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On a Certain Extended Galois Action on the
Space of Arithmetic Modular Forms with

respect to a Unitary Group

By

Atsuo Yamauchi

Introduction

In his work [8, Theorem 1.5], G. Shimura proved the existence of a certain
Galois action on the graded ring of Hilbert modular forms. A holomorphic
Hilbert modular form f with respect to SL(2, F ) (where F is a totally real
algebraic number field of finite degree) can be expressed as a Fourier series of
complex variables u1, . . . , ul

f(u1, . . . , ul) =
∑
x

cx exp

(
2π

√−1
l∑

µ=1

xµuµ

)
,(0.1)

where the coefficients cx ∈ C and x runs over a lattice. It is shown first that,
for any σ ∈ Aut(C), there exists a holomorphic modular form fσ whose Fourier
expansion is

fσ(u1, . . . , ul) =
∑
x

cσx exp

(
2π

√−1
l∑

µ=1

xµuµ

)
.(0.2)

A Hilbert modular form with respect to SL(2, F ) has the weight in
∑

v∈a Z · v,
where a is the set of all embeddings of F into R. If f is of weight k =

∑
v∈a kv ·v,

then fσ is of weight kσ =
∑
v∈a kv · vσ. It is also shown that, there exists a

certain closed subgroup G of GL(2, FA) × Gal(Q/Q) which acts on the graded
ring of meromorphic Hilbert modular forms which can be expressed as a quo-
tient of holomorphic Hilbert modular forms with Q-rational Fourier coefficients.
An important aspect here is that the action of G on Hilbert modular forms of
weight 0 coincides with that of G in the theory of canonical models constructed
in [2].

In this paper we shall study such a Galois action on modular forms in the
case of unitary groups. On unitary groups, modular forms have no Fourier
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expansions. But in the case when the signatures of the group at the infinite
places are all equal, they have Fourier-Jacobi expansions. We shall consider
such cases in this paper. To be more concrete, let F , a be as above and K be a
CM-extension (i.e. a totally imaginary quadratic extension) of F , and consider
a non-degenerate skew-hermitian matrix R with coefficients in K as

R =


 1q

S
−1q


 , S =


 s1

. . .
sn




where s1, . . . , sn are pure imaginary for any embeddings of K into C and
si/sj (1 ≤ i, j ≤ n) are totally positive. Then −√−1R is a hermitian ma-
trix of signature (q, n+ q) or (n+ q, q) for any embedding of K into C. Define
the group G of unitary similitudes with respect to R by

G(Q) =
{
γ ∈ GL(2q + n,K)

∣∣tγρRγ = ν(γ)R with ν(γ) ∈ F×} ,
where ρ stands for the non-trivial element of Gal(K/F ); ρ is the complex conju-
gation for any embedding of K into C. We can define the natural holomorphic
action of G(R) on the symmetric domain

D =
∏
v∈a

{
zv =

(
zv
wv

) ∣∣∣∣ zv ∈ Cqq, wv ∈ Cnq ,√−1(twvSΨvwv + tzv − zv) > 0

}

where Ψv is the embedding of K into C which lies above v such that Im(SΨv) >
0. Here Anq , for a ring A, denotes the set of all n × q-matrices with entries in
A. Then a holomorphic modular form f on D with respect to a congruence
subgroup of G(Q) has a Fourier-Jacobi expansion of the form

f

((
zv
wv

)
v∈a

)
=
∑
r

gr((wv)v∈a) exp

(
2π

√−1
∑
v∈a

tr(rΨvzv)

)
,(0.3)

where r runs over non-negative hermitian matrices (for any embeddings of K
into C) belonging to a Z-lattice in Kq

q . Let Ψ = (Ψv)v∈a be the CM-type of
K and regard Ψ as an embedding of K into Ca by bΨ = (bΨv)v∈a. Then for
a lattice L of Kn

q , the Fourier coefficients gr are theta functions on
∏
v∈a Cnq

with respect to the lattice LΨ. We call gr arithmetic if the value

(gr)∗((wv)v∈a) = exp

(
π
√−1

∑
v∈a

tr(rΨv twvS
Ψvwv)

)
gr((wv)v∈a)

is algebraic at each (wv)v∈a ∈ (Kn
q )Ψ. The main theorem of [4] defines a certain

Galois action of σ ∈ Aut(C) on the arithmetic theta functions when σ is trivial
on the reflex field K∗ of Ψ. In the case when K is an imaginary quadratic field
and σ is trivial on K, the Galois action on the modular forms are constructed
in [7, Section 4] (but with no proof). In this paper we first generalize the main
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theorem of [4] to all σ ∈ Aut(C). To be more concrete, for such gr and σ, there
exists a certain theta function g(σ,Ψ,a)

r (the symbol a denotes an element of the
idele group of K depending on σ and Ψ) with respect to the lattice (aL)Ψσ of∏
v∈a Cnq which satisfies(

g(σ,Ψ,a)
r

)
∗
((au)Ψσ) =

{
(gr)∗(uΨ)

}σ
for any u ∈ Kn

q , where Ψσ means the CM-type defined by Ψσ = {Ψvσ|v ∈ a}.
The main theorem (Theorem 6.1) is as follows.

Let f be a holomorphic modular form given by (0.3) and (σ,Ψ, a) be as
above. Then there exists b ∈ F× and another modular form f (σ,Ψ,a) with re-
spect to another group G̃ of unitary similitudes and symmetric domain D̃ corre-

sponding to a skew-hermitian form


 1q

bS
−1q


 ( b ∈ F× is determined

by σ,Ψ and a) whose Fourier-Jacobi expansion is

f (σ,Ψ,a)(z̃) =
∑
r

g(σ,Ψ,a)
r ((w̃v)v∈a) exp(2π

√−1
∑
v∈a

tr(rΨvσ−1σ z̃v)),

where z̃ =
(

z̃v
w̃v

)
v∈a

∈ D̃.

In the case σ is trivial on K∗, we can show (cf. (7.1)) that f (σ,Ψ,a) can be
identified with the modular form f [σ,Ψ,a] on D whose Fourier-Jacobi expansion
is

f [σ,Ψ,a](z) =
∑
r

g(σ,Ψ,a)
r ((wv)v∈a) exp

(
2π

√−1
∑
v∈a

tr((br)Ψvzv)

)
,

where z =
(

zv
wv

)
v∈a

∈ D.

Using the main theorem, we can construct a certain action of the group

G=


 (x, c, σ)

∈ GA ×K∗
A×Gal(Q/K∗)

∣∣∣∣∣∣
det(x)−1(N ′

Ψ(c)ρ)nNK∗/Q(c)q∈K×K×
∞,

ν(x)−1NK∗/Q(c)∈F×F×
∞+,[

c−1,K∗] = σ|K∗
ab




on the graded ring of Q-rational modular forms. The action of (x, c, σ) on the
arithmetic modular functions in the sense of [1] coincides with that of x in the
sense of canonical models. Moreover, the action of [σ,Ψ, a] described above

coincides with that of




 1q

aρ1n
aaρ1q


 , c, σ


 if a = N ′

Ψ(c). When K
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is an imaginary quadratic field, this action of G is a generalization of that given
in [7, Section 4].

We shall study basic properties of modular forms with respect to unitary
groups in Section 1. In Section 2, we define some equivariant embeddings of
algebraic groups and symmetric domains into different ones. We will study the
relation of arithmetic modular forms on respective domains for these embed-
dings to use Shimura’s many results in symplectic case. In Section 3, we shall
generalize the main theorem of [4] to the case of arbitrary σ ∈ Aut(C) using the
results in [10, Chapter 7] and [11]. In Section 4, we shall consider the embed-
dings of canonical models and their inverse rational maps precisely. In Section
5, the relation between the arithmeticity defined from Fourier coefficients and
that defined from canonical models will be discussed. In Section 6, the main
theorem will be proved using all the results till Section 5. In Section 7, we
construct the action of G on the space of Q-rational modular forms using the
results in Section 6.

Notation

For a ring A, we define Anq as above, and denote An1 simply by An, 1n
denotes the identity matrix of degree n. The transpose of a matrix X is denoted
by tX. We denote as usual by Z,N,Q,R and C the ring of rational integers, the
set of all positive rational integers, the field of rational numbers, real numbers,
and complex numbers, respectively. For any subfields K1,K2 of an arbitrary
field K, we denote by K1 ∨K2 the composite field of K1 and K2. If K is an
algebraic number field, Kab denotes the maximal abelian extension of K, and
we denote by KA (resp. K×

A ) the adele ring (resp. the idele group) of K. By
class field theory, every element x of K×

A defines an element of Gal(Kab/K).
We denote this by [x,K]. We denote by OK and O×

K the ring of algebraic
integers of K and its unit group. For each finite prime p of K, we denote the
p-completion of K and its maximal compact subring by Kp and Op. In the
same way, Qp and Zp denote the p-completion of Q and Z for each rational
prime number p. For an algebraic group G defined over a field k, we denote by
G(K) the group of K-rational elements of G if K is an extension field of k. We
denote by GA,G∞, and Gf the adelization of G, the archimedean component of
GA, and the non-archimedean component of GA. By a variety, we understand
a Zariski open subset of an absolutely irreducible projective variety.

1. Modular forms and the arithmeticity

Let F be a totally real algebraic number field of finite degree and K be
its CM-extension (namely, a totally imaginary quadratic extension of F ). Put
g = [F : Q], then [K : Q] = 2g. As is well known, the non-trivial element
of Gal(K/F ) is the complex conjugation for any embedding of K into C. We
denote this by ρ. For any b ∈ K, we denote (b + bρ)/2 ∈ F by Re(b). We
define a CM-type of K to be a set of g different embeddings of K into C whose
restrictions to F are all the embeddings of F into R.
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Define a non-degenerate skew-hermitian matrix R ∈ Km
m (m = n + 2q,

n, q ≥ 1) by

R =


 1q

S
−1q


 where S =


 s1

. . .
sn


 ,(1.1)

sρj = −sj ∈ K× and sj/sk are totally positive (1 ≤ j, k ≤ n).

By the Hasse principle for hermitian forms, for any skew-hermitian matrix
R ∈ Km

m , if the signature of
√−1R is (q, n + q) or (n + q, q) at each infinite

place of K, we can write it in the form of (1.1) with some S if we take a suitable
basis of Km. Determine the CM-type Ψ of K so that Im(sψj ) > 0 (1 ≤ j ≤ n)
for any ψ ∈ Ψ. Let G(q,n)(S,Ψ) be the group of unitary similitudes with respect
to R, and we view G(q,n)(S,Ψ) as an algebraic group defined over Q. Then

G(q,n)(S,Ψ)(Q)

=
{
γ ∈ GL(m,K)

∣∣tγρRγ = ν(γ)R with ν(γ) ∈ F×} .(1.2)

We have ν(γ) � 0 (� 0 means totally positive from now on) for any γ ∈
G(q,n)(S,Ψ)(Q), since the hermitian form −√−1tγρRγ must have the same
signature as −√−1R, that is (q, n + q) or (n + q, q) for any embedding of K
into C. Note that for any γ ∈ G(q,n)(S,Ψ)(Q), det(γ) det(γ)ρ = ν(γ)m. Next,
we define an algebraic subgroup G(q,n)

1 (S,Ψ) of G(q,n)(S,Ψ) as follows.

G
(q,n)
1 (S,Ψ)(Q) =

{
γ ∈ G(q,n)(S,Ψ)(Q) |ν(γ) = det(γ) = 1

}
.(1.3)

Then G
(q,n)
1 (S,Ψ) has the strong approximation property. Hereafter we write

G(q,n)(S,Ψ) (resp. G(q,n)
1 (S,Ψ)) as G (resp. G1) if there is no fear of confusion.

We denote by a the set of all archimedean primes of F . For v ∈ a and
b ∈ F , we denote by bv the image of b by the embedding v : F ↪→ R. For
σ ∈ Aut(C) and v ∈ a, we denote by vσ an element of a so that bvσ = (bv)σ.
We write a = {v1, . . . , vg} and denote an element of a by v. Given a set X,
we denote by Xa the set of all indexed elements (xv)v∈a with xv ∈ X. For
x = (xv)v∈a ∈ Xa and σ ∈ Aut(C), we denote by xσ the element y = (yv)v∈a

such that yvσ = xv.
For a CM-type Ψ of K and v ∈ a, let Ψv be the only element ψ of Ψ whose

restriction to F is v. Then we can view Ψ as an embedding of K into Ca such
that bΨ = (bΨv)v∈a for any b ∈ K. Through Ψ, we can view K as a dense
subset of Ca. When b ∈ F , we drop the symbol Ψ (since bΨ does not depend
on Ψ) and regard b as the element (bv)v∈a in Ra. For x = (xv)v∈a ∈ Ca, we

write ea(x) = exp
(

2π
√−1

∑
v∈a

xv

)
.

For each v ∈ a, we can define the v-component Gv = G(q,n)(S,Ψ)v of the
algebraic group G as follows.

Gv =
{
γ ∈ GL(m,C)

∣∣∣tγRΨvγ = ν(γ)RΨv with ν(γ) ∈ R×
}
.
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Note that for any γ ∈ Gv, ν(γ) > 0. We can define the corresponding sym-
metric domain Dv = D(q,n)(S,Ψ)v as

Dv =

{
z =

(
z
w

)
∈ Cn+q

q

∣∣∣∣∣ z ∈ Cqq, w ∈ Cnq ,√−1
(
twSΨvw + tz − z

)
> 0

}
,

where > 0 means positive definite. Now let us define the action of Gv on

Dv. For any z =
(

z
w

)
∈ Dv and α =


 a1 b1 c1

a2 b2 c2
a3 b3 c3


 ∈ Gv with blocks

corresponding to those of R, put

α

(
z
w

)
=
(

(a1z + b1w + c1)(a3z + b3w + c3)−1

(a2z + b2w + c2)(a3z + b3w + c3)−1

)
.

Then the group Gv acts on Dv as a group of holomorphic automorphism by
z → α(z). The automorphic factors are

λv(α, z) =
(
a3
tz + c3 a3

tw − b3(SΨv)−1

−SΨva2
tz − SΨvc2 −SΨva2

tw + SΨvb2(SΨv)−1

)
,

µv(α, z) = a3z + b3w + c3.

By a simple calculation we get

det(λv(α, z)) = det(α)−1ν(α)n+q det(µv(α, z)),(1.4)
µv(α2α1, z) = µv(α2, α1(z))µv(α1, z) for any α1, α2 ∈ Gv.

Put

G(q,n)(S,Ψ)∞ =
∏
v∈a

G(q,n)(S,Ψ)v,

D(q,n)(S,Ψ) =
∏
v∈a

D(q,n)(S,Ψ)v,

and G∞ = G(q,n)(S,Ψ)∞ acts on D = D(q,n)(S,Ψ) componentwise. We can
define an embedding of G(Q) = G(q,n)(S,Ψ)(Q) into G∞ by α → (αΨv)v∈a

and also define an action of G(Q) onto D, α(z) =
(
αΨv(zv)

)
v∈a

where α ∈
G(Q), z = (zv)v∈a ∈ D. Set

µv(α, z) = µv(αΨv , zv), λv(α, z) = λv(αΨv , zv).

All these conventions are basically same as those of [7].
Now let us define a congruence subgroup of G(Q). For any positive integer

N , put

ΓN = {γ ∈ G1(Q) ∩ SL(m,OK) |γ ≡ 1m mod (NOK)mm } ,(1.5)

where OK is the ring of integers of K. By a congruence subgroup of G(Q), we
understand a subgroup Γ of G(Q) which contains ΓN for some positive integer
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N and K×ΓN is a subgroup of K×Γ of finite index. Any element (except a
scalar matrix) of a congruence subgroup Γ of G(Q) has no fixed points in D if
and only if the group K×Γ/K× is torsion free. As is well known, K×ΓN/K×

is torsion free if N is sufficiently large.
Set k = (kv)v∈a ∈ Za. For α ∈ G(Q) and a C-valued function f on D, we

define a C-valued function f |kα on D by

(f |kα) (z) =

(∏
v∈a

det (µv(α, z))
−kv

)
f (α(z)) for z ∈ D.

If f is holomorphic on D, so is f |kα. For any congruence subgroup Γ of
G(Q) = G(q,n)(S,Ψ)(Q), we denote by M(q,n)

k (S,Ψ)(Γ), the set of all holo-
morphic functions f on D = D(q,n)(S,Ψ) such that f |kγ = f for any γ ∈ Γ.
An element of M(q,n)

k (S,Ψ)(Γ) is called a holomorphic modular form of weight
k with respect to Γ. We denote by M(q,n)

k (S,Ψ), the union of M(q,n)
k (S,Ψ)(Γ)

for all congruence subgroups Γ of G(Q) = G(q,n)(S,Ψ)(Q). Next we put

A(q,n)
k (S,Ψ) =

⋃
l∈Za

{
f1f

−1
2

∣∣∣f1 ∈ M(q,n)
k+l (S,Ψ), 0 
≡ f2 ∈ M(q,n)

l (S,Ψ)
}
,

A(q,n)
k (S,Ψ)(Γ) =

{
f ∈ A(q,n)

k (S,Ψ) | f |kγ = f for any γ ∈ Γ
}
.

We write simply M(q,n)
k (S,Ψ), M(q,n)

k (S,Ψ)(Γ),A(q,n)
k (S,Ψ), A(q,n)

k (S,Ψ)(Γ)
by Mk, Mk(Γ),Ak, Ak(Γ), respectively if there is no fear of confusion. An
element of Ak is called a meromorphic modular form of weight k.

Hereafter we identify Za with the free module
∑
v∈a

Zv by putting (kv)v∈a =∑
v∈a

kvv. Also put 1 = (1)v∈a =
∑
v∈a

v. We can define the action of σ ∈ Aut(C)

on Za by
(∑
v∈a

kvv

)σ
=
∑
v∈a

kv(vσ). For any k ∈ Za, we denote by F (k) the

algebraic number field corresponding to
{
σ ∈ Gal(Q/Q) |kσ = k

}
. Then F (k)

is contained in the Galois closure of F over Q.
We can define a certain parabolic subgroup of G = G(q,n)(S,Ψ) and con-

sider corresponding Fourier-Jacobi expansions of holomorphic modular forms.
Put

N(q,n)(S,Ψ)(Q) =


h =


 1q tyρS b+ 1

2
tyρSy

0 1n y
0 0 1q



∣∣∣∣∣∣ y ∈ Kn

q , b ∈ Kq
q ,

tbρ = b


 ,

H(q,n)(S,Ψ)(Q) = N(q,n)(S,Ψ)(Q) ·



 α

1n
(tαρ)−1



∣∣∣∣∣∣α ∈ GL(q,K)


 ,
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P(q,n)(S,Ψ)(Q)

= N(q,n)(S,Ψ)(Q) ·




 α

β

c (tαρ)−1



∣∣∣∣∣∣∣∣
c ∈ F×,
α ∈ GL(q,K),
β ∈ GL(n,K),
tβρSβ = cS


 .

Then P(q,n)(S,Ψ) is a parabolic subgroup of G and N(q,n)(S,Ψ) is its unipo-
tent radical. We write simply N(q,n)(S,Ψ),H(q,n)(S,Ψ),P(q,n)(S,Ψ) by N,H,P
respectively.

Given a congruence subgroup Γ, we can find a Z-lattice L in Kn
q and a

Z-lattice Lq in a vector space

Hq =
{
b ∈ Kq

q

∣∣tbρ = b
}

such that Γ∩N(Q) contains all elements of the form


 1q tyρS b+ 1

2
tyρSy

0 1n y
0 0 1q




with y ∈ L and b ∈ Lq. Therefore, if f ∈ Mk(Γ), we have f
(
z + bΨ

w

)
=

f

(
z
w

)
(z ∈ (Cqq)a , w ∈ (Cnq )a) for all b ∈ Lq, and hence f

(
z
w

)
has the

following expansion.

f

(
z
w

)
=
∑
r∈L′

q

gr(w)ea

(
tr(rΨz)

)
(1.6)

where L′
q is the Z-lattice in Hq defined by

L′
q =

{
r ∈ Hq

∣∣TrF/Q (tr(rLq)) ⊂ Z
}
,

and every gr is a holomorphic function on
(
Cnq
)a. Define a hermitian form

Hr,S,Ψ on
(
Cnq
)a by

Hr,S,Ψ ((w1v)v∈a, (w2v)v∈a) = −2
√−1

∑
v∈a

tr
(
rΨv tw1vS

Ψvw2v

)
.(1.7)

For any y ∈ L, consider h =


 1q tyρS 1

2
tyρSy

0 1n y
0 0 1q


 ∈ Γ ∩ N(Q). Since

h

(
z
w

)
=
(
z + (tyρS)Ψ w + 1

2 (tyρSy)Ψ

w + yΨ

)
, the function gr satisfies

gr(w + yΨ) = exp
(
πHr,S,Ψ

(
yΨ, w +

1
2
yΨ

))
gr(w) for any y ∈ L.(1.8)

We denote by T(r,S,Ψ)(L) the set of all holomorphic functions gr on
(
Cnq
)a

satisfying (1.8) and by T(r,S,Ψ) the union of T(r,S,Ψ)(L) for all Z-lattices L in
Kn
q . Now we have the following lemma.
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Lemma 1.1. For T(r,S,Ψ) 
= {0}, it is necessary that r is totally semi-
positive definite (i.e. r is semi-positive definite for any embedding of K into
C).

This lemma follows from the classical theory of theta functions as Hr,S,Ψ

is semi-positive definite on
(
Cnq
)a if and only if r is so on Cq for any embedding

of K into C. Hence we can rewrite (1.6) as

f(z) =
∑

0≤r∈L′
q

gr(w)ea

(
tr(rΨz)

)
(1.9)

where 0 ≤ r means that r is totally semi-positive definite. We often write
this expansion without specifying the lattice L′

q employing the convention that
gr = 0 if r /∈ L′

q :

f(z) =
∑

0≤r∈Hq

gr(w)ea

(
tr(rΨz)

)
.(1.10)

Now let us define the arithmeticity of modular forms. Before doing that,
we must review the reflex of CM-type. For a CM-field K, its CM-type Ψ,
and any σ ∈ Gal(Q/Q), we can define another CM-type Ψσ = {ψσ |ψ ∈ Ψ}
of K. We denote by K∗

Ψ (or simply K∗ if there is no fear of confusion), the
corresponding algebraic number field to

{
σ ∈ Gal(Q/Q) |Ψσ = Ψ

}
which is a

finite index subgroup of Gal(Q/Q). As is well known, K∗
Ψ is a CM-field con-

tained in the Galois closure of K. Viewing Ψ as a union of g different right
Gal(Q/K)-cosets in Gal(Q/Q), we define a CM-type Ψ∗ of K∗

Ψ as follows

Gal(Q/K∗
Ψ)Ψ∗ =

(
Gal(Q/K)Ψ

)−1
.

We call Ψ∗ by “the reflex of Ψ” and the couple (K∗
Ψ,Ψ

∗) by “the reflex of
(K,Ψ)”. From the definition, we have (K∗

Ψ)σ = K∗
Ψσ for any σ ∈ Gal(Q/Q)

(or ∈ Aut(C)). By N ′
Ψ, we denote the group homomorphism x→∏

ψ∗∈Ψ∗ xψ
∗

from K∗×
Ψ to K×. It is a morphism of algebraic groups if we view K∗×

Ψ and
K× as algebraic groups defined over Q, and so it can naturally be extended to
the homomorphism of (K∗

Ψ)×A to K×
A .

For any gr ∈ Tr,S,Ψ, we define a function (gr)∗ on
(
Cnq
)a (which may be

non-holomorphic) by

(gr)∗(w) = exp
(
−π

2
Hr,S,Ψ(w,w)

)
gr(w) (w ∈ (Cnq )a).

Now for every subfield Ω of C containing K∗
Ψab (i.e. the maximal abelian ex-

tension of K∗
Ψ), we define

Tr,S,Ψ(L,Ω) =
{
gr ∈ Tr,S,Ψ(L)

∣∣∣(gr)∗(w) ∈ Ω for any w ∈ (Kn
q

)Ψ}
,

and put Tr,S,Ψ(Ω) the union of Tr,S,Ψ(L,Ω) for all Z-lattices L in Kn
q . Sim-

ilarly put Mk(Γ,Ω) = M(q,n)
k (S,Ψ)(Γ,Ω) the set of all f ∈ Mk(Γ) whose
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Fourier-Jacobi coefficients gr belong to Tr,S,Ψ(Ω) for all r, and put Mk(Ω) =
M(q,n)

k (S,Ψ)(Ω) the union of Mk(Γ,Ω) for all congruence subgroups Γ of G(Q).
Set

Ak(Ω) = A(q,n)
k (S,Ψ)(Ω) =

⋃
l∈Za

{
f1f

−1
2

∣∣∣∣∣ f1 ∈ M(q,n)
k+l (S,Ψ)(Ω),

0 
≡ f2 ∈ M(q,n)
l (S,Ψ)(Ω)

}
,

Ak(Γ,Ω) = A(q,n)
k (S,Ψ)(Γ,Ω) = A(q,n)

k (S,Ψ)(Ω) ∩ A(q,n)
k (S,Ψ)(Γ).

Lemma 1.2. Let Ω be as above.
(1) Take gr ∈ Tr,S,Ψ. Suppose that there exists a non-empty open subset

U of
(
Cnq
)a such that (gr)∗(w) ∈ Ω for any w ∈ (Kn

q

)Ψ ∩ U , then we have
gr ∈ Tr,S,Ψ(K∗

Ψab) ⊗K∗
Ψab

Ω.
(2) Tr,S,Ψ(Ω) = Tr,S,Ψ(K∗

Ψab) ⊗K∗
Ψab

Ω.

Proof. The assertion (2) follows from (1) immediately. Let us prove
(1). We get Tr,S,Ψ(C) = Tr,S,Ψ(K∗

Ψab) ⊗K∗
Ψab

C by [4, Propositions 1.2, 2.4
and 2.5]. Hence for gr ∈ Tr,S,Ψ(C), we can write gr = c1gr,1 + · · · + clgr,l
with gr,1, . . . , gr,l ∈ Tr,S,Ψ(K∗

Ψab) and c1, . . . , cl ∈ C. Take gr,1, . . . , gr,l and
c1, . . . , cl ∈ C so that gr,1, . . . , gr,l are linearly independent over C. Put

h = (gr)∗|(Kn
q )Ψ∩U , hj = (gr,j)∗|(Kn

q )Ψ∩U (1 ≤ j ≤ l). Since h =
l∑

j=1

cσj hj

for any σ ∈ Aut(C/Ω), we have c1, . . . , cl ∈ Ω.

From this lemma, we obtain the following proposition.

Proposition 1.3. For any subfield Ω of C containing K∗
Ψab, and for

any k ∈ Za, we have
Ak(Ω) ∩Mk = Mk(Ω).

Proof. Let f ∈ Ak(Ω) ∩ Mk. Then we can write f = f1/f2 with f1 ∈
Mk+l(Ω), 0 
≡ f2 ∈ Ml(Ω) (l ∈ Za). Let their Fourier-Jacobi expansions be

f1(z) =
∑

0≤r∈Hq

g1
r (w)ea

(
tr(rΨz)

)
,

f2(z) =
∑

0≤r∈Hq

g2
r (w)ea

(
tr(rΨz)

)
,

f(z) =
∑

0≤r∈Hq

gr(w)ea

(
tr(rΨz)

)
.

Then g1
r , g

2
r ∈ Tr,S,Ψ(Ω) for all r. Take r0 ∈ Hq so that g2

r0 
≡ 0, and put

U =
{
w ∈ (Cnq )a ∣∣g2

r0(w) 
= 0
}
.
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Then U is a non-empty open subset of
(
Cnq
)a. For w ∈ (Kn

q )Ψ ∩ U , we put

f1∗ =
∑

0≤r∈Hq

(g1
r)∗(w)ea

(
tr(rΨz)

)
,

f2∗ =
∑

0≤r∈Hq

(g2
r)∗(w)ea

(
tr(rΨz)

)
,

f∗ =
∑

0≤r∈Hq

(gr)∗(w)ea

(
tr(rΨz)

)
.

By a formal calculation of ff2, we have
∑

0≤t∈Hq

gt(w)g2
r−t(w) = gr(w) for each

r ∈ Hq. This implies
∑

0≤t∈Hq

(gt)∗(w)(g2
r−t)∗(w) = (gr)∗(w) and hence we obtain

f∗f2∗ = f1∗. Since f∗, f2∗ and f1∗ can be regarded as formal power series of
q2[F : Q]-variables such that f1∗ and f2∗ with coefficients in Ω, the coefficients
of f∗ must also be in Ω. Hence we get gr ∈ Tr,S,Ψ(Ω) from Lemma 1.2. So we
obtain f ∈ Mk(Ω).

Lemma 1.4. (1) Let Ω be a subfield of C containing K∗
Ψab, and k ∈

Za. Then for any f ∈ Mk(Ω) and for any h ∈ N(Q), we have

f |kh = f ◦ h ∈ Mk(Ω).

(2) For any k ∈ Za, take any subfield Ω of C containing F (k) ∨K∗
Ψab.

Then for any f ∈ Mk(Ω) and any h ∈ H(Q), we have

f |kh ∈ Mk(Ω).

(3) Let f ∈ Mk, whose Fourier-Jacobi expansion is

f(z) =
∑

0≤r∈Hq

gr(w)ea

(
tr(rΨz)

)
.

For h =


 1q tyρS b+ 1

2
tyρSy

0 1n y
0 0 1q




 α

1n
(tαρ)−1


 ∈ H(Q) (y ∈

Kn
q , b ∈ Hq, α ∈ GL(q,K)), we have

(f |kh)
(
z
0

)

=

(∏
v∈a

(det(αρ)Ψv)kv

)
·
∑

0≤r∈Hq

ea(tr(rb))
{
(gr)∗(yΨ)

}
ea

(
tr
(
(tαρrα)Ψz

))
.

Proof. By a straightforward calculation, we have

(f ◦ h)
(
z
0

)
=

∑
0≤r∈Hq

ea(tr(rb))
{
(gr)∗(yΨ)

}
ea

(
tr
(
(tαρrα)Ψz

))
.
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This implies (3). Since ea(tr(rb)) ∈ Qab, for any subfield Ω of C containing
K∗

Ψab, we have

Mk(Ω) =


f ∈ Mk

∣∣∣∣∣∣ (f ◦ h)
(
z
0

)
has Ω-rational Fourier coefficients

for any h ∈ H(Q)


 .

Hence we get (1). As the constant
∏
v∈a

(det(αρ)Ψv)kv is stable under the action

of Gal(Q/F (k) ∨K∗
Ψab), we get (2).

For any 0 � b ∈ F×, we can define the isomorphism I(S, b) of algebraic
groups G(q,n)(S,Ψ) → G(q,n)(bS,Ψ) by

I(S, b)(α) =


 b1q

1n
1q


α


 b1q

1n
1q


−1

.(1.11)

This is compatible with the biholomorphic bijection ε(S, b) of D(q,n)(S,Ψ) onto
D(q,n)(bS,Ψ) defined by

ε(S, b)
(

z
w

)
=
(
bz
w

)
.

Then we have
µv (I(S, b)(α), ε(S, b)(z)) = µv(α, z),

for α ∈ G(q,n)(S,Ψ)(Q), z ∈ D(q,n)(S,Ψ) and v ∈ a. Hence we can iden-
tify M(q,n)

k (bS,Ψ) and M(q,n)
k (S,Ψ). In terms of Fourier-Jacobi expansion, an

element ∑
0≤r∈Hq

gr(w)ea(tr(rΨz)) ∈ M(q,n)
k (S,Ψ)

is identified with ∑
0≤r∈Hq

gr(w)ea(tr(b−1rΨz)) ∈ M(q,n)
k (bS,Ψ)

through ε(S, b). Using these expressions by Fourier-Jacobi expansions, we can
identify M(q,n)

k (S,Ψ)(Ω) with M(q,n)
k (bS,Ψ)(Ω) (and clearly A(q,n)

k (S,Ψ)(Ω)
with A(q,n)

k (bS,Ψ)(Ω) ) for any subfield Ω of C containing K∗
Ψab.

If b (∈ F×) is not totally positive, we can define the group isomorphism
G(q,n)(S,Ψ) → G(q,n)(bS,Ψ′) (of course Ψ 
= Ψ′) by (1.11). But in this case the
corresponding bijection of D(q,n)(S,Ψ) onto D(q,n)(bS,Ψ′) is not holomorphic.
So we cannot identify modular forms on both symmetric domains.

In [1], the canonical models of D = D(q,n)(S,Ψ) modulo congruence sub-
groups of G(Q) are constructed. Consider the adelization GA=G(q,n)(S,Ψ)A
of G = G(q,n)(S,Ψ). That is,

GA =
{
x ∈ GL(m,KA)

∣∣txρRx = ν(x)R with ν(x) ∈ F×
A

}
.
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Note that xp, the p-component of x, belongs to GL(m,Op) for almost all non-
archimedean primes p of K. Put

G+ = G(q,n)
+ (S,Ψ) =


x ∈ GA

∣∣∣∣∣∣∣
∃a ∈ (K∗)×A such that
det(x) (N ′

Ψ(a))n
(
NK∗/Q(a)

)q ∈ K×K×∞,
ν(x)NK∗/Q(a) ∈ F×F×

∞+


 ,

where K×
∞ (resp. F×

∞) denotes the infinite component of the idele group K×
A

(resp. F×
A ) and F×

∞+ means the connected component of the identity of F×
∞.

The overlines mean the topological closures in the idele groups. Clearly we
have G+ ⊃ G(Q).

Let Z = Z(q,n)(S,Ψ) be the set of all subgroups of GA which contain
G∞, the infinite component of GA, and whose projections to Gf , the non-
archimedean component of GA, are open compact. Then for any Y ∈ Z, Y ∩
G(Q) is a congruence subgroup, which will be denoted by ΓY . For each Y ∈ Z
we have a variety (more precisely, a Zariski open subset of a projective variety)
VY defined over K∗

Ψab and a holomorphic map ϕY : D → VY so that ϕY
defines a biregular isomorphism of ΓY \D onto VY . For X,Y ∈ Z and x ∈ G+

so that X ⊃ xY x−1, we take the morphism JXY (x) of VY to V
σ(x)
X , where

σ(x) ∈ Aut(C/K∗) is determined by x, as in [1].
Define W = W (q,n)(S,Ψ) by

W =
{
z ∈ D

∣∣z = (bΨ) with some b ∈ Kq+n
q

}
.(1.12)

Then ϕY (z) is K∗
Ψab-rational for any z ∈ W . Let K = K(q,n)(S,Ψ) denote the

function field Lj0 of [1, Section 4.2]. The function field K is contained in the
union of K∗

Ψab(VY ) (i.e. the field of all rational functions on VY defined over
K∗

Ψab) for all Y ∈ Z. Now we have A0(C) = K ∨ C.
The function field K determines a certain arithmeticity on A0. The relation

between the arithmeticity defined in this section and that of K will be made
precise in Section 5.

2. On some embeddings of symmetric domains

To analyze the arithmeticity of modular forms with respect to G =
G(q,n)(S,Ψ), we need to use Shimura’s many results in the symplectic case
through some embeddings. So we define three kinds of embeddings of groups
and symmetric domains in this section.

First let us review symplectic groups and corresponding symmetric do-
mains. Let F,K, a be as in Section 1. For any positive integer l, put G(l)(Q) =
GSp(l, F ), G(l)

1 (Q) = Sp(l, F ), that is,

G(l)(Q)

=
{
γ ∈ GL(2l, F )

∣∣∣∣tγ
(

0 1l
−1l 0

)
γ = ν(γ)

(
0 1l

−1l 0

)
with ν(γ) ∈ F×

}
,

G
(l)
1 (Q)=

{
γ ∈ GL(2l, F )

∣∣∣∣tγ
(

0 1l
−1l 0

)
γ =

(
0 1l

−1l 0

)}
.
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We view G(l), G
(l)
1 as algebraic groups defined over Q. Then G(l)

1 has the strong
approximation property. As is well known, we have det(γ) = 1 for any γ ∈
G

(l)
1 (Q). Set

G(l)(Q)+ =
{
γ ∈ G(l)(Q) |ν(γ) � 0

}
,

where � 0 means totally positive, and set

Ha
l =

{
z = (zv)v∈a ∈ (Cll)

a
∣∣tzv = zv, Im(zv) > 0 for any v ∈ a

}
,

where > 0 means positive definite. Then G(l)(Q)+ acts on Ha
l as α((zv)v∈a) =(

(avzv + bv)(cvzv + dv)−1
)
v∈a

with α =
(
a b
c d

)
∈ G(l)(Q)+ and a, b, c, d ∈

F ll . The automorphic factor is defined by

j(l)v (α, (zv)v∈a) = cvzv + dv

for each v ∈ a. We define congruence subgroups of G(l)(Q) and modular forms
on Ha

l with respect to them as in [9]. Let M(l)
k (k ∈ Za) denote the space of

holomorphic modular forms on Ha
l of weight k. Set

A(l)
k =

⋃
e∈Za

{
f1f

−1
2

∣∣∣f1 ∈ M(l)
k+e, 0 
≡ f2 ∈ M(l)

e

}
.

Now for any subfield Ω of C, we denote by M(l)
k (Ω) the space of all holomorphic

modular forms of weight k with Ω-rational Fourier coefficients. (See, [9, Section
25].) Put

A(l)
k (Ω) =

⋃
e∈Za

{
f1f

−1
2

∣∣∣f1 ∈ M(l)
k+e(Ω), 0 
≡ f2 ∈ M(l)

e (Ω)
}
.

For any σ ∈ Aut(C) and f ∈ M(l)
k whose Fourier expansion is

f(z) =
∑
r∈L

crea(tr(rz)),(2.1)

where L is a certain lattice in the space of symmetric matrices of degree l with
coefficients in F , there exists fσ ∈ M(l)

kσ whose Fourier expansion is

fσ(z) =
∑
r∈L

cσrea(tr(rz)).(2.2)

This fact is proved in [3] (cf. also in [9, Section 26]), and this implies M(l)
k (Ω) =

{0} if Ω 
⊃ F (k).
In [2], the canonical models for symplectic cases are constructed. Take

G
(l)
A = GSp(l, FA) and set

G(l)
+ =

{
x ∈ GA

∣∣∣ν(x) ∈ F×F×
∞+Q×

A, ν(x)v > 0 for each v ∈ a
}
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and denote by Z(l) the Z defined in [2]. For any T ∈ Z(l), we denote the
congruence subgroup T ∩G(l)(Q) by Γ(l)

T . We denote by J (l)
T ′T , V

(l)
T , ϕ

(l)
T , K(l),

the JT ′T , VT , ϕT , L defined in [2] respectively, for T, T ′ ∈ Z(l). Take 0 
=
f1, f2 ∈ M(l)

k and fσ1 , f
σ
2 in the sense of (2.2). Then for any Y ∈ Z(l) such that

(f1/f2) ◦ (ϕ(l)
Y )−1 is defined as a rational function on V (l)

Y , we have

(fσ1 /f
σ
2 ) =

[
(f1/f2) ◦ (ϕ(l)

Y )−1
]σ

◦ J (l)

Y Ỹ

((
1l 0
0 χ(σ)1l

))
◦ ϕ(l)

Ỹ
,

where χ(σ) ∈∏p Z×
p so that [χ(σ)−1,Q] = σ|Qab

and

Ỹ =
(

1l 0
0 χ(σ)1l

)−1

Y

(
1l 0
0 χ(σ)1l

)
.

(See, [8, Theorem 1.5].)
For any CM-extension K of F and its CM-type Ψ, put

W (l)(Ψ) =
{
z ∈ Ha

l

∣∣z = τΨ for some τ ∈ Kq
q

}
.

Then ϕ
(l)
T (z) is K∗

Ψab-rational for any z ∈ W (l)(Ψ) and T ∈ Z(l). For any
z = τΨ ∈W (l)(Ψ), we define the group injection Φ(l)

z : K×
A → G

(l)
A as

Φ(l)
z (a) =

(
(aτ − aρτρ)(τ − τρ)−1 −(a− aρ)τρ(τ − τρ)−1τ

(a− aρ)(τ − τρ)−1 (τ − τρ)−1(aρτ − aτρ)

)
,

namely the h(
l times︷ ︸︸ ︷
a, . . . , a) in [9, Section 24.10] with h corresponding to z. Then

it satisfies Φ(l)
z (a)

(
τ
1l

)
=
(

a · τ
a · 1l

)
and ν(Φ(l)

z (a)) = aaρ. If a ∈ K×, then

Φ(l)
z (a) ∈ G(l)(Q)+ and Φ(l)

z (a)(z) = z.
Now let us define the first embedding. For z = (zv)v∈a ∈ Ha

q , put

ε
(q,n)
0 (S,Ψ)(z) =

(
z
0

)
=
(
zv
0

)
v∈a

.

Then ε(q,n)
0 (S,Ψ) gives an embedding of Ha

q into D(q,n)(S,Ψ). This is compat-

ible with the injection I
(q,n)
0 (S,Ψ) of G(q)

1 (Q) = Sp(q, F ) into G(q,n)
1 (S,Ψ)(Q)

defined by

I
(q,n)
0 (S,Ψ)

((
a b
c d

))
=


 a 0 b

0 1n 0
c 0 d


 , where a, b, c, d ∈ F qq .

As I(q,n)
0 (S,Ψ) can be viewed as a homomorphism of algebraic groups, we can

extend I(q,n)
0 (S,Ψ) to the map G(q)

1A ↪→ G
(q,n)
1 (S,Ψ)A. We denote I(q,n)

0 (S,Ψ),
ε
(q,n)
0 (S,Ψ) by I0, ε0 if there is no fear of confusion. We have

I0(α)(ε0(z)) = ε0(α(z)),
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µv(I0(α), ε0(z)) = j(q)v (α, z) for any α ∈ G
(q)
1 (Q), z ∈ Ha

q .

Hence we can consider the pull-back of modular forms on D.

Lemma 2.1. (1) For any f ∈ Mk, f ◦ ε0 ∈ M(q)
k (k ∈ Za).

(2) Let Ω be a subfield of C containing K∗
Ψab. Then for any f ∈ Mk(Ω),

we have
f ◦ ε0 ∈ M(q)

k (Ω) (k ∈ Za).

Proof. (1) is clear except for the case when F = Q and q = 1. Put the
Fourier-Jacobi expansion of f as

f(z) =
∑

0≤r∈Lq

gr(w)ea(tr(rΨz)) z =
(

z
w

)
∈ D,

where Lq is a lattice in Hq. Then we have

(f ◦ ε0)(z) =
∑

0≤r∈Lq

gr(0)ea (tr(Re(r)z)) , z ∈ Ha
q .(2.3)

Now Re(r) is a symmetric matrix contained in F qq . Equivalently,

(f ◦ ε0)(z) =
∑
b


 ∑

0≤r∈Lq
Re(r)=b

gr(0)


ea (tr(bz)) .(2.4)

If Re(r) = b, we have r + rρ = 2b. This implies 2b− r is semi-positive definite

for any embedding of K into C. If we embed Hq into
{
X ∈ Cqq

∣∣∣tX = X
}a

,
then Lq is a lattice (hence discrete) in it, and the subset∏
v∈a

{
X ∈ Cqq

∣∣∣tX = X, 2bv −X ≥ 0, X ≥ 0
}

is compact. Hence the set

{r ∈ Lq |Re(r) = b} is a finite set. This implies (2). As (2.4) is the Fourier
expansion of f ◦ ε0, we get (1) even if F = Q and q = 1.

Combining this lemma with Lemma 1.4, we have the following lemma.

Lemma 2.2. (1) Let Ω be a subfield of C containing K∗
Ψab. For any

f ∈ Mk(Ω) and any h ∈ H(Q), we have

(f ◦ h) ◦ ε0 ∈ M(q)
k (Ω) (k ∈ Za).

(2) Take any k ∈ Za. Let Ω be a subfield of C containing F (k) ∨K∗
Ψab.

For any f ∈ Mk(Ω) and any h ∈ H(Q), we have

(f |kh) ◦ ε0 ∈ M(q)
k (Ω).

Further, we have the following lemma.
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Lemma 2.3. Take any k ∈ Za. Let Ω be a subfield of C containing
F (k)∨K∗

Ψab. Let f ∈ Mk. Then f ∈ Mk(Ω) if and only if (f |kh)◦ε0 ∈ M(q)
k (Ω)

for any h ∈ H(Q).

To prove this, we need the following lemma.

Lemma 2.4. Let Lq be a lattice in Hq. For any r ∈ Lq which is semi-
positive definite in any embedding of K into C, we can take some α ∈ GL(q,K)
so that {

0 ≤ r′ ∈ Lq
∣∣Re(tαρr′α) = Re(tαρrα)

}
= {r} .

Proof. The condition Re(tαρr′α) = Re(tαρrα) implies that r′ ≤ r +
(tαρ)−1tαrραρα−1. Viewing GL(q,K) as a dense subset of GL(q,C)a, we can
take a compact neighborhood C of the identity in GL(q,C)a such that{

0 ≤ r′ ∈ Lq
∣∣r′ ≤ r + (tαρ)−1tαrραρα−1 for some α ∈ C

}
is a finite set. Hence we can choose a suitable α ∈ C ∩GL(q,K) satisfying the
condition of this lemma.

Proof of Lemma 2.3. The “only if” part has been proved in Lemma 2.2.
For any f ∈ Mk, take the Fourier-Jacobi expansion of f as

f(z) =
∑

0≤r∈Lq

gr(w)ea(tr(rΨz))

with some lattice Lq of Hq. Assume f |kh ◦ ε0 ∈ M(q)
k (Ω) for any h ∈ H(Q).

Fix r ∈ Lq, y ∈ Kn
q and let us prove (gr)∗(yΨ) ∈ Ω. Take α as in Lemma 2.4

and put h =


 1q tyρS 1

2
tyρSy

0 1n y
0 0 1q




 α

1n
(tαρ)−1


. From Lemma 1.4

(3), (2.4) and Lemma 2.4,
∏
v∈a

(
det(αρ)Ψv

)kv (gr)∗(yΨ) is a Fourier coefficient

of f |kh ◦ ε0, hence (gr)∗(yΨ) ∈ Ω since
∏
v∈a

(
det(αρ)Ψv

)kv ∈ F (k) ∨K∗
Ψ. This

completes the proof.

Next we define the embedding of D = D(q,n)(S,Ψ) into Ha
m. Take δ ∈ K×

such that δρ = −δ. Put

ε
(q,n)
δ (S,Ψ)(z)

=


 1

2 (z + tz − twSΨw) tw 1
2δ

Ψ(z − tz − twSΨw)
w (−S−1)Ψ δΨw

1
2δ

Ψ(tz − z − twSΨw) δΨtw − δ2

2 (z + tz + twSΨw)




where z =
(

z
w

)
with z ∈ (Cqq)a , w ∈ (Cnq )a .
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Then εδ = ε
(q,n)
δ (S,Ψ) is an embedding of D into Ha

m. This is compatible
with the injection Iδ = I

(q,n)
δ (S,Ψ) of G(Q) = G(q,n)(S,Ψ)(Q) into G(m)(Q) =

GSp(m,F ) defined by

I
(q,n)
δ (S,Ψ)(α) = C(S, δ)

(
αρ 0
0 α

)
C(S, δ)−1,

whereC(S, δ) =




1q 0 0 1q 0 0
0 1n 0 0 1n 0

δ · 1q 0 0 −δ · 1q 0 0
0 0 1q 0 0 1q
0 −S 0 0 S 0
0 0 −δ−1 · 1q 0 0 δ−1 · 1q


 .

Then we have

Iδ(α)(εδ(z)) = εδ(α(z)),
ν(Iδ(α)) = ν(α), det(Iδ(α)) = det(α) det(α)ρ.(2.5)

Put, for each v ∈ a

ωv(z) =


 1q 0 1

2δ
Ψv · 1q

0 1n 1
2δ

ΨvSΨvwv
(−δ−1)Ψv · 1q 0 1

2 · 1q


 for z =

(
zv
wv

)
v∈a

∈ D.

Then we have

j(m)
v (Iδ(α), εδ(z)) = ωv(α(z))

(
λv(α, z) 0

0 µv(α, z)

)
ωv(z)−1(2.6)

where α ∈ G(Q), z ∈ D. From (1.4) we obtain det (λv(α, z)) = det (µv(α, z))
for any α ∈ G1(Q), hence det

(
j
(m)
v (Iδ(α), εδ(z))

)
= det (µv(α, z))

2 for each
v ∈ a if α ∈ G1(Q) (since det(ωv(z)) = 1 for any z ∈ D ). Therefore for any
f ∈ M(m)

k , we have f ◦ ε(q,n)
δ (S,Ψ) ∈ M(q,n)

2k (S,Ψ) (k ∈ Za). Through the
embedding εδ, arithmetic modular forms on Ha

m and D are related by a certain
proportionality factor, which is essentially a CM-period.

Lemma 2.5. Let k ∈ Za, and Ω be a subfield of C containing F (k) ∨
K∗

Ψab. Then for any f ∈ M(m)
k (Ω), we have

h(1)(z(1))−n ·
(
f ◦ ε(q,n)

δ (S,Ψ)
)
∈ M(q,n)

2k (S,Ψ)(Ω),

where h(1) ∈ M(1)
k (F (k) ∨K∗

Ψab) and z(1) ∈W (1)(Ψ) so that h(1)(z(1)) 
= 0 .

Proof. For any h ∈ H(Q), consider (f ◦ εδ)|2kh ◦ ε0 ∈ M(q)
2k . Then for

any z ∈ W (q)(Ψ), we have (f ◦ εδ)|2kh ◦ ε0(z) ∈ h(1)(z(1))m · Ω since εδ(h ◦
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ε0(z)) ∈W (m)(Ψ). As stated in [8], M(q)
2k (C) is spanned by M(q)

2k (F (k)) (clearly
F (2k) = F (k)) and so we have

h(1)(z(1))−n · (f ◦ εδ)|2kh ◦ ε0 = c1h1 + · · · + ctht

with c1, . . . , ct ∈ C and h1, . . . , ht ∈ M(q)
2k (F (k)). Now we have hj(z)

·h(1)(z(1))−2q ∈ F (k) ∨ K∗
Ψab for any z ∈ W (q)(Ψ) (1 ≤ j ≤ t). Taking

h1, . . . , ht linearly independent over C and moving z all over W (q)(Ψ), we have
c1, . . . , ct ∈ Ω and hence h(1)(z(1))−n · (f ◦ εδ)|2kh ◦ ε0 ∈ M(q)

2k (Ω). Taking any
h ∈ H(Q), we get h(1)(z(1))−n · (f ◦ εδ) ∈ M2k(Ω) from Lemma 2.3.

We can consider embeddings of canonical models corresponding to εδ. For
Y ∈ Z and T ∈ Z(m), if Iδ(Y ) ⊂ T then we can define the map from VY to
V

(m)
T which is compatible with εδ. We denote this by ETY . Namely, we have

the commutative diagram as follows.

D
εδ−−−−−−−−−→ Ha

m-ϕY

-ϕ(m)
T

VY −−−−−−−−−→
ET Y

V
(m)
T

.

The map ETY is a rational map from VY to V (m)
T . Take W = W (q,n)(S,Ψ) as

in (1.12). Then we have εδ(W ) ⊂ W (m)(Ψ), and ϕY (z), ϕ(m)
T (z) (z ∈ W, z ∈

W (m)(Ψ)) are K∗
Ψab-rational. This implies ETY is defined over K∗

Ψab since W
is dense in D. In the same way as in [7, Section 4], we have

E
σ(x)
UX ◦ JXY (x) = J

(m)
UT (Iδ(x)) ◦ ETY ,(2.7)

where x ∈ G+, X, Y ∈ Z and T, U ∈ Z(m), if the both hands sides are defined.
The properties of ETY will be mentioned more precisely in Section 4.

The last embedding is that of Sp(l, F ) into Sp(lg,Q) where g = [F : Q],
stated in [8, Section 1]. Take a basis {β1, . . . , βg} of F over Q and put

B =


 (β1)v1 · · · (βg)v1

· · · · · · · · ·
(β1)vg

· · · (βg)vg


 , B(l) =


 (β1)v11l · · · (βg)v11l

· · · · · · · · ·
(β1)vg

1l · · · (βg)vg
1l


 .

Let
{
β′

1, . . . , β
′
g

}
be the dual basis of {β1, . . . , βg} with respect to TrF/Q, that

is,

(tB)−1 =


 (β′

1)v1 · · · (β′
g)v1

· · · · · · · · ·
(β′

1)vg
· · · (β′

g)vg


 .
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We define the embedding I(l)
B of Sp(l, F ) into Sp(lg,Q) as

I
(l)
B

((
a b
c d

))
=
(

tB(l) 0
0 (B(l))−1

)
(2.8)

×




av1 bv1
. . . . . .

avg
bvg

cv1 dv1
. . . . . .

cvg
dvg



(

(tB(l))−1 0
0 B(l)

)
,

where a, b, c, d ∈ F ll . Then Sp(lg,Q) acts on

Hlg =
{
Z ∈ C

lg
lg

∣∣tZ = Z, Im(Z) > 0
}

as (
a b
c d

)
(Z) = (aZ + b)(cZ + d)−1 (a, b, c, d ∈ Q

lg
lg).

The corresponding embedding ε(l)B of Ha
l into Hlg is defined by

ε
(l)
B ((zv)v∈a) = tB(l)


 zv1

. . .
zvg


B(l).

This embedding is compatible with I(l)
B . For any α ∈ Sp(l, F ), put

(
aα bα
cα dα

)
= I

(l)
B (α) with aα, bα, cα, dα ∈ Q

lg
lg. Then we have

cαε
(l)
B (z) + dα = (B(l))−1




j
(l)
v1 (α, z)

. . .
j
(l)
vg (α, z)


B(l)(2.9)

for any z ∈ Ha
l . Hence we can consider the pull-back of modular forms again

in this case. For any modular form f on Hlg of weight κ, we have f ◦ ε(l)B ∈
M(l)

κ1 (κ ∈ Z). If all the Fourier coefficients of f are Ω-rational, then f ◦ ε(l)B ∈
M(l)

κ1(Ω), for each subfield Ω of C.

3. Arbitrary conjugation of theta functions

In [4], Shimura formulated complex multiplication theory in terms of theta
functions. In particular, he stated a theorem on conjugation of abelian varieties
with complex multiplication by σ ∈ Aut(C) when σ|K∗ = idK∗ . We shall extend
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this theorem to the case for an arbitrary σ ∈ Aut(C) using the results in [10,
Chapter 7] and [11].

First we consider the conjugation of polarized abelian varieties. Let F,K
be as in Section 1 and take a CM-type Ψ of K. Let (A, C, ι) be a polarized
abelian variety of type (K,Ψ, L, t) with respect to Θ, which is g-dimensional
and End(A) ⊗Z Q ∼= K. The Riemann form E corresponding to C is given by

E(xΨ, yΨ) =
1
2
TrK/Q(txyρ)

for all x, y ∈ K. (See, [9, Section 24] and [10, Chapter 7, Section 3].)
Take any σ ∈ Aut(C) and consider (A, C, ι)σ. We denote by Ator the

subgroup of all torsion elements of A. For any σ ∈ Aut(C), take χ(σ) ∈ ∏
p

Z×
p

so that [χ(σ)−1,Q] = σ|Qab
. Then we have the following commutative diagram

by virtue of [10, Chapter 7].

K/L
Θ◦Ψ−−−−−−−−−→ Ator-×a

-σ
K/aL

Θa◦(Ψσ)−−−−−−−−−→ Aσtor

with some a ∈ K×
A , and (A, C, ι)σ is of type (K,Ψσ, aL, ι(σ, a)t) with respect

to Θa; a and σ are related by χ(σ)
aaρ ∈ F×F×

∞ and ι(σ, a) ∈ F× so that χ(σ)
aaρ ∈

ι(σ, a)F×
∞. Now the coset aK×K×

∞ is uniquely determined only by (K,Ψ) and
σ (not depending on A or L). We denote aK×K×

∞ by gΨ(σ). If σ is trivial
on K∗

Ψ, we have gΨ(σ) = N ′
Ψ(b)K×K×

∞ with b ∈ (K∗
Ψ)×A such that [b−1,K∗

Ψ] =
σ|K∗

Ψab
; this fact is a main theorem of complex multiplication theory of [9].

Note that gΨ(σ1)gΨσ1(σ2) = gΨ(σ1σ2). Set

CΨ(C) = {(σ,Ψ, a) |σ ∈ Aut(C), a ∈ gΨ(σ)} .
For a polarized abelian variety (A, C, ι) of type (Kl, lΨ, L, T ) (for some

skew-hermitian form T on Kl), we also have the commutative diagram

Kl/L
Θ◦Ψ−−−−−−−−−→ Ator-×a

-σ
Kl/aL

Θa◦(Ψσ)−−−−−−−−−→ Aσtor

(3.1)

for a ∈ gΨ(σ). This can be verified by taking A to be a product of l copies of
a polarized abelian variety of type (K,Ψ).

Now let us review classical theta functions. Let V be a finite dimensional
C-vector space and Λ be a Z-lattice in V . Assume that there exists a semi-
positive definite hermitian form H on V which satisfies Im(H(u1, u2)) ∈ Z for
any u1, u2 ∈ Λ. Then we define

T(V ,Λ, H) =


f : V → C

∣∣∣∣∣∣
f is holomorphic on V ,
f(u+ x) = f(u) exp

(
πH(x, u+ 1

2x)
)

for each u ∈ V , x ∈ Λ


 .
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For any f ∈ T(V ,Λ, H), we define the (non holomorphic) function f∗ on V as

f∗(u) = exp
(
−π

2
H(u, u)

)
f(u).

Consider the case V = Cl and H is positive definite. As stated in [4], put

θ(l)(u, Z; p1, p2) =
∑
x∈Zl

exp
(
π
√−1

(
t(x+ p1)Z(x+ p1) + 2t(x+ p1)(u+ p2)

))
,

ϕ(l)(u, Z; p1, p2) = exp
(
π
√−1tu(Z − Z)−1u

)
θ(l)(u, Z; p1, p2).

Here u ∈ Cl, Z ∈ Hl and p1, p2 ∈ Ql. As stated in [4], take (ω1 ω2) ∈ Cl2l such
that Z = ω−1

2 ω1 ∈ Hl (ω1, ω2 ∈ GL(l,C)) and set

ϕ(l)(u, (ω1 ω2); p1, p2) = θ(l)(0, Z; p′1, 0)−1ϕ(l)(ω−1
2 u, Z; p1, p2)(3.2)

where p′1 ∈ Ql so that θ(l)(0, Z; p′1, 0) 
= 0 (it is possible from [4]). Then
ϕ(l)(u, (ω1 ω2); p1, p2) is determined up to the multiplication of non-zero con-
stant. For Λ and H above, by the theory of elementary divisors, we can take a
Z-basis of Λ so that the Z-valued alternating form Im(H) on Λ is expressed as(

0 −µε
µε 0

)
,(3.3)

where ε =


 ε1

. . .
εl


 , ε1, . . . , εl ∈ N, εk|εk+1, ε1 = 1, µ ∈ N.

As is well known, if µ is even and µ ≥ 3, we have

dimT(Cl,Λ, H) = µl det(ε).

In this case we can take the basis of T(Cl,Λ, H) as{
ϕ(l)(u, (ω1 ω2); j, 0)

∣∣j ∈ µ−1ε−1Zl/Zl
}
,

where Λ = (ω1 ω2)
(

Zl

µεZl

)
.

Now we consider theta functions with complex multiplication. Take a
totally real algebraic number field F of finite degree and put g = [F : Q]. Take
B and B(l) as in Section 2 and put

θ
(l)
F,B(u, z; p1, p2) = θ(lg)


tB(l)


 uv1

...
uvg


 , ε

(l)
B (z); p1, p2


 ,

ϕ
(l)
F,B(u, z; p1, p2) = ϕ(lg)


tB(l)


 uv1

...
uvg


 , ε

(l)
B (z); p1, p2


 ,
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for u ∈ (Cl)a, z ∈ Ha
l and p1, p2 ∈ Qlg. Take (ω1 ω2) ∈ (Cl2l)a such that

ω−1
2 ω1 ∈ Ha

l ( ω1, ω2 ∈ GL(l,C)a ) and set

ϕ
(l)
F,B(u, (ω1 ω2); p1, p2) = θ

(l)
F,B(0, z; p′1, 0)−1ϕ

(l)
F,B(ω−1

2 u, z; p1, p2)

for u ∈ (Cl)a, z = ω−1
2 ω1 ∈ Ha

l and p1, p2, p
′
1 ∈ Qlg so that θ(l)

F,B(0, z; p′1, 0) 
= 0.

The theta function ϕ
(l)
F,B(u, (ω1 ω2); p1, p2) is determined up to the constant

multiple. For fixed p1, p2, p
′
1 (by the same reason as in [4]), there exists a

congruence subgroup Γ(l) of G(l)(Q) = GSp(l, F ) which satisfies

ϕ
(l)
F,B(u, (ω1 ω2)tγ; p1, p2) = ϕ

(l)
F,B(u, (ω1 ω2); p1, p2)

for any γ ∈ Γ(l) and (ω1 ω2).
Consider a CM-extension K of F and its CM-type Ψ. Take a Z-lattice L

in Kl and an l-dimensional skew-hermitian matrix T ∈ Kl
l so that

TrK/Q(tyρ1Ty2) ∈ Z for any y1, y2 ∈ L.

We can define the hermitian form HT,Ψ on (Cl)a as

HT,Ψ(u1, u2) = −2
√−1

∑
v∈a

tu1vT
Ψvu2v.

Assume that HT,Ψ is positive definite. This means −2
√−1TΨv is positive

definite for each v ∈ a. Then we can consider T((Cl)a, LΨ, HT,Ψ). Take L
sufficiently small so that Im(HT,Ψ) is expressed as (3.3) for a positive even
integer µ ≥ 3 (in this case we must replace l by lg). Then we have dimC T((Cl)a,
LΨ, HT,Ψ) = µlg det(ε) and its basis is given by{

ϕ
(l)
F,B(u, (ω1 ω2); j, 0)

∣∣j ∈ µ−1ε−1Zlg/Zlg
}

(3.4)

where

LΨ = (ω1 ω2)
(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
Zlg

µεZlg

)
.(3.5)

Hence we have ω1, ω2 ∈ (Kl
l )

Ψ. This means z = ω−1
2 ω1 ∈ W (l)(Ψ). Put ω1 =

τΨ
1 , ω2 = τΨ

2 for τ1, τ2 ∈ Kl
l . Since θ(lg)(0, ε(l)B (z); p′1, 0)/θ(lg)(0, ε(l)B (z); p′′1 , 0)

(viewed as a function of z on Ha
l ) is contained in A(l)

0 (Q) (for p′1, p′′1 ∈ Qlg),
the functions ϕ(l)

F,B(u, (ω1 ω2); j, 0) are determined up to the multiplication of
(K∗

Ψab)
×. For any subfield Ω of C containing K∗

Ψab, put

T((Cl)a, LΨ, HT,Ψ,Ω)

=
{
f ∈ T((Cl)a, LΨ, HT,Ψ)

∣∣f∗(u) ∈ Ω for any u ∈ (Kl)Ψ
}
.
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Let us consider f∗(u) when f(u) = ϕ
(l)
F,B(u, (τΨ

1 τΨ
2 ); j, 0) and u ∈ (Kl)Ψ. Put

u = (τΨ
1 τΨ

2 )
(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
κ1

µεκ2

)

for κ1, κ2 ∈ Qlg. By [9, Section 27] (or in the same way as in [4]), we have

f∗(u)

= exp(−π√−1tκ1µεκ2)θ(lg)(0, ε(l)B (z); j + κ1, µεκ2)/θ(lg)(0, ε(l)B (z); p′1, 0).

The right hand side belongs to A(l)
0 (Qab) when viewed as a meromorphic

function of z(∈ Ha
l ). Hence f∗(u) ∈ K∗

Ψab since z ∈ W (l)(Ψ). This means
ϕ

(l)
F,B(u, (τΨ

1 τΨ
2 ); j, 0) ∈ T((Cl)a, LΨ, HT,Ψ,K

∗
Ψab). Hence we obtain

T((Cl)a, LΨ, HT,Ψ) = T((Cl)a, LΨ, HT,Ψ,K
∗
Ψab) ⊗K∗

Ψab
C.

For f ∈ T((Cl)a, LΨ, HT,Ψ), consider the restriction of f∗ to (Kl)Ψ. Then
it satisfies

f∗(yΨ + xΨ) = ea(−Re(txρTy))f∗(yΨ) for any x ∈ L, y ∈ Kl.

Hence for any Z-lattice M of Kl, there exists a sublattice M ′ of M such that

f∗(yΨ + xΨ) = f∗(yΨ) for any x ∈M ′, y ∈M.

Therefore for any y ∈ (KA)l, takingM , y1 ∈ Kl so that y ∈M⊗Z(Q∞×∏p Zp)
and y ∈ y1 +M ′ ⊗Z (Q∞ ×∏p Zp) (where Q∞ denotes the infinite component
of QA), we can define f∗(yΨ) to be equal to f∗(yΨ

1 ).
We have the following theorem which is an extension of the main theorem

of [4].

Theorem 3.1. Assume that HT,Ψ is positive definite. Take any f ∈
T((Cl)a, LΨ, HT,Ψ) and (σ,Ψ, a) ∈ CΨ(C). Then there exists f (σ,Ψ,a)∈T((Cl)a,
(aL)(Ψσ), Hι(σ,a)T,Ψσ) which satisfies

(f (σ,Ψ,a))∗
(
(ay)(Ψσ)

)
=
[
f∗(yΨ)

]σ
for any y ∈ Kl.

Proof. It suffices to prove the case f(u) = ϕ
(l)
F,B(u, (τΨ

1 τΨ
2 ); j, 0) where

the right hand side is as in (3.4). Set z = (τ−1
2 τ1)Ψ ∈ Ha

l . Take a congruence
subgroup Γ(l) of G(l)

1 (Q) so that ϕ(l)
F,B(u, (ω1 ω2)tγ; j, 0) = ϕ

(l)
F,B(u, (ω1 ω2); j, 0)

holds for any γ ∈ Γ(l) and (ω1 ω2). Next take X ∈ Z(l) so that Γ(l)
X ⊂ O×

F Γ(l).
Put

X̃ =
(

1l 0
0 χ(σ)1l

)−1

X

(
1l 0
0 χ(σ)1l

)
∈ Z(l),
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and take z̃ ∈ Ha
l so that

ϕ
(l)

X̃
(z̃) =

[
J

(l)

X̃X

((
1l 0
0 χ(σ)1l

)−1
)(

ϕ
(l)
X (z)

)]σ
.

Consider f̃(u) = ϕ
(l)
F,B(u, (z̃ 1l); j, 0). Take u ∈ (Cl)a by

u = (z̃ 1l)
(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
κ1

µεκ2

)
for κ1, κ2 ∈ Qlg. Then we have

f̃∗(u) = exp(−π√−1tκ1µεκ2)(3.6)

× θ(lg)(0, ε(l)B (z̃); j + κ1, µεκ2)/θ(lg)(0, ε(l)B (z̃); p′1, 0)

=
[
exp (−π√−1tκ1µεκ

′
2)

× θ(lg)(0, ε(l)B (z′); j + κ1, µεκ
′
2)/θ

(lg)(0, ε(l)B (z′); p′1, 0)
]σ

=
[(
ϕ

(l)
F,B

)
∗
(u′, (z′ 1l); j, 0)

]σ
.

Here κ′2 ∈ Qlg so that κ′2 ≡ χ(σ)−1
p κ2 mod(Zp)lg, tκ1µε(κ′2 − χ(σ)−1

p κ2) ∈
2(Zp)lg for each finite prime p, where χ(σ)p denotes the p-component of χ(σ),
and

ϕ
(l)
Y (z′) =

[
J

(l)

Y Ỹ

((
1l 0
0 χ(σ)1l

))(
ϕ

(l)

Ỹ
(z̃)
)]σ−1

,

u′ = (z′ 1l)
(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
κ1

µεκ′2

)
,

for Ỹ , Y ∈ Z(l), Y =
(

1l 0
0 χ(σ)1l

)
Ỹ

(
1l 0
0 χ(σ)1l

)−1

such that Y ⊂ X

and the first line of the right hand side of (3.6) is defined as a rational function
on V

(l)

Ỹ
(viewed as a modular function of z̃). Now Γ(l)

X (z′) = Γ(l)
X (z). This

implies Γ(l)(z′) = Γ(l)(z). Hence the images of (Cl)a by the mappings (to the
(µlg det(ε) − 1)-dimensional projective space)

u→
[
ϕ

(l)
F,B(u, (τΨ

1 τΨ
2 ); j, 0)

]
j∈µ−1ε−1Zlg/Zlg

(3.7)

and
u→

[
ϕ

(l)
F,B(u, (z′ 1l); j, 0)

]
j∈µ−1ε−1Zlg/Zlg

are the same abelian varieties (and of course the images of (Kl)Ψ are their
subgroups of all torsion elements). We denote this abelian variety by A. Then
(3.6) means that the image of (Cl)a by

u→
[
ϕ

(l)
F,B(u, (z̃ 1l); j, 0)

]
j∈µ−1ε−1Zlg/Zlg
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is Aσ.
In the commutative diagram (3.1), we view

u→
[
ϕ

(l)
F,B(u, (τΨ

1 τΨ
2 ); j, 0)

]
j∈µ−1ε−1Zlg/Zlg

as Θ. For X ∈ Z(l) as above, take

α =
(
α1 α2

α3 α4

)
∈
(

1l 0
0 χ(σ)1l

)−1 (
X ∩G(l)

1A

)
G(l)

∞Φ(l)
z (a) ∩G(l)(Q),

where α1, α2, α3, α4 ∈ F ll . This is possible from the strong approximation
property of G(l)

1 . Then we have

aL = (τ1tα1 + τ2
tα2 τ1

tα3 + τ2
tα4)

·
(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
Zlg

µεZlg

)
.

For any κ1, κ2 ∈ Qlg, we can take (sufficiently small) X ∈ Z(l) and correspond-

ing α =
(
α1 α2

α3 α4

)
above such that

Θa

(
(τ1tα1 + τ2

tα2 τ1
tα3 + τ2

tα4)Ψσ

·
(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
κ1

µεκ2

))

=
[(
ϕ

(l)
F,B

)
∗

(
(τΨ

1 τΨ
2 )
(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
κ1

µεκ′2

)
,

(τΨ
1 τΨ

2 ); j, 0
)σ]

j∈µ−1ε−1Zlg/Zlg

where κ′2 ∈ Qlg and κ′2 ≡ χ(σ)−1
p κ2 mod(Zp)lg for any finite prime p. This fact

can be easily verified from (3.1). Consider the structure of polarized abelian
variety (A, C, ι, {ti}ri=1) stated in [9], where {ti}ri=1 is a set of torsion elements

of A. For any
{(

κ1,i

µεκ2,i

)}r
i=1

⊂ Q2lg, (3.6) implies that we can choose

(sufficiently small) X ∈ Z(l) and corresponding z̃ so that(
ϕ

(l)
F,B

)
∗

(
(z̃ 1l)

(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
κ1,i

µεκ2,i

)
,

(z̃ 1l); j, 0
)

=
[(
ϕ

(l)
F,B

)
∗

(
(τΨ

1 τΨ
2 )
(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
κ1,i

µεκ′2,i

)
,

(τΨ
1 τΨ

2 ); j, 0
) ]σ
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where κ′2,i ≡ χ(σ)−1
p κ2,i mod(Zp)lg, tκ1,iµε(κ′2,i − χ(σ)−1

p κ2,i) ∈ 2(Zp)lg for
each i. Assume that (A, C, ι, {ti}ri=1) is of type(

F 2l,

(
0 −1l
1l 0

)
,

(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
Zlg

µεZlg

)
,{(

β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
κ1,i

µεκ′2,i

)}r
i=1

)

with respect to z in the sense of [9]. Then (A, C, ι, {ti}ri=1)
σ is of type(

F 2l,

(
0 −1l
1l 0

)
,

(
β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
Zlg

µεZlg

)
,{(

β11l · · · βg1l 0 · · · 0
0 · · · 0 β′

11l · · · β′
g1l

)(
κ1,i

µεκ2,i

)}r
i=1

)

with respect to z̃ and ((α1τ +α2)(α3τ +α4)−1)Ψσ (if we take sufficiently small
X). Take {ti}ri=1 sufficiently large so that Γ(l)(((α1τ +α2)(α3τ +α4)−1)Ψσ) =
Γ(l)(z̃). Then we can take

f (σ,Ψ,a)(u) = ϕ
(l)
F,B(u, (τ1tα1 + τ2

tα2 τ1
tα3 + τ2

tα4)Ψσ; j, 0).

Remark. This theorem holds more generally for the case when HT,Ψ is
semi-positive definite (hence even if T is degenerate). To see this, decompose
Kl = V1

⊕
V2 with K-vector spaces V1, V2, such that T is non-degenerate on

V1 and zero on V2. Then we see that f is (V2∩L)Ψ-periodic and hence V2⊗Q R-
invariant for any f ∈ T((Cl)a, LΨ, HT,Ψ). Therefore T((Cl)a, LΨ, HT,Ψ) can be
identified with T(V1 ⊗Q R, (V1 ∩ L)Ψ, HT,Ψ|V1⊗QR).

In this proof we get the following proposition.

Proposition 3.2. Take any z = τΨ ∈ W (l)(Ψ) ( τ ∈ Kl
l ,

tτ = τ ) and
σ ∈ Aut(C). For any X ∈ Z(l), put

X̃ =
(

1l 0
0 χ(σ)1l

)−1

X

(
1l 0
0 χ(σ)1l

)
∈ Z(l)

and [
J

(l)

X̃X

((
1l 0
0 χ(σ)1l

)−1
)(

ϕ
(l)
X (z)

)]σ
= ϕ

(l)

X̃
(z̃).

Then we have z̃ ∈W (l)(Ψσ) and

ϕ
(l)

X̃
(z̃) = ϕ

(l)

X̃

((
(α1τ + α2)(α3τ + α4)−1

)Ψσ)
,
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where
(
α1 α2

α3 α4

)
∈ G(l)(Q) (α1, α2, α3, α4 ∈ F ll ) such that

(
α1 α2

α3 α4

)
∈
(

1l 0
0 χ(σ)1l

)−1

(X ∩G(l)
1A)G(l)

∞Φ(l)
z (a) ∩G(l)(Q),

with a ∈ gΨ(σ).

The T(r,S,Ψ)(L) in Section 1 is clearly equal to T((Cnq )a, LΨ, Hr,S,Ψ). Hence
we can consider the action of (σ,Ψ, a) ∈ CΨ(C) on each Fourier-Jacobi coeffi-
cient of modular forms.

Take Ξ ∈ M(q,n)
2·1 (S,Ψ) by

Ξ(z) =
(
θ
(n)
F,B(0, (−S−1)Ψ; 0, 0)−1θ

(m)
F,B(0, εδ(z); p1, 0)

)2

(3.8)

for p1 ∈ Qmg. Note that θ(n)
F,B(0, (−S−1)Ψ; 0, 0) 
= 0. Consider the Fourier-

Jacobi expansion of Ξ. Put

MB,δ = (β11q · · ·βg1q (δβ1)1q · · · (δβg)1q).

Then by a formal calculation, we have

Ξ(z) =


 ∑
x1,x3∈Zqg

ϕ
(n)
F,B

(
wMΨ

B,δ

(
x1 + p1,1

x3 + p1,3

)
,
(
(−S−1)Ψ 1q

)
; p1,2, 0

)

×ea

(
tr
(
rΨ(x1+p1,1),(x3+p1,3)

z
))}2

,

where p1,1 ∈ Qqg (resp. p1,2 ∈ Qng,p1,3 ∈ Qqg) denotes the Q-coefficients
column vector consisting of the 1, . . . , q,m + 1, . . . ,m + q, 2m + 1, . . . , (g −
1)m+ q-th components (resp. q+1, . . . , q+n,m+ q+1, . . . , (g− 1)m+ q+n-
th components, q + n+ 1, . . . ,m,m+ q + n+ 1, . . . , gm-th components) of p1

and

r(x1+p1,1),(x3+p1,3) =
1
2
MB,δ

(
x1 + p1,1

x3 + p1,3

)
t

(
x1 + p1,1

x3 + p1,3

)
tMρ

B,δ.

Note that Ξ ∈ M(q,n)
2·1 (S,Ψ)(K∗

Ψab). Set simply

Ξ(z) =
∑

0≤r∈Hq

cr(w)ea(tr(rΨz)).

Now ϕ
(n)
F,B

(
wMΨ

B,δ

(
x1 + p1,1

x3 + p1,3

)
,
(
(−S−1)Ψ 1q

)
; p1,2, 0

)
is a theta function

with respect to a degenerate (in case q > 1) hermitian form. By the proof of
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Theorem 3.1 and a formal calculation, the action of (σ,Ψ, a) ∈ CΨ(C) to it is
(up to (K∗

Ψσab)
×-times)

ϕ
(n)
F,B

(
wMΨσ

B,δ

(
x1 + p1,1

x3 + p1,3

)
,

(
(−S−1)Ψσtα1 + tα2 (−S−1)Ψσtα3 + tα4

)
; p1,2, 0

)

where α =
(
α1 α2

α3 α4

)
∈
(

1n 0
0 χ(σ)1n

)−1

(X ∩ G(n)
1A )G(n)

∞ Φ(n)
(−S−1)Ψ

(a) ∩
G(n)(Q) for a sufficiently small X ∈ Z(n) (α1, α2, α3, α4 ∈ Fnn ). Note that
ν(α) = ι(σ, a)−1. For such α, take α′ ∈ G

(m)
1 (Q) by

α′ =




1q
ι(σ, a)α1 α2

1q
1q

ι(σ, a)α3 α4

1q




and consider[
θ
(n)
F,B(0,

[
(α1(−S−1) + α2)(α3(−S−1) + α4)−1

]Ψσ
; p′1, 0)−1

θ
(m)
F,B(0, α′

(
ε
(q,n)
δ (ι(σ, a)S,Ψσ) (z̃)

)
; p1, 0)

]2
,

(3.9)

(
z̃∈D(q,n)(ι(σ, a)S,Ψσ)

)
.

It is contained in M(q,n)
2·1 (ι(σ, a)S,Ψσ) since det(j(m)

v (α′, εδ(z̃))) (v ∈ a) are
constants. By a formal calculation, its Fourier-Jacobi expansion is∑

0≤r∈Hq

c(σ,Ψ,a)r (w̃)ea(tr(rΨσz̃)), z̃ =
(

z̃
w̃

)
∈ D(q,n) (ι(σ, a)S,Ψσ) .(3.10)

We denote this modular form by Ξ(σ,Ψ,a). For each z ∈ D(q,n)(S,Ψ), we can
choose Ξ such that Ξ(z) 
= 0 by taking a suitable p1 in (3.8).

As stated in [5] (or in [8]), we can define a Cmgmg-valued holomorphic function
T on Hmg by

T (Z)

=
θ(mg)(0, Z; p(0)

1 , 0)
2π

√−1




∂
∂u1

θ(mg)(u, Z; p(1)
1 , 0) · · · ∂

∂u1
θ(mg)(u, Z; p(mg)

1 , 0)
· · · · · · · · ·

∂
∂umg

θ(mg)(u, Z; p(1)
1 , 0) · · · ∂

∂umg
θ(mg)(u, Z; p(mg)

1 , 0)



∣∣∣∣∣∣∣
u=0

where u =


 u1

...
umg


 ∈ Cmg and p

(0)
1 , . . . p

(mg)
1 ∈ Qmg. For each Z ∈ Hmg, we

can take suitable p(0)
1 , . . . p

(mg)
1 such that detT (Z) 
= 0. As stated in [5], T is a
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vector-valued modular form which satisfies

T (γ(Z)) = det(γ3Z + γ4) · (γ3Z + γ4)T (Z)

for γ =
(
γ1 γ2

γ3 γ4

)
contained in a certain congruence subgroup of Sp(mg,Q)

(γ1, γ2, γ3, γ4 ∈ Qmg
mg). Using this T , we can define a Cmgmg-valued holomorphic

function ∆ on Ha
m by

∆(z) = B(m)T (ε(m)
B (z)) (z ∈ Ha

m).

By (2.9), there exists a congruence subgroup Γ(m) of G(m)
1 (Q) such that

∆(γ(z)) =

(∏
v∈a

det(j(m)
v (γ, z))

)
j
(m)
v1 (γ, z)

. . .
j
(m)
vg (γ, z)


∆(z)

(3.11)

for any γ ∈ Γ(m). Next define a Cmgmg-valued holomorphic function ∆̂ on
D(q,n)(S,Ψ) by

∆̂(z) = θ
(n)
F,B(0, (−S−1)Ψ; p′1, 0)−2


 ωv1(z)

−1

. . .
ωvg

(z)−1


∆(εδ(z)).

Then by (2.6), there exists a congruence subgroup Γ of G(Q) = G(q,n)(S,Ψ)(Q)
such that

(3.12) ∆̂(α(z))

=

(∏
v∈a

det(µv(α, z))2
)


λv1(α, z)

µv1(α, z)
. . .

λvg
(α, z)

µvg
(α, z)


∆̂(z)

for any α ∈ Γ ( z ∈ D(q,n)(S,Ψ) ). For each vk (1 ≤ k ≤ g), take Q ∈ Qmg
q and

set

ξvk
(z) = det


(

mk−q︷ ︸︸ ︷
0 · · · 0 1q

m(g−k)︷ ︸︸ ︷
0 · · · 0 )∆̂(z)Q


 .

Then (3.12) implies that ξv ∈ M(q,n)
v+2q·1(S,Ψ) for any v ∈ a. At each z ∈ D, we

can choose suitable T and Q so that ξv(z) 
= 0 for any v ∈ a.
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Let us consider the Fourier-Jacobi series of ξv . For p(0)
1 , . . . , p

(mg)
1 , take

p
(i)
1,1, p

(i)
1,3 ∈ Qqg and p(i)

1,2 ∈ Qng (0 ≤ i ≤ mg) as above. Then we have

ξv(z) =


 ∑
x1,x3∈Zqg

ϕ
(n)
F,B

(
wMΨ

B,δ

(
x1 + p

(0)
1,1

x3 + p
(0)
1,3

)
,
(
(−S−1)Ψ 1q

)
; p(0)

1,2, 0

)

×ea(tr(rΨ(x1+p
(0)
1,1),(x3+p

(0)
1,3)

z))

]q

× det




 ∑
x1,x3∈Zqg

ϕ
(n)
F,B

(
wMΨ

B,δ

(
x1 + p

(i)
1,1

x3 + p
(i)
1,3

)
,
(
(−S−1)Ψ 1q

)
; p(i)

1,2, 0

)

×ea(tr(rΨ(x1+p
(i)
1,1),(x3+p

(i)
1,3)

z))(δ−1MB,δ)Ψv

(
x1 + p

(i)
1,1

x3 + p
(i)
1,3

))
1≤i≤mg

Q


 ,

where

r
(x1+p

(i)
1,1),(x3+p

(i)
1,3)

=
1
2
MB,δ

(
x1 + p

(i)
1,1

x3 + p
(i)
1,3

)
t

(
x1 + p

(i)
1,1

x3 + p
(i)
1,3

)
tMρ

B,δ (0 ≤ i ≤ mg).

This implies ξv ∈ M(q,n)
v+2q·1(S,Ψ)(KΨv ∨K∗

Ψab). Put simply

ξv(z) =
∑

0≤r∈Hq

bv,r(w)ea(tr(rΨz)),
(

z =
(

z
w

)
∈ D(q,n)(S,Ψ)

)
.

Now for any (σ,Ψ, a) ∈ CΨ(C), take α =
(
α1 α2

α3 α4

)
∈ G(n)(Q) (α1, α2,

α3, α4 ∈ Fnn ) so that

α ∈
(

1n 0
0 χ(σ)1n

)−1

(X ∩G(n)
1A )G(n)

∞ Φ(n)
(−S−1)Ψ

(a) ∩G(n)(Q),

where X ∈ Z(n) satisfies the following condition.

ϕ
(n)
F,B(u, (ω1 ω2)tγ; p

(i)
1,2, 0) = ϕ

(n)
F,B(u, (ω1 ω2); p

(i)
1,2, 0)

for any (ω1 ω2) and any

γ ∈
(

1n 0
0 χ(σ)1n

)−1

(X ∩G(n)
1A )G(n)

∞

(
1n 0
0 χ(σ)1n

)
∩G(n)(Q)

(0 ≤ i ≤ mg).
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Consider the Cmgmg-valued function ˜̂∆ on D(q,n)(ι(σ, a)S,Ψσ) by

˜̂∆(z̃) = θ
(n)
F,B(0, [(α1(−S−1) + α2)(α3(−S−1) + α4)−1]Ψσ; p′1, 0)−2

×


 ωv1(z̃)

−1

. . .
ωvg

(z̃)−1






j
(m)
v1 (α′, εδ(z̃))

. . .
j
(m)
vg (α′, εδ(z̃))




−1

× ∆(α′(εδ(z̃))),

where

α′ =




1q
ι(σ, a)α1 α2

1q
1q

ι(σ, a)α3 α4

1q


 .

Note that εδ means ε
(q,n)
δ (ι(σ, a)S,Ψσ) and ωv is corresponding to ε

(q,n)
δ (

ι(σ, a)S,Ψσ) in this case. In the same way put

˜ξvk
(z̃) = det




(

mk−q︷ ︸︸ ︷
0 · · · 0 1q

m(g−k)︷ ︸︸ ︷
0 · · · 0 )


 ˜̂∆(z̃)Q


 .

Taking T and Q equal to those of ξv, the Fourier-Jacobi expansion of ˜ξvσ is∑
0≤r∈Hq

b(σ,Ψ,a)v,r (w̃)ea(tr(rΨσz̃)), (z̃ =
(

z̃
w̃

)
∈ D(q,n) (ι(σ, a)S,Ψσ)).

We denote this ˜ξvσ by ξ(σ,Ψ,a)v . Clearly

ξ(σ,Ψ,a)v ∈ Mvσ+2q·1 (ι(σ, a)S,Ψσ) .

4. The embeddings of canonical models

In this section we consider the relation of the embedding εδ = ε
(q,n)
δ (S,Ψ)

(which was defined in Section 2) and the canonical models.
Take Y ∈ Z = Z(q,n)(S,Ψ) and T ∈ Z(m) so that Iδ(Y ) ⊂ T . Assume that

F×Γ(m)
T /F× is torsion free. Note that any element (except scalar) of Γ(m)

T has
no fixed points. Then any element (except scalar) of ΓY = Y ∩G(Q) also has no
fixed points and hence K×ΓY /K× is also torsion free. In this case ϕY , ϕ

(m)
T are

locally biholomorphic, VY , V
(m)
T are non-singular, and we can define a unique

rational map ETY of VY into V (m)
T so that ETY ◦ϕY = ϕ

(m)
T ◦εδ. The mapping

ETY is regular on VY , and is defined over K∗
Ψab. The Zariski closure ETY (VY )

of ETY (VY ) in V
(m)
T is a subvariety of V (m)

T , which may have singular points
in general. The purpose of this section is to prove the following theorem.
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Theorem 4.1. Let T ∈ Z(m) and assume that T satisfies the following
conditions (i) and (ii).

(i) F×Γ(m)
T /F× is torsion free.

(ii) C(S, δ)−1TC(S, δ) ⊂ ∏
v∈a

GL(2m,C) ×∏
p

GL(2m,Op), where p runs

over all non-archimedean primes of K.
Put Y = I−1

δ (T ) ∈ Z. Then we can take T̂ ∈ Z(m) satisfying (1)–(3).
(1) Iδ(Y ) ⊂ T̂ ⊂ T .
(2) ET̂Y (VY ) is a non-singular subvariety of V (m)

T̂
.

(3) ET̂Y is a (set theorically) injective map on VY and its inverse rational
map E−1

T̂Y
is regular on ET̂Y (VY ).

Remark. For any T̂0 ∈ Z(m) satisfying Iδ(Y ) ⊂ T̂0 ⊂ T̂ , the as-
sertions (1)–(3) are still valid even if replacing T̂ by T̂0. This is because
ET̂Y = J

(m)

T̂ T̂0
(12m) ◦ ET̂0Y

and so E−1

T̂0Y
= E−1

T̂Y
◦ J (m)

T̂ T̂0
(12m)′, where “ ′” means

the restriction of J (m)

T̂ T̂0
(12m) to ET̂0Y

(VY ).

Proof. From now on till the end of this section, all the varieties and
rational maps are defined over Q, the algebraic closure of Q in C. So the word
“generic” means generic over Q. As is well known, every algebraic set defined
over Q is a finite union of varieties defined over Q.

For any positive integer N , put

TN =


x ∈ T

∣∣∣∣∣∣ C(S, δ)−1xpC(S, δ) ≡
(
b1 0
0 b2

)
mod (NOp)2m2m

with some b1, b2 ∈ (Op)mm for any finite prime p of K


 ,

where xp denotes the p-component of x. Then TN ∈ Z(m) and TN is a subgroup
of T . From the definition of Iδ, we have

Iδ(Y ) =
⋂
N∈N

TN ,(4.1)

Iδ(ΓY ) =
⋂
N∈N

Γ(m)
TN

.(4.2)

For each P ∈ V
(m)
T , E−1

TY (P ) = ϕY ◦ (ε−1
δ ((ϕ(m)

T )−1(P ))) is at most countable,
and clearly an algebraic subset of VY . Hence E−1

TY (P ) is a finite set.
Take Q ∈ VY , and put {Q1, . . . , Ql} = E−1

TY (ETY (Q)). It is clear that
Γ(m)
T (εδ(ϕ−1

Y (Q1))), . . . ,Γ
(m)
T (εδ(ϕ−1

Y (Ql))) are the same elements in Γ(m)
T \Ha

m,
and ΓY (ϕ−1

Y (Q1)), . . . ,ΓY (ϕ−1
Y (Ql)) are mutually disjoint. Note that any γ ∈

Γ(m)
T (except scalar) has no fixed points in Ha

m, since F×Γ(m)
T /F× is torsion

free. From (4.2) we can find a positive integer N such that Γ(m)
TN

(εδ(ϕ−1
Y (Q1))),

. . . ,Γ(m)
TN

(εδ(ϕ−1
Y (Ql))) are all different in Γ(m)

TN
\ Ha

m. This means ETNY (Q1),

. . . , ETNY (Ql) are all different in V (m)
TN

. So we can get the following lemma.
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Lemma 4.2. Let T, Y be as in Theorem 4.1. For any Q ∈ VY , there
exists some T ′ ∈ Z(m) satisfying (i), (ii).

(i) Iδ(Y ) ⊂ T ′ ⊂ T .
(ii) E−1

T ′Y (ET ′Y (Q)) = {Q}.
Put

U(Y, T ) = {Q ∈ VY |∃Q′ ∈ VY such that Q′ 
= Q and ETY (Q′) = ETY (Q)}.

The overline means the (Q-)Zariski closure in V (m)
T . Set

U(Y, T ) =
r⋃
j=1

Uj ,

where Uj(1 ≤ j ≤ r) are subvarieties of VY defined over Q, and none of them
are contained in the other. Assume that

dimU(Y, T ) = dimU1 = · · · = dimUt > dimUt+1 ≥ · · · ≥ dimUr.

Let Qj (1 ≤ j ≤ t) be generic points of Uj (over Q ). Using Lemma 4.2
(r times repeatedly), we can find T ′ ∈ Z(m) so that Iδ(Y ) ⊂ T ′ ⊂ T and
E−1
T ′Y (ET ′Y (Qj)) = {Qj} (1 ≤ j ≤ t) hold. Then ET ′Y (Uj) (1 ≤ j ≤ t) are

subvarieties of V (m)
T ′ whose generic points (over Q) are ET ′Y (Qj).

As ET ′Y |Uj
(1 ≤ j ≤ t) are generically injective, we can define the inverse

rational maps
(
ET ′Y |Uj

)−1 (1 ≤ j ≤ t) on ET ′Y (Uj) (1 ≤ j ≤ t) which are
regular on some non-empty (Q-)Zariski open subsets Xj of ET ′Y (Uj) (1 ≤
j ≤ t) (hence regular at any Q-generic points). Now the restrictions of ET ′Y
to E−1

T ′Y (Xj) are injective. Therefore we have

U(Y, T ′) ⊂
⋃

t+1≤j<r
Uj

∪
t⋃

j=1

E−1
T ′Y


(ET ′Y (Uj) \Xj

)
∪

⋃
1≤k≤r,k 	=j

(
ET ′Y (Uk) ∩ ET ′Y (Uj)

)
As ET ′Y (Uk) and ET ′Y (Uj) are different (since E−1

T ′Y (ET ′Y (Qj)) = {Qj} (1 ≤
j ≤ t)), we have

dimU(Y, T ′) < dimU1 = · · · = dimUt = dimU(Y, T ).

By an induction, we can take some T̂ ∈ Z(m) such that Iδ(Y ) ⊂ T̂ ⊂ T and
ET̂Y is (set theorically) injective on VY .

So we can define the inverse rational map E−1

T̂Y
onET̂Y (VY ) which is regular

on some non-empty Zariski open subset of ET̂Y (VY ). Hence ET̂Y (VY ) contains
some non-empty Zariski open subset of ET̂Y (VY ). This implies ET̂Y (VY ) is
dense in ET̂Y (VY ) with respect to the topology of V (m)

T̂
as a complex manifold.
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Clearly
ET̂Y (VY ) =

⋃
γ∈Γ

(m)
T̂

/Iδ(ΓY )

ϕ
(m)

T̂
(γ ◦ εδ(D)) .

Each γ ◦ εδ(D) is a complex submanifold of Ha
m of dimension gq(n + q). For

γ1, γ2 ∈ Γ(m)

T̂
, if γ1Iδ(ΓY ) 
= γ2Iδ(ΓY ), then γ1 ◦ εδ(D) ∩ γ2 ◦ εδ(D) = φ (from

the injectivity of ET̂Y and as F×Γ(m)

T̂
/F× is torsion free). Now we have

(ϕ(m)

T̂
)−1

(
ET̂Y (VY )

)
=

⋃
γ∈Γ

(m)
T̂

/Iδ(ΓY )

γ ◦ εδ(D),

since ϕ(m)

T̂
is locally biholomorphic. (The overline in the right hand side means

the closure with respect to the topology as a complex analytic space.)
As (ϕ(m)

T̂
)−1

(
ET̂Y (VY )

)
is a gq(n + q)-dimensional analytic set in Ha

m,

and so is each γ ◦ εδ(D) (γ ∈ Γ(m)

T̂
/Iδ(ΓY )), there is no limit point of infinite

numbers of different γ ◦ εδ(D) (γ ∈ Γ(m)

T̂
/Iδ(ΓY )). Hence we have

(ϕ(m)

T̂
)−1

(
ET̂Y (VY )

)
=

⋃
γ∈Γ

(m)
T̂

/Iδ(ΓY )

γ ◦ εδ(D) = (ϕ(m)

T̂
)−1

(
ET̂Y (VY )

)
.

As ϕ(m)

T̂
is locally biholomorphic,we have ET̂Y (VY ) = ET̂Y (VY ) and ET̂Y (VY )

is a non-singular subvariety of V (m)

T̂
. As the Jacobians of ϕ(m)

T̂
and εδ are

non-zero and ET̂Y is injective, we can define E−1

T̂Y
to be ϕY ◦

(
ϕ

(m)

T̂
◦ εδ

)−1

as a holomorphic map on ET̂Y (VY ), and as ET̂Y (VY ) is non-singular, E−1

T̂Y
is

regular on ET̂Y (VY ) as a rational map.

5. Canonical models and arithmeticity

In this section we consider the relation of arithmeticity defined in Section 1,
and the canonical models. In case of the modular forms with respect to a
symplectic group, we have K(l) = A(l)

0 (Qab) as shown in [9, Section 26.4] (or
[3]). In case of unitary similitude G = G(q,n)(S,Ψ), we have the following
theorem.

Theorem 5.1. For any subfield Ω of C containing K∗
Ψab, we have

A(q,n)
0 (S,Ψ)(Ω) = K(q,n)(S,Ψ) ∨ Ω.

Proof. (1) proof of A0(Ω) ⊂ K ∨ Ω.
Take W (q)(Ψ) as in Section 2. For any f ∈ A0(Ω), write f = f1/f2 with

some f1, f2 ∈ Mk(Ω) (f2 
≡ 0). For any h ∈ H(Q), we have f1◦h◦ε0, f2◦h◦ε0 ∈
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M(q)
k (Ω) from Lemma 2.2. Take W as in (1.12). Clearly W is stable under

the action of G(Q) and is dense in D. Now we have W = H(Q)
(
ε0(W (q)(Ψ))

)
.

Put

W ′ = {z ∈W |f2(z) 
= 0} .

Clearly W ′ is dense in D, and as f1 ◦ h ◦ ε0/f2 ◦ h ◦ ε0 ∈ A(q)
0 (Ω) = K(q) ∨ Ω if

f2 ◦ h ◦ ε0 
≡ 0, we have f(z) ∈ Ω for any z ∈W ′.
As A0(C) = K∨C, we can view f as a rational function on some canonical

model. Put f = p ◦ ϕY for some Y ∈ Z and some rational function p on
VY . Let us prove p is Ω-rational. For any σ ∈ Aut(C/Ω), take pσ, which is a
rational function on VY . As ϕY (z) is K∗

Ψab-rational for any z ∈W ′, pσ◦ϕY (z) =
(p ◦ ϕY (z))σ = p ◦ϕY (z) holds for z ∈W ′. As W ′ is dense in D, p and pσ must
be equal. Hence p is Ω-rational. This means f ∈ K ∨ Ω.

(2) proof of A0(Ω) ⊃ K ∨ Ω.
It suffices to prove A0(K∗

Ψab) ⊃ K. For any f ∈ K, we can take (sufficiently
small) Y ∈ Z and T ∈ Z(m) as in Theorem 4.1 so that f ◦ ϕ−1

Y is a rational
function on VY defined over K∗

Ψab. Then for T̂ ∈ Z(m) (in Theorem 4.1), ET̂Y is
injective (hence of course generically injective) rational map defined over K∗

Ψab.
Therefore f ◦ ϕ−1

Y must be a pull-back of a certain rational function on V
(m)

T̂
defined over K∗

Ψab. This rational function can be written in the form (h1/h2) ◦(
ϕ

(m)

T̂

)−1

with some h1, h2 ∈ M(m)
k (K∗

Ψab) such that h2|εδ(D) 
≡ 0. Since
F (k) ⊂ K∗

Ψab, we obtain f = (h1/h2) ◦ εδ ∈ A0(K∗
Ψab) using Lemma 2.5.

We have the following proposition about the relation of the arithmeticity
and the action of G(Q).

Proposition 5.2. Let k ∈ Za. Take any subfield Ω of C containing
F (k) ∨K∗

Ψab. Then for any f ∈ Mk(Ω) and any α ∈ G(Q), we have

f |kα ∈ Mk(Ω).

Proof. Take any h ∈ H(Q) and consider f |k(αh) ◦ ε0. For each z0 ∈
W (q)(Ψ), we can take z′0 ∈ W (q)(Ψ) and h′ ∈ H(Q) so that αh ◦ ε0(z0) =
h′ ◦ ε0(z′0) since W = H(Q)

(
ε0(W (q)(Ψ))

)
. Then we have

(f |kαh) (ε0(z0)) =

[∏
v∈a

det
(
µv((h′)−1αh, ε0(z0))

)−kv

]
(f |kh′)(ε0(z′0)).

Note that
[ ∏
v∈a

det
(
µv((h′)−1αh, ε0(z0))

)−kv

]
∈ F (k) ∨K∗

Ψ. From Lemma 2.2

we obtain (f |kh′)◦ε0 ∈ M(q)
k (Ω). Hence we have (f |kh′)(ε0(z′0)) ∈ h(1)(z(1))q ·Ω
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with h(1) ∈ M(1)
k (F (k) ∨K∗

Ψab) and z(1) ∈ W (1)(Ψ) which are h(1)(z(1)) 
= 0.
Combining these, we have

(f |kαh) (ε0(z0)) ∈ h(1)(z(1))q · Ω.

We can prove f |k(αh)◦ε0 ∈ M(q)
k (Ω) in the same way as the proof of Lemma 2.5.

Moving h all over H(Q), we can get f |kα ∈ Mk(Ω) by using Lemma 2.3.

6. A certain Galois action

In this section we construct a certain Galois action on the space of modular
forms. The purpose of this section is to prove the following theorem.

Theorem 6.1. Let f ∈ M(q,n)
k (S,Ψ) and let

f(z) =
∑

0≤r∈Hq

gr(w)ea(tr(rΨz)) where z =
(

z
w

)
∈ D(q,n)(S,Ψ),

be its Fourier-Jacobi expansion. For any (σ,Ψ, a) ∈ CΨ(C), there exists f (σ,Ψ,a)

∈ M(q,n)
kσ (ι(σ, a)S,Ψσ) whose Fourier-Jacobi expansion is

f (σ,Ψ,a)(z̃) =
∑

0≤r∈Hq

g(σ,Ψ,a)
r (w̃)ea(tr(r(Ψσ)z̃))

where z̃ =
(

z̃
w̃

)
∈ D(q,n) (ι(σ, a)S,Ψσ).

To prove this, we first consider the relation of two embeddings, ε(q,n)
δ (S,Ψ)

and ε(q,n)
δ (ι(σ, a)S,Ψσ). We have the following lemma.

Lemma 6.2. Let (σ,Ψ, a) ∈ CΨ(C) and T ∈ Z(m). Assume F×Γ(m)
T /F×

is torsion free. Put Y =
(
I
(q,n)
δ (S,Ψ)

)−1

(T ) ∈ Z(q,n)(S,Ψ). Set

A(σ,Ψ, a) =




1q 0 0 0 0 0
0

(
χ(σ)(a+aρ)

2aaρ

)
1n 0 0 (−a+a

ρ

2 )S−1 0
0 0 1q 0 0 0
0 0 0 χ(σ)1q 0 0
0

(
χ(σ)(−a+aρ)

2aaρ

)
S 0 0 (a+a

ρ

2 )1n 0
0 0 0 0 0 χ(σ)1q



.

Then A(σ,Ψ, a) ∈ G(m)
+ and the following assertions hold.

(1) J
(m)

TT̃
(A(σ,Ψ, a))

(
ET̃ Ỹ (VỸ )

)
=
(
ETY (VY )

)σ
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where

T̃ = A(σ,Ψ, a)−1TA(σ,Ψ, a) ∈ Z(m),

Ỹ =
(
I
(q,n)
δ (ι(σ, a)S,Ψσ)

)−1

(T̃ )

=


 ι(σ, a)−11q 0 0

0 aρ1n 0
0 0 aaρ1q


−1

Y


 ι(σ, a)−11q 0 0

0 aρ1n 0
0 0 aaρ1q




∈ Z(q,n) (ι(σ, a)S,Ψσ) ,

and the overlines denote the Zariski closures in V
(m)
T and in V

(m)

T̃
.

(2) For any z̃0 ∈ W (q)(Ψσ), h̃ ∈ H(q,n) (ι(σ, a)S,Ψσ) (Q) and X̃ ∈ Z(q)

which satisfies Γ(q)

X̃
⊂ F×

(
I
(q,n)
0 (ι(σ, a)S,Ψσ)

)−1

(h̃−1Ỹ h̃), put

X =
(

1q 0
0 χ(σ)1q

)
X̃

(
1q 0
0 χ(σ)1q

)−1

∈ Z(q),

and take z0 ∈W (q)(Ψ) so that

ϕ
(q)
X (z0) =

[
J

(q)

XX̃

((
1q 0
0 χ(σ)1q

))(
ϕ

(q)

X̃
(z̃0)

)]σ−1

.

Then we have

(∗) J
(m)

TT̃
(A(σ,Ψ, a))

(
ϕ

(m)

T̃

(
εδ

(
h̃ ◦ ε0(z̃0)

)))
=
[
ϕ

(m)
T (εδ (h ◦ ε0(z0)))

]σ
where

(�) h ∈ H(q,n)(S,Ψ)(Q)

∩ Y

 ι(σ, a)−11q 0 0

0 aρ1n 0
0 0 aaρ1q


 h̃


 ι(σ, a)−11q 0 0

0 aρ1n 0
0 0 aaρ1q


−1

.

(Note that the right hand side of (∗) is independent of the choice of z0 since

Γ(q)
X ⊂ F×

(
I
(q,n)
0 (S,Ψ)

)−1

(h−1Y h). The ε0, εδ in the left hand side mean

ε
(q,n)
0 (ι(σ, a)S,Ψσ) , ε(q,n)

δ (ι(σ, a)S,Ψσ) and those in the right hand side mean
ε
(q,n)
0 (S,Ψ), ε(q,n)

δ (S,Ψ).)

Proof. The assertion (1) follows immediately from (2) since the set{
h̃ ◦ ε0(z̃0)

∣∣∣z̃0 ∈W (q)(Ψσ), h̃ ∈ H(q,n) (ι(σ, a)S,Ψσ) (Q)
}

is dense in D(q,n) (ι(σ, a)S,Ψσ) and ET̃ Ỹ (VỸ ), ETY (VY ) are subvarieties of
V

(m)

T̃
, V

(m)
T .
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It suffices to prove (2). First let us consider the case when h̃ = 1m. Since

ε
(q,n)
δ (ι(σ, a)S,Ψσ) ◦ ε(q,n)

0 (ι(σ, a)S,Ψσ) (z̃0)=


 z̃0 (−ι(σ, a)−1S−1

)(Ψσ)

z̃0




(where z̃0 = ((z̃0)v)v∈a), and as

A(σ,Ψ, a)

=




1q
(χ(σ)(a+aρ)

2aaρ )1n (−a+a
ρ

2χ(σ) )S−1

1q
1q

(χ(σ)(−a+aρ)
2aaρ )S ( a+a

ρ

2χ(σ) )1n
1q



(

1m
χ(σ)1m

)
,

we can get (2) by formal calculations of Φ(m)
εδ◦ε0(z̃0)(a),Φ

(q)
z̃0

(a) and Proposi-
tion 3.2.

For an arbitrary h̃, the left hand side of (∗) can be rewritten as

(∗∗) J
(m)

[T ][Iδ(h̃)−1T̃ Iδ(h̃)]

(
A(σ,Ψ, a) · Iδ(h̃)

)(
ϕ

(m)

Iδ(h̃)−1T̃ Iδ(h̃)
(εδ ◦ ε0(z̃0))

)
.

By a computation, we have

A(σ,Ψ, a) · I(q,n)
δ (ι(σ, a)S,Ψσ) (h̃) ∈ T · I(q,n)

δ (S,Ψ)(h) ·A(σ,Ψ, a).

Hence (∗∗) is equal to

(
J

(m)
[T ][Iδ(h)−1TIδ(h)] (Iδ(h))

)σ
◦ J (m)

[Iδ(h)−1TIδ(h)][Iδ(h̃)−1T̃ Iδ(h̃)]
(A(σ,Ψ, a))

(
ϕ

(m)

Iδ(h̃)−1T̃ Iδ(h̃)
(εδ ◦ ε0(z̃0))

)
.

By the result when h̃ is identity, replacing T by Iδ(h)−1TIδ(h), it is equal
to [

J
(m)
[T ][Iδ(h)−1TIδ(h)] (Iδ(h))

(
ϕ

(m)
Iδ(h)−1TIδ(h) (εδ ◦ ε0(z0))

)]σ
,

hence equal to the right hand side of (∗).
Proof of Theorem 6.1. First we consider the case when k = κ1 with a

positive even integer κ. For f ∈ M(q,n)
κ1 (S,Ψ) and (σ,Ψ, a) ∈ CΨ(C), we define

f (σ,Ψ,a)(z̃) =
[(
fΞ−κ/2

)
◦ ϕ−1

Y ◦ E−1
TY

]σ
◦ J (m)

TT̃
(A(σ,Ψ, a))

(
ϕ

(m)

T̃
◦ εδ(z̃)

)
×
(
Ξ(σ,Ψ,a)(z̃)

)κ/2
(6.1)
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where z̃ ∈ D(q,n) (ι(σ, a)S,Ψσ) , T ∈ Z(m), Y =
(
I
(q,n)
δ (S,Ψ)

)−1

(T ) ∈ Z(q,n)(S,

Ψ) so that
(
fΞ−κ/2)◦ϕ−1

Y can be defined as a rational function on VY , F×Γ(m)
T /

F× is torsion free, and E−1
TY is a regular rational map on ETY (VY ). (By The-

orem 4.1, we can take such T, Y.) Here

T̃ = A(σ,Ψ, a)−1TA(σ,Ψ, a),

Ỹ =
(
I
(q,n)
δ (ι(σ, a)S,Ψσ)

)−1

(T̃ )

=


 ι(σ, a)−11q 0 0

0 aρ1n 0
0 0 aaρ1q


−1

Y


 ι(σ, a)−11q 0 0

0 aρ1n 0
0 0 aaρ1q




∈ Z(q,n) (ι(σ, a)S,Ψσ) .

This definition is independent of the choice of T, Y. Next let us prove that
it does not depend on Ξ. For different Ξ1,Ξ2 we have only to prove[(

Ξ1Ξ−1
2

) ◦ ϕ−1
Y ◦ E−1

TY

]σ ◦ J (m)

TT̃
(A(σ,Ψ, a))

(
ϕ

(m)

T̃
◦ εδ(z̃)

)
= Ξ(σ,Ψ,a)

1 (z̃)
(
Ξ(σ,Ψ,a)

2 (z̃)
)−1(∗ ∗ ∗)

viewing both sides as meromorphic functions on D(q,n) (ι(σ, a)S,Ψσ), where(
Ξ1Ξ−1

2

)◦ϕ−1
Y (resp. Ξ(σ,Ψ,a)

1 /Ξ(σ,Ψ,a)
2 ◦(ϕỸ )−1) can be defined as a rational

function on VY (resp. VỸ ). Consider the case when z̃ = h̃ ◦ ε(q,n)
0 (ι(σ, a)S,

Ψσ)(z̃0) with z̃0 ∈W (q)(Ψσ) and h̃ ∈ H(q,n) (ι(σ, a)S,Ψσ) (Q). Take h, z0 as in
Lemma 6.2. Then the left hand side of (∗ ∗ ∗) is equal to[

(Ξ1Ξ−1
2 ) ◦ ϕ−1

Y ◦E−1
TY ◦ ϕ(m)

T ◦ εδ (h ◦ ε0(z0))
]σ

=
[
(Ξ1Ξ−1

2 ) (h ◦ ε0(z0))
]σ

if Ξ1Ξ−1
2 is holomorphic at h ◦ ε0(z0). Taking suitable h, we have

Ξ(σ,Ψ,a)
i ◦ h̃ ◦ ε(q,n)

0 (ι(σ, a)S,Ψσ) =
(
Ξi ◦ h ◦ ε(q,n)

0 (S,Ψ)
)σ

(i = 1, 2),

where the action of σ is in the sense of (2.2). Hence for such h, we have[
Ξ(σ,Ψ,a)

1

(
Ξ(σ,Ψ,a)

2

)−1
](

h̃ ◦ ε(q,n)
0 (ι(σ, a)S,Ψσ) (z̃0)

)
=
[
(Ξ1Ξ−1

2 )
(
h ◦ ε(q,n)

0 (S,Ψ)(z0)
)]σ

if Ξ(σ,Ψ,a)
2 (h̃ ◦ ε0(z̃0)) 
= 0. (In this case we have Ξ2(h ◦ ε0(z0)) 
= 0 if we take

a suitable z0, and so Ξ1Ξ−1
2 is holomorphic at each h ◦ ε0(z0) as above.) Since

the set {
h̃ ◦ ε0(z̃0)

∣∣∣∣∣ h̃ ∈ H(q,n) (ι(σ, a)S,Ψσ) , z̃0 ∈W (q)(Ψσ),
Ξ(σ,Ψ,a)

2 (h̃ ◦ ε0(z̃0)) 
= 0

}
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is dense in D(q,n) (ι(σ, a)S,Ψσ), we get (∗ ∗ ∗). Hence the definition (6.1) is
well-defined.

Now let us consider f (σ,Ψ,a). Clearly f (σ,Ψ,a) ∈ A(q,n)
κ1 (ι(σ, a)S,Ψσ). By

Theorem 4.1 we can take suitable T ∈ Z(m) and Y = I−1
δ (T ) ∈ Z(q,n)(ι(σ, a)S,

Ψσ) satisfying the following conditions (1)–(4).
(1) ϕ

(m)
T , ϕY are locally biholomorphic.

(2) V
(m)
T , VY are non-singular.

(3) ETY (VY ) is a non-singular subvariety of V (m)
T .

(4) E−1
TY is a regular rational map on ETY (VY ).

For each z̃ ∈ D(q,n) (ι(σ, a)S,Ψσ), take Ξ which is non-zero at ϕ−1
Y ◦ E−1

TY ◦[
J

(m)

TT̃
(A(σ,Ψ, a))

(
ϕ

(m)

T̃
◦ εδ(z̃)

)]σ−1

. Then f (σ,Ψ,a) is holomorphic at z̃. As

f (σ,Ψ,a) is independent of the choice of Ξ, it is holomorphic on the whole
D(q,n) (ι(σ, a)S,Ψσ). Hence f (σ,Ψ,a) ∈ M(q,n)

κ1 (ι(σ, a)S,Ψσ). Set

f(z) =
∑

0≤r∈Hq

gr(w)ea

(
tr(rΨz)

)
,

f (σ,Ψ,a)(z̃) =
∑

0≤r∈Hq

g̃r(w̃)ea

(
tr(rΨσ z̃)

)
,

where z =
(

z
w

)
=
(

zv
wv

)
v∈a

∈ D(q,n)(S,Ψ) and z̃ =
(

z̃
w̃

)
=
(

z̃v
w̃v

)
v∈a

∈ D(q,n) (ι(σ, a)S,Ψσ). Now it suffices to prove g̃r = g
(σ,Ψ,a)
r for each 0 ≤ r ∈

Hq. Fix r and take a Z-lattice Lq of Hq satisfying the following (1), (2).
(1) r ∈ Lq.
(2) For any t ∈ Hq − Lq, we have g̃t, gt ≡ 0.

Take any u ∈ Kn
q and fix it. From Lemma 2.4 we can choose some α ∈ GL(q,K)

so that {
0 ≤ r′ ∈ Lq

∣∣Re
(
tαρr′α

)
= Re

(
tαρrα

)}
= {r}(6.2)

holds. Put

h =


 1q tuρS 1

2
tuρSu

0 1n u
0 0 1q




 α

1n
(tαρ)−1


 ∈ H(q,n)(S,Ψ)(Q).

Take Ξ so that Ξ◦h◦ε(q,n)
0 (S,Ψ) 
≡ 0 in M(q)

2·1 and choose Y, T as in (6.1). Take
Ỹ , T̃ as in Lemma 6.2. Set the Fourier-Jacobi expansion of Ξκ/2 as

(Ξ(z))κ/2 =
∑

0≤t∈Hq

ct(w)ea(tr(tΨz)).

Then of course(
Ξ(σ,Ψ,a)(z̃)

)κ/2
=

∑
0≤t∈Hq

c
(σ,Ψ,a)
t (w̃)ea(tr(tΨσ z̃)).
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Take a congruence subgroup ΓN of G(q,n) (ι(σ, a)S,Ψσ) (Q) as in (1.5) so that
f (σ,Ψ,a) ∈ M(q,n)

κ·1 (ι(σ, a)S,Ψσ) (ΓN ) and Ξ(σ,Ψ,a) ∈ M(q,n)
2·1 (ι(σ, a)S,Ψσ) (ΓN ).

For a (sufficiently small) integral ideal a of K, take y ∈ Kn
q satisfying y ≡

au mod (aOp)
n
q for each finite prime p of K so that

(1) h̃ =


 1q ι(σ, a)tyρS 1

2 ι(σ, a)
tyρSy

0 1n y
0 0 1q




 α

1n
(tαρ)−1




∈ H(q,n) (ι(σ, a)S,Ψσ) (Q)

∩ Ỹ

 ι(σ, a)−11q

aρ1n
aaρ1q


−1

h


 ι(σ, a)−11q

aρ1n
aaρ1q


 .

(This condition is equivalent to (�) in Lemma 6.2(2).)
(2) For above h̃,
 ι(σ, a)−11q

aρ1n
aaρ1q


−1

h


 ι(σ, a)−11q

aρ1n
aaρ1q


 h̃−1

is contained in
x ∈ G(q,n) (ι(σ, a)S,Ψσ)A

∣∣∣∣∣∣∣∣
xp ∈ SL(m,Op),
ν(xp) = 1,
xp ≡ 1m mod(NOp)mm,
for any finite prime p of K


 .

For such y and h̃, we consider
(
Ξ(σ,Ψ,a)

)κ/2◦h̃◦ε(q,n)
0 (ι(σ, a)S,Ψσ) and f (σ,Ψ,a)◦

h̃ ◦ ε(q,n)
0 (ι(σ, a)S,Ψσ) as elements in M(q)

κ1 . These modular forms are indepen-
dent of the choice of y or h̃ as the coset

(
ΓN ∩ N(q,n) (ι(σ, a)S,Ψσ) (Q)

)
h̃ is

determined. We have(
Ξ(σ,Ψ,a)

)κ/2
◦ h̃ ◦ ε(q,n)

0 (ι(σ, a)S,Ψσ) (z)

=
∑

0≤t∈Hq

(
c
(σ,Ψ,a)
t

)
∗
(yΨσ)ea

(
tr(Re(tαρtα)z)

)
(z ∈ Ha

q ),

since the left hand side does not depend on the choice of y or h̃. Hence we
obtain [

(Ξ)κ/2 ◦ h ◦ ε(q,n)
0 (S,Ψ)

]σ
=
(
Ξ(σ,Ψ,a)

)κ/2
◦ h̃ ◦ ε(q,n)

0 (ι(σ, a)S,Ψσ)(6.3)

where the action of σ is in the sense of (2.2) as an element of M(q)
κ1 . Choose

any z̃0 ∈ W (q)(Ψσ) such that
(
Ξ(σ,Ψ,a)

)κ/2 ◦ h̃ ◦ ε(q,n)
0 (ι(σ, a)S,Ψσ) (z̃0) 
= 0.
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Take X, X̃ ∈ Z(q) and z0 ∈ W (q)(Ψ) as in Lemma 6.2(2). From Lemma 6.2
and (6.1), we have(

f (σ,Ψ,a)
(
Ξ(σ,Ψ,a)

)−κ/2)
◦ h̃ ◦ ε(q,n)

0 (ι(σ, a)S,Ψσ) (z̃0)

=
[(
fΞ−κ/2

)
◦ h ◦ ε(q,n)

0 (S,Ψ)(z0)
]σ
,

if
(
fΞ−κ/2) is holomorphic at h ◦ ε(q,n)

0 (S,Ψ)(z0). In this case the right hand
side is equal to(

f ◦ h ◦ ε(q,n)
0 (S,Ψ)

)σ {(
Ξκ/2 ◦ h ◦ ε(q,n)

0 (S,Ψ)
)σ}−1

(z̃0),(6.4)

where the action of σ is as above. This is holomorphic at z̃0 as a meromorphic
modular form on Ha

q . Now the set
z̃0 ∈W (q)(Ψσ)

∣∣∣∣∣∣∣∣∣
Ξ(σ,Ψ,a) ◦ h̃ ◦ ε(q,n)

0 (ι(σ, a)S,Ψσ) (z̃0) 
= 0,
Ξκ/2 ◦ h ◦ ε(q,n)

0 (S,Ψ) is non-zero

at
(
ϕ

(q)
X

)−1
[
J

(q)

XX̃

((
1q 0
0 χ(σ)1q

))(
ϕ

(q)

X̃
(z̃0)

)]σ−1




is dense in Ha
q . Hence combining (6.3) and (6.4), we have

[
f (σ,Ψ,a)(Ξ(σ,Ψ,a))−κ/2

]
◦ h̃ ◦ ε(q,n)

0 (ι(σ, a)S,Ψσ)

=
(
f ◦ h ◦ ε(q,n)

0 (S,Ψ)
)σ
/

((
Ξ(σ,Ψ,a)

)κ/2
◦ h̃ ◦ ε(q,n)

0 (ι(σ, a)S,Ψσ)
)

as meromorphic functions on Ha
q . This means

f (σ,Ψ,a) ◦ h̃ ◦ ε(q,n)
0 (ι(σ, a)S,Ψσ) =

(
f ◦ h ◦ ε(q,n)

0 (S,Ψ)
)σ

as holomorphic functions on Ha
q . The Fourier expansion of the left hand side

(as an element of M(q)
κ1 ) is

∑
b


 ∑

0≤t∈Lq

Re(tαρtα)=b

(g̃t)∗
(
y(Ψσ)

) ea(tr(bz)) (z = (zv)v∈a ∈ Ha
q ),

and that of the right hand side is

∑
b


 ∑

0≤t∈Lq

Re(tαρtα)=b

[
(gt)∗(uΨ)

]σ

 ea(tr(bz)) (z = (zv)v∈a ∈ Ha

q ).
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From (6.2) we have

(g̃r)∗
(
y(Ψσ)

)
=
[
(gr)∗(uΨ)

]σ
.

As the right hand side does not depend on the choice of y, we can obtain
g̃r = g

(σ,Ψ,a)
r if we take each u ∈ Kn

q . This completes the proof when k = κ1
for a positive even integer κ.

For an arbitrary k ∈ Za, take ξv ∈ M(q,n)
v+2q·1 (ι(σ, a)S,Ψσ) as in Sec-

tion 3 (for each v ∈ a). Then ξ
(σ−1,Ψσ,a−1)
v ∈ M(q,n)

vσ−1+2q·1(S,Ψ). For f ∈
M(q,n)

k (S,Ψ), take l = (lv)v∈a ∈ Na so that

f
∏
v∈a

(
ξ(σ

−1,Ψσ,a−1)
v

)lv ∈ M(q,n)
κ1 (S,Ψ)

for a positive even integer κ. Put

f (σ,Ψ,a) =

(
f
∏
v∈a

(
ξ(σ

−1,Ψσ,a−1)
v

)lv)(σ,Ψ,a) ∏
v∈a

ξ−lvv .(6.5)

As κ1 = k +
∑
v∈a

lv(vσ−1 + 2q · 1), we have f (σ,Ψ,a) ∈ A(q,n)
kσ (ι(σ, a)S,Ψσ).

By a formal calculation of Fourier-Jacobi series, (6.5) does not depend on the
choice of (ξv)v∈a. Now for each z̃ ∈ D(q,n) (ι(σ, a)S,Ψσ), take (ξv)v∈a so that
ξv(z̃) 
= 0 for every v ∈ a. Then f (σ,Ψ,a) is holomorphic at z̃. This means
f (σ,Ψ,a) ∈ M(q,n)

kσ (ι(σ, a)S,Ψσ). By a formal computation at w̃ = y(Ψσ) (for
y ∈ Kn

q ), the Fourier-Jacobi expansion of f (σ,Ψ,a) is as in Theorem 6.1.

For f ∈ A(q,n)
k (S,Ψ), we can also define f (σ,Ψ,a). Put f = f1/f2 by

f1 ∈ M(q,n)
k+l (S,Ψ), 0 
= f2 ∈ M(q,n)

l (S,Ψ) (l ∈ Za) and define f (σ,Ψ,a) =

f
(σ,Ψ,a)
1 /f

(σ,Ψ,a)
2 . Then this does not depend on the choice of f1, f2 and f (σ,Ψ,a)

∈ A(q,n)
kσ (ι(σ, a)S,Ψσ).
Using the previous theorem, we can get the following proposition.

Proposition 6.3. For any k ∈ Za, we have

M(q,n)
k (S,Ψ)(C) = M(q,n)

k (S,Ψ) (F (k) ∨K∗
Ψab) ⊗F (k)∨K∗

Ψab
C.

Proof. For any f ∈ M(q,n)
k (S,Ψ)(C) and any σ ∈ Aut(C/F (k) ∨K∗

Ψab),
consider f (σ,Ψ,1) ∈ M(q,n)

k (S,Ψ)(C). Fix (ξv)v∈a and Ξ. Take Y ∈ Z(q,n)(S,Ψ)

so that
(
f
∏
v∈a

(
ξ
(σ−1,Ψ,1)
v

)lv)
Ξ−κ/2 (of (6.5)) can be viewed as a rational

function on VY for any σ ∈ Aut(C/F (k)∨K∗
Ψab). Take a congruence subgroup

Γ of G(q,n)(S,Ψ)(Q) satisfying the following conditions (1), (2).
(1) Γ ⊂ ΓY .
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(2) f, ξ
(σ−1,Ψ,1)
v (v ∈ a, σ ∈ Aut(C/F (k)∨K∗

Ψab)) and Ξ are all modular
forms with respect to Γ.

As the set
{
ξ
(σ−1,Ψ,1)
v

∣∣∣ v ∈ a, σ ∈ Aut(C/F (k) ∨K∗
Ψab)

}
is a finite set, we can

take such Y and Γ.
From the definition, we have f (σ,Ψ,1) ∈ M(q,n)

k (S,Ψ)(Γ) for any σ ∈
Aut(C/F (k) ∨K∗

Ψab). As is well known, M(q,n)
k (S,Ψ)(Γ) is finite dimensional.

Put d = dimC M(q,n)
k (S,Ψ)(Γ) and take the Fourier-Jacobi expansion of f ,

f(z) =
∑

0≤r∈Hq

gr(w)ea

(
tr(rΨz)

)
, z =

(
z
w

)
∈ D(q,n)(S,Ψ).

Now set
M = 〈{(gr)∗(yΨ)

∣∣y ∈ Kn
q , 0 ≤ r ∈ Hq

}〉F (k)∨K∗
Ψab

.

Then M is a F (k) ∨ K∗
Ψab-vector space contained in C. Let us prove that

dimF (k)∨K∗
Ψab

M ≤ d. If not, we can take y1, . . . , yd+1 ∈ Kn
q and r1, . . . , rd+1 ∈

Hq such that (gr1)∗(y
Ψ
1 ), . . . , (grd+1)∗(y

Ψ
d+1) are linearly independent over

F (k) ∨K∗
Ψab. So we can take σ1, . . . , σd+1 ∈ Aut(C/F (k) ∨K∗

Ψab) such that

det




[
(gr1)∗(y

Ψ
1 )
]σ1 · · · [

(grd+1)∗(y
Ψ
d+1)

]σ1

· · · · · · · · ·[
(gr1)∗(y

Ψ
1 )
]σd+1 · · · [

(grd+1)∗(y
Ψ
d+1)

]σd+1


 
= 0.

This means

det


 g

(σ1,Ψ,1)
r1 (yΨ

1 ) · · · g
(σ1,Ψ,1)
rd+1 (yΨ

d+1)
· · · · · · · · ·

g
(σd+1,Ψ,1)
r1 (yΨ

1 ) · · · g
(σd+1,Ψ,1)
rd+1 (yΨ

d+1)


 
= 0.

This implies that f (σ1,Ψ,1), . . . , f (σd+1,Ψ,1) are linearly independent over C.
Hence it contradicts to dimC M(q,n)

k (S,Ψ)(Γ) = d. Therefore M is at most d-
dimensional over F (k)∨K∗

Ψab. Let {c1, . . . , ct} be a basis ofM over F (k)∨K∗
Ψab.

Then we can take σ1 = idC, σ2, . . . , σt ∈ Aut(C/F (k) ∨K∗
Ψab) such that

det


 cσ1

1 · · · cσ1
t

· · · · · · · · ·
cσt
1 · · · cσt

t


 
= 0.

Put 
 f1

...
ft


 =


 cσ1

1 · · · cσ1
t

· · · · · · · · ·
cσt
1 · · · cσt

t


−1


 f (σ1,Ψ,1)

...
f (σt,Ψ,1)


 .

By a formal calculation, we have f1, . . . , ft ∈ M(q,n)
k (S,Ψ) (Γ, F (k) ∨K∗

Ψab).
Hence we get f = c1f1 + · · · + ctft ∈ 〈M(q,n)

k (S,Ψ) (F (k) ∨K∗
Ψab)〉C. This

shows the proposition.
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7. An extended Galois group

In this section we shall fix the unitary similitude group G = G(q,n)(S,Ψ)
and define the action of a certain extended Galois group using the results in
Section 6.

Take f(z) =
∑

0≤r∈Hq

gr(w)ea

(
tr(rΨz)

) ∈ M(q,n)
k (S,Ψ), (σ,Ψ, a) ∈ CΨ(C)

and f (σ,Ψ,a) ∈ M(q,n)
kσ (ι(σ, a)S,Ψσ) as in Section 6. For σ ∈ Aut(C/K∗

Ψ), put

f [σ,Ψ,a] = f (σ,Ψ,a) ◦ ε(S, ι(σ, a)).(7.1)

Then f [σ,Ψ,a] ∈ M(q,n)
kσ (S,Ψ) and its Fourier-Jacobi expansion is

f [σ,Ψ,a](z) =
∑

0≤r∈Hq

g(σ,Ψ,a)
r (w)ea

(
tr(ι(σ, a)rΨz)

)
.

For f ∈ A(q,n)
k (S,Ψ), we also define f [σ,Ψ,a] by (7.1). Clearly f [σ,Ψ,a] ∈

A(q,n)
kσ (S,Ψ). Note that

(
f [σ1,Ψ,a1]

)[σ2,Ψ,a2] = f [σ1σ2,Ψ,a1a2] and aK×K×
∞ =

N ′
Ψ(b)K×K×

∞ with b ∈ K∗×
A so that [b−1,K∗] = σ|K∗

ab
.

Now we have the following lemma.

Lemma 7.1. For 0 
= f1, f2 ∈ M(q,n)
k (S,Ψ) and σ ∈ Aut(C/K∗), take

Y ∈ Z so that (f1/f2) ◦ ϕ−1
Y is defined as a rational function on VY . Then we

have

f
[σ,Ψ,a]
1 /f

[σ,Ψ,a]
2 =

[
(f1/f2) ◦ ϕ−1

Y

]σ ◦ JY X



 1q

aρ1n
aaρ1q




 ◦ ϕX ,

where

X =


 1q

aρ1n
aaρ1q


−1

Y


 1q

aρ1n
aaρ1q


 ∈ Z(q,n)(S,Ψ).

Remark. Note that the right hand side is independent of the choice of
Y and X.

Proof. By an easy computation, we have the following commutative dia-
gram.

(7.2)
D(q,n)(S,Ψ)

ε
(q,n)
δ (S,Ψ)−−−−−−−−−→ Ha

m-ε(S,b)

-β(b)

D(q,n)(bS,Ψ)
ε
(q,n)
δ (bS,Ψ)−−−−−−−−−→ Ha

m

,
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where β(b) =




1q
b−11n

1q
b−11q

1n
b−11q


.

By (6.1), we have

f
(σ,Ψ,a)
1 /f

(σ,Ψ,a)
2 =

[
(f1/f2)◦ϕ−1

Y ◦E−1
TY

]σ◦J (m)

TT̃
(A(σ,Ψ, a))◦ET̃ Ỹ ◦ϕỸ ,

with T, T̃ and Ỹ as in (6.1). Combining (7.1) and (7.2), we have

f
[σ,Ψ,a]
1 /f

[σ,Ψ,a]
2

=
[
(f1/f2) ◦ ϕ−1

Y ◦ E−1
TY

]σ ◦ J (m)
TU (A(σ,Ψ, a)β (ι(σ, a))) ◦ EUX ◦ ϕX ,

where U = β (ι(σ, a))−1A(σ,Ψ, a)−1TA(σ,Ψ, a)β (ι(σ, a)) (then U ⊃ Iδ(X)).

Since A(σ,Ψ, a)β (ι(σ, a)) ∈ Iδ




 1q

aρ1n
aaρ1q


G∞


, we can get this

lemma from (2.7).

Now we define a subgroup G = G(q,n)(S,Ψ) of GA×K∗×
A ×Gal(Q/K∗) as

follows.

G=


 (x, c, σ)

∈ GA×K∗
A×Gal(Q/K∗)

∣∣∣∣∣∣
det(x)−1(N ′

Ψ(c)ρ)nNK∗/Q(c)q∈K×K×
∞,

ν(x)−1NK∗/Q(c)∈F×F×
∞+,[

c−1,K∗] = σ|K∗
ab


 .

Then we can define an action of G on the space of modular forms as follows.

Theorem 7.2. There is an action of G on the graded ring
∑
k∈Za

Ak(Q)

written as

((x, c, σ), f) → f (x,c,σ) for (x, c, σ) ∈ G and f ∈
∑
k∈Za

Ak(Q),

satisfying the following conditions (i)–(vii).

(i) (b1f1 + b2f2)(x,c,σ) = bσ1f
(x,c,σ)
1 + bσ2f

(x,c,σ)
2 for b1, b2 ∈ Q.

(ii) (f1f2)(x,c,σ) = f
(x,c,σ)
1 f

(x,c,σ)
2 .

(iii) (f (x1,c1,σ1))(x2,c2,σ2) = f (x1x2,c1c2,σ1σ2).
(iv) f (α,1,1) = f |kα if α ∈ G(Q) and f ∈ Ak(Q).

(v) f (x,c,σ) = f [σ,Ψ,a] if a = N ′
Ψ(c) and x =


 1q

aρ1n
aaρ1q


.

(vi) Ak(Q)(x,c,σ) = Akσ(Q) and Mk(Q)(x,c,σ) = Mkσ(Q).
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(vii) If f ∈ A0(Q) = K ∨ Q, then

f (x,c,σ) =
[
(f ◦ ϕ−1

Y )
]σ
JYX(x) ◦ ϕX ,

where Y ∈ Z is sufficiently small so that f◦ϕ−1
Y is defined as a rational function

on VY and X = x−1Y x.

Proof. For any positive integer N , put

YN =

{
x ∈ GA ∩

(
G∞ ×

∏
p

GL(m,Op)

)∣∣∣∣ xp ≡ 1m mod (NOp)mm
for any finite prime p of K

}
.

Then we have
G∞(YN ∩G1A) ∩G(Q) = ΓN ,

where ΓN is as in (1.5).

For any (x, c, σ) ∈ G, set x̃ =


 1q

N ′
Ψ(c)ρ1n

Nk∗/Q(c)1q


−1

x. Since

det(x̃) ∈ K×K×
∞ and ν(x̃) ∈ F×F×

∞+, we can take b1 ∈ K× and b2 ∈ F×

so that det(x̃) ∈ b1K
×
∞ and ν(x̃) ∈ b2F

×
∞+. As det(x̃) det(x̃)ρ = ν(x̃)m,

we can get b1b
ρ
1 = bm2 by comparing the non-archimedean components. By

the Hasse principle, we can take α ∈ G(Q) such that ν(α) = b2. Hence

x̃




1q
det(α)b−1

1

1n−1

1q


α−1 ∈ G∞G1A is contained inG∞(YN∩G1A)

·G1(Q) for any positive integer N because of the strong approximation property
of G1.

For f ∈ Ak(Q) and (x, c, σ) ∈ G, take a positive integer N so that
f [σ,Ψ,N ′

Ψ(c)] ∈ Akσ(ΓN ). For such N , take uN ∈ G∞(YN ∩G1A) and αN ∈ G(Q)
so that x̃ = uNαN (where x̃ is as above), and define

f (x,c,σ) = f [σ,Ψ,N ′
Ψ(c)]|kσαN .

Clearly f (x,c,σ) is independent of the choice of uN and αN . We can easily verify
the conditions (i),(ii),(iv),(v) and (vi). Using Lemma 7.1, we can get (vii).

Now we have only to prove (iii). In case f ∈ A0(Q), we can get (iii) from
(vii). In case f = Ξ, the condition (iii) can be verified by computations using
(3.9) and (3.10). In the same way we can also get (iii) when f = ξv (v ∈
a). Since any element of Ak(Q) can be expressed as a multiple of positive or
negative powers of Ξ, ξv and an element of A0(Q), we can get (iii) for any
f ∈ Ak(Q) by using (ii).
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