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Inequalities for Semistable Families
of Arithmetic Varieties

By

Shu Kawaguchi and Atsushi Moriwaki

Abstract

In this paper, we will consider a generalization of Bogomolov’s in-
equality and Cornalba-Harris-Bost’s inequality to the case of semistable
families of arithmetic varieties under the idea that geometric semistabil-
ity implies a certain kind of arithmetic positivity. The first one is an
arithmetic analogue of the relative Bogomolov’s inequality in [22]. We
also establish the arithmetic Riemann-Roch formulae for stable curves
over regular arithmetic varieties and generically finite morphisms of
arithmetic varieties.

Introduction

In this paper, we will consider a generalization of Bogomolov’s inequal-
ity and Cornalba-Harris-Bost’s inequality to the case of semistable families of
arithmetic varieties. An underlying idea of these inequalities as in [4], [5], [8],
[17], [18], [19], [20], [21], [24], and [27] is that geometric semistability implies
a certain kind of arithmetic positivity. The first one is related to the semista-
bility of vector bundles, and the second one involves the Chow (or Hilbert)
semistability of cycles.

First of all, let us consider Bogomolov’s inequality. LetX and Y be smooth
algebraic varieties over an algebraically closed field of characteristic zero, and
f : X → Y a semi-stable curve. Let E be a vector bundle of rank r on X, and
y a point of Y . In [22], the second author proved that if f is smooth over y and
E|Xȳ

is semistable, then disX/Y (E) = f∗
(
2rc2(E)− (r − 1)c21(E)

)
is weakly

positive at y.
In the first half of this paper, we would like to consider an arithmetic

analogue of the above result. Let us fix regular arithmetic varieties X and
Y , and a semistable curve f : X → Y . Since we have a good dictionary for
translation from a geometric case to an arithmetic case, it looks like routine
works. There are, however, two technical difficulties to work over the standard
dictionary.

The first one is how to define a push-forward of arithmetic cycles in our sit-
uation. If fQ : XQ → YQ is smooth, then, according to Gillet-Soulé’s arithmetic

intersection theory [9], we can get the push-forward f∗ : ĈH
p+1

(X)→ ĈH
p
(Y ).
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We would not like to restrict ourselves to the case where fQ is smooth because
in the geometric case, the weak positivity of disX/Y (E) gives wonderful appli-
cations to analyses of the boundary of the moduli space of stable curves. Thus
the usual push-forward for arithmetic cycles is insufficient for our purpose. A
difficulty in defining the push-forward arises from a fact: if fC : X(C)→ Y (C)
is not smooth, then (fC)∗(η) is not necessarily C∞ even for a C∞ form η. This
suggests us that we need to extend the usual arithmetic Chow groups defined
by Gillet-Soulé [9]. For this purpose, we will introduce an arithmetic L1-cycle
of codimension p, namely, a pair (Z, g) such that Z is a cycle of codimension
p, g is a current of type (p− 1, p− 1), and g and ddc(g)+ δZ(C) are represented
by locally integrable forms. Thus, dividing by the usual arithmetical rational
equivalence, an arithmetic Chow group, denoted by ĈH

p

L1 , consisting of arith-
metic L1-cycles of codimension p will be defined (cf. Section 2.2). In this way,
we have the natural push-forward

f∗ : ĈH
p+1

L1 (X)→ ĈH
p

L1(Y )

as desired (cf. Proposition 2.2.2).
The second difficulty is the existence of a suitable Riemann-Roch formula

in our situation. As before, if fQ : XQ → YQ is smooth, we have the arithmetic
Riemann-Roch theorem due to Gillet-Soulé [11]. If we ignore Noether’s formula,
then, under the assumption that fQ : XQ → YQ is smooth, their Riemann-Roch
formula can be written in the following form:

ĉ1

(
detRf∗(E), hEQ

)
− rk(E)ĉ1

(
detRf∗(OX), hOX

Q

)
= f∗

(
1
2
(
ĉ1(E)2 − ĉ1(E) · ĉ1(ωX/Y )

)− ĉ2(E)
)

where E = (E, h) is a Hermitian vector bundle on X and ωX/Y is the dualizing
sheaf of f : X → Y with a Hermitian metric. If we consider a general case
where fQ : XQ → YQ is not necessarily smooth, the right hand side in the above

equation is well defined and sits in ĈH
1

L1(X)Q. On the other hand, the left hand
side is rather complicated. If we admit singular fibers of fC : X(C) → Y (C),
then the Quillen metric hEQ is no longer C∞. According to [1], it extends to a

generalized metric. Thus, we may define ĉ1
(
detRf∗(E), hEQ

)
(cf. Section 3.2).

In general, this cycle is not an L1-cycle. However, using Bismut-Bost’s formula
[1], we can see that

ĉ1

(
detRf∗(E), hEQ

)
− rk(E)ĉ1

(
detRf∗(OX), hOX

Q

)
is an element of ĈH

1

L1(Y ). Thus, we have a way to establish a Riemann-Roch

formula in the arithmetic Chow group ĈH
1

L1(Y )Q. Actually, we will prove the
above formula in our situation (cf. Theorem 5.2.1). The idea of comparing two

sides in ĈH
1

L1(Y )Q is the tricky Lemma 2.5.1.
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Let us go back to our problem. First of all, we need to define an arithmetic
analogue of weak positivity. Let α be an element of ĈH

1

L1(Y )Q, S a subset of
Y (C), and y a closed point of YQ. We say α is semi-ample at y with respect to S
if there are an arithmetic L1-cycle (E, f) and a positive integer n such that (1)
ddc(f) + δE(C) is C∞ around each z ∈ S, (2) E is effective, (3) y �∈ Supp(E),
(4) f(z) ≥ 0 for all z ∈ S, and (5) nα coincides with the class of (E, f) in

ĈH
1

L1(Y )Q. Moreover, α is said to be weakly positive at y with respect to S if
it is the limit of semi-ample cycles at y with respect to S (for details, see Section
3.5). For example, if Y = Spec(OK), y is the generic point, and S = Y (C),
then, α is weakly positive at y with respect to S if and only if d̂eg(α) ≥ 0, where
K is a number field and OK is the ring of integers in K (cf. Proposition 3.6.1).

Let (E, h) be a Hermitian vector bundle of rank r on X, and d̂isX/Y (E, h)
the arithmetic discriminant divisor of (E, h) with respect to f : X → Y , that

is, the element of ĈH
1

L1(Y ) given by f∗
(
2rĉ2(E, h)− (r − 1)ĉ1(E, h)2

)
. We

assume that f is smooth over y and E|Xȳ
is poly-stable. In the case where

dimX = 2 and Y = Spec(OK), Miyaoka [17], Moriwaki [18], [19], [20], and
Soulé [24] proved that d̂eg

(
d̂isX/Y (E, h)

)
≥ 0, consequently, d̂isX/Y (E, h) is

weakly positive at y with respect to Y (C). One of the main theorems of this
paper is the following generalization.

Theorem A (cf. Theorem 8.1). Under the above assumptions,
d̂isX/Y (E, h) is weakly positive at y with respect to any subsets S of Y (C) with
the following properties: (1) S is finite, and (2) f−1

C (z) is smooth and EC|f−1
C

(z)

is poly-stable for all z ∈ S. In particular, if the residue field of x is K, and the
canonical morphism Spec(K)→ X induced by x extends to x̃ : Spec(OK)→ X,
then d̂eg

(
x̃∗
(
d̂isX/Y (E, h)

))
≥ 0.

Next, let us consider Cornalba-Harris-Bost’s inequality. Motivated by the
work of Cornalba and Harris [6] in the geometric case, Bost [4, Theorem I]
proved that, roughly speaking, if X(Q) ⊂ Pr−1(Q) gives rise to an SLr(Q)
semi-stable Chow point, then the height of X has a certain kind of positivity.
We call this result Cornalba-Harris-Bost’s inequality. Zhang [27] then gave
precision to it and also showed the converse of Bost’s result. Further, Gasbarri
[8] considered a wide range of actions instead of the SLr(Q)-action.

In the second half of this paper, we would like to consider a relative version
of Cornalba-Harris-Bost’s inequality. First, let us fix terminology. Let V be a
set, φ a non-negative function on V , and S a finite subset of V . We define the
geometric mean g.m.(φ;S) of φ over S to be

g.m.(φ;S) =

(∏
s∈S

φ(s)

)1/#(S)

.

Then, the following is our solution.
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Theorem B (cf. Theorem 10.1.4). Let Y be a regular projective arith-
metic variety, and E = (E, h) a Hermitian vector bundle of rank r. Let
π : P(E) = Proj(

⊕
n≥0 Symn(E∨)) → Y be the projection and OE(1) the

tautological line bundle with the quotient metric induced from f∗(h). Let X be
an effective cycle in P(E) such that X is flat over Y with the relative dimen-
sion d and degree δ on the generic fiber. For each irreducible component Xi of
Xred, let X̃i → Xi be a proper birational morphism such that (X̃i)Q is smooth
over Q. Let Y0 be the maximal open set of Y such that the induced morphism
X̃i → Y is smooth over Y0 for every i. Let (B, hB) be a line bundle equipped
with a generalized metric on Y given by the equality :

ĉ1(B, hB) = rπ∗
(
ĉ1(OE(1))d+1 · (X, gX)

)
+ δ(d+ 1)ĉ1(E).

(Here we postpone defining gX , i.e., a suitable compactification of X in the
arithmetic sense.) Then, hB is C∞ over Y0. Moreover, there are a positive
integer e = e(r, d, δ), a positive integer l = l(r, d, δ), a positive constant C =
C(r, d, δ), and sections s1, . . . , sl ∈ H0(Y,B⊗e) with the following properties.

(i) e, l, and C depend only on r, d, and δ.
(ii) For a closed point y of YQ, if Xy is Chow semistable, then si(y) �= 0

for some i.
(iii) For all i and all closed points y of (Y0)Q,

g.m.
((
h⊗eB
)
(si, si); OGal(Q/Q)(y)

)
≤ C,

where OGal(Q/Q)(y) is the orbit of y by the Galois action in Y0(Q).

Compared with the geometric analogue (cf. Remark 10.1.5), a difficult
part of this theorem is the estimate of the geometric mean of the norm over the
Galois orbits of closed points. We will do this by reducing it to the absolute
case. For this purpose, we have to associate X with a ‘nice’ Green current
gX . How do we do? One way is to fix a Kähler metric µ ∈ A1,1(P(E)R) and to
attach a µ-normalized Green current forX, namely, a Green current g such that
ddcg + δX = H(δY ) and H(gY ) = 0, where H : Dp,p(P(E)R) → Hp,p(P(E)R)
is the harmonic projection (cf. [5, 2.3.2]). This construction however is not
suitable for our purpose because it does not behave well when restricted on
fibers.

Thus we are led to define an Ω-normalized Green form which is given,
roughly speaking, by attaching a Green form fiberwisely (Here Ω = c1(OE(1))).
Precisely, an Ω-normalized Green form gX for X is characterized by the fol-
lowing three conditions; (i) gX is an L1-form on P(E), (ii) ddc([gX ]) + δX =∑d
i=0

[
π∗(γi) ∧ Ωi

]
, where γi is a d-closed L1-form of type (d − i, d − i) on Y

(i = 0, . . . , d), (iii) π∗(gX ∧ Ωr−d) = 0 (cf. Proposition 9.1.1). Then we can
show that it has a desired property when restricted on fibers (cf. Remark 9.1.4).

Suppose now X is regular. Let i : X → P(E) be the inclusion map and
f : X → Y the restriction of π. If we set L = i∗(OE(1)), then π∗(ĉ1(OE(1))d+1 ·
(X, gX)) = f∗(ĉ1(L)d+1) (cf. Proposition 9.3.1). Since f∗(ĉ1(L)d+1) is in gen-

eral only an element of ĈH
1

L1(Y ), the above equality explains why we need



Inequalities for Semistable Families of Arithmetic Varieties 101

to consider (X, gX) in the enlarged arithmetic Chow group ĈH
r−d−1

L1 (P(E)).
Moreover, a similar equality when X is not necessarily regular shows that
π∗(ĉ1(OE(1)) · (X, gX)) is independent of the choice of an Ω-normalized Green
form gX for X (cf. Proposition 9.3.1).

Suppose now Y = Spec(OK), y is the generic point, and Xy is Chow
semistable, where K is a number field. In this case, there exists a generic
resolution of X smooth over y. Then Theorem B tells us that

rd̂eg(ĉ1(L)d+1) + δ(d+ 1)d̂eg(E) + [K : Q]α(r, d, δ) ≥ 0

for some constant α(r, d, δ) depending only on r, d and δ, which is nothing but
Theorem I of Bost [4].

We can also think a wide range of actions like [8]. Namely, let ρ : GLr →
GLR be a morphism of group schemes such that there is an integer k with
ρ(tIr) = tkIR for any t, and that ρ commutes with the transposed morphism.
For a Hermitian vector bundle E, we then get the associated Hermitian vector
bundle E

ρ
(cf. Section 9.2). If X is a flat cycle on P(Eρ) and y is a closed point

of YQ, then SLr(Q) acts on a Chow form ΦXy. The stability of ΦXy under this
action yields a similar inequality (cf. Theorem 10.1.4).

Finally, in Section 10.2 we make a comparison between the relative Bo-
gomolov’s inequality (Theorem 8.1) and the relative Cornalba-Harris-Bost’s
inequality (Theorem 10.1.4).

1. Locally integrable forms and their push-forward

1.1. Locally integrable forms

Let M be an n-dimensional orientable differential manifold. We assume
that M has a countable basis of open sets. Let ω be a C∞ volume element of
M , and C0

c (M) the set of all complex valued continuous functions on M with
compact supports. Then, there is a unique Radon measure µω defined on the
topological σ-algebra of M such that

L

∫
M

fdµω =
∫
M

fω

for all f ∈ C0
c (M), where L

∫
M

fdµω is the Lebesgue integral arising from the
measure µω.

Let f be a complex valued function on M . We say f is locally integrable,
denoted by f ∈ L1

loc(M), if f is measurable and, for any compact set K,

L

∫
K

|f |dµω <∞.

Let ω′ be another C∞ volume form onM . Then, there is a positive C∞ function
a on M with ω′ = aω. Thus,

L

∫
K

|f |dµω′ = L

∫
K

|f |adµω,
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which shows us that local integrability does not depend on the choice of the
volume form ω. Moreover, it is easy to see that, for a measurable complex
valued function f on M , the following are equivalent.

(a) f is locally integrable.
(b) For each point x ∈ M , there is an open neighborhood U of x such

that the closure of U is compact and L
∫
U

|f |dµω <∞.

Let ΩpM be a C∞ vector bundle consisting of C∞ complex valued p-forms.
Let πp : ΩpM → M be the canonical map. We denote C∞(M,ΩpM ) (resp.
C∞
c (M,ΩpM )) by Ap(M) (resp. Apc(M)). Let α be a section of πp : ΩpM → M .

We say α is locally integrable, or simply an L1-form if, at any point of M , all
coefficients of α in terms of local coordinates are locally integrable functions.
The set of all locally integrable p-forms is denoted by L1

loc(M,ΩpM ). For an
maximal form α on M , there is a unique function g on M with α = gω. We
denote this function g by cω(α).

Let us define the Lebesgue integral of locally integrable n-forms with com-
pact support. Let α be an element of L1

loc(M,ΩnM ) such that the support of
α is compact. Then cω(α) ∈ L1

loc(M) and supp(cω(α)) is compact. Thus,

L

∫
M

cω(α)dµω exists. Let ω′ be another C∞ volume element of M . Then,

there is a positive C∞ function a on M with ω′ = aω. Here acω′(α) = cω(α).
Thus,

L

∫
M

cω′(α)dµω′ = L

∫
M

cω′(α)adµω = L

∫
M

cω(α)adµω.

Hence, L
∫
M

cω(α)dµω does not depend on the choice of the volume form ω.

Thus, the Lebesgue integral of α is defined by

L

∫
M

α = L

∫
M

cω(α)dµω.

Moreover, we denote by Dp(M) the space of currents of type p on M .
Then, there is the natural homomorphism

[ ] : L1
loc(M,ΩpM )→ Dp(M)

given by [α](φ) = L

∫
M

α ∧ φ for φ ∈ An−pc (M). It is well known that the kernel

of [ ] is {α ∈ L1
loc(M,ΩpM ) | α = 0 (a.e.)}. A topology on Dp(M) is defined in

the following way. For an sequence {Tn}∞n=1 in Dp(M), Tn → T as n → ∞ if
and only if Tn(φ) → T (φ) as n → ∞ for each φ ∈ An−pc (M). For an element
T ∈ Dn(M), by abuse of notation, we denote by cω(T ) a unique distribution g
on M given by T = gω.

Proposition 1.1.1. Let T be a current of type p on M . Then, the
following are equivalent.
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(1) T is represented by an L1-form.
(2) For any φ ∈ An−p(M), cω(T ∧φ) is represented by a locally integrable

function.

Proof. (1) =⇒ (2): Let φ ∈ An−p(M). Then, by our assumption, for any
point x ∈M , there are an open neighborhood U of x, C∞ functions a1, . . . , ar
on U , and locally integrable functions b1, . . . , br on U such that

cω(T ∧ φ)|U =
r∑
i=1

[aibi].

Thus, if K is a compact set in U , then

L

∫
K

∣∣∣∣∣
r∑
i=1

aibi

∣∣∣∣∣ dµω ≤ L
∫
K

r∑
i=1

|ai||bi|dµω

≤ max
i

sup
x∈K
{|ai(x)|}

r∑
i=1

L

∫
K

|bi|dµω <∞.

Thus, we get (2).

(2) =⇒ (1): Before starting the proof, we would like to claim the following
fact. Let {Uα}α∈A be an open covering of M such that A is at most a countable
set. Let λα be a locally integrable form Uα with λα = λβ (a.e.) on Uα ∩ Uβ
for all α, β ∈ A. Then, there is a locally integrable form λ on M such that
λ = λα (a.e.) on Uα for all α ∈ A. Indeed, let us fix a map a : M → A with
x ∈ Ua(x) and define a form λ by λ(x) = λa(x)(x). Then, λ is our desired form
because for each α ∈ A,

{x ∈ Uα | λ(x) �= λα(x)} ⊆
⋃

β∈A\{α}
{x ∈ Uα ∩ Uβ | λβ(x) �= λα(x)}

and the right hand side has measure zero.

Let U be an open neighborhood of a point x ∈M and (x1, . . . , xn) a local
coordinate of U such that dx1 ∧ · · · ∧ dxn coincides with the orientation by ω.
Then, there is a positive C∞ function a on U with ω = adx1 ∧ · · · ∧ dxn over
U . We set

T =
∑

i1<···<ip
Ti1···ipdxi1 ∧ · · · ∧ dxip

for some distributions Ti1···ip . We need to show that Ti1···ip is represented by a
locally integrable function. Since M has a countable basis of open sets, by the
above claim, it is sufficient to check that Ti1···ip is represented by an integral
function on every compact set K in U . Let f be a non-negative C∞ function
on M such that f = 1 on K and supp(f) ⊂ U . Choose ip+1, . . . , in such
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that {i1, . . . , in} = {1, . . . , n}. Here we set φ = fadxip+1 ∧ · · · ∧ dxin . Then,
φ ∈ An−p(M) and

T ∧ φ = εTi1···ipfadx1 ∧ · · · ∧ dxn = εTi1···ipfω,

where ε = 1 or −1 depending on the orientation of {xi1 , . . . , xin}. By our
assumption, there is a locally integrable function h on M with cω(T ∧φ) = [h].
Thus, [εh] = Ti1···ipf . Therefore, Ti1···ip is represented by εh on K because
f = 1 on K. Thus, we get (2).

1.2. Push-forward of L1-forms as current

First of all, we recall the push-forward of currents. Let f : M → N be
a proper morphism of orientable manifolds with the relative dimension d =
dimM − dimN . Then,

f∗ : Dp(M)→ Dp−d(N)

is defined by (f∗(T ))(φ) = T (f∗(φ)) for φ ∈ AdimN−p+d
c (N). It is easy to see

that f∗ is a continuous homomorphism. Let us begin with the following lemma.

Lemma 1.2.1. Let F be an orientable compact differential manifold
and Y an orientable differential manifold. Let ωF (resp. ωY ) be a C∞ volume
element of F (resp. Y ). Let p : F × Y → Y be the projection to the second
factor. Then, we have the following.

(1) If g is a continuous function on F × Y , then
∫
F
gωF is a continuous

function on Y .
(2) If α is a continuous maximal form on F × Y , then p∗([α]) is repre-

sented by a unique continuous from. This continuous form is denoted by
∫
p
α.

(3) For a continuous function g on F × Y ,∣∣∣∣cωY

(∫
p

gωF ∧ ωY
)∣∣∣∣ ≤ cωY

(∫
p

|g|ωF ∧ ωY
)
.

Proof. (1) This is standard.

(2) Since ωF ∧ωY is a volume form on F×Y , there is a continuous function
g on F × Y with α = gωF ∧ ωY . Thus, it is sufficient to show that

p∗([α]) =
[(∫

F

gωF

)
ωY

]
.

Indeed, by Fubini’s theorem, for φ ∈ A0
c(Y ),

p∗([α])(φ) =
∫
F×Y

φα =
∫
Y

(∫
F

gωF

)
φωY =

[(∫
F

gωF

)
ωY

]
(φ).

(3) This is obvious because∣∣∣∣∫
F

gωF

∣∣∣∣ ≤ ∫
F

|g|ωF .
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Corollary 1.2.2. Let f : X → Y be a proper, surjective and smooth
morphism of connected complex manifolds. Let ωX and ωY be volume elements
of X and Y respectively. Then,

(1) For a continuous maximal form α on X, f∗([α]) is represented by a
unique continuous form. We denote this continuous form by

∫
f
α.

(2) For any continuous functions g on X,∣∣∣∣cωY

(∫
f

gωX

)∣∣∣∣ ≤ cωY

(∫
f

|g|ωX
)
.

Proof. (1) This is a local question on Y . Thus, we may assume that there
are a compact complex manifold F and a differomorphism h : X → F ×Y such
that the following diagram is commutative:

X
∼−−−−→
h

F × Y

f

� �p
Y Y,

where p : F × Y → Y is the natural projection. Hence, (1) is a consequence of
(2) of Lemma 1.2.1.

(2) First, we claim that if the above inequality holds for some special
volume elements ωX and ωY , then the same inequality holds for any volume
elements. Let ω′

X and ω′
Y be another volume elements of X and Y respectively.

We set ω′
X = aωX and ω′

Y = bωY . Then, a and b are positive C∞ functions.
Let g be any continuous function on X. Then, by our assumption,∣∣∣∣cωY

(∫
f

gω′
X

)∣∣∣∣ = ∣∣∣∣cωY

(∫
f

gaωX

)∣∣∣∣ ≤ cωY

(∫
f

|g|aωX
)

= cωY

(∫
f

|g|ω′
X

)
.

On the other hand, for any maximal forms α on Y ,

cωY
(α) = bcω′

Y
(α) .

Thus, we get our claim.
Hence, as in the proof of (1), using the differomorphism h and (3) of

Lemma 1.2.1, we can see (2).

Remark 1.2.3. In the situation of Corollary 1.2.2, if α is a C∞-form
on X, then f∗([α]) is represented by a unique C∞-form.

Proposition 1.2.4. Let f : X → Y be a proper and surjective mor-
phism of connected complex manifolds. Let U be a non-empty Zariski open set
of Y such that f is smooth over U . Let α be a compactly supported continuous
maximal form on X. If we set

λ =


∫
f−1(U)→U

α on U,

0 on Y \ U ,



106 Shu Kawaguchi and Atsushi Moriwaki

then λ is integrable. Moreover, f∗([α]) = [λ].

Proof. Let ωX and ωY be volume forms of X and Y respectively. Let h be
a function on Y with λ = hωY . Then, h is continuous on U by Corollary 1.2.2.
Moreover, let g be a continuous function on X with α = gωX . We need to
show that h is an integrable function. First note that

∫
X
|g|ωX <∞ because g

is a compactly supported continuous function. Let {Un}∞n=1 be a sequence of
open sets such that Un ⊂ U , Un is compact, U1 ⊆ U2 ⊆ · · · ⊆ Un ⊆ · · · , and⋃∞
n=1 Un = U . Here we set

hn(y) =

{
|h(y)| if y ∈ Un
0 otherwise.

Then, 0 ≤ h1 ≤ h2 ≤ · · · ≤ hn ≤ · · · and lim
n→∞hn(y) = |h(y)|. By Corol-

lary 1.2.2,

|h|U | ≤ cωY

(∫
f−1(U)→U

|g|ωX
)
.

Thus,∫
Un

|h|ωY ≤
∫
Un

cωY

(∫
f−1(Un)→Un

|g|ωX
)
ωY =

∫
Un

∫
f−1(Un)→Un

|g|ωX

=
∫
f−1(Un)

|g|ωX ≤
∫
X

|g|ωX .

Therefore,

L

∫
Y

hndµωY
=
∫
Un

|h|ωY ≤
∫
X

|g|ωX <∞.

Thus, by Fatou’s theorem,

L

∫
Y

|h|dµωY
= lim
n→∞L

∫
Y

hndµωY
≤ L
∫
X

|g|ωX <∞.

Hence, h is integral.
Let φ be any element of A0

c(Y ). Then, since lim
n→∞µωY

(Y \ Un) = 0 and hφ
is integrable, by the absolute continuity of Lebesgue integral,

lim
n→∞L

∫
Y \Un

hφdµωY
= 0.

Thus,

L

∫
Y

λφ = lim
n→∞

(
L

∫
Un

hφdµωY
+ L

∫
Y \Un

hφdµωY

)

= lim
n→∞L

∫
Un

hφdµωY
= lim
n→∞

∫
Un

hφωY = lim
n→∞

∫
Un

λφ.
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In the same way, ∫
X

αf∗(φ) = lim
n→∞

∫
f−1(Un)

αf∗(φ).

On the other hand, we have∫
Un

λφ =
∫
f−1(Un)

αf∗(φ).

Hence

f∗([α])(φ) = [α](f∗(φ)) =
∫
X

α ∧ f∗(φ) = lim
n→∞

∫
f−1(Un)

αf∗(φ)

= lim
n→∞

∫
Un

λφ = L

∫
Y

λφ = [λ](φ)

Therefore, f∗([α]) = [λ].

Let X be an equi-dimensional complex manifold, i.e., every connected
component has the same dimension. We denote by Ap,q(X) the space of C∞

complex valued (p, q)-forms on X. Let Ap,qc (X) be the subspace of compactly
supported forms. Let Dp,q(X) be the space of currents on X of type (p, q). As
before, there is a natural homomorphism

[ ] : L1
loc(Ω

p,q
X )→ Dp,q(X).

Then, as a corollary of Proposition 1.2.4, we have the following main result of
this section.

Proposition 1.2.5. Let f : X → Y be a proper morphism of equi-
dimensional complex manifolds. We assume that every connected component
of X maps surjectively to a connected component of Y . Let α be an L1-form of
type (p+d, q+d) on X, where d = dimX−dimY . Then there is a λ ∈ L1

loc(Ω
p,q
Y )

with f∗([α]) = [λ].

Proof. Clearly we may assume that Y is connected. Since f is proper,
there are finitely many connected components of X, say, X1, . . . , Xe. If we set
αi = α|Xi

and fi = f |Xi
for each i, then f∗([α]) = (f1)∗([α1])+· · ·+(fe)∗([αe]).

Thus, we may assume that X is connected. Further, since f∗([α ∧ f∗(φ)]) =
f∗([α])∧φ for all φ ∈ AdimY−p,dimY−q(Y ), we may assume that α is a maximal
form by Proposition 1.1.1.

Let g be a locally integrable function on X with α = gωX . Since the
question is local with respect to Y , we may assume that g is integrable. Thus,
since C0

c (Y ) is dense on L1(Y ) (cf. [23, Theorem 3.14]), there is a sequence
{gn}∞n=1 of compactly supported continuous functions on X such that

lim
n→∞L

∫
X

|gn − g|dµωX
= 0.
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By Proposition 1.2.4, for each n, there is an integrable function hn on Y such
that f∗([gnωX ]) = [hnωY ]. Moreover, by (2) of Corollary 1.2.2,

|hn − hm| ≤ cωY

(∫
f−1(U)→U

|gn − gm|ωX
)

over U . Thus, we can see

L

∫
Y

|hn − hm|dµωY
≤ L
∫
X

|gn − gm|dµωX

for all n,m. Hence, {hn}∞n=1 is a Cauchy sequence in L1(Y ). Therefore, by
the completeness of L1(Y ), there is an integrable function h on Y with h =
limn→∞ hn in L1(Y ). Then, for any φ ∈ A0,0

c (Y ),

lim
n→∞L

∫
Y

hnφωY = L

∫
Y

hφωY and lim
n→∞L

∫
X

gnf
∗(φ)ωX = L

∫
X

gf∗(φ)ωX .

Thus,

f∗([α])(φ) = L

∫
X

gf∗(φ)ωX = lim
n→∞L

∫
X

gnf
∗(φ)ωX

= lim
n→∞L

∫
Y

hnφωY = L

∫
Y

hφωY = [hωY ](φ).

Therefore, f∗([α]) = [hωY ].

2. Variants of arithmetic Chow groups

2.1. Notation for arithmetic varieties

An arithmetic variety X is an integral scheme which is flat and quasi-
projective over Spec(Z), and has the smooth generic fiber XQ.

Let us consider the C-scheme X ⊗Z C. We denote the underlying analytic
space of X⊗Z C by X(C). We may view X(C) as the set of all C-valued points
of X. Let F∞ : X(C) → X(C) be the anti-holomorphic involution given by
the complex conjugation. For an arithmetic variety X, every (p, p)-form α on
X(C) is always assumed to be compatible with F∞, i.e., F ∗

∞(α) = (−1)pα.
Let E be a locally free sheaf on X of finite rank, and π : EEE → X the vector

bundle associated with E, i.e., EEE = Spec (
⊕∞

n=0 Symn(E)). As before, we have
the analytic space EEE(C) and the anti-holomorphic involution F∞ : EEE(C) →
EEE(C). Then, πC : EEE(C)→ X(C) is a holomorphic vector bundle on X(C), and
the following diagram is commutative:

EEE(C) F∞−−−−→ EEE(C)

πC

� �πC

X(C) −−−−→
F∞

X(C)
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Here note that F∞ : EEE(C) → EEE(C) is anti-complex linear at each fiber. Let
h be a C∞ Hermitian metric of EEE(C). We can think h as a C∞ function
on EEE(C) ×X(C) EEE(C). For simplicity, we denote by F ∗

∞(h) the C∞ function(
F∞ ×X(C) F∞

)∗ (h) on EEE(C) ×X(C) EEE(C). Then, F ∗∞(h) is a C∞ Hermitian
metric of EEE(C). We say h is invariant under F∞ if F ∗

∞(h) = h. Moreover,
the pair (E, h) is called a Hermitian vector bundle on X if h is invariant under
F∞. Note that even if h is not invariant under F∞, h+ F ∗∞(h) is an invariant
metric.

2.2. Variants of arithmetic cycles

LetX be an arithmetic variety. We would like to define three types of arith-
metic cycles, namely, arithmetic A-cycles, arithmetic L1-cycles, and arithmetic
D-cycles. In the following definition, g is compatible with F∞ as mentioned in
Section 2.1.

(a) (arithmetic A-cycle on X of codimension p) : a pair (Z, g) such that
Z is a cycle on X of codimension p and g is represented by a Green form φ of
Z(C), namely, φ is a C∞ form on X(C)\Supp(Z(C)) of logarithmic type along
Supp(Z(C)) with ddc([φ]) + δZ(C) ∈ Ap,p(X(C)).

(b) (arithmetic L1-cycle on X of codimension p) : a pair (Z, g) such that
Z is a cycle on X of codimension p and, there are φ ∈ L1

loc(Ω
p−1,p−1
X(C) ) and

ω ∈ L1
loc(Ω

p,p
X(C)) with g = [φ] and ddc(g) + δZ(C) = [ω].

(c) (arithmetic D-cycle on X of codimension p) : a pair (Z, g) such that
Z is a cycle on X of codimension p and g ∈ Dp−1,p−1(X(C)).

The set of all arithmetic A-cycles (resp. L1-cycles, D-cycles) of codimen-
sion p is denoted by ẐpA(X) (resp. ẐpL1(X), ẐpD(X)).

Let R̂p(X) be the subgroup of Ẑp(X) generated by the following elements:
(i) ((f),−[log |f |2]), where f is a rational function on some subvariety Y

of codimension p− 1 and [log |f |2] is the current defined by

[log |f |2](γ) = L

∫
Y (C)

(log |f |2)γ.

(ii) (0, ∂(α) + ∂̄(β)), where α ∈ Dp−2,p−1(X(C)), β ∈ Dp−1,p−2(X(C)).
Here we define

ĈH
p

A(X) = ẐpA(X)/R̂p(X) ∩ ẐpA(X),
ĈH

p

L1(X) = ẐpL1(X)/R̂p(X) ∩ ẐpL1(X),
ĈH

p

D(X) = ẐpD(X)/R̂p(X).

Proposition 2.2.1. The natural homomorphism ĈH
p

A(X) → ĈH
p
(X)

is an isomorphism.

Proof. Let (Z, g) ∈ Ẑp(X). By [9, Theorem 1.3.5], there is a Green form
gZ of Z(C). Then, ddc(g − [gZ ]) ∈ Ap,p(X(C)). Hence, by [9, Theorem 1.2.2],
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there are a ∈ Ad,d(X(C)) and v ∈ Image(∂) + Image(∂̄) with g − [gZ ] =
[a] + v. Since g − [gZ ] is compatible with F∞, replacing a and v by (1/2)(a+
(−1)pF ∗

∞(a)) and (1/2)(v + (−1)pF ∗
∞(v)) respectively, we may assume that a

and v are compatible with F∞. Here, gZ + a is a Green form of Z. Thus,
(Z, [gZ + a]) ∈ ẐpA(X). Moreover, since (Z, g) − (Z, [gZ + a]) ∈ R̂p(X), our
proposition follows.

Let f : X → Y be a proper morphism of arithmetic varieties with d =
dimX − dimY . Then, we have a homomorphism

f∗ : Ẑp+dD (X)→ ẐpD(Y )

defined by f∗(Z, g) = (f∗(Z), f∗(g)). In the same way as in the proof of [9,
Theorem 3.6.1], we can see f∗(R̂p+d(X)) ⊆ R̂p(Y ). Thus, the above homomor-
phism induces

f∗ : ĈH
p+d

D (X)→ ĈH
p

D(Y ).

Then we have the following.

Proposition 2.2.2. If f is surjective, then f∗ : ĈH
p+d

D (X)→ ĈH
p

D(Y )
gives rise to

f∗ : ĈH
p+d

L1 (X)→ ĈH
p

L1(Y ).

In particular, we have the homomorphism f∗ : ĈH
p+d

(X)→ ĈH
p

L1(Y ).

Proof. Clearly we may assume that p ≥ 1. It is sufficient to show that
if (Z, g) ∈ Ẑp+dL1 (X), then (f∗(Z), f∗(g)) ∈ ẐpL1(Y ). By the definition of L1-
arithmetic cycles, g and ddc(g) + δZ(C) are represented by L1-forms. Thus, by
Proposition 1.2.5, there is an ω ∈ L1

loc(Ω
p,p
Y (C)) with

f∗
(
ddc(g) + δZ(C)

)
= [ω].

On the other hand,

f∗
(
ddc(g) + δZ(C)

)
= ddc(f∗(g)) + δf∗(Z(C)).

Moreover, by Proposition 1.2.5, f∗(g) is represented by an L1-form on Y (C).
Thus, (f∗(Z), f∗(g)) is an element of ẐpL1(Y ).

2.3. Scalar product for arithmetic L1-cycles and arithmetic D-cycles

Let X be a regular arithmetic variety. The purpose of this subsection is
to give a scalar product on ĈH

∗
D(X)Q =

⊕
p≥0 ĈH

p

D(X)Q by the arithmetic
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Chow ring ĈH
∗
(X)Q =

⊕
p≥0 ĈH

p
(X)Q. Roughly speaking, the scalar product

is defined by

(Y, f) · (Z, g) = (Y ∩ Z, f ∧ δZ + ω((Y, f)) ∧ g)

for (Y, f) ∈ Ẑp(X) and (Z, g) ∈ ẐqD(X). This definition, however, works only
under the assumption that Y and Z intersect properly. Usually, by using
Chow’s moving lemma, we can avoid the above assumption. This is rather
complicated, so that in this paper we try to use the standard arithmetic inter-
section theory to define the scalar product.

Let x ∈ ĈH
p
(X), (Z, g) ∈ ẐqD(X), and gZ a Green current for Z. First we

shall check that

x · [(Z, gZ)] + [(0, ω(x) ∧ (g − gZ))]

in ĈH
p+q

D (X)Q does not depend on the choice of gZ . For, let g′Z be another
Green current for Z. Then, there are η ∈ Ap−1,p−1(X(C)), and v ∈ Image(∂)+
Image(∂̄) with g′Z = gZ + [η] + v. Then, since [(0, [η] + v)] ∈ ĈH

p
(X),

x · [(Z, g′Z)] + [(0, ω(x) ∧ (g − g′Z))] = x · [(Z, gZ)] + x · [(0, [η] + v)]
+ [(0, ω(x) ∧ (g − gZ − [η]− v))]

= x · [(Z, gZ)] + [(0, ω(x) ∧ ([η] + v))]
+ [(0, ω(x) ∧ (g − gZ − [η]− v))]

= x · [(Z, gZ)] + [(0, ω(x) ∧ (g − gZ))].

Thus, we have the bilinear homomorphism

ĈH
p
(X)× ẐqD(X)→ ĈH

p+q

D (X)Q

given by x · (Z, g) = x · [(Z, gZ)] + [(0, ω(x) ∧ (g − gZ))]. Moreover, if (Z, g) ∈
R̂q(X), then, by [9, Theorem 4.2.3], x · (Z, g) = 0 in ĈH

p+q
(X)Q. Thus, the

above induces

ĈH
p
(X)⊗ ĈH

q

D(X)→ ĈH
p+q

D (X)Q,(2.3.1)

which may give rises to a natural scalar product of ĈH
∗
D(X)Q over the arith-

metic Chow ring ĈH
∗
(X)Q. To see that this is actually a scalar product, we

need to check that

(x · y) · z = x · (y · z)

for all x ∈ ĈH
p
(X), y ∈ ĈH

q
(X) and z ∈ ĈH

r

D(X). If z ∈ ĈH
r
(X), then this

is nothing more than the associativity of the product of the arithmetic Chow
ring (cf. [9, Theorem 4.2.3]). Thus, we may assume that z = [(0, g)] for some
g ∈ Dr−1,r−1(X(C)). Then, since

(x · y) · z = [(0, ω(x · y) ∧ g)] = [(0, ω(x) ∧ ω(y) ∧ g)]
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and

x · (y · z) = x · [(0, ω(y) ∧ g)] = [(0, ω(x) ∧ ω(y) ∧ g)],
we can see (x · y) · z = x · (y · z). Therefore, we get the natural scalar product.

Moreover, (2.3.1) induces

ĈH
p
(X)⊗ ĈH

q

L1(X)→ ĈH
p+q

L1 (X)Q.(2.3.2)

Indeed, if (Z, g) ∈ ẐqL1(X) and gZ is a Green form of Z, then,

x · [(Z, g)] = x · [(Z, gZ)] + [(0, ω(x) ∧ (g − gZ))].

Thus, in order to see that x · [(Z, g)] ∈ ĈH
p+q

L1 (X)Q, it is sufficient to check that{
ω(x) ∧ (g − gZ) ∈ L1

loc(Ω
p+q−1,p+q−1
X(C) ),

ddc (ω(x) ∧ (g − gZ)) ∈ L1
loc(Ω

p+q,p+q
X(C) ).

The first assertion is obvious because g and gZ are L1-forms. Further, we can
easily see the second assertion because

ddc (ω(x) ∧ (g − gZ)) = ±ω(x) ∧ ddc(g − gZ) = ±ω(x) ∧ (ω(g)− ω(gZ)).

Gathering all observations, we can conclude the following proposition,
which is a generalization of [9, Theorem 4.2.3].

Proposition 2.3.3. ĈH
∗
L1(X)Q and ĈH

∗
D(X)Q has a natural module

structure over the arithmetic Chow ring ĈH
∗
(X)Q.

Moreover, we have the following projection formula.

Proposition 2.3.4. Let f : X → Y be a proper morphism of regular
arithmetic varieties such that fQ : XQ → YQ is smooth. Then, for any α ∈
ĈH

p
(Y ) and β ∈ ĈH

q

L1(X),

f∗(f∗(α) · β) = α · f∗(β)

in ĈH
p+q−(dimX−dimY )

L1 (Y )Q.

Proof. If α ∈ ĈH
p
(Y ) and β ∈ ĈH

q
(X), then this is well known (cf. [9]).

Thus, we may assume that β = (0, [φ]) ∈ ẐqL1(Y ). Then

f∗(f∗(α) · β) = f∗((0, ω(f∗(α)) ∧ [φ])
= (0, [f∗ (ω(f∗(α) ∧ φ))]).

On the other hand,

α · f∗(β) = α · (0, [f∗(φ)]) = (0, ω(α) ∧ [f∗(φ)]).
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Since f∗(ω(f∗(α))) = ω(α), we have proven the projection formula.

2.4. Scalar product, revisited (singular case)

Let X be an arithmetic variety. Here X is not necessarily regular. Let
RatX be the sheaf of rational functions on X. We denote H0(X,Rat×X /O×

X)
by Div(X). An element of Div(X) is called a Cartier divisor on X. For a
Cartier divisor D on X, we can assign a divisor [D] ∈ Z1(X) in a natural way.
This gives rise to the homomorphism

cX : Div(X)→ Z1(X).

Note that cX is neither injective nor surjective in general. An exact sequence

1→ O×
X → Rat×X → Rat×X /O×

X → 1

induces to the homomorphism Div(X)→ H1(X,O×
X). For a Cartier divisor D

on X, the image of D by the above homomorphism induces the line bundle on
X. We denote this line bundle by OX(D).

Here we set

D̂iv(X)
= {(D, g) | D ∈ Div(X) and g is a Green function for D(C) on X(C)}.

Similarly, we can define D̂ivL1(X) and D̂ivD(X). The homomorphism cX :
Div(X) → Z1(X) gives rise to the homomorphism ĉX : D̂iv(X) → Ẑ1(X).
Then, we define P̂ic(X), P̂icL1(X), and P̂icD(X) as follows.

P̂ic(X) = D̂iv(X)/ĉ−1
X (R̂1(X)),

P̂icL1(X) = D̂ivL1(X)/ĉ−1
X (R̂1(X)),

P̂icD(X) = D̂ivD(X)/ĉ−1
X (R̂1(X)).

Note that if X is regular, then

P̂ic(X) = ĈH
1
(X), P̂icL1(X) = ĈH

1

L1(X) and P̂icD(X) = ĈH
1

D(X).

Let (E, h) be a Hermitian vector bundle on X. Then, by virtue of [11,
Theorem 4], we have a cap product of ĉh(E, h) on ĈH

∗
(X)Q, i.e., a homomor-

phism ĈH
∗
(X)Q → ĈH

∗
(X)Q given by x 
→ ĉh(E, h) ∩ x for x ∈ ĈH

∗
(X)Q. In

the same way as before, we can see that the above homomorphism extends to

ĈH
∗
D(X)Q → ĈH

∗
D(X)Q and ĈH

∗
L1(X)Q → ĈH

∗
L1(X)Q

as follows. If (Z, g) ∈ ẐpD(X) and gZ is a Green current of Z, then

ĉh(E, h) ∩ (Z, g) = ĉh(E, h) ∩ (Z, gZ) + a(ch(E, h) ∧ (g − gZ)).
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In particular, we have intersection pairings

P̂ic(X)Q ⊗ ĈH
p

D(X)Q → ĈH
p+1

D (X)Q

and P̂ic(X)Q ⊗ ĈH
p

L1(X)Q → ĈH
p+1

L1 (X)Q.

For simplicity, the cap product “∩” is denoted by the dot “·”. Note that

P̂ic(X)Q ⊗ ĈH
p

D(X)Q → ĈH
p+1

D (X)Q

is actually defined by

(D, g) · (Z, f) = (D · Z, g ∧ δZ + ω(g) ∧ f)

if D and Z intersect properly. Then, we have the following projection formula.

Proposition 2.4.1. Let f : X → Y be a proper morphism of arithmetic
varieties. Let (L, h) be a Hermitian line bundle on Y , and z ∈ ĈH

p

D(X). Then

f∗(ĉ1(f∗L, f∗h) · z) = ĉ1(L, h) · f∗(z).

Proof. Let (Z, g) be a representative of z. Clearly, we may assume that
Z is reduced and irreducible. We set T = f(Z) and π = f |Z : Z → T . Let
s be a rational section of L|T . Then, π∗(s) gives rise to a rational section of
f∗(L)|Z = π∗ (L|T ). Thus, ĉ1(f∗L, f∗h) · z can be represented by

(div(π∗(s)), [− log π∗ (h|T ) (π∗(s), π∗(s))] + c1(f∗L, f∗h) ∧ g) ,

where [− log π∗ (h|T ) (π∗(s), π∗(s))] is the current given by

[− log π∗ (h|T ) (π∗(s), π∗(s))] (φ) =
∫
Z(C)

(− log π∗ (h|T ) (π∗(s), π∗(s)))φ.

If we set

deg(π) =

{
0 if dimT < dimZ

deg(Z → T ) if dimT = dimZ,

then∫
Z(C)

(− log π∗ (h|T ) (π∗(s), π∗(s))) f∗(ψ) =
∫
Z(C)

π∗ ((− log (h|T ) (s, s))ψ)

= deg(π)
∫
T (C)

(− log (h|T ) (s, s))ψ

for a C∞-form ψ on Y (C). Thus, we have

f∗ [− log π∗ (h|T ) (π∗(s), π∗(s))] = deg(π) [− log (h|T ) (s, s)] .
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Therefore,

f∗(ĉ1(f∗L, f∗h) · z) = (deg(π) div(s), deg(π) [− log (h|T ) (s, s)]
+ c1(L, h) ∧ f∗(g))

= ĉ1(L, h) · (deg(π)T, f∗(g)) = ĉ1(L, h) · f∗(z).

Hence, we get our proposition.

Let Z be a quasi-projective integral scheme over Z. Then, by virtue of
Hironaka’s resolution of singularities [14], there is a proper birational morphism
µ : Z ′ → Z of quasi-projective integral schemes over Z such that Z ′

Q is non-
singular. The above µ : Z ′ → Z is called a generic resolution of singularities
of Z. As a corollary of the above projection formula, we have the following
proposition.

Proposition 2.4.2. Let X be a arithmetic variety, and L1 = (L1,
h1), . . . , Ln = (Ln, hn) be Hermitian line bundles on X. Let (Z, g) be an arith-
metic D-cycle on X, and Z = a1Z1 + · · ·+ arZr the irreducible decomposition
as cycles. For each i, let τi : Z ′

i → Zi be a proper birational morphism of quasi-
projective integral schemes. We assume that if Zi is horizontal with respect to
X → Spec(Z), then τi is a generic resolution of singularities of Zi. Then, we
have

ĉ1(L1) · · · ĉ1(Ln) · (Z, g)

=
r∑
i=1

aiµi∗
(
ĉ1(µ∗

iL1) · · · ĉ1(µ∗
iLn)

)
+ a(c1(L1) ∧ · · · ∧ c1(Ln) ∧ g)

in ĈH
∗
D(X)Q, where µi is the composition of Z ′

i
τi−→ Zi ↪→ X for each i.

Proof. We prove this proposition by induction on n. First, let us consider
the case n = 1. Clearly we may assume that Z is integral, i.e., Z = Z1. Let h1

be the Hermitian metric of L1, and s a rational section of L1|Z . Then,(
div(s),− log(h1|Z)(s, s) + c1(L1) ∧ g

)
= (div(s),− log(h1|Z)(s, s)) + a(c1(L1) ∧ g)

is a representative of ĉ1(L1) · (Z, g). Moreover,

(div(τ∗1 (s)),− log τ∗1 (h1|Z)(τ∗1 (s), τ∗1 (s)))

is a representative of ĉ1(µ∗
1L1). Hence, we have our assertion in the case n = 1

because

(µ1∗(div(τ∗1 (s)),− log τ∗1 (h1|Z)(τ∗1 (s), τ∗1 (s))) = (div(s),− log(h1|Z)(s, s)).
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Thus, we may assume that n > 1. Therefore, using Proposition 2.4.1 and
hypothesis of induction,

ĉ1(L1) · · · ĉ1(Ln) · (Z, g) = ĉ1(L1) ·
(
ĉ1(L2) · · · ĉ1(Ln) · (Z, g))

=
r∑
i=1

aiĉ1(L1)µi∗
(
ĉ1(µ∗

iL2) · · · ĉ1(µ∗
iLn)

)
+ ĉ1(L1)a(c1(L2) ∧ · · · ∧ c1(Ln) ∧ g)

=
r∑
i=1

aiµi∗
(
ĉ1(µ∗

iL1) · · · ĉ1(µ∗
iLn)

)
+ a(c1(L1) ∧ · · · ∧ c1(Ln) ∧ g).

2.5. Injectivity of i∗

Let X be an arithmetic variety, U a non-empty Zariski open set of X, and
i : U → X the inclusion map. Then, there is a natural homomorphism

i∗ : Ẑ1
L1(X)→ Ẑ1

L1(U)

given by i∗(D, g) = (D|U , g|U(C)). Since i∗
(
(̂f)
)

= (̂f |U ) for any non-zero
rational functions f on X, the above induces the homomorphism

i∗ : ĈH
1

L1(X)→ ĈH
1

L1(U).

Then, we have the following useful lemma.

Lemma 2.5.1. If X \ U does not contain any irreducible components
of fibers of X → Spec(Z), then

i∗ : ĈH
1

L1(X)→ ĈH
1

L1(U).

is injective. In particular, i∗ : ĈH
1

L1(X)Q → ĈH
1

L1(U)Q is injective.

Proof. Suppose that i∗(α) = 0 for some α ∈ ĈH
1

L1(X). Let (D, g) ∈
Ẑ1
L1(X) be a representative of α. Since i∗(α) = 0, there is a non-zero rational

function f on X with

(D|U , g|U(C)) = ((f)|U , −[log |f |2]∣∣
U(C)

).

Pick up φ ∈ L1
loc(X(C)) with g = [φ]. Then, the above implies that [φ]|U(C) =

−[log |f |2]∣∣
U(C)

. Thus, φ = − log |f |2 (a.e.). Therefore, we have

g = [φ] = −[log |f |2].(2.5.1.1)
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Here, ddc(g) + δD(C) = [h] for some h ∈ L1
loc(Ω

1,1
X(C)) and ddc(−[log |f |2]) +

δ(f)(C) = 0. Thus, by (2.5.1.1), δD(C) − δ(f)(C) = [h]. This shows us that
h = 0 (a.e.) over X(C) \ (Supp(D(C)) ∪ Supp((f)(C))). Hence h = 0 (a.e.)
on X(C). Therefore, we have D(C) = (f)(C), which implies D = (f) on XQ.
Thus, D − (f) is a linear combination of irreducible divisors lying on finite
fibers. On the other hand, D = (f) on U and X \ U does not contain any
irreducible components of fibers. Therefore, D = (f). Hence α = 0 because
(D, g) = (̂f).

3. Weakly positive arithmetic divisors

3.1. Generalized metrics

Let X be a smooth algebraic scheme over C and L a line bundle on X.
We say h is a generalized metric on L if there is a C∞ Hermitian metric h0 of
L over X and ϕ ∈ L1

loc(X) with h = eϕh0.
To see when a metric of a line bundle defined over a dense Zariski open

set extends to a generalized metric, the following lemma is useful.

Lemma 3.1.1. Let X be a smooth algebraic variety over C and L a
line bundle on X. Let U be a non-empty Zariski open set of X and h a C∞

Hermitian metric of L over U . We fix a non-zero rational section s of L. Then,
h extends to a generalized metric of L on X if and only if log h(s, s) ∈ L1

loc(X).

Proof. If h extends to a generalized metric of L on X, then log h(s, s) ∈
L1

loc(X) by the definition of generalized metrics. Conversely, we assume that
log h(s, s) ∈ L1

loc(X). Let h0 be a C∞ Hermitian metric of L over X. Here we
consider the function φ given by

φ =
h(s, s)
h0(s, s)

.

Let y ∈ U and ω be a local frame of L around y. If we set s = fω for some
meromorphic function f around y, then

φ =
h(s, s)
h0(s, s)

=
|f |2h(ω, ω)
|f |2h0(ω, ω)

=
h(ω, ω)
h0(ω, ω)

.

This shows us that φ is a positive C∞ function on U and h = φh0 over U . On
the other hand,

log φ = log h(s, s)− log h0(s, s).

Here since log h(s, s), logh0(s, s) ∈ L1
loc(X), we have log φ ∈ L1

loc(X). Thus, if
we set ϕ = log φ, then ϕ ∈ L1

loc(X) and h = eϕh0.
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3.2. Arithmetic D-divisors and generalized metrics

Let X be an arithmetic variety, L a line bundle on X, and h a generalized
metric of L on X(C) with F ∗

∞(h) = h (a.e.). We would like to define ĉ1(L, h)

as an element of ĈH
1

D(X). Let s, s′ be two non-zero rational sections of L, and
f a non-zero rational function on X with s′ = fs. Then, it is easy to see that

(div(s′), [− log h(s′, s′)]) = (div(s), [− log h(s, s)]) + (̂f)

in Ẑ1
D(X). Thus, we may define ĉ1(L, h) as the class of (div(s), [− log h(s, s)])

in ĈH
1

D(X).
Let us consider the homomorphism

ω : ẐpD(X)→ Dp,p(X(C))

given by ω(Z, g) = ddc(g) + δZ(C). Since ω
(
R̂p(X)

)
= 0, the above homomor-

phism induces the homomorphism ĈH
p

D(X)→ Dp,p(X(C)). Hence, we get the
homomorphism ĈH

p

D(X)Q → Dp,p(X(C)) because Dp,p(X(C)) has no torsion.
By abuse of notation, we denote this homomorphism by ω.

Proposition 3.2.1. Let X be an arithmetic variety, (Z, [φ]) ∈ D̂ivD(X)
with φ ∈ L1

loc(X(C)), and 1 a rational section of OX(Z) with div(1) = Z. Then,
there is a unique generalized metric h of OX(Z) such that F ∗

∞(h) = h (a.e.)
and [− log h(1, 1)] = [φ]. (Here uniqueness of h means that if h′ is another
generalized metric with the same property, then h = h′ (a.e.).) Moreover,
ω(Z, [φ]) is C∞ around x ∈ X(C) if and only if h is C∞ around x. We denote
this line bundle (OX(Z), h) with the generalized metric h by OZ((Z, [φ])). With
this notation, for (Z1, [φ1]), (Z2, [φ2]) ∈ D̂ivD(X) with φ1, φ2 ∈ L1

loc(X(C)), if
(Z1, [φ1]) ∼ (Z2, [φ2]), then OX((Z1, [φ1])) is isometric to OX((Z2, [φ2])) at
every point around which ω(Z1, [φ1]) = ω(Z2, [φ2]) is a C∞ form.

Proof. First, let us see uniqueness. Let h and h′ be generalized metrics of
OX(Z) with [− log h(1, 1)] = [− log h′(1, 1)] = [φ]. Take a ∈ L1

loc(X(C)) with
h′ = eah. Then, by our assumption, a = 0 (a.e.). Thus, h = h′ (a.e.).

Pick up an arbitrary point x ∈ X(C). Let s be a local basis of OX(Z)
around x. Then, there is a non-zero rational rational function f on X(C) with
1 = fs. Let us consider

exp(−φ− log |f |2)
around x. Let s′ be a another local basis of OX(Z) around x. We set s′ = us
and 1 = f ′s′. Then,

exp(−φ− log |f ′|2) = exp(−φ− log |f/u|2) = |u|2 exp(−φ− log |f |2),
which means that if we define the generalized metric h by

h(s, s) = exp(−φ− log |f |2),
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then h is patched globally, and h is a generalized metric by Lemma 3.1.1.
Moreover,

− log h(1, 1) = − log h(fs, fs) = − log
(|f |2h(s, s)

)
= φ.

Here, since F ∗
∞(φ) = φ (a.e.), we can see F ∗

∞(h) = h (a.e.). Thus, we can
construct our desired metric.

We set b = ω(Z, [φ]) ∈ D1,1(X(C)). Then, since 1 = fs around x, we have
Z = (f) around x. Thus, since ddc([φ])+δZ(C) = b and ddc(−[log |f |2])+δ(f) =
0,

ddc(−[φ+ log |f |2]) = δZ(C) − b− δ(f) = −b

around x. Therefore,

h is C∞ around x

⇐⇒ −φ− log |f |2 is C∞ around x

⇐⇒ ddc(−[φ+ log |f |2]) is C∞ around x (∵ [9, Theorem 1.2.2])
⇐⇒ b is C∞ around x

Finally, let us consider the last assertion. By our assumption, there is a
rational function z on X such that

(Z1, [φ1]) = (Z2, [φ2]) + (̂z).

Then, Z1 = Z2 +(z) and φ1 = φ2− log |z|2. Let us consider the homomorphism
α : OX(Z1) → OX(Z2) defined by α(s) = zs. Then, α is an isomorphism.
Let 1 be the unit in the rational function field of X. Then, 1 gives rise to
canonical rational sections of OX(Z1) and OX(Z2). Let x be a point of X(C)
such that ω(Z1, [φ1]) is C∞ around x, and s a local basis of OX(Z1) around
x. Then, α(s) = zs is a local basis of OX(Z2) around x. Choose a rational
function f with 1 = fs. Then, 1 = z−1fα(s). Thus, if h1 and h2 are metrics
of OX((Z1, [φ1])) and OX((Z2, [φ2])) respectively, then

h1(s, s) = exp(−φ1 − log |f |2) = exp(−φ2 − log |z−1f |2) = h2(α(s), α(s))

Hence, α is an isometry.

3.3. Semi-ampleness and small sections

Let X be an arithmetic variety and S a subset of X(C). We set

ĈH
1

L1(X;S)Q = {α ∈ ĈH
1

L1(X)Q | ω(α) is C∞ around z for all z ∈ S}.

In the same way, we can define ĈH
1

L1(X;S), Ẑ1
L1(X;S), Ẑ1

L1(X;S)Q, D̂ivL1(X;
S), D̂ivL1(X;S)Q, P̂icL1(X;S) and P̂icL1(X;S)Q. Let x be a closed point of
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XQ. An element α of ĈH
1

L1(X;S)Q is said to be semi-ample at x with respect
to S if there are a positive integer n and (E, g) ∈ Ẑ1

L1(X;S) with the following
properties:

(a) E is effective and x �∈ Supp(E).
(b) g(z) ≥ 0 for each z ∈ S. (Note that g(z) might be ∞.)

(c) nα coincides with (E, g) in ĈH
1

L1(X;S)Q.

We remark that α ∈ ĈH
1

L1(X;S)Q by the condition (c). Moreover, it is
easy to see that if α1 and α2 are semi-ample at x with respect to S, so is
λα1 + µα2 for all non-negative rational numbers λ and µ.

In terms of the natural action of Gal(Q/Q) on X(Q), we can consider the
orbit OGal(Q/Q)(x) of x. If we fix an embedding Q → C, we have an injection
X(Q)→ X(C). It is easy to see that the image of OGal(Q/Q)(x) does not depend
on the choice of the embedding Q → C. By abuse of notation, we denote this
image by OGal(Q/Q)(x). Then, OGal(Q/Q)(x) is one of the examples of S.

Let U be a Zariski open set ofX, and F a coherent OX -module such that F
is locally free over U . Let hF be a C∞ Hermitian metric of F over U(C). We as-
sume that S ⊆ U(C). For a closed point x of UQ, we say (F, hF ) is generated by
small sections at x with respect to S if there are sections s1, . . . , sn ∈ H0(X,F )
such that Fx is generated by s1, . . . , sn, and that hF (si, si)(z) ≤ 1 for all
1 ≤ i ≤ n and z ∈ S.

Proposition 3.3.1. We assume that S ⊆ U(C). For an element (Z, g)
of D̂ivL1(X;S), (Z, g) is semi-ample at x with respect to S if and only if there
is a positive integer n such that OX(n(Z, g)) is generated by small sections at
x with respect to S.

Proof. First, we assume that (Z, g) is semi-ample at x with respect to S.
Then, there is (E, f) ∈ Ẑ1

L1(X;S) and a positive integer n such that n(Z, g) ∼
(E, f), E is effective, x �∈ Supp(E), and f(z) ≥ 0 for each z ∈ S. Note that
E is a Cartier divisor. Then, by Proposition 3.2.1, OX(n(Z, g)) � OX((E, f)).
Moreover, if h is the metric of OX((E, f)) and 1 is the canonical section of
OX(E) with div(1) = E, then − log(h(1, 1)) = f . Here f(z) ≥ 0 for each
z ∈ S. Thus, h(1, 1)(z) ≤ 1 for each z ∈ S. Therefore, OX((E, f)) is generated
by small sections at x with respect to S.

Next we assume that OX(n(Z, g)) is generated by small sections at x with
respect to S for some positive integer n. Then, there is a section s of OX(nZ)
such that h(s, s)(z) ≤ 1 for each z ∈ S. Thus, if we set E = div(s) and
f = − log h(s, s), then we can see (Z, g) is semi-ample at x with respect to
S.

Proposition 3.3.2. Let U be a Zariski open set of X, and L a line
bundle on X. Let h be a C∞ Hermitian metric of L over U(C). Fix a closed
point x of UQ. If X is projective over Z, then the followings are equivalent.

(1) (L, h) is generated by small sections at x with respect to U(C).
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(2) (L, h) is generated by small sections at x with respect to any finite
subsets S of U(C).

Proof. Clearly, (1) implies (2). So we assume (2). First of all, we can
easily find z1, . . . , zn ∈ U(C) such that, for any s ∈ H0(X(C), LC), if s(z1) =
· · · = s(zn) = 0, then s = 0. Thus, if we set

‖s‖ =
√
h(s, s)(z1) + · · ·+

√
h(s, s)(zn)

for each s ∈ H0(X(C), LC), then ‖ ‖ gives rise to a norm on H0(X(C), LC).
Here we set

Bz = {s ∈ H0(X,L) | h(s, s)(z) ≤ 1}

for each z ∈ U(C). Then, since H0(X,L) is a discrete subgroup of H0(X(C),
LC),

⋂n
i=1Bzi

is a finite set. Thus, adding finite points zn+1, . . . , zN ∈ U(C)
to z1, . . . , zn if necessary, we have

⋂
z∈U(C)

Bz =
N⋂
i=1

Bzi
.

By our assumption, there is a section s ∈ H0(X,L) such that s(x) �= 0 and
h(s, s)(zi) ≤ 1 for all i = 1, . . . , N . Then, s ∈ ⋂Ni=1Bzi

=
⋂
z∈U(C)Bz. Thus,

we get (2).

3.4. Restriction to arithmetic curves

Let X be an arithmetic variety, S a subset of X(C), x a closed point of
XQ, K the residue field of x, and OK the ring of integers in K. We assume
that the orbit of x by Gal(Q/Q) is contained in S, namely, OGal(Q/Q)(x) ⊆ S,
and that the canonical morphism Spec(K) → X induced by x extends to x̃ :
Spec(OK)→ X.

Proposition 3.4.1. There is a natural homomorphism

x̃∗ : P̂icL1(X;S)Q → ĈH
1
(Spec(OK))Q

such that the restriction of x̃∗ to P̂ic(X)Q coincides with the usual pull-back
homomorphism.

Proof. Let α ∈ P̂icL1(X;S)Q. Choose (Z, g) ∈ D̂ivL1(X;S) and a positive
integer e such that the class of (1/e)(Z, g) in P̂icL1(X;S)Q coincides with α.
We would like to define x̃∗(α) by

(1/e)ĉ1 (x̃∗(OX((Z, g)))) .
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For this purpose, we need to check that the above does not depend on the
choice (Z, g) and e. Let (Z ′, g′) and e′ be another L1-cycle of codimension 1
and positive integer such that the class of (1/e′)(Z ′, g′) is α. Then, there is a
positive integer d such that de′(Z, g) ∼ de(Z ′, g′). Thus, by Proposition 3.2.1,
OZ(de′(Z, g)) is isometric to OZ(de(Z ′, g′)). Hence,

de′ĉ1 (x̃∗(OX((Z, g)))) = ĉ1 (x̃∗(OX(de′(Z, g))))
= ĉ1 (x̃∗(OX(de(Z ′, g′))))
= deĉ1 (x̃∗(OX((Z ′, g′)))) .

Therefore,

(1/e)ĉ1 (x̃∗(OX((Z, g)))) = (1/e′)ĉ1 (x̃∗(OX((Z ′, g′)))) .

Thus, we can define x̃∗.

3.5. Weak positivity of arithmetic L1-divisors

Let X be an arithmetic variety, S a subset of X(C), and x a closed

point of XQ. Let α ∈ ĈH
1

L1(X;S)Q and {αn}∞n=1 a sequence of elements

of ĈH
1

L1(X;S)Q. We say α is the limit of {αn}∞n=1 as n → ∞, denoted by

α = lim
n→∞αn, if there are (1) Z1, . . . , Zl1 ∈ ĈH

1

L1(X;S)Q, (2) g1, . . . , gl2 ∈
L1

loc(X(C)) with a(gj) ∈ ĈH
1

L1(X;S)Q for all j, (3) sequences {a1
n}∞n=1, . . . ,

{al1n }∞n=1 of rational numbers, and (4) sequences {b1n}∞n=1, . . . , {bl2n }∞n=1 of real
numbers with the following properties:

(a) l1 and l2 does not depend on n.
(b) lim

n→∞ ain = lim
n→∞ bjn = 0 for all 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2.

(c) α = αn +
l1∑
i=1

ainZi +
l2∑
j=1

a(bjngj) in ĈH
1

L1(X;S)Q for all n.

It is easy to see that if α = lim
n→∞αn and β = lim

n→∞ βn in ĈH
1

L1(X;S)Q, then

α+ β = lim
n→∞(αn + βn).

An element α of ĈH
1

L1(X;S)Q is said to be weakly positive at x with respect
to S if it is the limit of semi-ample Q-cycles at x with respect to S, i.e., there is
a sequence {αn}∞n=1 of elements of ĈH

1

L1(X;S)Q such that αn’s are semi-ample
at x with respect to S and α = lim

n→∞αn.
Let K be the residue field of x and OK the ring of integers in K. We

assume that OGal(Q/Q)(x) ⊆ S, and the canonical morphism Spec(K) → X

induced by x extends to x̃ : Spec(OK) → X. Then, we have the following
proposition.

Proposition 3.5.1. If X is regular and an element α of ĈH
1

L1(X;S)Q

is weakly positive at x with respect to S, then d̂eg(x̃∗(α)) ≥ 0.
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Proof. Take Z1, . . . , Zl1 , g1, . . . , gl2 , {a1
n}∞n=1, . . . , {al1n }∞n=1,

{b1n}∞n=1, . . . , {bl2n }∞n=1, and {αn}∞n=1 as in the previous definition of weak pos-
itive arithmetic divisors. Then,

d̂eg(x̃∗(α)) = d̂eg(x̃∗(αn)) +
l1∑
i=1

aind̂eg(x̃∗(Zi)) +
l2∑
j=1

bjnd̂eg(x̃∗a(gj)).

Thus, since lim
n→∞ ain = lim

n→∞ bjn = 0 for all 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2 and

d̂eg(x̃∗(αn)) ≥ 0 for all n, we have d̂eg(x̃∗(α)) ≥ 0.

3.6. Characterization of weak positivity

Let X be a regular arithmetic variety, S a subset of X(C), and x a closed

point of XQ. For an element α ∈ ĈH
1

L1(X)Q, we say α is ample at x with
respect to S if there are (A, f) ∈ Ẑ1

L1(X;S) and a positive integer n such that
A is an effective and ample Cartier divisor on X, x �∈ Supp(A), f(z) > 0 for all

z ∈ S, and nα is equal to (A, f) in ĈH
1

L1(X)Q.
First, let us consider the case where X = Spec(OK).

Proposition 3.6.1. We assume that X = Spec(OK), x is the generic

of X, and S = X(C). For an element α ∈ ĈH
1
(X;S)Q, we have the following.

(1) α is ample at x with respect to S if and only if d̂eg(α) > 0.
(2) α is weakly positive at x with respect to S if and only if d̂eg(α) ≥ 0.

Proof. (1) Clearly, if α is ample at x with respect to S, then d̂eg(α) > 0.
Conversely, we assume that d̂eg(α) > 0. We take a positive integer e and a
Hermitian line bundle (L, h) on X such that ĉ1(L, h) = eα. Then, d̂eg(L, h) >
0. Thus, by virtue of Riemann-Roch formula and Minkowski’s theorem, there
are a positive integer n and a non-zero element s of L⊗n with (h⊗n)(s, s)(z) < 1
for all z ∈ S. Thus, α is ample at x with respect to S.

(2) First, we assume that α is weakly positive at x with respect to S. Then,
by Proposition 3.5.1, d̂eg(α) ≥ 0. Next, we assume that d̂eg(α) ≥ 0. Let β be

an element of ĈH
1
(X;S)Q such that β is ample at x with respect to S. Then,

for any positive integer n, d̂eg(α+ (1/n)β) > 0. Thus, α+ (1/n)β is ample at
x with respect to S by (1). Hence, α is weakly positive at x with respect to
S.

Before starting a general case, let us consider the following lemma.

Lemma 3.6.2. We assume that S is compact. Let α be an element of
ĈH

1

L1(X)Q such that α is ample at x with respect to S. Then, we have the
following.
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(1) Let β be an element of ĈH
1

L1(X;S)Q. Then, there is a positive number
ε0 such that α+εβ is semi-ample at x with respect to S for all rational numbers
ε with |ε| ≤ ε0.

(2) Let g be a locally integrable function on X(C) with a(g) ∈ ĈH
1

L1(X;S)Q.
Then, there is a positive number ε0 such that α+a(εg) is semi-ample at x with
respect to S for all real numbers ε with |ε| ≤ ε0.

Proof. (1) First, we claim that there is a positive number t0 such that
tα+ β is semi-ample at x with respect to S for all rational numbers t ≥ t0.

Let us choose (A, f) ∈ Ẑ1
L1(X;S) and a positive integer n0 such that A

is an effective and ample Cartier divisor on X, x �∈ Supp(A), f(z) > 0 for all

z ∈ S, and n0α is equal to (A, f) in ĈH
1

L1(X)Q. Moreover, we choose (D, g) ∈
Ẑ1
L1(X;S) and a positive integer e such that eβ is equal to (D, g) in ĈH

1

L1(X)Q.
Since A is ample, there is a positive integer n1 such that OX(n1A) ⊗ OX(D)
is generated by global sections at x. Thus, there are (Z, h) ∈ Ẑ1

L1(X;S)Q such
that Z is effective, x �∈ Supp(Z) and (Z, h) ∼ n1(A, f) + (D, g).

We would like to find a positive integer n2 with n2f(z) + h(z) ≥ 0 for
all z ∈ S. Let U be an open set of X(C) such that S ⊆ U , and ω(A, f) and
ω(Z, h) are C∞ over U . We set φ = exp(−f) and ψ = exp(−h). Then, φ and
ψ are continuous on U , and 0 ≤ φ < 1 on S. Since n2f + h = − log(φn2ψ),
it is sufficient to find a positive integer n2 with φn2ψ ≤ 1 on S. If we set
a = supz∈S φ(z) and b = supz∈S ψ(z), then 0 ≤ a < 1 and 0 ≤ b because S
is compact. Thus, there is a positive integer n2 with an2b ≤ 1. Therefore,
φn1ψ ≤ 1 on S.

Here we set t0 = (n1 +n2)n0e
−1. In order to see that tα+β is semi-ample

at x with respect to S for t ≥ t0, it is sufficient to show that (n1 +n2)n0α+ eβ
is semi-ample at x with respect to S because et ≥ (n1 + n2)n0. Here

(n1 + n2)n0α+ eβ ∼ n2(A, f) + (n1(A, f) + (D, g))
∼ n2(A, f) + (Z, h)
= (n2A+ Z, n2f + h),

x �∈ Supp(n2A+Z), and (n2f+h)(z) ≥ 0 for all z ∈ S. Thus, (n1+n2)n0α+eβ
is semi-ample at x with respect to S. Hence, we get our claim.

In the same way, we can find a positive number t1 such that tα−β is semi-
ample with respect to S for all t ≥ t1. Thus, if we set ε0 = min{1/t0, 1/t1},
then we have (1).

(2) In the same way as in the proof of (1), we can find a positive number
ε0 such that (f + εn0g)(z) ≥ 0 for all z ∈ S and all real number ε with |ε| ≤ ε0.
Thus we have (2) because n0(α+ a(εg)) ∼ (A, f + εn0g).

Proposition 3.6.3. We assume that S is compact. Let β be an element
of ĈH

1

L1(X;S)Q. Then the following are equivalent.
(1) β is weakly positive at x with respect to S.
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(2) β+α is semi-ample at x with respect to S for any ample α ∈ ĈH
1

L1(X;S)Q

at x with respect to S.

Proof. (1) =⇒ (2): Since β is weakly positive at x with respect to S,

there is a sequence of {βn} such that βn ∈ ĈH
1

L1(X;S)Q, βn’s are semi-ample
at x with respect to S, and limn→∞ βn = β. Take Z1, . . . , Zl1 , g1, . . . , gl2 ,
{a1
n}∞n=1, . . . , {al1n }∞n=1, and {b1n}∞n=1, . . . , {bl2n }∞n=1 as in the definition of the

limit in ĈH
1

L1(X;S)Q. Then, by Lemma 3.6.2, there is a positive number ε0
such that α+εZi’s are semi-ample at x with respect to S for all rational numbers
ε with |ε| ≤ ε0, and α + a(εgj)’s are semi-ample at x with respect to S for all
real numbers ε with |ε| ≤ ε0. We choose n such that (l1 + l2)|ain| ≤ ε0 and
(l1 + l2)|bjn| ≤ ε0 for all i and j. Then,

β + α = βn +
l1∑
i=1

α+ (l1 + l2)ainZi
l1 + l2

+
l2∑
j=1

α+ a((l1 + l2)bjngj)
l1 + l2

.

Here, α+ (l1 + l2)ainZi and α+ a((l1 + l2)bjngj) are semi-ample x with respect
to S. Thus, we get the direction (1) =⇒ (2).

(2) =⇒ (1): Let α be an element of ĈH
1

L1(X)Q such that α is ample at x
with respect to S. We set βn = β + (1/n)α. Then, by our assumption, βn is
semi-ample at x with respect to S. Further, β = limn→∞ βn.

3.7. Small sections via generically finite morphisms

Let g : V → U be a proper and étale morphism of complex manifolds. Let
(E, h) be a Hermitian vector bundle on V . Then, a Hermitian metric g∗(h) of
g∗(E) is defined by

g∗(h)(s, t)(y) =
∑

x∈g−1(y)

h(s, t)(x)

for any y ∈ U and s, t ∈ g∗(E)y.

Proposition 3.7.1. Let X be a scheme such that every connected com-
ponent of X is a arithmetic variety. Let Y be a regular arithmetic variety, and
g : X → Y a proper and generically finite morphism such that every connected
component of X maps surjectively to Y . Let U be a Zariski open set of Y such
that g is étale over U . Let S be a subset of U(C) and y a closed point of UQ.
Then, we have the following.

(1) Let φ : E → Q be a homomorphism of coherent OX -modules such
that φ is surjective over g−1(U), and E and Q are locally free over g−1(U).
Let hE be a C∞ Hermitian metric of E over g−1(U)(C), and hQ the quotient
metric of Q induced by hE. If (g∗(E), g∗(hE)) is generated by small sections
at y with respect to S, then (g∗(Q), g∗(hQ)) is generated by small sections at y
with respect to S.
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(2) Let E1 and E2 be coherent OX -modules such that E1 and E2 are
locally free over g−1(U). Let h1 and h2 be C∞ Hermitian metrics of E1 and
E2 over g−1(U)(C). If (g∗(E1), g∗(h1)) and (g∗(E2), g∗(h2)) are generated by
small sections at y with respect to S, then so is (g∗(E1 ⊗ E2), g∗(h1 ⊗ h2)).

(3) Let E be a coherent OX-module such that E is locally free over g−1(U).
Let hE be a C∞ Hermitian metric of E over g−1(U)(C). If (g∗(E),
g∗(hE)) is generated by small sections at y with respect to S, then
(g∗(Symn(E)), g∗(Symn(hE))) is generated by small sections at y with respect
to S. (For the definition of Symn(hE), see Section 7.1.)

(4) Let F be a coherent OY -module such that F is locally free over U . Let
hF be a C∞ Hermitian metric of F over U(C). Since det(F )|U is canonically
isomorphic to det(F |U ), det(hF ) gives rise to a C∞ Hermitian metric of det(F )
over U(C). If (F, hF ) is generated by small sections at y with respect to S, then
so is (det(F ), det(hF )).

Proof. (1) By our assumption, g∗(φ) : g∗(E) → g∗(Q) is surjective over
U . Let s1, . . . , sl ∈ H0(Y, g∗(E)) = H0(X,E) such that g∗(E)y is generated
by s1, . . . , sl, and that g∗(hE)(si, si)(z) ≤ 1 for all i and z ∈ S. Then, g∗(Q)y
is generated by g∗(φ)(s1), . . . , g∗(φ)(sl). Moreover, by the definition of the
quotient metric hQ,

g∗(hQ)(g∗(φ)(si), g∗(φ)(si))(z)

=
∑

x∈g−1(z)

hQ(φ(si), φ(si))(x) ≤
∑

x∈g−1(z)

hE(si, si)(x) ≤ 1

for all z ∈ S. Hence, g∗(Q) is generated by small sections at y with respect to
S.

(2) Since g is étale over U , α : g∗(E1) ⊗ g∗(E2) → g∗(E1 ⊗ E2) is sur-
jective over U . By our assumption, there are s1, . . . , sl ∈ H0(Y, g∗(E1)) and
t1, . . . , tm ∈ H0(Y, g∗(E2)) such that g∗(E1)y (resp. g∗(E2)y) is generated by
s1, . . . , sl (resp. t1, . . . , tm), and that g∗(h1)(si, si)(z) ≤ 1 and g∗(h2)(tj , tj)(z)
≤ 1 for all i, j and z ∈ S. Then, g∗(E1 ⊗ E2)y is generated by {α(si ⊗ tj)}i,j .
Moreover,

g∗(h1 ⊗ h2)(α(si ⊗ tj), α(si ⊗ tj))(z)
=

∑
x∈g−1(z)

(h1 ⊗ h2)(si ⊗ tj , si ⊗ tj)(x)

=
∑

x∈g−1(z)

h1(si, si)(x)h2(tj , tj)(x)

≤
 ∑
x∈g−1(z)

h1(si, si)(x)

 ∑
x∈g−1(z)

h2(tj , tj)(x)


≤ 1
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for all z ∈ S. Thus, we get (2).

(3) This is a consequence of (1) and (2).

(4) Let r be the rank of F . Since F is generated by small sections at y with
respect to S, there are s1, . . . , sr ∈ H0(Y, F ) such that F ⊗ κ(y) is generated
by s1, . . . , sr and h(si, si)(z) ≤ 1 for all i and z ∈ S. Let us consider an exact
sequence:

0→ Ftor → F → F/Ftor → 0.

Then, det(F ) = det(F/Ftor) ⊗ det(Ftor). Noting that Ftor = 0 on U , let g be
a Hermitian metric of det(F/Ftor) over U(C) given by det(hF ). Then, there
is a Hermitian metric k of det(Ftor) over U(C) such that (det(F ), det(hF )) =
(det(F/Ftor), g) ⊗ (det(Ftor), k) over U(C). If we identify det(Ftor) with OY
over U , k is nothing more than the canonical metric of OY over U(C).

Let us fix a locally free sheaf P on Y and a surjective homomorphism
P → Ftor. Let P ′ be the kernel of P → Ftor. Here

(∧rkP ′
P ′
)∗

is an invertible
sheaf on Y because Y is regular. Thus we may identify det(Ftor) with

rkP∧
P ⊗

rkP ′∧
P ′

∗

.

Further, a homomorphism
∧rkP ′

P ′ → ∧rkP
P induced by P ′ ↪→ P gives rise

to a non-zero section t of det(Ftor) because

Hom

rkP ′∧
P ′,

rkP∧
P

 = Hom

rkP ′∧
P ′,OY

⊗ rkP∧
P.

Here Ftor = 0 on U . Thus, det(Ftor) is canonically isomorphic to OY over U .
Since P ′ = P over U , under the above isomorphism, t goes to the determinant
of P ′ id−→ P , namely 1 ∈ OY over U . Thus, k(t, t)(z) = 1 for each z ∈ S.

Let si be the image of si in F/Ftor. Then, s1 ∧ · · · ∧ sr gives rise to a
section s of det(F/Ftor). Thus, s⊗t is a section of det(F ). By our construction,
(s⊗ t)(y) �= 0. Moreover, using Hadamard’s inequality,

det(hF )(s⊗ t, s⊗ t)(z) = g(s, s)(z) · k(t, t)(z) = det (h(si, sj)(z))
≤ h(s1, s1)(z) · · ·h(sr, sr)(z) ≤ 1

for each z ∈ S. Thus, we get (4).
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4. Arithmetic Riemann-Roch for generically finite morphisms

4.1. Quillen metric for generically finite morphisms

Before starting Proposition 4.1.1, we recall the tensor product of two ma-
trices, which we will use in the proof. For an r × r matrix A = (aij) and an
n× n matrix B = (bkl), consider the following rn× rn matrix

a11B a12B · · · a1rB
a21B a22B · · · a2rB

...
...

. . .
...

ar1B ar2B · · · arrB

 .
This matrix, denoted by A⊗B, is called the tensor product of A and B. Then
for r × r matrices A,A′ and n× n matrices B,B′, we immediately see

(A⊗B)(A′ ⊗B′) = AA′ ⊗BB′,
det(A⊗B) = (detA)n(detB)r.

Let X be a smooth algebraic scheme over C, Y a smooth algebraic variety
over C, and f : X → Y a proper and generically finite morphism. We assume
that every connected component of X maps surjectively to Y . Let W be the
maximal open set of Y such that f is étale over there. Let (E, h) be a Hermitian
vector bundle on X such that on every connected component of X, E has the
same rank r.

Proposition 4.1.1. With notation and assumptions being as above, the
Quillen metric hEQ on detRf∗(E) over W extends to a generalized metric on
detRf∗(E) over Y .

Proof. Let n be the degree of f . Since f is étale over W , f∗(E) is a locally
free sheaf of rank rn and Rif∗(E) = 0 for i ≥ 1 over there. Thus

detRf∗(E)|W =
rn∧
f∗(E)|W .

If y ∈ W is a complex point and Xy = {x1, x2, · · · , xn} the fiber of f over y,
then we have

detRf∗(E)y = detH0(Xy, E).

The Quillen metric on detRf∗(E) over W is defined as follows. On H0(Xy, E)
the L2-metric is defined by the formula:

hL2(s, t) =
n∑
α=1

h(s, t)(xα),
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where s, t ∈ H0(Xy, E). This metric naturally induces the L2-metric on
detH0(Xy, E). Since Xy is zero-dimensional, there is no need for zeta function
regularization to obtain the Quillen metric. Thus the Quillen metric hEQ on
detRf∗(E)|W is defined by the family of Hermitian line bundles {detH0(Xy,
E)}y∈W with the induced L2-metrics pointwisely.

To see that the Quillen metric over W extends to a generalized metric
over Y , let s1, s2, · · · , sr be rational sections of E such that at the generic
point of every connected component of X, they form a basis of E. Also let
ω1, ω2, · · · , ωn be rational sections of f∗(OX) such that at the generic point
they form a basis of f∗(OX). Since

detRf∗(E) =

(
rn∧

(f∗(E))

)∗∗
.(4.1.1.1)

over Y , we can regard
∧
ik siωk = s1ω1 ∧ s1ω2 ∧ · · · ∧ s1ωn ∧ · · · ∧ srωn as a non-

zero rational section of detRf∗(E). Shrinking W , we can find a non-empty
Zariski open set W0 of W such that si’s and ωj ’s has no poles or zeros over
f−1(W0).

To proceed with our argument, we need the following lemma.

Lemma 4.1.2. Let L be the total quotient field of X, and K the func-
tion field of Y . Then,

log hEQ

(∧
ik

siωk,
∧
ik

siωk

)
= r log

∣∣det(TrL/K(ωi · ωj))
∣∣+ f∗ log det(h(si, sj))

over W0.

Proof. Let y ∈ W0 be a complex point, and {x1, x2, . . . , xn} the fiber of
f−1(y) over y. Then,

log hEQ

(∧
ik

siωk,
∧
ik

siωk

)
(y)

= log det

(
n∑
α=1

h(siωk, sjωl)(xα)

)
ij,kl

= log det

(
n∑
α=1

ωk(xα)h(si, sj)(xα)ωl(xα)

)
ij,kl

= log det

(Ir ⊗ Ω)

H(x1) 0. . .
0 H(xn)

 t(Ir ⊗ Ω)


= log det

{
| det(Ω)|2r

n∏
α=1

det (h(si, sj)(xα))ij

}
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= r log det | det(Ω)|2 +
n∑
α=1

log det (h(si, sj)) (xα),

where Ω = (ωk(xα))kα and H(xα) = (h(si, sj)(xα))ij . On the other hand, we
have

n∑
α=1

log det (h(si, sj)) (xα) = (f∗ log det (h(si, sj))) (y).

Moreover, using the following Lemma 4.1.3, we have

| det(Ω)|2 = | det(ΩtΩ)|

=

∣∣∣∣∣det

(
n∑
α=1

ωk(xα)ωl(xα)

)
kl

∣∣∣∣∣ = | det
(
TrL/K(ωk · ωl)

)
kl
|.

Thus we get the lemma.

Lemma 4.1.3. Let f : Spec(B) → Spec(A) be a finite étale morphism
of regular affine schemes. Let m be the maximal ideal of A and n1, n2, · · · , nn
the prime ideals lying over m. Assume that κ(m) is algebraically closed and
hence κ(ni) is (naturally) isomorphic to κ(m) for each 1 ≤ i ≤ n. Let b be an
element of B and b(ni) the value of b in κ(ni) ∼= κ(m). Then

TrB/A(b)(m) =
n∑
i=1

b(ni)

in κ(m), where TrB/A(b)(m) is the value of TrB/A(b) in κ(m).

Proof. It is easy to see that every ni is the maximal ideal and that mB =
n1n2 · · · nn. Let Â be the completion of A with respect to m, B̂ the completion
of B with respect to mB, and B̂i the completion of B with respect to ni for
each 1 ≤ i ≤ n. Then by Chinese remainder theorem, B̂ =

∏n
i=1 B̂i as an

Â-algebra. Note that Â/mÂ = κ(m) and B̂i/niB̂i = κ(ni). Since Â → B̂i
is étale and κ(m) ∼= κ(ni), we have Â ∼= B̂i. Let e1 = (1, 0, · · · , 0), e2 =
(0, 1, · · · , 0), · · · , en = (0, 0, · · · , 1) ∈ ∏n

i=1 B̂i = B̂ be a free basis of B̂ over
Â. We put bei = biei with bi ∈ B̂i ∼= Â for each 1 ≤ i ≤ n. Then bi ≡ b(ni)
(mod ni). Now the lemma follows from

TrB/A(b) = Tr bB/ bA(b) =
n∑
i=1

bi

in Â.

Let us go back to the proof of Proposition 4.1.1. Since
det(TrL/K(ωi · ωj))

∣∣
W0

extends to a rational function det(TrL/K(ωi · ωj)) on
Y ,

log
∣∣det(TrL/K(ωi · ωj))

∣∣ ∈ L1
loc(Y ).
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Moreover, by Proposition 1.2.5, f∗ log det(h(si, sj)) ∈ L1
loc(Y ). Thus, by

Lemma 4.1.2,

log hEQ

(∧
ik

siωk,
∧
ik

siωk

)∣∣∣∣∣
W0

extends to a locally integrable function on Y . Hence by Lemma 3.1.1 the
Quillen metric over W extends to a generalized metric over Y .

Remark 4.1.4. In the above situation, Let W ′ be a open set of Y such
that f is flat and finite over there. Then the Quillen metric extends to a
continuous function over W ′ by the same formula as in (4.1.2)

4.2. Riemann-Roch for generically finite morphisms

In this subsection, we formulate the arithmetic Riemann-Roch theorem for
generically finite morphisms.

Theorem 4.2.1. Let X be a scheme such that every connected compo-
nent of X is an arithmetic variety. Let Y be a regular arithmetic variety, and
f : X → Y a proper and generically finite morphism such that every connected
component of X maps surjectively to Y . Let (E, h) a Hermitian vector bundle
on X such that on each connected component of X, E has the same rank r.
Then,

ĉ1

(
detRf∗(E), hEQ

)
− rĉ1

(
detRf∗(OX), hOX

Q

)
∈ ĈH

1

L1(Y )

and

ĉ1

(
detRf∗(E), hEQ

)
− rĉ1

(
detRf∗(OX), hOX

Q

)
= f∗ (ĉ1(E, h))

in ĈH
1

L1(Y )Q, where hEQ and hOX

Q are the Quillen metric of detRf∗(E) and
detRf∗(OX) respectively.

Proof. Let X =
∐
α∈AXα be the decomposition into connected com-

ponents of X. Since f is proper, A is a finite set. We set fα = f |Xα
and

(Eα, hα) = (E, h)|Xα
. Then

Rf∗(E) =
⊕
α∈A

R(fα)∗(Eα),

Rf∗(OX) =
⊕
α∈A

R(fα)∗(OXα
),

ĉ1(E, h) =
∑
α∈A

ĉ1(Eα, hα).
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Hence we have the following:



ĉ1

(
detRf∗(E), hEQ

)
=
∑
α∈A

ĉ1

(
detR(fα)∗(Eα), hEα

Q

)
,

ĉ1

(
detRf∗(OX), hOX

Q

)
=
∑
α∈A

ĉ1

(
detR(fα)∗(OXα

), hOXα

Q

)
,

f∗ (ĉ1(E, h)) =
∑
α∈A

f∗ (ĉ1(Eα, hα)).

Thus, we may assume that X is connected, i.e., X is an arithmetic variety.

Let K = K(Y ) and L = K(X) be the function fields of Y and X respec-
tively. Let n be the degree of f and ω1, ω2, · · · , ωn rational functions on X
such that at the generic point they form a basis of K-vector space L. Further,
let s1, s2, . . . , sr be rational sections of E such that at the generic point they
form a basis of L-vector space EL. Then s1ω1 ∧ s1ω2 ∧ · · · ∧ s1ωn ∧ · · · ∧ srωn,
s1 ∧ · · · ∧ sr and ω1 ∧ · · · ∧ωn are non-zero rational sections of det f∗(E), det(E)
and det f∗(OX) respectively. Here we shall prove the following equality in
Ẑ1
D(Y ):

(4.2.1.1)

(
div

(∧
ik

siωk

)
,

[
− log hEQ

(∧
ik

siωk,
∧
ik

siωk

)])

− r
(

div

(∧
k

ωk

)
,

[
− log hOX

Q

(∧
k

ωk,
∧
k

ωk

)])

= f∗

(
div

(∧
i

si

)
,

[
− log deth

(∧
i

si,
∧
i

si

)])
,

where
∧
ik siωk = s1ω1 ∧ s1ω2 ∧ · · · ∧ s1ωn ∧ · · · ∧ srωn,

∧
k ωk = ω1 ∧ · · · ∧ωn

and
∧
i si = s1 ∧ · · · ∧ sr.

First we shall show the equality of divisors. Let Y0 be the maximal Zariski
open set of X such that f is flat over Y0. Then, codimY (Y \ Y0) ≥ 2 by [13,
III, Proposition 9.7]. Since f is generically finite, f is in fact finite over Y0.
Then Z1(Y ) = Z1(Y0) and thus it suffices to prove the equality of divisors over
Y0. Since it suffices to prove it locally, let U = Spec(A) be an affine open set
of Y0 and f−1(U) = Spec(B) the open set of X0 = f−1(Y0). Shrinking U if
necessary, we may assume that B is a free A-module of rank n and that E
is a free B-module of rank r. Let d1, d2, · · · , dn be a basis of B over A, and
e1, e2, · · · , er be a basis of E over B. Note that K and L are the quotient fields
of A and B respectively. In the following we freely identify a rational function
(or section) by the corresponding element at the generic point. In this sense,
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we set

ωk =
n∑
l=1

akldl (k = 1, 2, · · · , n)

si =
r∑
j=1

σijej (i = 1, 2, · · · , r),

where akl ∈ K (1 ≤ k, l ≤ n) and σij ∈ L (1 ≤ i, j ≤ r).
For each σij(1 ≤ i, j ≤ r), let Tσij

: L→ L be multiplication by σij . With
respect to a basis ω1, ω2, · · · , ωn of L over K, Tσij

gives rise to the matrix
(cklij )1≤k,l≤n ∈Mn(K) defined by

σijωk =
n∑
l=1

cklijωl (k = 1, 2, · · · , n).

We also denote this matrix by Tσij
. Then,

∧
ik

siωk =
∧
ik

 r∑
j=1

σijej

ωk =
∧
ik

 r∑
j=1

n∑
l=1

cklij

 ejωl
= det(cklij )ik,jl

∧
ik

eiωk = det(cklij )ik,jl
∧
ik

ei

(
n∑
l=1

akldl

)

= det(cklij )ik,jl
∧
ik

 r∑
j=1

δija
kl

 ejωl
= det(cklij )ik,jl det(δijakl)ik,jl

∧
ik

eidl.

On the other hand, since the matrices Tσij
and Tσi′j′ commute with each other,

we have

det(cklij )ik,jl = det


Tσ11 Tσ12 · · · Tσ1r

Tσ21 Tσ22 · · · Tσ2r

...
...

. . .
...

Tσr1 Tσr2 · · · Tσrr


= det

(∑
τ∈Sr

sign(τ )Tσ1τ(1) · · · · · Tσrτ(r)

)
= det(Tdet(σij)ij

)

= NormL/K(det(σij)ij).

Moreover, we have

det(δijakl)ik,jl = det(Ir ⊗ (akl)kl)

= (det(akl)kl)r.
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From the above three equalities, div (
∧
ik siωk) is given by the rational function

NormL/K(det(σij)ij)(det(akl)kl)r.

Further ∧
i

si = (det(σij)ij)
∧
i

ek and
∧
k

ωk = (det(akl)kl)
∧
k

dk.

Hence we have

div

(∧
ik

siωk

)
− r
(

div

(∧
k

ωk

))
= f∗

(
div

(∧
i

si

))
.

Next we shall show the equality of currents. Since all the currents in the
equality come from locally integrable functions by Propositions 1.2.5 and 4.1.1,
it suffices to show the equality over a non-empty Zariski open set of every
connected component of Y (C). So let W0 be a non-empty Zariski open set of
a connected component of Y (C) such that fC is étale and that si (1 ≤ i ≤ r)
or ωk (1 ≤ k ≤ n) have no poles or zeroes over there. Then over W0 all these
currents are defined by C∞ functions. Let y ∈ Y (C) be a complex point and
x1, x2, · · · , xn be the fiber f−1

C (y) over y. From the proof of Lemma 4.1.2, as
C∞ functions around y,

− log hEQ

(∧
ik

siωk,
∧
ik

siωk

)
(y)

= − log det

{
| det(Ω)|2r

n∏
α=1

det (h(si, sj)(xα))ij

}
,

where Ω = (ωk(xα))kα and H(xα) = (h(si, sj)(xα))ij . Also,

− log hOX

Q

(∧
k

ωk,
∧
k

ωk

)
(y) = − log det | det(Ω)|2.

On the other hand, by the definition of the push-forward f∗,

f∗

(
− log deth

(∧
i

si,
∧
i

si

))
(y) =

n∑
α=1

− log deth

(∧
i

si,
∧
i

si

)
(xα)

=
n∑
α=1

− log det (h(si, sj)(xα))ij .

Hence we have the desired equality of currents by the above three equalities.
Thus we have showed the equality (4.2.1.1). Since the right hand side

belongs in fact to Ẑ1
L1(Y ), the left hand side must also belong to Ẑ1

L1(Y ), and
thus we have the equality in Ẑ1

L1(Y ).
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5. Arithmetic Riemann-Roch for stable curves

5.1. Bismut-Bost formula

Let X be a smooth algebraic variety over C, L a line bundle on X, and h
a generalized metric of L over X. Let s be a rational section of L. Then, by
the definition of the generalized metric h, − log h(s, s) gives rise to a current
−[log h(s, s)]. Moreover, it is easy to see that a current

ddc(−[log h(s, s)]) + δdiv(s)

does not depend on the choice of s. Thus, we define c1(L, h) to be

c1(L, h) = ddc(−[log h(s, s)]) + δdiv(s).

Let f : X → Y be a proper morphism of smooth algebraic varieties C such
that every fiber of f is a reduced and connected curve with only ordinary double
singularities. We set Σ = {x ∈ X | f is not smooth at x.} and ∆ = f∗(Σ). Let
|∆| be the support of ∆. We fix a Hermitian metric of ωX/Y . Then, in [1],
Bismut and Bost proved the following.

Theorem 5.1.1. Let E = (E, h) be a Hermitian vector bundle on X.
Then, the Quillen metric hEQ of detRf∗(E) on Y \|∆| gives rise to a generalized
metric of detRf∗(E) on Y . Moreover,

c1

(
detRf∗(E), hEQ

)
= −f∗

[
td(ωX/Y −1) ch(E)

](2,2) − rkE
12

δ∆.

5.2. Riemann-Roch for stable curves

In this subsection, we prove the arithmetic Riemann-Roch theorem for
stable curves.

Theorem 5.2.1. Let f : X → Y be a projective morphism of regular
arithmetic varieties such that every fiber of fC : X(C)→ Y (C) is a reduced and
connected curve with only ordinary double singularities. We fix a Hermitian
metric of the dualizing sheaf ωX/Y . Let E = (E, h) be a Hermitian vector
bundle on X. Then,

ĉ1

(
detRf∗(E), hEQ

)
− rk(E)ĉ1

(
detRf∗(OX), hOX

Q

)
∈ ĈH

1

L1(Y )

and

ĉ1

(
detRf∗(E), hEQ

)
− rk(E)ĉ1

(
detRf∗(OX), hOX

Q

)
= f∗

(
1
2
(
ĉ1(E)2 − ĉ1(E) · ĉ1(ωX/Y )

)− ĉ2(E)
)

in ĈH
1

L1(Y )Q, where hEQ and hOX

Q are the Quillen metric of detRf∗(E) and
detRf∗(OX) respectively.
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Proof. We prove the theorem in two steps.
Step 1. First, we assume that fQ : XQ → YQ is smooth. In this case, by

[11],

ĉ1

(
detRf∗(E), hEQ

)
= f∗

(
ĉh(E, h)t̂d(Tf, hf )− a(ch(EC) td(TfC)R(TfC))

)(1)

.

in ĈH
1
(Y )Q. Since

ĉh(E) = rk(E) + ĉ1(E) +
(

1
2
ĉ1(E)2 − ĉ2(E)

)
+ (higher terms)

and

t̂d(Tf, hf ) = 1− 1
2
ĉ1(ωX/Y ) + t̂d2(Tf, hf ) + (higher terms),

we have(
ĉh(E, h)t̂d(Tf, hf )

)(2)

=
1
2
(
ĉ1(E)2 − ĉ1(E) · ĉ1(ωX/Y )

)− ĉ2(E) + rk(E)t̂d2(Tf, hf ).

On the other hand, since the power series R(x) has no constant term, the (1, 1)
part of

ch(EC) td(TfC)R(TfC)

is rk(E)R1(TfC), where R1(TfC) is the (1, 1) part of R(TfC). Therefore, we
obtain

ĉ1

(
detRf∗(E), hEQ

)
=f∗

(
1
2
(
ĉ1(E)2 − ĉ1(E) · ĉ1(ωX/Y )

)− ĉ2(E)
)

(5.2.1.1)

+ rk(E)f∗
(
t̂d2(Tf, hf )− a(R1(TfC))

)
.

Applying (5.2.1.1) to the case (E, h) = (OX , hcan), we have

ĉ1

(
detRf∗(OX), hOX

Q

)
= f∗

(
t̂d2(Tf, hf )− a(R1(TfC))

)
.(5.2.1.2)

Thus, combining (5.2.1.1) and (5.2.1.2), we have our formula in the case where
fQ : XQ → YQ is smooth.

Step 2. Next, we consider the general case. The first assertion is a con-
sequence of Theorem 5.1.1 because using Theorem 5.1.1,

c1

(
detRf∗(E), hEQ

)
− rk(E)c1

(
detRf∗(OX), hOX

Q

)
= −f∗

[
td(ωX/Y −1) ch(E)

](2,2)
+ rk(E)f∗

[
td(ωX/Y −1) ch(OX)

](2,2)
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belongs to L1
loc(Ω

1,1
Y (C)) by Proposition 1.2.5. The second assertion is a conse-

quence of the useful Lemma 2.5.1. In fact, both sides of the second assertion
are arithmetic L1-cycles on Y by the first assertion and the Proposition 2.2.2: If
we take ∆ = {y ∈ YQ | fQ is not smooth over y} and define ∆ to be the closure
of ∆ in Y , then the compliment U = Y \∆ contains no irreducible components
of fibers of Y → Spec(Z) and fC is smooth over U(C): The arithmetical linear
equivalence of both sides restricted to U is a consequence of Step 1. Thus by
Lemma 2.5.1, we also have our formula in the general case.

6. Asymptotic behavior of analytic torsion

Let M be a compact Kähler manifold of dimension d, E = (E, hE) a
flat vector bundle of rank r on M with a flat metric hE , and A = (A, hA)
a Hermitian vector bundle on M . For 0 ≤ q ≤ d, let ∆q,n be the Laplacian
on A0,q

(
Symn(E)⊗A) and ∆′

q,n the restriction of ∆q,n to Image ∂ ⊕ Image ∂.
Let σ(∆′

q,n) = {0 < λ1 ≤ λ2 ≤ · · · } be the sequence of eigenvalues of ∆′
q,n.

Here we count each eigenvalue up to its multiplicity. Then, the associated zeta
function ζq,n(s) is given by

ζq,n(s) = Tr
[
(∆′

q,n)−s
]

=
∞∑
i=1

λ−si .

It is well known that ζq,n(s) converges absolutely for �(s) > d and that it has
a meromorphic continuation to the whole complex plane without pole at s = 0.
The analytic torsion T

(
Symn(E)⊗A) is defined by

T
(
Symn(E)⊗A) =

d∑
q=0

(−1)qqζ ′q,n(0).

In the following we closely follow [26, Section 2].
The Theta function associated with σ(∆′

q,n) is defined by

Θq,n(t) = Tr
[
exp(−t∆′

q,n)
]

=
∞∑
i=1

e−λit.

By taking Mellin transformation, we have, for �(s) > d,

ζq,n(s) =
1

Γ(s)

∫ ∞

0

Θq,n(t)ts
dt

t
.

We put

ζ̃q,n(s) =
1

rk(Symn(E))
n−d 1

Γ(s)

∫ ∞

0

Θq,n

(
t

n

)
ts
dt

t
.

Then we have
1

rk(Symn(E))
n−dζq,n(s) = n−sζ̃q,n(s)
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and thus

1
rk(Symn(E))

n−dζ ′q,n(0) = −(log n)ζ̃q,n(0) + ζ ′q,n(0)(6.1)

Bismut and Vasserot [3, (14), (19)] showed that Θq,n(t) has the following
properties (note that these parts of [3] do not depend on the assumption of
positivity of a line bundle, as indicated in Vojta [26, Proposition 2.7.3]):

(a) For every k ∈ N, 0 ≤ q ≤ d and n ∈ N, there are real numbers
ajq,n (−d ≤ j ≤ k) such that

1
rk(Symn(E))

n−dΘq,n

(
t

n

)
=

k∑
j=−d

ajq,nt
j + o(tk)

as t ↓ 0, with o(tk) uniform with respect to n ∈ N.
(b) For every 0 ≤ q ≤ d and j ≥ −d, there are real numbers ajq such that

ajq,n = ajq +O

(
1√
n

)
as n→∞.

Also by (b), we can replace the o(tk) in (a) by O(tk+1) and still have the
uniformity statement. Thus we can write, for every k ∈ N,

1
rk(Symn(E))

n−dΘq,n

(
t

n

)
=

k∑
j=−d

akq,nt
j + ρkq,n(t)

with ρkq,n(t) = o(tk+1). Then

ζ̃q,n(s) =
1

rk(Symn(E))
n−d 1

Γ(s)

∫ ∞

1

Θq,n

(
t

n

)
ts
dt

t

+
ajq,n
Γ(s)

∫ 1

0

tj+s−1dt+
k∑

j=−d

1
Γ(s)

∫ 1

0

ρkq,n(t)dt

=
1

rk(Symn(E))
n−d 1

Γ(s)

∫ ∞

1

Θq,n

(
t

n

)
ts
dt

t

+
k∑

j=−d

ajq,n
Γ(s)(j + s)

+
1

Γ(s)

∫ 1

0

ρkq,n(t)t
s dt

t
.

In the last expression, the first integral is holomorphic for all s ∈ C, while
the second integral is holomorphic for �(s) > −k − 1; the middle term is a
meromorphic function in the whole complex plane.

Putting k = 0 and s = 0 in the above equation, we have

ζ̃q,n(0) = a0
q,n.(6.2)
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Moreover, by differentiating the above equation when k = 0, we have

(6.3) ζ̃ ′q,n(0) =
1

rk(Symn(E))
n−d
∫ ∞

1

Θq,n

(
t

n

)
dt

t

+
−1∑
j=−d

ajq,n
j
− a0

q,nΓ′(1) +
1

Γ(s)

∫ 1

0

ρ0
q,n(t)

dt

t
.

We have now the following Proposition.

Proposition 6.4. There exists a constant c such that for all n ∈ N,

ζ ′q,n(0) ≥ −cnd+r−1 log n

Proof. By (6.1), (6.2) and (6.3), we have

ζ ′q,n(0) = − rk(Symn(E))nd(log n)a0
q,n

+ rk(Symn(E))nd
(

1
rk(Symn(E))

n−d
∫ ∞

1

Θq,n

(
t

n

)
dt

t

+
−1∑
j=−d

ajq,n
j
− a0

q,nΓ′(1) +
1

Γ(s)

∫ 1

0

ρ0
q,n(t)

dt

t


In the first term of the right hand side, a0

q,n is bounded with respect to n by
(b). In the second term of the right hand side, the first integral is non-negative;
the sum of ajq,n’s is bounded with respect to n by (b); the term −a0

q,nΓ′(1) is
also bounded with respect to n by (b); the second integral is also bounded with
respect to n, for ρ0

q,n(t) = O(t) uniformly with respect to n. Moreover,

rk(Symn(E)) =
(
n+ r − 1
r − 1

)
= O(nr−1)

as n→∞. Thus, there is a constant c such that for all n ∈ N,

ζ ′q,n(0) ≥ −cnd+r−1 log n.

In the following sections, we only need the case of d = 1, namely where M
is a compact Riemann surface. In this case, the above Proposition 6.4 gives an
asymptotic upper bound of analytic torsion.

Corollary 6.5. Let C be a compact Riemann surface, E = (E, hE) a
flat vector bundle of rank r on C with a flat metric h, and A = (A, hA) a
Hermitian vector bundle on C. Then, there is a constant c such that for all
n ∈ N,

T
(
Symn(E)⊗A) ≤ cnr log n.
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Proof. Since dimC = 1

T
(
Symn(E)⊗A) = −ζ ′1,n(0).

Now the corollary follows from Proposition 6.4.

7. Formulae for arithmetic Chern classes

7.1. Arithmetic Chern classes of symmetric powers

Let M be a complex manifold and (E, h) a Hermitian vector bundle on M .
Since E⊗n has the natural Hermitian metric h⊗n, we can define a Hermitian
metric Symn(h) of Symn(E) to be the quotient metric of E⊗n in terms of the
natural surjective homomorphism E⊗n → Symn(E). We denote (Symn(E),
Symn(h)) by Symn(E, h). If x ∈ M and {e1, . . . , er} is an orthonormal basis
of Ex with respect to hx, then it is easy to see that

(Symn(h))x
(
eα1
1 · · · eαr

r , eβ1
1 · · · eβr

r

)
=


α1! · · ·αr!

n!
if (α1, . . . , αr) = (β1, . . . , βr),

0 otherwise.

Then we have the following proposition.

Proposition 7.1.1. Let X be an arithmetic variety and E = (E, h) a
Hermitian vector bundle of rank r on X. Then, we have the following.

(1) ĉ1
(
Symn(E)

)
=
n

r

(
n+ r − 1
r − 1

)
ĉ1(E)

+ a

 ∑
α1+···+αr=n,
α1≥0,... ,αr≥0

log
(

n!
α1! · · ·αr!

).

(2) If X is regular, then

ĉh2

(
Symn(E)

)
=
(
n+ r

r + 1

)
ĉh2(E) +

1
2

(
n+ r − 1
r + 1

)
ĉ1(E)2

+ a

nr ∑
α1+···+αr=n,
α1≥0,... ,αr≥0

log
(

n!
α1! · · ·αr!

)
c1(E)

 .

Proof. In [24], C. Soulé gives similar formulae in implicit forms. We follow
his idea to calculate them.
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(1) First of all, we fix notation. We set

Sr,n = {(α1, . . . , αr) ∈ (Z+)r | α1 + · · ·+ αr = n},
where Z+ = {x ∈ Z|x ≥ 0}. For I = (α1, . . . , αr) ∈ Sr,n and rational sections
s1, . . . , sr of E, we denote sα1

1 · · · sαr
r by sI and α1! · · ·αr! by I!.

Let s1, . . . , sr be independent rational sections of E. Then, {sI}I∈Sr,n

forms independent rational sections of Symn(E). First, let us see that

div

 ∧
I∈Sr,n

sI

 =
n

r

(
n+ r − 1
r − 1

)
div(s1 ∧ · · · ∧ sr).(7.1.1.1)

This is a local question. So let x ∈ X and {ω1, . . . , ωr} be a local basis of E
around x. We set si =

∑r
j=1 aijωj . Then, s1 ∧ · · · ∧ sr = det(aij)ω1 ∧ · · · ∧ ωr.

Let K be a rational function field of X. Since the characteristic of K is zero,
any 1-dimensional representation of GLr(K) is a power of the determinant.
Thus, there is an integer N with∧

I∈Sr,n

sI = det(aij)N
∧

I∈Sr,n

ωI .

Here, by an easy calculation, we can see that

N =
n

r

(
n+ r − 1
r − 1

)
.

Thus, we get (7.1.1.1).
Next, let us see that

(7.1.1.2) − log det
(
Symn(h)(sI , sJ )

)
I,J∈Sr,n

= −n
r

(
n+ r − 1
r − 1

)
log det(h(si, sj))i,j +

∑
I∈Sr,n

log
(
n!
I!

)
.

Let x ∈ X(C) and {e1, . . . , er} an orthonormal basis of E ⊗ κ(x). We set
si =

∑r
i=1 bijej . Moreover, we set sI =

∑
J∈Sr,n

bIJe
J . Then, in the same way

as before, det(bIJ ) = det(bij)N . Further, since

Symn(h)(sI , sJ) =
∑

I′,J′∈Sr,n

bII′ Symn(h)(eI
′
, eJ

′
)bJ′J ,

we have

det
(
Symn(h)(sI , sJ )

)
I,J∈Sr,n

= | det(bIJ )|2 det
(
Symn(h)(eI , eJ )

)
I,J∈Sr,n

= | det(bij)|2N
∏

I∈Sr,n

I!
n!
.
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Thus, we get (7.1.1.2). Therefore, combining (7.1.1.1) and (7.1.1.2), we obtain
(1).

(2) First, we recall an elementary fact. Let Φ ∈ R[X1, . . . , Xr] be a sym-
metric homogeneous polynomial, and Mr(C) the algebra of complex r × r ma-
trices. Then, there is a unique polynomial map Φ : Mr(C) → C such that Φ
is invariant under conjugation by GLr(C) and its value on a diagonal matrix
diag(λ1, . . . , λr) is equal to Φ(λ1, . . . , λr).

Let us consider the natural homomorphism

ρr,n : AutC(Cr)→ AutC(Symn(Cr))

as complex Lie groups, which induces a homomorphism

γr,n = d(ρr,n)id : EndC(Cr)→ EndC(Symn(Cr))

as complex Lie algebras. Let {e1, . . . , er} be the standard basis of Cr. Then,
{eI}I∈Sr,n

forms a basis of Symn(Cr), where eI = eα1
1 · · · eαr

r for I =
(α1, . . . , αr). Let us consider the symmetric polynomial

chr,n2 =
1
2

∑
I∈Sr,n

X2
I

in R[XI ]I∈Sr,n
. Then, by the previous remark, using the basis {eI}I∈Sr,n

, we
have a polynomial map

chr,n2 : EndC(Symn(Cr))→ C

such that chr,n2 is invariant under conjugation by AutC(Symn(Cr)) and

chr,n2

(
diag(λI)I∈Sr,n

)
= chr,n2 (. . . , λI , . . . ).

Here we consider a polynomial map given by

θr,n : EndC(Cr)
γr,n−−−−→ EndC(Symn(Cr))

chr,n
2−−−−→ C.

Since γr,n(PAP−1) = ρr,n(P )γr,n(A)ρr,n(P )−1 for all A ∈ EndC(Cr) and P ∈
AutC(Cr), θr,n is invariant under conjugation by AutC(Cr). Let us calculate

θr,n(diag(λ1, . . . , λr)).

First of all,

γr,n(diag(λ1, . . . , λr)) = diag (. . . , (α1λ1 + · · ·+ αrλr) , . . . )(α1,... ,αr)∈Sr,n
.

Thus,

θr,n(diag(λ1, . . . , λr)) =
1
2

∑
(α1,... ,αr)∈Sr,n

(α1λ1 + · · ·+ αrλr)
2
.
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On the other hand, by easy calculations, we can see that∑
(α1,... ,αr)∈Sr,n

(α1λ1 + · · ·+ αrλr)
2

=
(
n+ r

r + 1

)(
λ2

1 + · · ·+ λ2
r

)
+
(
n+ r − 1
r + 1

)
(λ1 + · · ·+ λr)

2 .

Therefore, we get

θr,n(diag(λ1, . . . , λr))

=
1
2

(
n+ r

r + 1

)(
λ2

1 + · · ·+ λ2
r

)
+

1
2

(
n+ r − 1
r + 1

)
(λ1 + · · ·+ λr)

2 .

Hence,

θr,n =
(
n+ r

r + 1

)
ch2 +

1
2

(
n+ r − 1
r + 1

)
(c1)2,(7.1.1.3)

where ch2(X1, . . . , Xr) =
1
2
(X2

1 + · · ·+X2
r ) and c1(X1, . . . , Xr) = X1 + · · · +

Xr.
Let M be a complex manifold and F = (F, hF ) a Hermitian vector bundle

of rank r onM . LetKF be the curvature form of F , andKSymn(F ) the curvature
form of Symn(F ). Then,

KSymn(F ) =
(
γr,n ⊗ idA1,1(M)

)
(KF ).

Thus, by (7.1.1.3),

ch2 (Symn(F, hF )) =
(
n+ r

r + 1

)
ch2(F, hF ) +

1
2

(
n+ r − 1
r + 1

)
c1(F, hF )2.

(7.1.1.4)

Now let E = (E, h) be a Hermitian vector bundle on a regular arithmetic
variety X. Let h′ be another Hermitian metric of E. Then, using the definition
of Bott-Chern secondary characteristic classes and (7.1.1.4),

ĉh2 (Symn(E, h))− ĉh2 (Symn(E, h′))

= a

((
n+ r

r + 1

)
c̃h2(E, h, h′) +

1
2

(
n+ r − 1
r + 1

)
c̃21(E, h, h

′)
)
.

Thus,

ĉh2 (Symn(E, h))−
(
n+ r

r + 1

)
ĉh2(E, h)− 1

2

(
n+ r − 1
r + 1

)
ĉ1(E, h)2

does not depend on the choice of the metric h. Therefore, in order to show (2),
by using splitting principle [10, 3.3.2], we may assume that

(E, h) = L1 ⊕ · · · ⊕ Lr,
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where Li = (Li, hi)’s are Hermitian line bundles. Then,

Symn(E) =
⊕

α1+···+αr=n,
α1≥0,... ,αr≥0

L
⊗α1

1 ⊗ · · · ⊗ L⊗αr

r ⊗
(
OX , α1! · · ·αr!

n!
hcan

)
.

Therefore, ĉh2

(
Symn(E)

)
is equal to

∑
α1+···+αr=n,
α1≥0,... ,αr≥0

{
ĉh2

(
L
⊗α1

1 ⊗ · · · ⊗ L⊗αr

r

)

− log
(
α1! · · ·αr!

n!

)
a
(
c1

(
L
⊗α1

1 ⊗ · · · ⊗ L⊗αr

r

))}
.

On the other hand, since∑
(α1,··· ,αr)∈Sr,n

log
(

n!
α1! · · ·αr!

)
(α1X1 + · · ·+ αrXr)

=

n
r

∑
(α1,··· ,αr)∈Sr,n

log
(

n!
α1! · · ·αr!

) (X1 + · · ·+Xr),

we have

ĉh2

(
Symn(E)

)
=
(
n+ r

r + 1

)
ĉh2(E) +

1
2

(
n+ r − 1
r + 1

)
ĉ1(E)2

+
∑

(α1,··· ,αr)∈Sr,n

log
(

n!
α1! · · ·αr!

)
a
(
α1c1(L1) + · · ·+ αrc1(Lr)

)
=
(
n+ r

r + 1

)
ĉh2(E) +

1
2

(
n+ r − 1
r + 1

)
ĉ1(E)2

+

n
r

∑
(α1,··· ,αr)∈Sr,n

log
(

n!
α1! · · ·αr!

) a(c1(E)).

Thus, we get (2).

7.2. Arithmetic Chern classes of E ⊗ E∨

Here, let us consider arithmetic Chern classes of E ⊗ E∨
.

Proposition 7.2.1. Let X be a regular arithmetic variety and (E, h) a
Hermitian vector bundle of rank r on X. Then,

ĉh2(E ⊗ E∨, h⊗ h∨) = 2rĉh2(E, h)− ĉ1(E, h)2

= (r − 1)ĉ1(E, h)2 − 2rĉ2(E, h).
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Proof. Since ĉhi(E∨, h∨) = (−1)iĉhi(E, h) and ĉh(E ⊗ E∨, h ⊗ h∨) =
ĉh(E, h) · ĉh(E∨, h∨), we have

ĉh2(E ⊗ E∨, h⊗ h∨) = rĉh2(E, h) + ĉ1(E, h) · ĉ1(E∨, h∨) + rĉh2(E∨, h∨)

= 2rĉh2(E, h)− ĉ1(E, h)2.

The last assertion is derived from the fact

ĉh2(E, h) =
1
2
ĉ1(E, h)2 − ĉ2(E, h).

8. The proof of the relative Bogomolov’s inequality in the arith-
metic case

The purpose of this section is to give the proof of the following theorem.

Theorem 8.1 (Relative Bogomolov’s inequality in the arithmetic case).
Let f : X → Y be a projective morphism of regular arithmetic varieties such
that every fiber of fC : X(C) → Y (C) is a reduced and connected curve with
only ordinary double singularities. Let (E, h) be a Hermitian vector bundle of
rank r on X, and y a closed point of YQ. If f is smooth over y and E|Xȳ

is
semi-stable, then

d̂isX/Y (E, h) = f∗
(
2rĉ2(E, h)− (r − 1)ĉ1(E, h)2

)
is weakly positive at y with respect to any subsets S of Y (C) with the following
properties : (1) S is finite, and (2) f−1

C (z) is smooth and EC|f−1
C

(z) is poly-stable
for all z ∈ S.

8.2. Sketch of the proof of the relative Bogomolov’s inequality

The proof of the relative Bogomolov’s inequality is very long, so that for
reader’s convenience, we would like to give a rough sketch of the proof of it.

Step 1. Using the Donaldson’s Lagrangian, we reduce to the case where
the Hermitian metric h of E along f−1

C (z) is Einstein-Hermitian for each z ∈ S.

Step 2. We set

Fn = Symn
(End(E)⊗ f∗(H)

)⊗A⊗ f∗(H),

where A is a Hermitian line bundle on X and H is a Hermitian line bundle on
Y . Later we will specify these A and H . By virtue of the arithmetic Riemann-
Roch for stable curves (cf. Theorem 5.2.1) and formulae of arithmetic Chern
classes for symmetric powers (cf. Section 7.1), we can see that

1
(r2 + 1)!

d̂isX/Y (E) = − lim
n→∞

ĉ1(detRf∗(Fn), hn)
nr2+1

,
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where hn is a generalized metric of detRf∗(Fn) such that ĉ1(detRf∗(Fn), hn) ∈
ĈH

1

L1(Y ) and hn coincides with the Quillen metric hFn

Q at each z ∈ S.

Step 3. We assume that A is very ample and A ⊗ ω−1
X/Y is ample. We

choose an arithmetic variety B ⊂ X such that B ∈ |A⊗2|, B → Y is étale
over y, and B(C) → Y (C) is étale over each z ∈ S. (Exactly speaking, B
is not realized as an element of |A⊗2|. For simplicity, we assume it.) We set
Gn = Fn

∣∣
B

and g = f |B. Here we suppose that g∗(End(E)
∣∣
B

) ⊗ H and
g∗(A

∣∣
B

)⊗H are generated by small sections at y with respect to S.
Applying the Riemann-Roch formula for generically finite morphisms (cf.

Theorem 4.2.1), we can find a generalized metric gn of det g∗(Gn) such that gn is

equal to the Quillen metric of Gn at each z ∈ S, ĉ1(det g∗(Gn), gn) ∈ ĈH
1

L1(Y ),
and

lim
n→∞

ĉ1(det g∗(Gn), gn)
nr2+1

= 0.

Let us consider the exact sequence:

0→ f∗(Fn)→ g∗(Gn)→ R1f∗(Fn ⊗A⊗−2)

induced by 0→ Fn ⊗A⊗−2 → Fn → Gn → 0. Let Qn be the image of

g∗(Gn)→ R1f∗(Fn ⊗A⊗−2).

The natural L2-metric of g∗(Gn) around z induces the quotient metric q̃n of
Qn around z for each z ∈ S. Thus, we can find a C∞ metric qn of detQn such
that qn is equal to det q̃n at each z ∈ S.

Since

detRf∗(Fn) = det g∗(Gn)⊗ (detQn)⊗−1 ⊗ (detR1f∗(Fn)
)⊗−1

,

we have the generalized metric tn of detR1f∗(Fn) such that

(detRf∗(Fn), hn)=(det g∗(Gn), gn)⊗(detQn, qn)⊗−1⊗(detR1f∗(Fn), tn)⊗−1.

Step 4. We set an = maxz∈S{log tn(sn, sn)(z)}, where sn is the canon-
ical section of detR1f∗(Fn). In this step, we will show that ĉ1(detQn, qn)
is semi-ample at y with respect to S and an ≤ O(nr

2
log(n)). The semi-

ampleness of ĉ1(detQn, qn) at y is derived from Proposition 3.7.1 and the fact
that g∗(End(E)

∣∣
B

) ⊗ H and g∗(A
∣∣
B

) ⊗ H are generated by small sections at
y with respect to S. The estimation of an involves asymptotic behavior of an-
alytic torsion (cf. Corollary 6.5) and a comparison of sup-norm with L2-norm
(cf. Lemma 8.3.1).

Step 5. Thus, using the last equation in Step 3, we can get a decomposi-
tion

− ĉ1(detRf∗(Fn), hn)
nr2+1

= αn + βn
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such that αn is semi-ample at y with respect to S and limn→∞ βn = 0.

8.3. Preliminaries

First of all, we will prepare three lemmas for the proof of the relative
Bogomolov’s inequality.

Lemma 8.3.1. Let M be a d-dimensional compact Kähler manifold,
E = (E, h) a flat Hermitian vector bundle of rank r on M , and V = (V, k) a
Hermitian line bundle. Then, there is a constant c such that, for any n > 0
and any s ∈ H0(M, Symn(E)⊗ V ),

‖s‖sup ≤ cnd+r−1‖s‖L2 .

Proof. Let f : P = Proj
(⊕

i≥0 Symi(E)
)
→M be the projective bundle

of E, and L = OP (1) the tautological line bundle of E on P . Let hL be the
quotient metric of L induced by the surjective homomorphism f∗(E)→ L and
the Hermitian metric f∗(h) of f∗(E). Let ΩM be a Kähler form of M . Since E
is flat, c1(L, hL) is positive semi-definite of rank r−1. Thus, f∗(ΩM )+c1(L, hL)
gives rise to a fundamental 2-form ΩP on P . Moreover, by virtue of the flatness
of E, we have c1(L, hL)r = 0. Thus,

Ωd+r−1
P =

(
d+ r − 1

d

)
f∗(ΩdM ) ∧ c1(L, hL)r−1.

By [11, Lemma 30], there is a constant c such that

‖s′‖sup ≤ cnd+r−1‖s′‖L2

for any n > 0 and any s′ ∈ H0(P,L⊗n⊗f∗(V )), where ‖s′‖L2 =
∫
P

|s′|2Ωd+r−1
P .

We denote a homomorphism

f∗(Symn(E))⊗ f∗(V )→ L⊗n ⊗ f∗(V )

by αn. As in the proof of [11, (44)], we can see that, for any s ∈ H0(M,
Symn(E)⊗ V ),

|s|2 =
(
n+ r − 1
r − 1

)∫
P→M

|αn(s)|2c1(L, hL)r−1.

Thus,

|s|2 ≤
(
n+ r − 1
r − 1

)∫
P→M

‖α(s)‖2supc1(L, hL)r−1 =
(
n+ r − 1
r − 1

)
‖α(s)‖2sup.

Therefore, we get

‖s‖2sup ≤
(
n+ r − 1
r − 1

)
‖αn(s)‖2sup
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for all s ∈ H0(M, Symn(E)⊗ V ).
On the other hand,

‖αn(s)‖2L2 =
∫
P

|αn(s)|2ΩrP

=
(
d+ r − 1

d

)∫
M

∫
P→M

|αn(s)|2f∗(ΩdM ) ∧ c1(L, hL)r−1

=
(
d+ r − 1

d

)∫
M

ΩdM

∫
P→M

|αn(s)|2c1(L, hL)r−1

=
(
d+ r − 1

d

)(
n+ r − 1
r − 1

)−1 ∫
M

|s|2ΩdM

=
(
d+ r − 1

d

)(
n+ r − 1
r − 1

)−1

‖s‖2L2 .

Therefore,

‖s‖2sup ≤
(
n+ r − 1
r − 1

)
‖αn(s)‖2sup

≤
(
n+ r − 1
r − 1

)
c2n2(d+r−1)‖αn(s)‖2L2

=
(
d+ r − 1

d

)
c2n2(d+r−1)‖s‖2L2 .

Thus, we get our lemma.

Here we recall Einstein-Hermitian metrics of vector bundles. Let M be
a d-dimensional compact Kähler manifold with a Kähler form ΩM , and E a
vector bundle on M . We say E is stable (resp. semistable) with respect to ΩM
if, for any subsheaf F of E with 0 � F � E,

1
rkF

∫
M

c1(F ) ∧ Ωd−1
M <

1
rkE

∫
M

c1(E) ∧ Ωd−1
M .

(
resp.

1
rkF

∫
M

c1(F ) ∧ Ωd−1
M ≤ 1

rkE

∫
M

c1(E) ∧ Ωd−1
M .

)
Moreover, E is said to be poly-stable with respect to ΩM if E is semistable with
respect to ΩM and E has a decomposition E = E1⊕ · · ·⊕Es of vector bundles
such that each Ei is stable with respect to ΩM . Let h be a Hermitian metric of
E. We say h is Einstein-Hermitian with respect to ΩM if there is a constant ρ
such that K(E, h) ∧ Ωd−1

M = ρΩdM ⊗ idE , where K(E, h) is the curvature form
given by (E, h) and idE is the identity map in Hom(E,E). The Kobayashi-
Hitchin correspondence tells us that E has an Einstein-Hermitian metric with
respect to ΩM if and only if E is poly-stable with respect to ΩM .
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Lemma 8.3.2. Let M be a compact Kähler manifold with a Kähler form
ΩM , and E a poly-stable vector bundle with respect to ΩM on M . If h and h′

are Einstein-Hermitian metrics of E with respect to ΩM , then so is h+ h′.

Proof. Let E = E1 ⊕ · · · ⊕ Es be a decomposition into stable vector
bundles. If we set hi = h|Ei

and h′i = h′|Ei
for each i, then hi and h′i are

Einstein-Hermitian metrics of Ei and we have the following orthogonal decom-
positions:

(E, h) =
s⊕
i=1

(Ei, hi) and (E, h′) =
s⊕
i=1

(Ei, h′i)

(cf. [16, Chater IV, Section 3]). Thus, we may assume that E is stable. In
this case, by virtue of the uniqueness of Einstein-Hermitian metric, there is a
positive constant c with h′ = ch. Thus, h + h′ = (1 + c)h. Hence h + h′ is
Einstein-Hermitian.

Lemma 8.3.3. Let C be a compact Riemann surface. Considering C
as a projective variety over C, let C = C ⊗C C be the tensor product via the
complex conjugation. Let E be a vector bundle on C, and E = E ⊗C C on C.
Then, E is poly-stable on C if and only if E is poly-stable on C.

Proof. This is an easy consequence of the fact that if F is a vector bundle
on C, then deg(F ) = deg(F ).

8.4. Complete proof of the relative Bogomolov’s inequality

Let us start the complete proof of the relative Bogomolov’s inequality.
Considering S ∪ F∞(S) instead of S, we may assume that F∞(S) = S by

virtue of Lemma 8.3.3. For each z ∈ S, let Ωz be the Kähler form induced by the
metric of ωX/Y along f−1

C (z). Since EC|f−1
C

(z) is poly-stable for all z ∈ S, there
is a C∞ Hermitian metric h′ of EC such that h′|f−1

C
(z) is Einstein-Hermitian

with respect to Ωz for all z ∈ S. It is easy to see that F ∗∞(h′)
∣∣∣
f−1

C
(z)

is Einstein-

Hermitian with respect to Ωz for all z ∈ S. Thus, if h′ is not invariant under
F∞, then, considering h′ + F ∗∞(h′), we may assume that h′ is invariant under
F∞. For, by Lemma 8.3.2, h′ + F ∗∞(h′) is Einstein-Hermitian with respect to
Ωz on f−1

C (z) for each z ∈ S.
Here we claim:

Claim 8.4.1. There is a γ ∈ L1
loc(Y (C)) such that a(γ) ∈ ĈH

1

L1(Y ;S)
and γ(z) ≥ 0 for each z ∈ S, and

d̂isX/Y (E, h) = d̂isX/Y (E, h′) + a(γ).
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Proof. We set φ = r
√

det(h′)/ det(h). Then, it is easy to see that
d̂isX/Y (E, φh) = d̂isX/Y (E, h). Thus, we may assume that det(h) = det(h′).
Then, we have

d̂isX/Y (E, h)− d̂isX/Y (E, h′) = a
(
−f∗(2rc̃h2(E, h, h′))

)
.

Hence if we set γ = −f∗(2rc̃h2(E, h, h′)), then a(γ) ∈ ĈH
1

L1(Y ;S). On the
other hand, by [2, (ii) of Corollary 1.30], −f∗(c̃h2(E, h, h′))(z) is nothing more
than Donaldson’s Lagrangian (for details, see [18, Section 6]). Thus, we get
γ(z) ≥ 0 for each z ∈ S.

By the above claim, we may assume that h|f−1
C

(z) is Einstein-Hermitian

for each z ∈ S. Let A = (A, hA) be a Hermitian line bundle on X such that
A is very ample, and A ⊗ ω⊗−1

X/Y is ample. If we take a general member M ′

of |A⊗2
Q |, then, by Bertini’s theorem (cf. [15, Theorem 6.10]), M ′ is smooth

over Q, and M ′ → YQ is étale over y. Note that if Z is an algebraic set
of PNC , U is a non-empty Zariski open set of PNQ , and U(Q) ⊆ Z(C), then
Z = PNC . Hence, we may assume that M ′(C) → Y (C) is étale over z for all
z ∈ S. Let M ′ = M ′

1 + · · · + M ′
l1

+ M ′
l1+1 + · · · + M ′

l2
be the decomposition

of M ′ into irreducible components (actually, the decomposition into connected
components becauseM ′ is smooth over Q) such that fQ(M ′

i) = YQ for 1 ≤ i ≤ l1
and fQ(M ′

j) � YQ for l1 + 1 ≤ j ≤ l2. Let Mi (i = 1, . . . , l1) be the closure
of M ′

i in X. We set M = M1 + · · · + Ml1 and B = M1

∐ · · ·∐Ml1 (disjoint
union). Then, there is a line bundle L on X with M ∈ |A⊗2 ⊗ L|. Note that
L|Xy

� OXy
and LC|f−1

C
(z) � Of−1

C
(z) for all z ∈ S because y �∈ ⋃l2j=l1+1 fQ(M ′

j)

and z �∈ ⋃l2j=l1+1 fC(M ′
j(C)). We denote the morphism B →M → X by ι, and

the morphism B
ι−→ X

f−→ Y by g. We remark that the morphism B →M is
an isomorphism over Q. Further, we set

F = End(E, h) = (E ⊗ E∨, h⊗ h∨).

Then, h ⊗ h∨ is a flat metric along f−1
C (z) for each z ∈ S because h ⊗ h∨ is

Einstein-Hermitian and deg (E ⊗ E∨) = 0 along f−1
C (z). We choose a Hermi-

tian line bundle H = (H,hH) on Y such that g∗(ι∗(A))⊗H and g∗(ι∗(F ))⊗H
are generated by small sections at y with respect to S. Moreover, we set

Fn = Symn
(
F ⊗ f∗(H)

)⊗A⊗ f∗(H)
= (Symn (F ⊗ f∗(H))⊗A⊗ f∗(H), kn) .

Claim 8.4.2. There are Z0, . . . , Zr2 ∈ ĈH
1

L1(Y ;S)Q and β ∈ L1
loc(Y (C))
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such that a(β) ∈ ĈH
1

L1(Y ;S), and

f∗

(
ĉh2(Fn)− 1

2
ĉ1(Fn) · ĉ1(ωX/Y )

)
=

nr
2+1

(r2 + 1)!
f∗(ĉh2(F ))

+
r2∑
i=0

Zin
i + a(bnβ),

where bn =
∑

α1+···+αr2=n,
α1≥0,... ,αr2≥0

log
(

n!
α1! · · ·αr2 !

)
.

Proof. Since Symn(F ⊗ f∗(H))⊗ A⊗ f∗(H) is isometric to Symn(F ) ⊗
f∗(H)⊗(n+1) ⊗A,

ĉh2(Fn) = ĉh2(Symn(F )) + ĉ1(Symn(F )) · ĉ1(f∗(H)⊗(n+1) ⊗A)

+
(
n+ r2 − 1
r2 − 1

)
ĉh2(f∗(H)⊗(n+1) ⊗A).

Here since det(F ) = OX , by Proposition 7.1.1,

ĉ1(Symn(F )) = a(bn) and ĉh2(Symn(F )) =
(
n+ r2

r2 + 1

)
ĉh2(F ).

Thus, by Proposition 2.4.1,

f∗
(
ĉ1(Symn(F )) · ĉ1(f∗(H)⊗(n+1) ⊗A)

)
= f∗

(
bna
(
(n+ 1)f∗(c1(H)) + c1(A)

))
= a
(
bnf∗(c1(A))

)
.

On the other hand, using the projection formula (cf. Proposition 2.4.1),

f∗
(
ĉh2(f∗(H)⊗(n+1) ⊗A)

)
=

1
2
f∗
[(

(n+ 1)ĉ1(f∗(H)) + ĉ1(A)
)2]

=
1
2
f∗
[
(n+ 1)2ĉ1(f∗(H))2 + 2(n+ 1)ĉ1(f∗(H)) · ĉ1(A) + ĉ1(A)2

]
= (n+ 1) degf (A)ĉ1(H) +

1
2
f∗
(
ĉ1(A)2

)
,

where degf (A) is the degree of A on the generic fiber of f . Therefore, we have

f∗ĉh2(Fn)

=
(
n+ r2

r2 + 1

)
f∗ĉh2(F )

+
(
n+ r2 − 1
r2 − 1

)(
(n+ 1) degf (A)ĉ1(H) +

1
2
f∗
(
ĉ1(A)2

))
+ a
(
bnf∗(c1(A))

)
.
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Thus, there are Z ′
0, . . . , Z

′
r2 ∈ ĈH

1
(Y ;S)Q such that

f∗ĉh2(Fn) =
nr

2+1

(r2 + 1)!
f∗ĉh2(F ) +

r2∑
i=0

Z ′
in
i + a

(
bnf∗(c1(A))

)
.(8.4.3)

Further, since ĉ1(Fn) · ĉ1(ωX/Y ) is equal to(
ĉ1(Symn(F )) +

(
n+ r2 − 1
r2 − 1

)
((n+ 1)ĉ1(f∗(H)) + ĉ1(A))

)
· ĉ1(ωX/Y ),

we have

f∗
(
ĉ1(Fn) · ĉ1(ωX/Y )

)
= a
(
bnf∗(c1(ωX/Y ))

)
+
(
n+ r2 − 1
r2 − 1

)(
(n+ 1)(2g − 2)ĉ1(H) + f∗

(
ĉ1(A) · ĉ1(ωX/Y )

))
.

Thus, there are Z ′′
0 , . . . , Z

′′
r2 ∈ ĈH

1
(Y ;S)Q such that

f∗
(
ĉ1(Fn) · ĉ1(ωX/Y )

)
=

r2∑
i=0

Z ′′
i n

i + a
(
bnf∗(c1(ωX/Y ))

)
.(8.4.4)

Thus, combining (8.4.3) and (8.4.4), we get our claim.

Let hX/Y be a C∞ Hermitian metric of detRf∗OX over Y (C) such that

hX/Y is invariant under F∞. Then, since the Quillen metric hOX

Q of detRf∗OX
is a generalized metric, there is a real valued φ ∈ L1

loc(Y (C)) such that hOX

Q =
eφhX/Y and F ∗

∞(φ) = φ (a.e.). Adding a suitable real valued C∞ function φ′

with F ∗
∞(φ′) = φ′ to φ (replace hX/Y by e−φ

′
hX/Y accordingly), we may assume

that φ(z) = 0 for all z ∈ S. Here, we set hn = exp
(
−
(
n+ r2 − 1
r2 − 1

)
φ

)
hFn

Q .

Then, hn is a generalized metric of detRf∗Fn with F ∗
∞(hn) = hn (a.e.). More-

over,

ĉ1 (detRf∗Fn, hn)−
(
n+ r2 − 1
r2 − 1

)
ĉ1
(
detRf∗OX , hX/Y

)
= ĉ1

(
detRf∗Fn, hFn

Q

)
−
(
n+ r2 − 1
r2 − 1

)
ĉ1

(
detRf∗OX , hOX

Q

)
.

Here, since

ĉ1

(
detRf∗Fn, hFn

Q

)
−
(
n+ r2 − 1
r2 − 1

)
ĉ1

(
detRf∗OX , hOX

Q

)
∈ ĈH

1

L1(Y ;S)Q
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by Theorem 5.2.1 and ĉ1(detRf∗OX , hX/Y ) ∈ ĈH
1
(Y ;S), we have

ĉ1 (detRf∗Fn, hn) ∈ ĈH
1

L1(Y ;S)Q.

Further, by the arithmetic Riemann-Roch theorem for stable curves (cf. The-
orem 5.2.1),

ĉ1 (detRf∗(Fn), hn)−
(
n+ r2 − 1
r2 − 1

)
ĉ1
(
detRf∗(OX), hX/Y

)
= f∗

(
ĉh2(Fn)− 1

2
ĉ1(Fn) · ĉ1(ωX/Y )

)
.

Therefore, by Claim 8.4.2, there are W0, . . . ,Wr2 ∈ ĈH
1

L1(Y ;S)Q and β ∈
L1

loc(Y (C)) such that a(β) ∈ ĈH
1

L1(Y ;S), and

ĉ1 (detRf∗(Fn), hn) =
nr

2+1

(r2 + 1)!
f∗(ĉh2(F )) +

r2∑
i=0

Win
i + a(bnβ).(8.4.5)

Claim 8.4.6.
1

(r2 + 1)!
d̂isX/Y (E) = − lim

n→∞
ĉ1 (detRf∗(Fn), hn)

nr2+1
in

ĈH
1

L1(Y ;S)Q.

Proof. By virtue of Proposition 7.2.1, f∗(ĉh2(F )) = −d̂isX/Y (E). Thus,
by (8.4.5), it is sufficient to show that 0 ≤ bn ≤ O(nr

2
).

It is well known that

log(θ1) + · · ·+ log(θN )
N

≤ log
(
θ1 + · · ·+ θN

N

)

for positive numbers θ1, . . . , θN . Thus, noting
∑

α1+···+αr2=n,
α1≥0,... ,αr2≥0

n!
α1! · · ·αr2 ! = (r2)n,

we have

0 ≤
∑

α1+···+αr2=n,
α1≥0,... ,αr2≥0

log
(

n!
α1! · · ·αr2 !

)
≤
(
n+ r2 − 1
r2 − 1

)
log

(
(r2)n(
n+r2−1
r2−1

)) ≤ O(nr
2
).

We set Gn = ι∗(Fn). Then, by Theorem 4.2.1,

ĉ1

(
detRg∗(Gn), hGn

Q

)
−
(
n+ r2 − 1
r2 − 1

)
ĉ1

(
detRg∗(OB), hOB

Q

)
∈ ĈH

1

L1(Y ;S)
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and

ĉ1

(
detRg∗(Gn), hGn

Q

)
−
(
n+ r2 − 1
r2 − 1

)
ĉ1

(
detRg∗(OB), hOB

Q

)
= g∗

(
ĉ1(Gn)

)
.

As before, we can take a C∞ Hermitian metric hB/Y of detRg∗(OB) over Y (C)

and a real valued ϕ ∈ L1
loc(Y (C)) such that hOB

Q = eϕhB/Y , F ∗
∞(hB/Y ) =

hB/Y , F ∗
∞(ϕ) = ϕ (a.e.), and ϕ(z) = 0 for all z ∈ S. We set

gn = exp
(
−
(
n+ r2 − 1
r2 − 1

)
ϕ

)
hGn

Q .

Then,

ĉ1 (detRg∗(Gn), gn)−
(
n+ r2 − 1
r2 − 1

)
ĉ1
(
detRg∗(OB), hB/Y

)
= g∗

(
ĉ1(Gn)

)
and ĉ1 (detRg∗(Gn), gn) ∈ ĈH

1

L1(Y ;S). Moreover, in the same as in Claim
8.4.2, we can see that

g∗
(
ĉ1(Gn)

)
=a(deg(g)bn)+

(
n+ r2 − 1
r2 − 1

)(
(n+ 1)g∗ĉ1(g∗(H)) + g∗ĉ1(ι∗(A))

)
.

Thus, there are W ′
0, . . . ,W

′
r2 ∈ ĈH

1

L1(Y ;S)Q such that

ĉ1 (detRg∗(Gn), gn) =
r2∑
i=0

W ′
in
i + a(bn deg(g)).

Therefore, we have

lim
n→∞

ĉ1 (detRg∗(Gn), gn)
nr2+1

= 0(8.4.7)

in ĈH
1

L1(Y ;S)Q.
Let us consider an exact sequence:

0→ Fn ⊗A⊗−2 ⊗ L⊗−1 → Fn → Fn|M → 0.

Since F is semi-stable and of degree 0 along Xy and L|Xy
= OXy

, we have

f∗(Fn ⊗A⊗−2 ⊗ L⊗−1) = 0

on Y . Thus, the above exact sequence gives rise to

0→ f∗(Fn)→ (f |M )∗(Fn|M )→ R1f∗(Fn ⊗A⊗−2 ⊗ L⊗−1)→ R1f∗(Fn).

Let Qn be the cokernel of

f∗(Fn)→ (f |M )∗(Fn|M )→ g∗(Gn).
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Let U be the maximal Zariski open set of Y such that f is smooth over U and
g is étale over U . Moreover, let Un be the maximal Zariski open set of Y such
that 

(a) Un ⊂ U ,
(b) (f |M )∗(Fn|M ) coincides with g∗(Gn) over Un,
(c) R1f∗(Fn) = 0 over Un, and
(d) f∗(Fn), g∗(Gn) and Qn are locally free over Un.

Then, y ∈ (Un)Q and S ⊆ Un(C). For, since A⊗ω−1
X/Y is ample on Xy and E is

semi-stable on Xy, we can see that R1f∗(Fn) = 0 around y, which implies that
f∗(Fn) is locally free around y. Further, since f∗(Fn) and (f |M )∗(Fn|M ) are
free at y, R1f∗(Fn) = 0 around y, and (f |M )∗(Fn|M ) coincides with g∗(Gn)
around y, we can easily check that Qn is free at y. Thus, y ∈ (Un)Q. In the
same way, we can see that S ⊆ Un(C).

Next let us consider a metric of detQn. g∗(Gn) has the Hermitian metric
(f |M )∗ (kn|M ) over Un(C), where kn is the Hermitian metric of Fn. Let q̃n
be the quotient metric of Qn over Un(C) induced by (f |M )∗ (kn|M ). Let qn
be a C∞ Hermitian metrics of detQn over Y (C) such that F ∗

∞(qn) = qn and
qn(z) = det q̃n(z) for all z ∈ S. (If qn is not invariant under F∞, then consider
(1/2)

(
qn + F ∗∞(qn)

)
.)

Here since detRf∗(Fn) � det f∗(Fn)⊗
(
detR1f∗(Fn)

)−1 and det f∗(Fn) �
det g∗(Gn)⊗ (detQn)−1, we have

detRf∗(Fn) � det g∗(Gn)⊗ (detQn)−1 ⊗ (detR1f∗(Fn)
)−1

.

Further, we have generalized metrics hn, gn and qn of detRf∗(Fn), det g∗(Gn)
and detQn. Thus, there is a generalized metric tn of detR1f∗(Fn) such that
the above is an isometry.

As in the proof of Proposition 3.7.1, let us construct a section of detR1f∗(Fn).
First, we fix a locally free sheaf Pn on Y and a surjective homomorphism
Pn → R1f∗(Fn). Let P ′

n be the kernel of Pn → R1f∗(Fn). Then, P ′
n is a

torsion free sheaf and has the same rank as Pn because R1f∗(Fn) is a torsion

sheaf. Noting that
(∧rkP ′

n P ′
n

)∗
is an invertible sheaf on Y , we can identify

detR1f∗(Fn) with

rkPn∧
Pn ⊗

rkP ′
n∧
P ′
n

∗

.

Moreover, the homomorphism
∧rkP ′

n P ′
n →

∧rkPn Pn induced by P ′
n ↪→ Pn

gives rise to a non-zero section sn of detR1f∗(Fn). Note that sn(y) �= 0 and
sn(z) �= 0 for all z ∈ S because R1f∗(Fn) = 0 at y and z.

Here we set

an = max
z∈S
{log tn(sn, sn)(z)}.
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By our construction, we have

ĉ1(detR1f∗(Fn), e−antn) ∈ ĈH
1

L1(Y ;S).

and an isometry

(detRf∗(Fn), hn) �
(det g∗(Gn), gn)⊗ (detQn, qn)−1 ⊗ (detR1f∗(Fn), e−antn)−1 ⊗ (OY , e−anhcan).

(8.4.8)

Here we claim:

Claim 8.4.9. (detQn, qn) is generated by small sections at y with respect
to S.

Proof. First of all,

g∗ (ι∗(F )⊗ g∗(H)) = g∗(ι∗(F ))⊗H and g∗ (ι∗(A)⊗ g∗(H)) = g∗(ι∗(A))⊗H
are generated by small section at y with respect to S. Thus, by (2) and (3) of
Proposition 3.7.1,

g∗(Gn) = g∗ (Symn(ι∗(F )⊗ g∗(H))⊗ ι∗(A)⊗ g∗(H))

is generated by small sections at y with respect to S. Thus, by (1) of Proposi-
tion 3.7.1, (Qn, q̃n) is generated by small sections at y with respect to S. Hence,
by (4) of Proposition 3.7.1, (detQn, qn) is generated by small sections at y with
respect to S because qn(z) = det q̃n(z) for all z ∈ S.

Next we claim:

Claim 8.4.10. an ≤ O(nr
2
log(n)).

Proof. It is sufficient to show that log tn(sn, sn)(z) ≤ O(nr
2
log(n)) for

each z ∈ S. Let {e1, . . . , eln} be an orthonormal basis of g∗(Gn) ⊗ κ(z) with
respect to g∗(kn|B)(z) such that {e1, . . . , emn

} forms a basis of f∗(Fn)⊗ κ(z).
Then, e1∧· · ·∧emn

, e1∧· · ·∧eln and ēmn+1∧· · ·∧ēln form bases of det(f∗(Fn))⊗
κ(z), det(g∗(Gn)) ⊗ κ(z), and det(Qn) ⊗ κ(z) respectively, and (e1 ∧ · · · ∧
emn

)⊗ (ēmn+1 ∧ · · · ∧ ēln) = e1 ∧ · · · ∧ eln , where ēmn+1, . . . , ēln are images of
emn+1, . . . , eln in Qn ⊗ κ(z). Then,∣∣(e1 ∧ · · · ∧ emn

)⊗ s⊗−1
n

∣∣2
hn

(z)=
|e1 ∧ · · · ∧ eln |2gn

(z)
|ēmn+1 ∧ · · · ∧ ēln |2qn

(z)|sn|2tn(z)
= |sn|−2

tn (z),

where |a|λ =
√
λ(a, a) for λ = hn, gn, qn, tn. Moreover, let Ωz be the Kähler

form induced by the metric of ωX/Y along f−1
C (z). Then, there is a Hermitian

metric vn of H0(f−1
C (z), Fn) defined by

vn(s, s′) =
∫
f−1

C
(z)

kn(s, s′)Ωz.
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Here R1f∗(Fn) = 0 at z. Thus, (detR1f∗(Fn))z is canonically isomorphic to
OY (C),z. Since (P ′

n)z = (Pn)z, under the above isomorphism, sn goes to the

determinant of (Pn)z
id−→ (Pn)z, namely 1 ∈ OY (C),z. Hence, by the definition

of Quillen metric,∣∣(e1 ∧ · · · ∧ emn
)⊗ s⊗−1

n

∣∣2
hn

(z) = det(vn(ei, ej)) exp
(
−T
(
Fn
∣∣
f−1

C
(z)

))
.

Therefore,

log |sn|2tn(z) = T
(
Fn
∣∣
f−1

C
(z)

)
− log det(vn(ei, ej)).

By Corollary 6.5,

T
(
Fn
∣∣
f−1

C
(z)

)
≤ O(nr

2
log(n)).

Thus, in order to get our claim, it is sufficient to show that

− log det(vn(ei, ej)) ≤ O(nr
2−1 log(n)).

Let s be an arbitrary section of H0(f−1
C (z), Fn). Then, by Lemma 8.3.1,

g∗ (kn|B) (s, s)

=
∑

x∈g−1
C

(z)

|s|2kn
(x) ≤ deg(g) sup

x∈f−1
C

(z)

{|s|2kn
(x)} ≤ deg(g)c2n2r2‖s‖2L2

for some constant c independent of n. Thus, by [18, Lemma 3.4] and our choice
of ei’s,

1 = det (g∗ (kn|B) (ei, ej)) ≤
(
deg(g)c2n2r2

)dimC H
0(f−1

C
(z),Fn)

det (vn(ei, ej)) .

Using Riemann-Roch theorem, we can easily see that

dimC H
0(f−1

C (z), Fn) ≤ O(nr
2−1).

Thus, we have

− log det(vn(ei, ej)) ≤ O(nr
2−1 log(n)).

Hence, we obtain our claim.

Let us go back to the proof of our theorem. By the isometry (8.4.8), we
get

− ĉ1(detRf∗(Fn), hn)

= −ĉ1(det g∗(Gn), gn) + ĉ1(detQn, qn) + ĉ1(detR1f∗(Fn), e−antn)− a(an)
=
[
ĉ1(detQn, qn) + ĉ1(detR1f∗(Fn), e−antn) + a (max{−an, 0})

]
+ [−ĉ1(det g∗(Gn), gn) + a(min{−an, 0})] .
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Here we set

αn =
(r2 + 1)!
nr2+1

[ĉ1(detQn, qn)

+ĉ1(detR1f∗(Fn), e−antn) + a (max{−an, 0})],

βn =
(r2 + 1)!
nr2+1

[−ĉ1(det g∗(Gn), gn) + a(min{−an, 0})] .

Then,

−(r2 + 1)!ĉ1(detRf∗(Fn), hn)
nr2+1

= αn + βn.

By (8.4.7) and Claim 8.4.10, lim
n→∞βn = 0 in ĈH

1

L1(Y ;S)Q. Therefore, by
Claim 8.4.6,

d̂isX/Y (E) = lim
n→∞

−(r2 + 1)!ĉ1 (detRf∗(Fn), hn)
nr2+1

= lim
n→∞(αn + βn) = lim

n→∞αn

in ĈH
1

L1(Y ;S)Q. On the other hand, it is obvious that

ĉ1(detR1f∗(Fn), e−antn) and a (max{−an, 0})
is semi-ample at y with respect to S. By Claim 8.4.9, ĉ1(detQn, qn) is semi-
ample at y with respect to S. Thus, αn is semi-ample at y with respect to S.
Hence we get our theorem.

9. Preliminaries for Cornalba-Harris-Bost’s inequality

This section is a preparatory one for the next section, where we will prove
the relative Cornalba-Harris-Bost’s inequality (cf. Theorem 10.1.4). Moreover,
in the next section, we will see how the relative Bogomolov’s inequality (The-
orem 8.1) and the relative Cornalba-Harris-Bost’s inequality (Theorem 10.1.4)
are related (cf. Proposition 10.2.2).

9.1. Normalized Green forms

Let Y be a smooth quasi-projective variety over C, E = (E, h) a Hermitian
vector bundle of rank r on Y . Let π : P(E) → Y be the canonical morphism,
where P(E) = Proj(

⊕
i≥0 Symi(E∨)). We equip the canonical quotient bundle

OE(1) on P(E) with the quotient metric via π∗(E∨)→ OE(1). We will denote
this Hermitian line bundle by OE(1). Furthermore, let Ω = c1(OE(1)) be the
first Chern form.

The purpose of this subsection is that, for every cycle X ⊂ P(E) whose all
irreducible components map surjectively to Y , we give a Green form gX such
that on a general fiber, it is an Ω-normalized Green current in the sense of [5,
2.3.2].



Inequalities for Semistable Families of Arithmetic Varieties 159

Let X be a cycle of codimension p on P(E) such that every irreducible
component of X maps surjectively to Y . An L1-form gX on P(E) satisfying
the following conditions is called an Ω-normalized Green form, (or simply a
normalized Green form when no confusion is likely).

(i) There are d-closed L1-forms γi of type (p− i, p− i) on Y (i = 0, . . . , p)
with

ddc([gX ]) + δX =
p∑
i=0

[
π∗(γi) ∧ Ωi

]
.

(ii) π∗(gX ∧ Ωr−p) = 0.
Note that γp is the degree of X along a general fiber of π.

Let X =
∑

i aiXi be the irreducible decomposition of X as cycles. Let
X̃i → Xi be a desingularization of Xi, and f̃i : X̃i → Y the induced morphism.
The main result of this subsection is the following.

Proposition 9.1.1. With notation as above, there exists an Ω-normalized
Green form gX on P(E) satisfying the following property. If y ∈ Y and f̃i is
smooth over y for every i, then there is an open set U containing y such that
γ0, . . . , γp are C∞ on U and that gX |π−1(U) is a Green form of logarithmic type
for XU , where γ0, . . . , γp are L1-forms in the definition of Ω-normalized Green
form.

To prove the above proposition, let us begin with the following two lemmas.

Lemma 9.1.2. There exist a Green form g of logarithmic type along
X, and d-closed C∞ forms βi of type (p− i, p− i) on Y (i = 0, . . . , p) such that

ddc([g]) + δX =
p∑
i=0

[
π∗(βi) ∧ Ωi

]
.

Proof. We divide the proof into three steps.

Step 1.: The case where Y is projective.
Let g1 be a Green form of logarithmic type along X such that

ddc([g1]) + δX = [ω]

where ω is a smooth form on P(E). Then, we can find a smooth form η on
P(E) of the form

η =
p∑
i=0

π∗(βi) ∧ Ωi

which represents the same cohomology class as ω, where βi is a d-closed C∞-
form of type (p − i, p − i) on Y . Since ω − η is d-exact (p, p)-form, by the
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ddc-lemma, there is a smooth (p− 1, p− 1)-form φ with ω− η = ddc(φ). Thus,
if we set g = g1 − φ, then g is of logarithmic type along X and

ddc([g]) + δX = ddc([g1])− ddc(φ) + δX = [η].

Step 2.: Let h′ be another Hermitian metric of E, and Ω′ the Chern form
of OE(1) arising from h′. In this step, we will prove that if the lemma holds
for h′, then so does it for h.

By our assumption, there exist a Green form g′ of logarithmic type along
X, and d-closed C∞ forms β′

i (i = 0, . . . , p) of type (p− i, p− i) on Y such that

ddc([g′]) + δX =
p∑
i=0

[
π∗(β′

i) ∧ Ω′i
]
.

On the other hand, there is a real C∞-function a on P(E) with Ω′−Ω = ddc(a).
Here note that if v is a ∂ and ∂-closed form on P(E), then ddc(v∧a) = v∧ddc(a).
Thus, it is easy to see that there is a C∞ form θ on P(E) such that

p∑
i=1

π∗(β′
i) ∧ Ω′i = ddc(θ) +

p∑
i=1

π∗(β′
i) ∧ Ωi.

Therefore, if we set g = g′ − θ and βi = β′
i, then we have our assertion for h.

Step 3.: General case.
Using Hironaka’s resolution [14], there is a smooth projective variety Y ′

over C such that Y is an open set of Y ′. Moreover, using [13, Exercise 5.15
in Chapter II], there is a coherent sheaf E′ on Y ′ with E′|Y = E. Further,
taking a birational modification along Y ′ \ Y if necessary, we may assume that
E′ is locally free. Let h′ be a Hermitian metric of E′ over Y ′. Since P(E) is
an Zariski open set of P(E′), let X ′ be the closure of X in P(E′). Then, by
Step 1, our assertion holds for (E′, h′) and X ′. Thus, so does it for (E, h′|Y )
and X. Therefore, by Step 2, we can conclude our lemma.

Lemma 9.1.3. Let g be a Green form of logarithmic type along X and
ω a C∞-form with ddc([g]) + δX = [ω]. If we set ς = π∗(g ∧ Ωr−p), then
ς ∈ L1

loc(Y ) and ddc([ς]) ∈ L1
loc(Ω

1,1
Y ). Moreover, if y ∈ Y and f̃i is smooth

over y for every i, then ς is C∞ around y.

Proof. By Proposition 1.2.5, ς is an L1-function on Y and

ddc([ς]) = ddc(π∗([g ∧ Ωr−p])) = π∗ddc([g ∧ Ωr−p])

= π∗ddc([g]) ∧ Ωr−p = π∗([ω] ∧ Ωr−p)− π∗(δX ∧ Ωr−p)

= π∗[ω ∧ Ωr−p]−
∑
i

aiπ∗(δXi
∧ Ωr−p)

= π∗[ω ∧ Ωr−p]−
∑
i

ai(f̃i)∗[f̃∗i (Ωr−p)].
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Thus, ddc([ς]) ∈ L1
loc(Ω

1,1
Y ). Moreover, if y ∈ Y and f̃i is smooth over y for

every i, then, by the above formula, ddc([ς]) is C∞ around y. Thus, by virtue
of [9, (i) of Theorem 1.2.2], ς is C∞ around y.

Let us start the proof of Proposition 9.1.1. Let g be a Green form con-
structed in Lemma 9.1.2. Then, there are d-closed βi’s with βi ∈ Ap−i,p−i(Y )
and

ddc([g]) + δX =
p∑
i=0

[
π∗(βi) ∧ Ωi

]
.

If we set ς = π∗(g ∧ Ωr−p), then by Lemma 9.1.3, ς is locally an L1-form. We
put

gX = g − π∗(ς)Ωp−1,

which is clearly locally an L1-form on P(E). We will show that gX satisfies the
conditions (i) and (ii). Using

∫
P(E)→Y

Ωr−1 = 1, (ii) can be readily checked.
Moreover,

ddc([gX ]) + δX =
p∑
i=0

[
π∗(βi) ∧ Ωi

]− ddc[π∗(ς)Ωp−1]

= βpΩp + π∗([βp−1]− ddc([ς])) ∧ Ωp−1 +
p−2∑
i=0

[
π∗(βi) ∧ Ωi

]
.

The remaining assertion is easily derived from Lemma 9.1.3.

Remark 9.1.4. Let y be a point of Y such that f̃i is smooth over y for
every i. Then, by Proposition 9.1.1, on the fiber π−1(y), gX |π−1(y) is a Green
form of logarithmic type along Xy. Moreover,

ddc([gX |π−1(y)]) + δXy
= deg(Xy)[Ωp|π−1(y)]

and ∫
π−1(y)

(
gX |π−1(y)

)(
Ωr−p

∣∣
π−1(y)

)
= 0.

Thus, gX |π−1(y) is a Ω-normalized Green form on π−1(y), and it is also a Ω-
normalized Green current in the sense of [5, 2.3.2].

9.2. Associated Hermitian vector bundles

Let GLr = Spec Z[X11, X12, · · · , Xrr]det(Xij) be the general linear group
of rank r and SLr = Spec Z[X11, X12, · · · , Xrr]/(det(Xij) − 1) be the special
linear group of rank r.
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Let ρ : GLr → GLR be a morphism of group schemes. First, we note that

ρ(C)(A) = ρ(C)(A),

where ρ(C) : GLr(C) → GLR(C) is the induced morphism and A ∈ GLr(C).
Indeed, the above equality is nothing but the associativity of the map

Spec C
−−→ Spec C

A−→ GLr
ρ−→ GLR .

Next, we consider the following condition for ρ;

ρ(tA) = tρ(A) for any A ∈ GLr.(9.2.1)

In the group scheme language, this condition means ρ commutes with the trans-
posed morphism.

Let Ur(C) = {A ∈ GLr(C) | tA ·A = Ir} be the unitary group of rank r. If
a group morphism ρ : GLr → GLR commutes with the transposed morphism,
then

IR = ρ(C)(Ir) = ρ(C)(tA ·A)

= ρ(C)(tA) · ρ(C)(A) = tρ(C)(A) · ρ(C)(A),

namely, ρ(C) maps Ur(C) into UR(C).
Let k be an integer. A morphism ρ : GLr → GLR of group schemes is said

to be of degree k if

ρ(tIr) = tkIR for any t.

In the group scheme language, this means that the diagram

GL1
λr−−−−→ GLr

α

� �ρ
GL1

λR−−−−→ GLR

commutes, where λr and λR are given by t 
→ diag(t, t, · · · , t) and α is given
by t 
→ tk.

Let Y be an arithmetic variety, E = (E, h) a Hermitian vector bundle of
rank r on Y and ρ : GLr → GLR be a morphism of group schemes satisfying
commutativity with the transposed morphism. In the following, we will show
that we can naturally construct a Hermitian vector bundle E

ρ
= (Eρ, hρ),

which we will call the associated Hermitian vector bundle with respect to E
and ρ.

First, we construct Eρ. Let {Yα} be an affine open covering such that
φα : E|Yα

∼−→ O⊕r
Yα

gives a local trivialization. On Yα∩Yβ , we set the transition
function gαβ = φα · φ−1

β , which can be seen as an element of GLr(Γ(OYα∩Yβ
)).
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Then we define the associated vector bundle Eρ as the vector bundle of rank
R on Y with the transition functions ρ(Γ(OYα∩Yβ

))(gαβ);

Eρ =
∐
α

O⊕R
Yα

/ ∼ .

Next, we define metric on Eρ. Let hα be the Hermitian metric on O⊕r
Yα

over Yα such that φα : E|Yα

∼−→ O⊕r
Yα

becomes isometry over Yα(C). Let

eα1 = t(1, 0, · · · , 0), · · · , eαr = t(0, · · · , 0, 1) ∈ Γ(O⊕r
Yα

),

fα1 = t(1, 0, · · · , 0), · · · , fαR = t(0, · · · , 0, 1) ∈ Γ(O⊕R
Yα

)

be the standard local frames of O⊕r
Yα

and O⊕R
Yα

. We set

Hα = (hα(eαi , e
α
j ))1≤i,j≤r.

Then Hα is a C∞-map over Yα(C) and, for each point y in Yα(C), Hα(y) is a
positive definite Hermitian matrix. Let ρ(C∞(Yα(C))) : GLr(C∞(Yα(C))) →
GLR(C∞(Yα(C))) be the induced map.

Claim 9.2.2. ρ(C∞(Yα(C)))(Hα) is a C∞-map over Yα(C) and, for each
point y in Yα(C), ρ(C∞(Yα(C)))(Hα)(y) is a positive definite Hermitian matrix.

Proof. The first assertion is obvious. For the second one, we note that
there is a matrix A ∈ GLr(C) such that tA · A = Hα(y). Then it is easy to
see that ρ(C∞(Yα(C)))(Hα)(y) is a positive definite Hermitian matrix by using
(9.2.1).

Now we define a metric hρα on O⊕R
Yα

over Yα by

hρα(fαk , f
α
l ) = ρ(C∞(Yα(C)))(Hα)kl

for 1 ≤ k, l ≤ R.

Claim 9.2.3. {hρα}α glue together to form a Hermitian metric on Eρ.

Proof. Let sα = t(sα1 , · · · , sαR) ∈ Γ(O⊕R
Yα
|Yα∩Yβ

) and sβ = t(sβ1 , · · · , sβR) ∈
Γ(O⊕R

Yβ
|Yα∩Yβ

). Then they give the same section of Eρ|Yα∩Yβ
if t(sα1 , · · · , sαR) =

ρ(gαβ)t(s
β
1 , · · · , sβR). In this case, we write sα ∼ sβ. Now we take sα ∼ sβ

and tα ∼ tβ. Then by a straightforward calculation using (9.2.1) and Hβ =
tgαβHαgαβ , we get hρα(sα, tα) = hρβ (sβ, tβ) on Yα ∩ Yβ .

Remark 9.2.4. Let idr : GLr → GLr be the identity morphism, ρ1 =
(idr)⊗k, ρ2 = Symk(idr), and ρ3 =

∧k(idr). Further, let ρ4 : GLr → GLr be
the group homomorphism given by A 
→ tA−1. Then ρ1, ρ2, ρ3 and ρ4 are of
degree k, k, k and −1, respectively. Let (E, h) be a Hermitian vector bundle
of rank r. Then the associated vector bundles are (E⊗k, h⊗k), (Symk(E), hρ2),
(
∧k(E), hρ3) and (E∨, h∨). Note, for example, that hρ2 is not the quotient

metric hquot given by E⊗k → Symk(E); Indeed, for a locally orthogonal ba-
sis e1, · · · , er of E and α1, · · · , αr ∈ Z, hρ2(eα1

1 · · · eαr
r , eα1

1 · · · eαr
r ) = 1, while

hquot(eα1
1 · · · eαr

r , eα1
1 · · · eαr

r ) = α1! · · ·αr!/r!.
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9.3. Chow forms and their metrics

Let Y be a regular arithmetic variety, and E = (E, h) a Hermitian vector
bundle of rank r on Y .

Let ρ : GLr → GLR be a group scheme morphism of degree k commuting
with the transposed morphism and E

ρ
= (Eρ, hρ) the associated Hermitian

bundle of rank R. We give the quotient metric on OEρ(1) via π∗(Eρ∨) →
OEρ(1). We denote this Hermitian line bundle by OEρ(1). Further, let Ωρ =
c1(OEρ(1)) be the first Chern form.

Let X be an effective cycle in P(Eρ) such that X is flat over Y with the rel-
ative dimension d and degree δ on the generic fiber. Let gX be a Ωρ-normalized
Green form for X and we set X̂ = (X, gX). Then X̂ ∈ ẐR−1−d

L1 (P(Eρ)). Thus

ĉ1(OEρ(1))d+1 · X̂ belongs to ĈH
R

L1(P(Eρ))Q. Hence,

π∗
(
ĉ1(OEρ(1))d+1 · X̂

)
∈ ĈH

1

L1(Y )Q.

Let us consider elementary properties of π∗
(
ĉ1(OEρ(1))d+1 · X̂

)
.

Proposition 9.3.1. Let X =
∑l
k=1 akXk be the irreducible decomposi-

tion of X as cycles. Let φk : X̃k → Xk be a generic resolution of singularities
of Xk for each k, i.e., φk is a proper birational morphism such that (X̃k)Q is
smooth over Q. Let ik : Xk ↪→ P(Eρ) be the inclusion map and jk : X̃k → P(Eρ)
the composition map ik · φk. Also we let fk : Xk → Y be the composition map
π · ik and f̃k : X̃k → Y the composition map π · jk. Let Y0 be the maximal
open set of Y such that f̃k is smooth over there for every k. Then, we have the
following.

(1) π∗
(
ĉ1(OEρ(1))d+1 · X̂

)
=

l∑
k=1

akf̃k∗(ĉ1(j∗kOEρ(1))d+1).

In particular, π∗
(
ĉ1(OEρ(1))d+1 · X̂

)
is independent of the choice of normal-

ized Green forms gX for X, and π∗
(
ĉ1(OEρ(1))d+1 · X̂

)
∈ ĈH

1

L1(Y ;
Y0(C)).

(2) Let y be a closed point of (Y0)Q, and Γ′ the closure of {y} in Y . Here
we choose gX as in Proposition 9.1.1. Then, there is a representative (Z, gZ)
of ĉ1(OEρ(1))d+1 · X̂ such that π−1(Γ′) and Z intersect properly, and gZ |π−1(z)

is locally integrable for each z ∈ OGal(Q/Q)(y).

Proof. We may assume that X is reduced and irreducible, so that we will
omit index k in the following.

(1) Let gX be a Ωρ-normalized Green form for X. Then, by virtue of
Proposition 2.4.2,

ĉ1(OEρ(1))d+1 · X̂ = j∗
(
ĉ1(j∗OEρ(1))d+1

)
+ a(Ωd+1

ρ ∧ [gX ]).
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Therefore, since π∗(gX ∧ Ωd+1
ρ ) = 0 by the definition of gX , we get

π∗
(
ĉ1(OEρ(1))d+1 · X̂

)
= π∗j∗

(
ĉ1(j∗OEρ(1))d+1

)
= f̃∗

(
ĉ1(j∗OEρ(1))d+1

)
.

(2) First of all, we need the following lemma.

Lemma 9.3.2. Let T be a quasi-projective integral scheme over Z,
L1, . . . , Ln line bundles on T , and Γ a cycle on T . Then, there is a cycle
Z on T such that Z is rationally equivalent to c1(L1) · · · c1(Ln), and that Z
and Γ intersect properly.

Proof. We prove this lemma by induction on n. First, let us consider the
case n = 1. Let Γ =

∑r
i=1 aiΓi be the irreducible decomposition as cycles. Let

γi be a closed point of Γi \
⋃
j 
=i Γj , and mi the maximal ideal at γi. Let H be

an ample line bundle on X. Choose a sufficiently large integer N such that

H1(T,H⊗N ⊗m1 ⊗ · · · ⊗mr) = H1(T,H⊗N ⊗ L1 ⊗m1 ⊗ · · · ⊗mr) = 0.

Then, the natural homomorphisms

H0(T,H⊗N )→
r⊕
i=1

H⊗N ⊗ κ(γi)

and H0(T,H⊗N ⊗ L1)→
r⊕
i=1

H⊗N ⊗ L1 ⊗ κ(γi)

are surjective. Thus, there are sections s1 ∈ H0(T,H⊗N ) and s2 ∈ H0(T,
H⊗N ⊗ L1) such that s1(γi) �= 0 and s2(γi) �= 0 for all i. Then, div(s2) −
div(s1) ∼ c1(L1), and div(s2)− div(s1) and Γ intersect properly.

Next we assume n > 1. Then, by hypothesis of induction, there is a cycle
Z ′ such that Z ′ ∼ c1(L1) · · · c1(Ln−1), and Z ′ and Γ intersect properly. Let
Z ′ =

∑
j bjTj be the decomposition as cycles. We set Γj = (Tj ∩ Supp(Γ))red.

Then, using the case n = 1, there is a cycle Zj such that Zj ∼ c1(Ln|Tj
),

and Zj and Γj intersect properly. Thus, if we set Z =
∑
j bjZj , then Z ∼

c1(L1) · · · c1(Ln), and Z and Γ intersect properly.

Let us go back to the proof of (2) of Proposition 9.3.1. By virtue of
Lemma 9.3.2, there is a cycle Z on X such that Z ∼ c1 (i∗OEρ(1))d+1, and
that Z and f−1(Γ′) intersect properly. Then, Z ∼ c1(OEρ(1))d+1 · X, and Z
and π−1(Γ′) intersect properly. Let φX be a Green form of logarithmic type
for X. Then, since

ĉ1(OEρ(1))d+1 · (X,φX) ∈ ĈH
R
(P(Eρ)),

there is a Green form φZ of logarithmic type for Z such that (Z, φZ) is a
representative of ĉ1(OEρ(1))d+1 · (X,φX). Thus, if we set

gZ = φZ + c1(OEρ(1))d+1 ∧ (gX − φX),
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then (Z, gZ) is a representative of ĉ1(OEρ(1))d+1 · X̂. Since Z and π−1(Γ′)
intersect properly and gX has the property in Proposition 9.1.1, we can easily
see that gZ is locally integrable along π−1(z) for each z ∈ OGal(Q/Q)(y).

Here we recall some elementary results of Chow forms. Details can be
found in [4]. Consider the incidence subscheme Γ in the product

P(Eρ)×Y P(Eρ∨)d+1 = P(Eρ)×Y P(Eρ∨)×Y · · · ×Y P(Eρ∨).

Let ı : Γ → P(Eρ) and  : Γ → P(Eρ∨)d+1 be projection maps. The Chow
divisor Ch(X) of X is defined by

Ch(X) = ∗ı∗(X).

The following facts are well-known:

1. Ch(X) is an effective cycle of codimension 1 in P(Eρ∨)d+1;

2. Ch(X) is flat over Y ;

3. For any y ∈ Y , Ch(X)y is a divisor of type (δ, δ, · · · , δ) in P(Eρ∨)d+1
y .

Let p : P(Eρ∨)d+1 → Y be the canonical morphism, and pi : P(Eρ∨)d+1 →
P(Eρ∨) the projection to the i-th factor. Then, by the above properties, there
is a line bundle L on Y and a section ΦX of

H0

(
P(Eρ∨)d+1, p∗(L)⊗

d+1⊗
i=1

p∗iOEρ∨(δ)

)

such that div(ΦX) = Ch(X). Since

p∗

(
p∗(L)⊗

d+1⊗
i=1

p∗iOEρ∨(δ)

)
= L⊗ (Symδ(Eρ))⊗d+1,

we may view ΦX as an element of H0(Y, L⊗ (Symδ(Eρ))⊗d+1). We say ΦX is
a Chow form of X. Clearly ΦX is uniquely determined up to H0(Y,O×

Y ).
As in [4, Proposition 1.2 and its remark], we have

c1(L) = π∗
(
c1(OEρ(1))d+1 ·X) .

We give a generalized metric hL on L so that L = (L, hL) satisfies the equality

ĉ1(L) = π∗
(
ĉ1(OEρ(1))d+1 · X̂

)
(9.3.3)

in ĈH
1

L1(Y ).
Note that we can also give a metric L by the equation

OP(Eρ∨)d+1(Ch(X)) = p∗(L)⊗
d+1⊗
i=1

p∗iOE∨(δ)
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and by suitably metrizing other terms, as is implicitly done in [27, 1.5]. We do
not however pursue this here.

9.4. Restriction of Chow forms on fibers

In this section we will consider the restriction of Chow forms on fibers.
Let Y,E, ρ,X be as in Section 9.3. Let y be a closed point of YQ. Let Γ′

be the closure of {y} in Y , and Γ the normalization of Γ′. Let f : Γ → Y be
the natural morphism. We set EΓ = f∗(E) and EΓ = (EΓ, f

∗(h)). Also we put
(Eρ)Γ = f∗(Eρ) and (Eρ)Γ = ((Eρ)Γ, f∗(hρ)). Then (EΓ)ρ is equal to (Eρ)Γ,
so that we denote (Eρ)Γ by EρΓ, and (Eρ)Γ by EρΓ. Considering the following
fiber product

P(EρΓ)
f ′

−−−−→ P(Eρ)�π′
�π

Γ
f−−−−→ Y

we set XΓ = f ′∗(X). Then XΓ is flat over Γ with the relative dimension d and
the degree δ on the generic fiber. For this quadruplet (Γ, EΓ, ρ,XΓ) in place of
the quadruplet (Y,E, ρ,X), we can define in the same way the Hermitian line
bundle OEρ

Γ
(1) on P(EρΓ), an arithmetic L1-divisor X̂Γ = (XΓ, gXΓ) on P(EρΓ)

and the arithmetic L1-divisor π′
∗
(
ĉ1(OEρ

Γ
(1))d+1 · X̂Γ

)
on Γ. Further, we have

LΓ = (LΓ, hΓ) satisfying

ĉ1(LΓ) = π′
∗
(
ĉ1(OEρ

Γ
(1))d+1 · X̂Γ

)
in ĈH

1

L1(Γ). We also have Ch(XΓ). Moreover, letting p′i : P((EρΓ)∨)d+1 →
P((EρΓ)∨) be the i-th projection, there is a section ΦXΓ of

H0

(
P((EρΓ)∨)d+1, p′∗(LΓ)⊗

d+1⊗
i=1

p′i
∗O(Eρ

Γ)∨(δ)

)
= H0

(
Γ, LΓ ⊗ (Symδ((EρΓ)∨))⊗d+1

)
,

such that div(ΦXΓ) = Ch(XΓ).
Let us consider the following fiber product,

P((EρΓ)∨)d+1 g′−−−−→ P((Eρ)∨)d+1�p′ �p
Γ

f−−−−→ Y

Then, we have the following proposition.
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Proposition 9.4.1. (i) g′∗ Ch(X) = Ch(XΓ). Moreover, we can choose
ΦXΓ to be f∗ΦX .

(ii) Let X1, · · · , Xl be the irreducible components of Xred. Assume that,
for every 1 ≤ i ≤ l, there is a generic resolution of singularities φi : X̃i → Xi

such that the induced map X̃i → Y is smooth over y for every i. Then the
equality

f∗π∗
(
ĉ1(OEρ(1))d+1 · X̂

)
= π′

∗f
′∗
(
ĉ1(OEρ(1))d+1 · X̂

)
= π′

∗
(
ĉ1(OEρ

Γ
(1))d+1 · X̂Γ

)
.

holds in ĈH
1

L1(Γ). In other words, f∗(L, hL) = (LΓ, hLΓ).

Proof. (i) If f is flat, then this follows from the base change theorem. In
the case f is not flat, we refer to the remark [5, 4.3.2(i)], or we can easily see
this using Appendix A.

(ii) We take gX as in Proposition 9.1.1. Let α = ĉ1(OEρ(1))d+1 · X̂ ∈
ĈH

1

L1(Y ). By Proposition 9.3.1, we can take a representative (Z, gZ) of α such
that Z and π−1(Γ′) intersect properly, and gZ is locally integrable along π−1(w)
for all w ∈ OGal(Q/Q)(y). Now we have

f∗π∗(α) = f∗(π∗Z, [π∗gZ ])

=

f∗π∗Z, ∑
w∈OGal(Q/Q)(y)

(∫
π−1(w)

gZ

)
· w
 .

On the other hand, we have

π′
∗f

′∗(α) =

π′
∗f

′∗Z,
∑

w∈OGal(Q/Q)(y)

(∫
π−1(w)

gZ

)
· w
 .

Moreover, by Appendix A, f∗π∗Z is equal to π′
∗f

′∗Z as a cycle. Thus we have
proven the first equality.

Now we will prove the second equality. Let φX be a Green form of loga-
rithmic type for X. Since

f ′∗ :
⊕
i≥0

ĈH
i
(P(Eρ))→

⊕
i≥0

ĈH
i
(P(EρΓ))

is a homomorphism of rings (cf. [9, 5) of Theorem in 4.4.3]). Thus,

f ′∗
(
ĉ1(OEρ(1))d+1 · (X,φX)

)
= f ′∗ĉ1(OEρ(1))d+1 · f ′∗(X,φX).
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Therefore, since we take gX as in Proposition 9.1.1, we can see

f ′∗
(
ĉ1(OEρ(1))d+1 · X̂

)
= f ′∗

(
ĉ1(OEρ(1))d+1 · ((X,φX) + (0, gX − φX))

)
= f ′∗

(
ĉ1(OEρ(1))d+1 · (X,φX)

)
+ a
(
f ′∗(c1(OEρ(1))d+1 ∧ (gX − φX))

)
= f ′∗ĉ1(OEρ(1))d+1 · f ′∗(X,φX)

+ a
(
f ′∗(c1(OEρ(1))d+1 ∧ (gX − φX))

)
= f ′∗ĉ1(OEρ(1))d+1 · f ′∗(X, gX)

Moreover, as pointed out in Remark 9.1.4, f ′∗gX is a normalized Green form
for f ′∗X. Thus we have got the second equality.

9.5. Chow stability and field extensions

Let ρ : GLr → GLR be a group scheme morphism of degree k commuting
with the transposed morphism. Let S be a ring (commutative, with the multi-
plicative identity). For a positive integer δ and d, we consider Symδ(SR)⊗d+1.
Then through the induced group homomorphism ρ(S) : GLr(S) → GLR(S),
GLr(S) (or SLr(S)) acts on Symδ(SR)⊗d+1.

Proposition 9.5.1. Let K be an infinite field and L an extension field
of K. Let P be a homogeneous polynomial of degree e on Symδ(LR)⊗d+1, i.e.,
P ∈ Syme(Symδ(LR)⊗d+1∨). Then we have the following.

(i) P is SLr(K)-invariant if and only if P is SLr(L)-invariant.
(ii) If P is SLr(K)-invariant, then

P (vσ)r = (detσ)ek(d+1)δP (v)r

in L for all v ∈ Symδ(LR)⊗d+1 and σ ∈ GLr(L).

Proof. (i) We only need to prove the ‘only if’ part. Let SL(P ) = {σ ∈
SLr(L) | P σ = P} be the stabilizer of P in SLr(L). SL(P ) is a closed algebraic
set of SLr(L) and contains SLr(K). Since SLr(K) is Zariski dense in SLr(L),
SL(P ) must coincide with SLr(L).

(ii) Let M be an extension field of L such that it has an r-th root ξ of detσ.
If σ′ is defined by σ = ξσ′, then σ′ ∈ SLr(M). Since P is SLr(M)-invariant by
(i), we find

P (vσ)r = P ((ρ(C)(ξσ′)) · v)r = P
(
(ξkρ(C)(σ′)) · v)r

= ξrek(d+1)δP (v)r = (detσ)ek(d+1)δP (v)r.

in M . Hence the equality holds in L because both sides belong to L.
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Remark 9.5.2. More strongly, we can show that, for any integral do-
main S of characteristic zero, if P ∈ Syme(Symδ(SR)⊗d+1∨) is SLr(Z)-
invariant, then P is SLr(S)-invariant.

Now let Y , E, ρ and X be as in Section 9.3. Recall that for a closed point
y of YQ, Ch(X)y is a divisor of type (δ, δ, · · · , δ) in P(Eρ∨)d+1

y . Hence the Chow
form restricted on y, i.e., ΦX |y = ΦXy

is an element of Symδ(KR)d+1. We say
that Xy is Chow semi-stable if ΦXy

∈ Symδ(KR)d+1 is semi-stable under the
action of SLr(K), where K is the residue field of y.

Lemma 9.5.3. There are a positive integer e and SLr(Q)-invariant ho-
mogeneous polynomials P1, · · · , Pl ∈ Syme(Symδ(ZR)d+1∨), which depend only
on ρ, d and δ, with the following property. For any closed points y ∈ YQ, if Xy

is Chow semistable, then there is a Pi such that Pi(ΦXy
) �= 0.

Proof. SLr(Q) acts linearly on Symδ(QR)d+1. Since SLr(Q) is a reductive
group, we can take SLr(Q)-invariant homogeneous polynomials Q1, · · · , Ql such
that they form generators of the algebra of SLr(Q) invariant polynomials on
Symδ(QR)d+1. By clearing the denominators, we may assume that Q1, · · · , Ql
is defined over Z. Let ei be the degree of Qi for i = 1, · · · , l. We take a positive
integer e such that ei|e for i = 1, · · · , l. We set Pi = Q

e/ei

i .
Let us check that Pi’s have the desired property. Since Xy is Chow

semistable, there is a SLr(K)-invariant homogeneous polynomial F on
Symδ(KR)d+1 with F (ΦXy

) �= 0, where K is the residue field of y. Let us
choose α1, . . . , αn ∈ K and homogeneous polynomials F1, . . . , Fn over Q such
that F = α1F1 + · · ·+αnFn and that α1, . . . , αn are linearly independent over
Q. Here, for σ ∈ SLr(Q),

F σ = α1F
σ
1 + · · ·+ αnF

σ
n

and F σi ’s are homogeneous polynomials over Q. Thus, we can see that Fi’s are
SLr(Q)-invariant. Moreover, since

F (ΦXy
) = α1F1(ΦXy

) + · · ·+ αnFn(ΦXy
),

there is Fi with Fi(ΦXy
) �= 0. On the other hand, Fi is an element of

Q[Q1, . . . , Ql]. Thus, we can find Qj with Qj(ΦXy
) �= 0, namely Pj(ΦXy

) �=
0.

10. Semi-stability and positiveness in a relative case

10.1. Cornalba-Harris-Bost’s inequality in a relative case

Let Y be an arithmetic variety and E = (E, h) a Hermitian vector bundle
of rank r on Y . Let ρ : GLr → GLR be a group scheme morphism of degree k
commuting with the transposed morphism.
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Before we prove the relative Cornalba-Harris-Bost’s inequality, we need
three lemmas.

Lemma 10.1.1. Let L be a line bundle on Y . Let P be an element
of Syme(Symδ(ZR)d+1∨)\{0} and suppose that P is SLr(Q)-invariant. Then
there is a polynomial map of sheaves

ϕP : L⊗ Symδ(Eρ)⊗d+1 → L⊗er ⊗ (detE)⊗ek(d+1)δ

given by P r, namely, ϕP is locally defined by the evaluation in terms of P r.

Proof. Let U be a Zariski open set, and φ : E|U ∼−→ O⊕n
U and ψ : L|U ∼−→

OU local trivializations of E and L respectively. Then, by the construction of
Eρ, we have

φρ,δ,d :
(
Symδ (Eρ)⊗d+1

)∣∣∣
U

∼−→ Symδ
(O⊕R

U

)⊗d+1
.

Thus we get

ψ ⊗ φρ,δ,d :
(
L⊗ Symδ (Eρ)⊗d+1

)∣∣∣
U

∼−→ Symδ
(O⊕R

U

)⊗d+1
.

Here, we define

ϕP |U :
(
L⊗ Symδ(Eρ)⊗d+1

)∣∣∣
U
→
(
L⊗er ⊗ (detE)⊗ek(d+1)δ

)∣∣∣
U

such that the following diagram is commutative.(
L⊗ Symδ (Eρ)⊗d+1

)∣∣∣
U

ψ⊗φρ,δ,d−−−−−−→ Symδ
(O⊕R

U

)⊗d+1

ϕP |U
� �P r

(
L⊗er ⊗ (detE)⊗ek(d+1)δ

)∣∣
U

ψer⊗det(φ)ek(d+1)δ

−−−−−−−−−−−−→ OU ,
where P r is the map given by the evaluation in terms of the polynomial P r.
In order to see that the local ϕP |U glues together on Y , it is sufficient to show
that ϕP |U does not depend on the choice of local trivializations φ and ψ. Let
φ′ : E|U ∼−→ O⊕n

U and ψ′ : L|U ∼−→ OU be another local trivializations. In the
same way, we have the following commutative diagram.(

L⊗ Symδ (Eρ)⊗d+1
)∣∣∣
U

ψ′⊗φ′
ρ,δ,d−−−−−−→ Symδ

(O⊕R
U

)⊗d+1

ϕ′
P |U
� �P r

(
L⊗er ⊗ (detE)⊗ek(d+1)δ

)∣∣
U

ψ′er⊗det(φ′)ek(d+1)δ

−−−−−−−−−−−−−→ OU
We set the transition functions g = φ · (φ′)−1 and h = ψ · (ψ′)−1. Then by a
straightforward calculation using (ii) of Proposition 9.5.1, we get, on U ,

P r · (ψ ⊗ φρ,δ,d) = hre det(g)ek(d+1)δP r · (ψ′ ⊗ φ′ρ,δ,d),
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which implies(
ψer ⊗ det(φ)ek(d+1)δ

)
· (ϕP |U )

= hre det(g)ek(d+1)δ
(
ψ′er ⊗ det(φ′)ek(d+1)δ

)
· (ϕ′

P |U ) .

Here note that

hre det(g)ek(d+1)δ =
(
ψer ⊗ det(φ)ek(d+1)δ

)
·
(
ψ′er ⊗ det(φ′)ek(d+1)δ

)−1

.

Thus, we obtain ϕP |U = ϕ′
P |U .

Suppose now L is given a generalized metric hL. Since both sides of

ϕP : L⊗ Symδ(Eρ)⊗d+1 → L⊗er ⊗ (detE)⊗ek(d+1)δ

in the lemma above are then equipped with metrics, we can consider the norm
of ϕP . Before evaluating the norm of ϕP , we define the norm of P as follows;
We first define the metric ‖ · ‖can on Symδ(Cn)⊗d+1 induced from the usual
Hermitian metric on C; We then define |||P ||| by

|||P ||| = sup
v∈Symδ(Cn)⊗d+1\{0}

|P (v)|
‖v‖ecan

,

where P is regarded as an element of Syme((Symδ(Cm))⊗d+1)∨).

Lemma 10.1.2. For any section s ∈ H0(Y, L ⊗ (Symδ(Eρ))⊗d+1) and
any complex point y ∈ Y (C) around which hL ⊗ (Symδ(hρ))⊗d+1 is C∞, we
have

‖ϕP (s)‖(y) ≤ |||P |||r ‖s‖er(y).

Proof. By choosing bases, E(y) and in L(y) are isometric to Cn and C
with the canonical metrics, respectively. Then, with respect to these bases, E

ρ

is by its construction isomorphic to CR with the canonical metric. Recalling
that ϕP is given by the evaluation by P r once we fix local trivializations of E
and L, the desired inequality follows from the definition of |||P |||.

Now let X be an effective cycle in P(Eρ) such that X is flat over Y with
the relative dimension d and the degree δ on the generic fiber. In Section
9.3 we constructed a Chow form ΦX of X, which is an element of H0(Y, L ⊗
(Symδ(Eρ))⊗d+1). Recall that L is given a generalized metric by (9.3.3). For
each irreducible component Xi of Xred, let X̃i → Xi be a generic resolution of
singularities of Xi. Moreover, let Y0 be the maximal open set of Y such that
the induced morphism X̃i → Y is smooth over Y0 for every i.

Further, we fix terminologies. Let T be a quasi-projective scheme over Z,
t a closed point of TQ, and K the residue field of t. By abuse use of notation,
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let t : Spec(K) → T be the induced morphism by t. We say t is extensible in
T if t : Spec(K) → T extends to t̃ : Spec(OK) → T , where OK is the ring of
integers in K. Note that if T is projective over Z, then every closed point of
TQ is extensible in T .

Let V be a set, φ a non-negative function on V , and S a finite subset of
V . We define the geometric mean g.m.(φ;S) of φ over S to be

g.m.(φ;S) =

(∏
s∈S

φ(s)

)1/#(S)

.

We will evaluate the norm of ΦX .

Lemma 10.1.3. There is a constant c1(R, d, δ) depending only on R, d
and δ with the following property. For any closed points y of (Y0)Q with y
extensible in Y ,

g.m.
(
‖ΦX‖L⊗(Symδ(E

ρ
))⊗d+1 ; OGal(Q/Q)(y)

)
≤ c1(R, d, δ).

Proof. Let K be the residue field of y. Let Γ be the normalization of the
closure of {y} in Y . Then, since y is extensible in Y , Γ = Spec(OK). Thus,
by virtue of Proposition 9.4.1, we may assume Y = Spec(OK). In this case,
the estimate of the Chow form was already given in [4, Proposition 1.3] and [5,
4.3]. Indeed if we let kL be the metric on L such that

‖ΦX‖(L,kL)⊗(Symδ(E
ρ
))⊗d+1(w) = 1

for every w ∈ OGal(Q/Q)(y), then d̂eg(L, hL) = hOE(1)
(X) and d̂eg(L, kL) =

hHerm(Ch(X)), in the notation of [5].

Now we will state a relative case of Cornalba-Harris-Bost’s inequality.

Theorem 10.1.4. Let Y be a regular arithmetic variety, E = (E, h)
a Hermitian vector bundle of rank r on Y , ρ : GLr → GLR a group scheme
morphism of degree k commuting with the transposed morphism. Let X be an
effective cycle in P(Eρ) such that X is flat over Y with the relative dimension d
and degree δ on the generic fiber. Let X1, . . . , Xl be the irreducible components
of Xred, and X̃i → Xi a generic resolution of singularities of Xi. Let Y0 be the
maximal open set of Y such that the induced morphism X̃i → Y is smooth over
Y0 for every i. Let (B, hB) be a line bundle equipped with a generalized metric
on Y given by the equality :

ĉ1(B, hB) = rπ∗
(
ĉ1(OEρ(1))d+1 · X̂

)
+ kδ(d+ 1)ĉ1(E).

Then, hB is C∞ over Y0. Moreover, there are a positive integer e = e(ρ, d, δ),
a positive integer l = l(ρ, d, δ), a positive constant C = C(ρ, d, δ), and sections
s1, . . . , sl ∈ H0(Y,B⊗e) with the following properties.
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(i) e, l, and C depend only on ρ, d, and δ.
(ii) For a closed point y of YQ, if Xy is Chow semistable, then si(y) �= 0

for some i.
(iii) For all i and all closed points y of (Y0)Q with y extensible in Y ,

g.m.
((
h⊗eB
)
(si, si); OGal(Q/Q)(y)

)
≤ C.

In particular, if we set

β = e
(
rπ∗
(
ĉ1(OEρ(1))d+1 · X̂

)
+ kδ(d+ 1)ĉ1(E)

)
+ a(logC),

then, for any closed point y ∈ (Y0)Q with Xy Chow semistable, there is a
representative (D, g) of β such that D is effective, y �∈ D, and that∑

w∈OGal(Q/Q)(z)

g(w) ≥ 0

for all z ∈ (Y0)Q with z extensible in Y .

Note that if ρ is the identity morphism, then, by the proof below, C(ρ, d, δ)
is depending only on r, d, δ.

Proof. First of all, by Proposition 9.3.1,

rπ∗
(
ĉ1(OEρ(1))d+1 · X̂

)
+ kδ(d+ 1)ĉ1(E) ∈ ĈH

1

L1(Y ;Y0(C)).

Thus, hB is C∞ over Y0(C).
By Lemma 9.5.3, there are a positive integer e and SLr(Q)-invariant ho-

mogeneous polynomials P1, · · · , Pl ∈ Syme(Symδ(ZR)d+1∨) depending only on
ρ, d and δ such that if Xy is Chow semistable for a closed point y of YQ, then
Pi(ΦXy

) �= 0 for some Pi. For later use, we put c2(ρ, d, δ) = max{|||P1|||, · · · ,
|||Pl|||}, which is a constant depending only on ρ, d and δ.

Recall that the Chow form ΦX is an element ofH0(Y, L⊗(Symδ(Eρ))⊗d+1)
and by Lemma 10.1.1 Pi induces a polynomial map of sheaves

ϕPi
: L⊗ Symδ(Eρ)⊗d+1 → L⊗er ⊗ (detE)ek(d+1)δ.

Hence we have

ϕPi
(ΦX) ∈ H0

(
Y, L⊗er ⊗ (detE)ek(d+1)δ

)
= H0(Y,B⊗e)

by (9.3.3). Here we set si = ϕPi
(ΦX). Then, the property (ii) is obvious by

the construction of ϕPi
and (i) of Proposition 9.4.1.

Now we will evaluate ‖si‖. Let y be a closed point of (Y0)Q with y exten-
sible in Y . Combining Lemmas 10.1.2 and 10.1.3, we have

g.m.
(
‖si‖; OGal(Q/Q)(y)

)
≤ g.m.

(
|||Pi|||r ‖ΦX‖er; OGal(Q/Q)(y)

)
≤ c2(ρ, d, δ)rc1(R, d, δ)er.
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Now we put

C(ρ, d, δ) = c1(R, d, δ)2rc2(ρ, d, δ)2er,

which is a positive constant depending only on ρ, d and δ. Thus, we get (iii).

Remark 10.1.5. Here let us consider the geometric analogue of The-
orem 10.1.4. Let Y be an algebraic variety over an algebraically closed field
k, E a vector bundle of rank r, ρ : GLr → GLR a group scheme morphism of
degree l commuting with the transposed morphism. Let X be an effective cycle
in P(Eρ) such that X is flat over Y with the relative dimension d and degree δ
on the generic fiber. Here we set

bX/Y (E, ρ) = rπ∗
(
c1(OEρ(1))d+1 ·X)+ lδ(d+ 1)c1(E),

which is a divisor on Y . In the same way as in the proof of Theorem 10.1.4
(actually, this case is much easier than the arithmetic case), we can show the
following.

There is a positive integer e depending only on ρ, d, and δ such
that, if Xy is Chow semi-stable for some y ∈ Y , then

H0(Y,OY (ebX/Y (E, ρ)))⊗OY → OY (ebX/Y (E, ρ))

is surjective at y.

This gives a refinement of [4, Theorem 3.2].

10.2. Relationship of two theorems

In this subsection we will see some relationship between the relative Bogo-
molov’s inequality (Theorem 8.1) and the relative Cornalba-Harris-Bost’s in-
equality (Theorem 10.1.4). For this purpose, we will first show a more intrinsic
version of Theorem 10.1.4.

Proposition 10.2.1. Let f : X → Y be a flat morphism of regular
projective arithmetic varieties with dim f = d. Let L be a relatively very ample
line bundle such that E = f∗(L) is a vector bundle of rank r on Y . Let η be
the generic point of X and δ = deg(Ldη). Moreover, let i : X → P(E∨) be the
embedding over Y . Assume that E is equipped with an Hermitian structure h
so that L is also endowed with the Hermitian structure by i∗OE∨(1) � L. Let
Y0 be the maximal open set of Y such that f is smooth over Y0. Then, there is
a positive integer e(r, d, δ) and a positive constant C(r, d, δ) depending only on
r, d, δ with the following properties. If we set

β = e(r, d, δ)
(
rf∗(ĉ1(L)d+1)− δ(d+ 1)ĉ1(E)

)
+ a(logC(r, d, δ)),

then, for any closed point y ∈ (Y0)Q with Xy Chow semistable, there is a
representative (D, g) of β such that D is effective, y �∈ D, and∑

w∈OGal(Q/Q)(z)

g(w) ≥ 0
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for all z ∈ (Y0)Q.

Proof. We identify X with its image by i. Let π : P(E) → Y be the
projection. Then, by Proposition 9.3.1, we get

π∗
(
ĉ1(OE∨(1))d+1 · X̂

)
= f∗(ĉ1(L)d+1)

Thus, applying Theorem 10.1.4 for (Y,E∨, id, X), we get our assertion.

The following proposition will be derived from Theorem 8.1.

Proposition 10.2.2. Let f : X → Y be a projective morphism of regu-
lar arithmetic varieties such that every fiber of fC : X(C)→ Y (C) is a reduced
and connected curve with only ordinary double singularities. We assume that
the genus g of the generic fiber of f is greater than or equal to 1. Let L be a
line bundle on X such that (1)the degree δ of L on the generic fiber is greater
than or equal to 2g + 1, (2) E = f∗(L) is a vector bundle of rank r on Y (ac-
tually r = δ + 1 − g), and that (3) f∗(E) → L is surjective. Assume that E
is equipped with an Hermitian structure h so that L is also endowed with the
quotient metric by f∗(E)→ L. Let Y0 be the maximal open set of Y such that
f is smooth over Y0. Then, for any closed points y of (Y0)Q,

rf∗(ĉ1(L)2)− 2δĉ1(E)

is weakly positive at y with respect to any finite subsets of Y0(C).

Note that if the base space is Spec(OK), then the second author showed in
[21, Theorem 1.1] the above inequality (under weaker assumptions) using [18,
Corollary 8.9]. Since we can prove Proposition 10.2.2 in the same way as [21,
Theorem 1.1], we will only sketch the proof.

Proof. Let S = Ker(f∗(E) → L) and hS the submetric of S induced by
h. Then, by [7], Sz is stable for all z ∈ Y0(C). Applying Theorem 8.1 for
S = (S, hS), we obtain that if y is a closed point of (Y0)Q, then

f∗(2(r − 1)ĉ2(S)− (r − 2)ĉ1(S)2)

is weakly positive at y with respect to any finite subsets of Y0(C). If we set
ρ = ĉ2(f∗E)− ĉ2(S ⊕ L), then there is g ∈ L1

loc(Y (C)) such that f∗(ρ) = a(g),
g is C∞ over Y0(C), and g > 0 on Y0(C). Now by a straightforward calculation,
we have

f∗(2(r − 1)ĉ2(S)− (r − 2)ĉ1(S)2) + 2(r − 1)f∗(ρ)

= f∗
(
2(r − 1)ĉ2(f∗E)− (r − 2)ĉ1(f∗E)2

)
+ f∗

(
rĉ1(L)2 − 2ĉ1(f∗E) · ĉ1(L)

)
= rf∗(ĉ1(L)2)− 2δĉ1(E).

Let us compare Proposition 10.2.1 with Proposition 10.2.2. Both of them
give some arithmetic positivity of the same divisor (although d = 1 in Proposi-
tion 10.2.2), under the assumption of some semi-stability (of Chow or of vector
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bundles). The former has advantage since it treats varieties of arbitrary rel-
ative dimension. On the other hand, the latter has advantage since it shows
that the anonymous constant in the former is zero (see also [27]). Moreover,
in the complex case, the counterpart of the relative Bogomolov’s inequality of
Theorem 8.1 has a wonderful application to the moduli of stable curves ([22]).

Appendix A. Commutativity of push-forward and pull-back

Let f : X → Y be a smooth proper morphism of regular noetherian
schemes, and u : Y ′ → Y a morphism of regular noetherian schemes. Let
X ′ = X ×Y Y ′ and

X
u′←−−−− X ′

f

� �f ′

Y
u←−−−− Y ′

the induced diagram. Let Z be a cycle of X of codimension p and |Z| the
support of Z. We assume that codimX′(u′−1(|Z|)) ≥ p. Then, it is easy to see
that codimY ′(u−1(|f∗(Z)|)) ≥ p− d, where d = dimX − dimY . Thus, we can
define f ′∗(u′

∗(Z)) and u∗(f∗(Z)) as elements of Zp−d(Y ′). It is well known, we
believe, that f ′∗(u

′∗(Z)) = u∗(f∗(Z)) in Zp−d(Y ′). We could not however find
any suitable references for the above fact, so that in this section, we would like
to give the proof of it.

Let X be a regular noetherian scheme, and T a closed subscheme of X.
We denote by K ′

T (X) the Grothendieck group generated by coherent sheaves F
with Supp(F ) ⊆ Tred modulo the following relation: [F ] = [F ′] + [F ′′] if there
is an exact sequence 0→ F ′ → F → F ′′ → 0.

Let p be a non-negative integer, and X(p) the set of all points x of X with
codimX {x} = p. We define ZpT (X) to be

ZpT (X) =
⊕

x∈X(p)∩T
Z · {x}.

We assume that codimX T ≥ p. Then, we can define the natural homomor-
phism

zp : K ′
T (X)→ ZpT (X)

to be

zp([F ]) =
∑

x∈X(p)∩T
lOX,x

(Fx) · {x},

where lOX,x
(Fx) is the length of Fx as OX,x-modules. Note that if codimX T >

p, then zp = 0.
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Let f : X → Y be a proper morphism of regular noetherian schemes, and
T a closed subscheme of X. Then, we define the homomorphism f∗ : K ′

T (X)→
K ′
f(T )(Y ) to be

f∗([F ]) =
∑
i≥0

[Rif∗(F )].

Here we set d = dimX−dimY . Let p be a non-negative integer with codimX T
≥ p and p ≥ d. Then, codimY f(T ) ≥ p−d. First, let us consider the following
proposition.

Proposition A.1. With notation as above, the diagram

K ′
T (X) zp−−−−→ ZpT (X)

f∗

� �f∗
K ′
f(T )(Y ) zp−d−−−−→ Zp−df(T )(Y )

is commutative.

Proof. Since codim(Supp(Rif∗(F ))) > p − d for all i > 0, it is sufficient
to show that zp−d([f∗(F )]) = f∗(zp([F ])). This is a local question with respect
to Y , so that we may assume that f(T ) is irreducible and codim(f(T )) = p−d.
Let T = T1 ∪ · · · ∪ Tn be an irreducible decomposition of T . Clearly we may
assume that f(Ti) = f(T ) for all i. Let xi (resp. y) be the generic point of Ti
(resp. f(T )). Then, our assertion is equivalent to saying that

lOY,y
(f∗(F )y) =

n∑
i=1

lOX,xi
(Fxi

)[κ(xi) : κ(y)].

Considering X×Y Spec(OY,y)→ Spec(OY,y) instead of X → Y , we may assume
that y, x1, . . . , xn are closed points. Then, there are subsheaves F1, . . . , Fn of
F with F = F1⊕· · ·⊕Fn and Supp(Fi) ⊆ {xi} for all i. Thus, we may assume
that n = 1. In this case, there is a filtration 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gl = F of
F with Gj/Gj−1 = κ(x1), so that we get our proposition.

Let g : Z → X be a morphism of regular noetherian schemes, and T a
closed subscheme of X. Then, we define the homomorphism g∗ : K ′

T (X) →
K ′
f−1(T )(Z) to be

g∗([F ]) =
∑
i≥0

(−1)i[Lif∗(F )].

Let p be a non-negative integer with codimX T ≥ p and codimZ(g−1(T )) ≥ p.
Here let us consider the following proposition.
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Proposition A.2. Let F and G be coherent sheaves on X with Supp(F ),
Supp(G) ⊆ Tred. If zp([F ]) = zp([G]), then zp(g∗([F ])) = zp(g∗([G])).

Proof. This is a local question with respect to X, so that we may assume
that X is affine. Let 0 = F0 ⊆ F1 ⊆ · · · ⊆ Fn = F and 0 = G0 ⊆ G1 ⊆ · · · ⊆
Gm = F be filtrations of F and G respectively such that Fi/Fi−1 � OX/Pi
and Gj/Gj−1 � OX/Qj for some prime ideal sheaves Pi and Qj on X. Then,{

zp(g∗([F ])) =
∑n
i=1 z

p(g∗([OX/Pi]))
zp(g∗([G])) =

∑m
j=1 z

p(g∗([OX/Qj ]))
Thus, it is sufficient to show that zp(g∗([OX/P ])) = 0 for all prime ideals P
with

Supp(OX/P ) ⊆ Tred, codimX(Supp(OX/P )) > p

and codimZ(g−1(Supp(OX/P ))) = p.

This is a consequence of the following lemma.

Lemma A.3. Let (A,m) and (B, n) be regular local rings, φ : A→ B a
homomorphism of local rings, and M an A-module of finite type. If Supp(M⊗A
B) = {n} and

codimSpec(B)(Supp(M ⊗A B)) < codimSpec(A)(Supp(M)),

then ∑
i≥0

(−1)ilB(TorAi (M,B)) = 0.

Proof. We freely use notations in [25, Chapter I]. Let f : Spec(B) →
Spec(A) be a morphism induced by φ : A → B. We set Y = Supp(M) and
q = codimSpec(A)(Supp(M)). Let P· → M be a free resolution of M . Then,
[P·] ∈ F qKY

0 (Spec(A)). Thus, by [25, (iii) of Theorem 3 in I.3],

[f∗(P·)] = [P· ⊗A B] ∈ F qK{n}
0 (Spec(B))Q

because f−1(Y ) = Supp(M ⊗A B) = {n}. On the other hand, since

q > codimSpec(B)(Supp(M ⊗A B)) = dimB,

we have F qK{n}
0 (Spec(B))Q = {0}. Thus, [P· ⊗A B] = 0 in K

{n}
0 (Spec(B))

because

K
{n}
0 (Spec(B)) � Z

has no torsion. This shows us our assertion.

As a corollary of Proposition A.2, we have the following.
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Corollary A.4. With notation as in Proposition A.2,

K ′
T (X) zp

−−−−→ ZpT (X)

g∗
� �g∗

K ′
f−1(T )(Z) zp−−−−→ Zpf−1(T )(Z)

is commutative. Note that g∗ : ZpT (X) → Zpf−1(T )(Z) is defined by g∗(Z) =
zp(g∗([OZ ])) for each integral cycle Z in ZpT (X).

Let f : X → Y be a flat proper morphism of regular noetherian schemes,
and u : Y ′ → Y a morphism of regular noetherian schemes. Let X ′ = X ×Y Y ′

and

X
u′←−−−− X ′

f

� �f ′

Y
u←−−−− Y ′

the induced diagram. We assume that X ′ is regular. Note that if f is smooth,
then X ′ is regular. We set d = dimX − dimY = dimX ′ − dimY ′. Let T
be a closed subscheme of X, and p a non-negative integer with codimX T ≥
p, codimX′(u′−1(T )) ≥ p and p ≥ d. Note that codimY f(T ) ≥ p − d and
codimY ′(u−1(f(T ))) ≥ p−d because u−1(f(T )) = f ′(u′−1(T )). Then, we have
the following proposition.

Proposition A.5. The diagram

ZpT (X) u′∗−−−−→ Zp
u′−1(T )

(X ′)

f∗

� �f ′
∗

Zp−df(T )(Y ) u∗−−−−→ Zp−du−1(f(T ))(Y
′)

is commutative.

Proof. Since f is flat, by [12, Proposition 3.1.0 in IV], for any coherent
sheaves F on X,

L·u∗ (R·f∗(F )) ∼−→ R·f ′∗
(
L·u′

∗(F )
)
,

which shows that the diagram

K ′
T (X) u′∗−−−−→ K ′

u′−1(T )
(X ′)

f∗

� �f ′
∗

K ′
f(T )(Y ) u∗−−−−→ K ′

u−1(f(T ))(Y
′)

is commutative. Thus, by virtue of Proposition A.1 and Corollary A.4, we can
see our proposition.
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determinant bundles I : Bott-Chern forms and analytic torsion, Comm.
Math. Phys., 115 (1988), 49–78.

[3] J.-M. Bismut and E. Vasserot, The asymptotics of the Ray-Singer analytic
torsion associated with high powers of a positive line bundle, Comm. Math.
Phys., 125 (1989), 355–367.

[4] J.-B. Bost, Semi-stability and height of cycles, Invent. Math., 118 (1994),
223–253.

[5] J.-B. Bost, H. Gillet and C. Soulé, Heights of projective varieties and
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[9] H. Gillet and C. Soulé, Arithmetic Intersection Theory, Publ. Math. IHES,
72 (1990), 93–174.
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