (ho eo(20))]

= [(E125") (hoeo(20))]”

if 2,25 is holomorphic at h o g(2). Taking suitable h, we have
EEU’\P’G) oho séq’n) (t(0,a)S, Vo) = (EZ oho aéq’n)(S, W))U (1=1,2),
where the action of ¢ is in the sense of (2.2). Hence for such h, we have
{Ega’“) (=) 1} (Ao =™ (o,a)s, wo) (%))
= [EE) (o= (s, 9)¢0))]”

if =77 (h o g9(%)) # 0. (In this case we have Za(h o g9(z0)) # 0 if we take
a suitable zp, and so 212, ! is holomorphic at each h o g¢(20) as above.) Since

the set
h o eo(% - ~ _
{ 0G| 20 (0 coz0)) # 0

h e H@M (4(0,0)S, To), Z € W@ (Do), }
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is dense in D@ (1(0,a)S, Wa), we get (x x x). Hence the definition (6.1) is
well-defined.

Now let us consider f(@%9) . Clearly f@%%) € A%™ (,(0,a)S, Vo). By
Theorem 4.1 we can take suitable 7 € Z(™ and Y = I; (T) € Z(9™ (i(a,a)S,
Vo) satisfying the following conditions (1)—(4).

(1) w(Tm), @y are locally biholomorphic.

(2) VT(m), Vy are non-singular.

(3) Ery(Vy) is a non-singular subvariety of V}m).

(4) Egy is a regular rational map on Ezy (Vy).

For each j € D@ (,(0,a)S,¥o), take = which is non-zero at ¢3! o ELy o
0_71

Jj(,”%) (Ao, ¥, a)) (go;m) 055(3))} . Then f(*%9) is holomorphic at 3. As

f(@¥:9) ig independent of the choice of Z, it is holomorphic on the whole

D™ (1(0,a)S, o). Hence f@¥) ¢ M’(ﬁn) (t(o,a)S,To). Set

fG) = Z gr(w)ea (tr(r‘l’z)) )

0<reH,

FOrOG) = Y gi(w)ea (tr(r'72)),

0<reH,

Wheregz(;):<5}”) ED(q’")(S,W)andjz(g):(;v )
v / vea v/ wea

e D(@n) (¢«(o,a)S,Vo). Now it suffices to prove g, = gﬁ"’“) foreach 0 <r €
H,. Fix r and take a Z-lattice L, of H, satisfying the following (1), (2).

(1) relL,.

(2) For any t € Hy — L4, we have G, g; = 0.
Take any u € K and fix it. From Lemma 2.4 we can choose some a € GL(q, K)
so that

(6'2) {0 < r' e Lq ‘Re (tap’l“loz) = Re (tapra) } = {’I“}
holds. Put
1q tur S %tu”Su o
h = 0 1, U 1, c H(q,n)(S’ \IJ)(Q)
0 0 lq (toép)*l

Take = so that Zoh oa(() ’n)(S, ¥) #£0in Méqi and choose Y, T as in (6.1). Take
Y, T as in Lemma 6.2. Set the Fourier-Jacobi expansion of Z%/2 as

EG)? = Y clw)ealtr(t?2)).

0<teH,
Then of course

(E<a,w7a>(3))”/2: Sl (@) eq(tr(t705)),

0<teH,
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Take a congruence subgroup I'y of G(9™) (i(c,a)S, o) (Q) as in (1.5) so that
flova) ¢ /\/l,(ﬁ’ln) (t(0,a)S, Vo) (T'y) and g0 ¥.a) ¢ Mg‘?i") (t(0,a)S,Po) (Ty).
For a (sufficiently small) integral ideal a of K, take y € K satisfying y =
au mod (aOp)Z for each finite prime p of K so that

~ 1‘1 L(Ua a)typs %L(Ua a)typsy «
(1) h= 0 1, Y 1n
0 0 1, (tar)™!
€ ") ((0,a) S, ¥o) (Q)
[ uo,a)7M, ! t(o,a)711,
ny all, h afl,
aafl, aafl,

(This condition is equivalent to (%) in Lemma 6.2(2).)
(2) For above h,

t(o,a)711, - t(o,a)711,
arly, h arly, h~!

aafl, aafl,
is contained in
Tp € SL(m, Op),

B V(Ty) = 17
T (;(q7 )(L(O', a)S, \I/O')A 1‘5 ;)17” mOd(NOp)m

for any finite prime p of K

For such y and h, we consider (E(”"I'va))ﬁ/Qoﬁoagq’n) (t(c,a)S, ¥o) and f(@¥:)o

hoel™™ (1(0,a)S, Uo) as elements in M These modular forms are indepen-

dent of the choice of y or h as the coset (I'y NN@™ (,(0,a)S, Vo) (Q))h is
determined. We have

K/2 .
(5(07‘1’va)) oho E(()qm) (t(o,a)S, Vo) (2)

= Z (cﬁ”’“”“’)* (y¥)eaq (tr(Re(*a’ta)z)) (z € 97),

0<teM,

since the left hand side does not depend on the choice of y or h. Hence we
obtain

/2 .

(6.3) [(E)“/Q ohoel™ (s, \1/)} T (E“’v“/va))” ohoel™ (i(o,a)S, o)

where the action of ¢ is in the sense of (2.2) as an element of M,(gl) Choose
any 75 € W@ (o) such that (E(‘7>‘1’7‘1))N/2 oho eéq’n) (t(0,a)S, Vo) (%) # 0.
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Take X, X € 2@ and z € W@ (¥) as in Lemma 6.2(2). From Lemma 6.2
and (6.1), we have

—r/2\ -
(f(""“) (zler) " ) ohocl™ (u(a,a)S, Vo) ()
= [(r272) ohocl™ (5, w)(=0)]
if (f=7*/2) is holomorphic at h o (™ (5, W)(z). In this case the right hand

side is equal to

-1

64)  (fohoel™(s, \11))0 {(22onocfm(s, \I/))U} (0),

where the action of ¢ is as above. This is holomorphic at z; as a meromorphic
modular form on 5’)2. Now the set

(@%.0) o ho 66(1’”) (t(o,a)S,%o) (%) # 0,

;n/2 (q,n) . i
2y € W(q)(\llo') = oho €0 (Sa \I/) 1S non-zero B

o (6) [ (5 o, ) ()]

is dense in $7. Hence combining (6.3) and (6.4), we have

[f(a,\Il,a)(E(a,\Il,a))—n/Z} oho é_gqm) (u(0,a)S, Uo)

o /2
= (remecmism) Ty ((500) " oo toas.vo))

as meromorphic functions on f_)g. This means
fle¥9oho Eéq’n) (t(0,a)S, Vo) = (f oho eéq’n)(S, ‘I/))J

as holomorphic functions on $)j. The Fourier expansion of the left hand side

as an element of M(q) is
( w1l

ST @0 (57) | ealtrv)) (2= (20)uea € 9,

b 0<t€Lgq
Re(taPta)=b

and that of the right hand side is

> Yo (90" | ealtr(bz)) (2= (20)vea € 95)-

b 0<teLgq
Re(taPta)=b
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From (6.2) we have
(3)- (37 = [lgr) ")

As the right hand side does not depend on the choice of y, we can obtain

G = 7Y if we take each u € K]'. This completes the proof when k = x1

for a positive even integer k.
For an arbitrary k € Z2, take fv € Mvﬂgt)ﬂ( (0,a)S,¥o) as in Sec-

tion 3 (for each v € a). Then 1(,0 WoaTh ¢ MSZT”)IJrqu(S,\IJ). For f €
MI™ (S W), take I = (I,)vea € N s0 that

11 (55"’1’“”7“”))1 e MY (3 v)

vea

for a positive even integer x. Put

(o,%,a)
(6.5) flom = (fH (5&”““%“”)“’) [Tt

vea vEa

As k1 = k+ X l,(vo~! +2g - 1), we have f@¥9) ¢ A% (4(g,a)5, Vo).
vea
By a formal calculation of Fourier-Jacobi series, (6.5) does not depend on the

choice of (&,)vea. Now for each 3 € D@ (i(0,a)S, Vo), take (£,)ypeca 50 that
£,(3) # 0 for every v € a. Then f(>%% is holomorphic at 3. This means
flo¥a) ¢ M,(;i’n) (t(c,a)S, ¥o). By a formal computation at @ = y¥?) (for
Yy € Kg), the Fourier-Jacobi expansion of f(°"%:%) is as in Theorem 6.1. 1

For f € A(q n)(S, ¥), we can also define f(>¥%) . Put f = f1/fs by
fie Mm)(s U), 0 # f, € MP(S,0) (I € Z*) and define flo¥0) =
ffa’q}’a /fzg ¥4 Then this does not depend on the choice of f1, fo and f(7¥@)
e A2 (L(0,a)S, Vo).

Using the previous theorem, we can get the following proposition.

Proposition 6.3.  For any k € Z#, we have

M8, 0)(C) = M (8, 9) (F(R) V Kiap) ©r(iyvics,,, C-

Proof. For any f € M,gq’n)(S, U)(C) and any o € Aut(C/F(k)V K}.),
consider f(@¥:1) ¢ Mffq’")(S, T)(C). Fix (£&)vea and Z. Take Y € Z(@7)(S, ¥)

(0 L w0\ ") ory2 : :
so that | f ]] (fv ) = (of (6.5)) can be viewed as a rational
vea

function on Vi for any o € Aut(C/F(k)V K3,,;)- Take a congruence subgroup
I of G(@™) (S, ¥)(Q) satisfying the following conditions (1), (2).
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(2) f, 51(,0_1’\?’1) (v ea, o€ Aut(C/F(k)VK},,)) and Z are all modular
forms with respect to I'.

As the set {5110717\1/,1) ‘ veEa, o€ Aut(C/F(k)V K@ab)} is a finite set, we can
take such Y and I'.
From the definition, we have f(®%1 ¢ M,(Cq’n) (S, U)(T) for any o €

Aut(C/F(k)V K},,;)- As is well known, M,(Cq’n) (S, T)(T) is finite dimensional.
Put d = dim¢ M,(cq’n)(S, U)(T") and take the Fourier-Jacobi expansion of f,

0= X atwelot®), 3= (5 ) e,

0<reH,

Now set
M = <{(Qr)*(y\p) |y €Ky, 0<reH, }>F(k)vK

Then M is a F(k) vV K},,,-vector space contained in C. Let us prove that
dimp(k)vK‘;ab M < d. If not, we can take y1,... ,yar1 € Kj and ry,... ;7441 €

* .
Tab

H, such that (gr,)«(yY),- - (gras)«(ygy1) are linearly independent over
F(k)V K} ,- So we can take 01, ... ,0q11 € Aut(C/F(k) vV K},,,) such that

[(gm)*(yip)]al T [(gf’dﬂ)*(ygﬁrl)}gl

[(gr)« ] [(grag ) (i )]

det # 0.

This means

o1,9,1 o1,0,1
Gl (70 BT el (7 )

9raiq Ya+1
det . . . # O.
o RN (e ,¥,1
gl T )
This implies that for%0 | f@ar1.%1) are linearly independent over C.
Hence it contradicts to dimc M;q’n)(S, U)(T') = d. Therefore M is at most d-
dimensional over F(k)VK3,,,. Let {c1,..., ¢} beabasis of M over F(k)VKS,,,.
Then we can take 01 =idc,09,...,00 € Aut(C/F(k) v K},,,) such that
c‘lj.l P C?l
det . e . ?é 0'
Ci-t - Cgt
Put
— o1,9,1
fi o e 1/ flontD)
i gt oot Floww,n)

By a formal calculation, we have fi,...,f; € M,(Cq’n) (S,0) (T, F(k)V K} )

Hence we get f = cifi +---+cift € (Méq’n)(S, U) (F(k)V Kj,))c. This
shows the proposition. O



228 Atsuo Yamauchi

7. An extended Galois group

In this section we shall fix the unitary similitude group G' = G(4)(S, ¥)
and define the action of a certain extended Galois group using the results in
Section 6.

Take f(3) = Y gr(w)ea (tr(r¥2)) € M"™(S,0), (0,¥,a) € Cy(C)

0<reH,
and f(@¥a) ¢ M,(ﬂ,’") (t(o,a)S, o) as in Section 6. For o € Aut(C/K3), put

(7.1) flrtal = fo0) 0 e(8,1(0, a)).
Then flo%al € M(%™ (S, W) and its Fourier-Jacobi expansion is

a ¥,al Z g(U v a) (tI‘(L(O', a)r‘l'z)) .

0<reH,

For f € .A,(Cq’n)(S, T), we also define flo%e by (7.1). Clearly flo%al ¢
AL (S, W), Note that (flovval)l P2l _ floroaWaraal and ok X KX =
Ny (D) K> KX with b € K} so that [b~", K*] = o,

Now we have the following lemma.

Lemma 7.1.  For 0 # fi,fs € ./\/léq’n)(S7 U) and o € Aut(C/K™), take
Y € Z so that (f1/f2) o ga{,l is defined as a rational function on Vy . Then we
have

04 4 1‘1
A = (A f) o wy']” 0 dvx @l o
aall,
where
14 o Ly
x| o A e 247 (5, W),
aall, aalfl,

Remark. Note that the right hand side is independent of the choice of
Y and X.

Proof. By an easy computation, we have the following commutative dia-
gram.

cla:m)
(qn)(S’\p) & H2

(7.2) 5(S,b)l lﬁ(b) ,
D™ (pS W) — T, ga



Galois Action on the Space of Arithmetic Modular Forms 229

b1,
where 5(b) =

By (6.1), we have
HOYO 10 = [(fuf fo)opy o By 0 ) (A(o, ¥, a) 0 Eggopy,
with 7,7 and Y as in (6.1). Combining (7.1) and (7.2), we have
fiw e
= [(1i/ 1) o9y 0 Ery]” o Ji (Ao, ¥,a)8 ((0,a))) © Eurx © o,

where U = 8 (u(0,a)) " A(0, ¥, a) " 'TA(0,¥,a)B (:(0,a)) (then U D I5(X)).

Lq
Since A(o,¥,a)B (t(o,a)) € Is afl, Goo |, we can get this
aall,
lemma from (2.7).

Now we define a subgroup ® = &) (S, ) of G4 x K}* x Gal(Q/K*) as
follows.
det(x) "1 (N (c)?)"Ng+ jg(c)! € K*KX,
v(x) N« jgle) e FXF
Cil,K*] = U‘K:b

(z,¢,0)

O=\ " € Gux K xGal@/K*)

Then we can define an action of & on the space of modular forms as follows.

Theorem 7.2.  There is an action of & on the graded ring Y, Ar(Q)
keza
written as

(z,c,0), f) — f@  for (z,¢c,0) € & and f € Z Ax(Q),
keza
satisfying the following conditions (1)—(vii).
() (bufy+bofo) @) = b7 {1757 4 051577 for biby € Q.
i) (frfe)®e0) = 100 fine),

(
(iii (f(331701,01))($2702702) — f($1$270102,0102) .
(

iv) SO0 = flua if o€ G(Q) and f € Ay(Q).

1q
a’l, .
aafl,

(Vi) Ap(@)®e9) = Ao (Q) and My(Q) @) = My (Q).

(V) f(m,c,O') — f[o'f‘l}’a] Zfa = N\/I,(C) and xr =

— 0O
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(vii) If f € Ap(Q) = AV Q, then
FEe) = [(foey)]” Jyx(x) o px,

where Y € Z is sufficiently small so that fogo{,l is defined as a rational function
onVy and X =z~ 'Yz.

Proof. For any positive integer N, put

Yy = {3: €Gan (Goo x HGL(m,Op)>
p

Then we have

for any finite prime p of K

zp =1, mod (NO,)m }

GOO(YN n GIA) n G(Q) =TIy,

where I'yy is as in (1.5).
1, -
For any (z,c,0) € &, set & = N} (e)r1, x. Since
Nk*/(@(c)lq

det(z) € K*KX and v(%) € FXFJ, we can take by € K* and by € F*
so that det(z) € biKZ and v(Z) € boFX,. As det(Z)det(z)” = v(z)™,
we can get b1b] = bY' by comparing the non-archimedean components. By
the Hasse principle, we can take a € G(Q) such that v(a) = by. Hence

14 B
z det(a)by " a1l € G G4 is contained in Goo (YNNG14)

L
-G1(Q) for any positive integer N because of the strong approximation property
of G]_.

For f € Ai(Q) and (x,c,0) € &, take a positive integer N so that
flo¥Ne @] ¢ Ao (Ty). Forsuch N, take uy € Goo(YaNGia) and oy € G(Q)
so that & = uya, (where T is as above), and define

f(z’c7o') — f[o-"p’N\lp(C)Hk”aN'
Clearly f(*¢9) is independent of the choice of u, and a . We can easily verify
the conditions (i),(ii),(iv),(v) and (vi). Using Lemma 7.1, we can get (vii).

Now we have only to prove (iii). In case f € A(Q), we can get (iii) from
(vii). In case f = E, the condition (iii) can be verified by computations using
(3.9) and (3.10). In the same way we can also get (iii) when f = &, (v €

a). Since any element of A (Q) can be expressed as a multiple of positive or

negative powers of Z, &, and an element of Ag(Q), we can get (iii) for any

f € Ax(Q) by using (ii). O
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