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Abstract

In this paper, we will consider a generalization of Bogomolov’s in-
equality and Cornalba-Harris-Bost’s inequality to the case of semistable
families of arithmetic varieties under the idea that geometric semistabil-
ity implies a certain kind of arithmetic positivity. The first one is an
arithmetic analogue of the relative Bogomolov’s inequality in [22]. We
also establish the arithmetic Riemann-Roch formulae for stable curves
over regular arithmetic varieties and generically finite morphisms of
arithmetic varieties.

Introduction

In this paper, we will consider a generalization of Bogomolov’s inequal-
ity and Cornalba-Harris-Bost’s inequality to the case of semistable families of
arithmetic varieties. An underlying idea of these inequalities as in [4], [5], [8],
[17], [18], [19], [20], [21], [24], and [27] is that geometric semistability implies
a certain kind of arithmetic positivity. The first one is related to the semista-
bility of vector bundles, and the second one involves the Chow (or Hilbert)
semistability of cycles.

First of all, let us consider Bogomolov’s inequality. Let X and Y be smooth
algebraic varieties over an algebraically closed field of characteristic zero, and
f: X — Y asemi-stable curve. Let E be a vector bundle of rank r on X, and
y a point of Y. In [22], the second author proved that if f is smooth over y and
E|Xg is semistable, then disy/y (E) = f. (2rc2(E) — (r — 1)ci(E)) is weakly
positive at y.

In the first half of this paper, we would like to consider an arithmetic
analogue of the above result. Let us fix regular arithmetic varieties X and
Y, and a semistable curve f : X — Y. Since we have a good dictionary for
translation from a geometric case to an arithmetic case, it looks like routine
works. There are, however, two technical difficulties to work over the standard
dictionary.

The first one is how to define a push-forward of arithmetic cycles in our sit-
uation. If fg : Xg — Ygp is smooth, then, according to Gillet-Soulé’s arithmetic

1 —
intersection theory [9], we can get the push-forward f, : cH' (X) — CHp(Y).
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We would not like to restrict ourselves to the case where fg is smooth because
in the geometric case, the weak positivity of disx/y (F) gives wonderful appli-
cations to analyses of the boundary of the moduli space of stable curves. Thus
the usual push-forward for arithmetic cycles is insufficient for our purpose. A
difficulty in defining the push-forward arises from a fact: if fc : X(C) — Y (C)
is not smooth, then (fc).(n) is not necessarily C* even for a C* form 7. This
suggests us that we need to extend the usual arithmetic Chow groups defined
by Gillet-Soulé [9]. For this purpose, we will introduce an arithmetic L'-cycle
of codimension p, namely, a pair (Z,g) such that Z is a cycle of codimension
p, g is a current of type (p—1,p—1), and g and dd°(g) + d(c) are represented
by locally integrable forms. Thus, dividing by the usual arithmetical rational
equivalence, an arithmetic Chow group, denoted by éﬁil, consisting of arith-
metic L'-cycles of codimension p will be defined (cf. Section 2.2). In this way,
we have the natural push-forward

o CHO (X)) — CHo (V)

as desired (cf. Proposition 2.2.2).

The second difficulty is the existence of a suitable Riemann-Roch formula
in our situation. As before, if fg : Xg — Yp is smooth, we have the arithmetic
Riemann-Roch theorem due to Gillet-Soulé [11]. If we ignore Noether’s formula,
then, under the assumption that fg : Xg — Yg is smooth, their Riemann-Roch
formula can be written in the following form:

& (det Rf.(E), hg) _k(E)G (det Rf.(Ox), h8X)
1 — _

= fu (5 (51(E)2 —a(FE)-a(@xy)) — 52(E))

where E = (E, h) is a Hermitian vector bundle on X and Ty /vy is the dualizing
sheaf of f : X — Y with a Hermitian metric. If we consider a general case
where fg : Xg — Yg is not necessarily smooth, the right hand side in the above

1
equation is well defined and sits in CHy1 (X )g. On the other hand, the left hand
side is rather complicated. If we admit singular fibers of f¢ : X(C) — Y(C),

then the Quillen metric hg is no longer C*°. According to [1], it extends to a
generalized metric. Thus, we may define ¢; (det Rf.(E), hg) (cf. Section 3.2).

In general, this cycle is not an L'-cycle. However, using Bismut-Bost’s formula
[1], we can see that

& (det Rf.(E), hg) —k(E)a (det Rf.(Ox), th)

1
is an element of CH;:(Y"). Thus, we have a way to establish a Riemann-Roch

1
formula in the arithmetic Chow group CH;:(Y)q. Actually, we will prove the
above formula in our situation (cf. Theorem 5.2.1). The idea of comparing two

1
sides in CH;1(Y)q is the tricky Lemma 2.5.1.
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Let us go back to our problem. First of all, we need to define an arithmetic

analogue of weak positivity. Let a be an element of @21 (Y)q, S a subset of
Y (C), and y a closed point of Y. We say « is semi-ample at y with respect to S
if there are an arithmetic L!-cycle (E, f) and a positive integer n such that (1)
dd®(f) + dg(c)y is C* around each z € S, (2) E is effective, (3) y € Supp(FE),
(4) f(2) > 0 for all z € S, and (5) na coincides with the class of (E, f) in

Gﬁ;l (Y)g. Moreover, «a is said to be weakly positive at y with respect to S if
it is the limit of semi-ample cycles at y with respect to .S (for details, see Section
3.5). For example, if Y = Spec(Ok), vy is the generic point, and S = Y (C),
then, « is weakly positive at y with respect to S if and only if ge?g(a) > 0, where
K is a number field and Of is the ring of integers in K (cf. Proposition 3.6.1).

Let (E, h) be a Hermitian vector bundle of rank r on X, and (Ti\sX/Y(E, h)
the arithmetic discriminant divisor of (E,h) with respect to f : X — Y, that

—1
is, the element of CHp1(Y) given by f. (2rc2(E, h) — (r — 1)c1(E, h)?). We
assume that f is smooth over y and E| X5 is poly-stable. In the case where
dim X = 2 and Y = Spec(Ok), Miyaoka [17], Moriwaki [18], [19], [20], and
Soulé [24] proved that d/e\g (ai\sx/y(E,h)) > 0, consequently, ai\sx/y(E, h) is
weakly positive at y with respect to Y(C). One of the main theorems of this
paper is the following generalization.

Theorem A (cf. Theorem 8.1).  Under the above  assumptions,
ai\sx/y(E, h) is weakly positive at y with respect to any subsets S of Y (C) with
the following properties: (1) S is finite, and (2) fz '(2) is smooth and E(C|f61(z)
is poly-stable for all z € S. In particular, if the residue field of x is K, and the
canonical morphism Spec(K) — X induced by x extends to T : Spec(Og) — X,

then c/k% (:E* ((/h\SX/y(E, h))) >0.

Next, let us consider Cornalba-Harris-Bost’s inequality. Motivated by the
work of Cornalba and Harris [6] in the geometric case, Bost [4, Theorem I]
proved that, roughly speaking, if X(Q) c P"1(Q) gives rise to an SL,(Q)
semi-stable Chow point, then the height of X has a certain kind of positivity.
We call this result Cornalba-Harris-Bost’s inequality. Zhang [27] then gave
precision to it and also showed the converse of Bost’s result. Further, Gasbarri
[8] considered a wide range of actions instead of the SL,(Q)-action.

In the second half of this paper, we would like to consider a relative version
of Cornalba-Harris-Bost’s inequality. First, let us fix terminology. Let V be a
set, ¢ a non-negative function on V, and S a finite subset of V. We define the
geometric mean g.m.(¢;S) of ¢ over S to be

1/#(5)
g.m.(¢; 9) = (H ¢>(S)) :

seS

Then, the following is our solution.
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Theorem B (cf. Theorem 10.1.4).  Let Y be a regular projective arith-
metic variety, and E = (E,h) a Hermitian vector bundle of rank r. Let
7 P(E) = Proj(®,,so Sym"(EY)) — Y be the projection and Og(1) the
tautological line bundle with the quotient metric induced from f*(h). Let X be
an effective cycle in P(E) such that X is flat over Y with the relative dimen-
sion d and degree § on the generic fiber. For each irreducible component X; of
Xred, let X, — X; bea proper birational morphism such that (f(i)Q is smooth
over Q. Let Yy be the maximal open set of Y such that the induced morphism
X; — Y is smooth over Yy for every i. Let (B, hp) be a line bundle equipped
with a generalized metric on'Y given by the equality:

e(B, hp) = . (a(oEu))dH (X, gX)) +6(d+1)a(E).

(Here we postpone defining gx, i.e., a suitable compactification of X in the
arithmetic sense.) Then, hp is C*° over Yy. Moreover, there are a positive
integer e = e(r,d,d), a positive integer | = I(r,d,?), a positive constant C' =
C(r,d,d), and sections s1,... ,s; € H(Y, B®¢) with the following properties.

(i) e, I, and C depend only on r, d, and 9.

(ii) For a closed point y of Yy, if X, is Chow semistable, then s;(y) # 0
for some 1.

(iii) For alli and all closed points y of (Yo)qg,

g.11. ((h%e) (Si’ Si); OGal(@/Q) (y)) S Ca

where O, @)q)(Y) s the orbit of y by the Galois action in Yo (Q).

Compared with the geometric analogue (cf. Remark 10.1.5), a difficult
part of this theorem is the estimate of the geometric mean of the norm over the
Galois orbits of closed points. We will do this by reducing it to the absolute
case. For this purpose, we have to associate X with a ‘nice’ Green current
gx. How do we do? One way is to fix a Kiihler metric 4 € AV1(P(E)g) and to
attach a p-normalized Green current for X, namely, a Green current g such that
dd°g + 6x = H(dy) and H(gy) = 0, where H : DPP(P(E)g) — HPP(P(E)Rr)
is the harmonic projection (cf. [5, 2.3.2]). This construction however is not
suitable for our purpose because it does not behave well when restricted on
fibers.

Thus we are led to define an Q-normalized Green form which is given,
roughly speaking, by attaching a Green form fiberwisely (Here Q = ¢;(Og(1))).
Precisely, an 2-normalized Green form gx for X is characterized by the fol-
lowing three conditions; (i) gx is an L'-form on P(E), (ii) dd°([gx]) + éx =
Zf:o [7*(7:) A QF], where v; is a d-closed L'-form of type (d —i,d —i) on Y
(i=0,...,d), (iii) m(gx A Q"~%) = 0 (cf. Proposition 9.1.1). Then we can
show that it has a desired property when restricted on fibers (cf. Remark 9.1.4).

Suppose now X is regular. Let ¢ : X — P(E) be the inclusion map and
f: X — Y the restriction of 7. If we set L = i*(Og(1)), then 7. (¢1(Og (1))
(X,9x)) = fo(@1(L)?*1) (cf. Proposition 9.3.1). Since f.(c1(L)4!) is in gen-

eral only an element of éﬁLl(Y), the above equality explains why we need
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to consider (X, gx) in the enlarged arithmetic Chow group Gﬁ;d 1(]P’(E))
Moreover, a similar equality when X is not necessarily regular shows that
m(€1(Op(1)) - (X, gx)) is independent of the choice of an Q-normalized Green
form gx for X (cf. Proposition 9.3.1).

Suppose now Y = Spec(Og), y is the generic point, and X, is Chow
semistable, where K is a number field. In this case, there exists a generic
resolution of X smooth over y. Then Theorem B tells us that

rdeg(¢1(L)™") + 6(d + 1)deg(E) + [K : Qla(r,d, ) > 0

for some constant a(r, d, ) depending only on 7, d and §, which is nothing but
Theorem I of Bost [4].

We can also think a wide range of actions like [8]. Namely, let p : GL, —
GLR be a morphism of group schemes such that there is an integer k with
p(tl.) = t*IR for any ¢, and that p commutes with the transposed morphism.
For a Hermitian vector bundle E, we then get the associated Hermitian vector
bundle E” (cf. Section 9.2). If X is a flat cycle on P(E®) and y is a closed point
of Yp, then SL,(Q) acts on a Chow form ®x,. The stability of ®x, under this
action yields a similar inequality (cf. Theorem 10.1.4).

Finally, in Section 10.2 we make a comparison between the relative Bo-
gomolov’s inequality (Theorem 8.1) and the relative Cornalba-Harris-Bost’s
inequality (Theorem 10.1.4).

1. Locally integrable forms and their push-forward

1.1. Locally integrable forms

Let M be an n-dimensional orientable differential manifold. We assume
that M has a countable basis of open sets. Let w be a C'° volume element of
M, and CO(M) the set of all complex valued continuous functions on M with
compact supports. Then, there is a unique Radon measure u, defined on the
topological g-algebra of M such that

L/M Fos = M Je

for all f € CY(M), where L[ fdu,, is the Lebesgue integral arising from the

M
measure [l .

Let f be a complex valued function on M. We say f is locally integrable,
denoted by f € L (M), if f is measurable and, for any compact set K,

loc

L/ | fldp., < oco.
K

Let w’ be another C* volume form on M. Then, there is a positive C* function
a on M with ' = aw. Thus,

L/ Fldpo = L/ Fladp.
K K
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which shows us that local integrability does not depend on the choice of the
volume form w. Moreover, it is easy to see that, for a measurable complex
valued function f on M, the following are equivalent.

(a) f is locally integrable.

(b) For each point @ € M, there is an open neighborhood U of z such

that the closure of U is compact and L/ |fldpe, < oo.

Let QF, be a C vector bundle congisting of C'*° complex valued p-forms.
Let m, : QF, — M be the canonical map. We denote C°(M, Q%) (resp.
C(M,Q%,)) by AP(M) (resp. AP(M)). Let a be a section of m, : O, — M.
We say « is locally integrable, or simply an L'-form if, at any point of M, all
coefficients of a in terms of local coordinates are locally integrable functions.
The set of all locally integrable p-forms is denoted by L .(M,Q},). For an
maximal form « on M, there is a unique function g on M with a = gw. We
denote this function g by ¢, («).

Let us define the Lebesgue integral of locally integrable n-forms with com-
pact support. Let a be an element of Li (M,Q%,) such that the support of

loc
a is compact. Then c,(a) € L (M) and supp(c,(a)) is compact. Thus,

L/ cw(a)dp, exists. Let w’ be another C°° volume element of M. Then,
M

there is a positive C'*° function @ on M with ' = aw. Here ac,(a) = ¢, ().
Thus,

L/ Co (@)dp, = L/ ¢ (@)adp, = L/ co(@)adpy,.
M M M

Hence, L/ cw(@)dp, does not depend on the choice of the volume form w.

M
Thus, the Lebesgue integral of « is defined by

L/M o= L/M co(@)dpte.

Moreover, we denote by DP(M) the space of currents of type p on M.
Then, there is the natural homomorphism

[1+ Lioe(M, ) — DP(M)

given by [a](¢) = L/ a A ¢ for ¢ € AP"P(M). It is well known that the kernel
M
of [lis{a € LL (M, Q%) | « =0 (a.e.)}. A topology on DP(M) is defined in

loc
the following way. For an sequence {T,,}°2, in D?(M), T,, — T as n — oo if
and only if T,,(¢) — T(¢) as n — oo for each ¢ € A" P(M). For an element
T € D™(M), by abuse of notation, we denote by ¢, (T) a unique distribution g

on M given by T = gw.

Proposition 1.1.1.  Let T be a current of type p on M. Then, the
following are equivalent.
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(1) T is represented by an L'-form.
(2) For any ¢ € A" P(M), c,(TN@) is represented by a locally integrable
function.

Proof. (1) = (2): Let ¢ € A" P(M). Then, by our assumption, for any
point z € M, there are an open neighborhood U of x, C*° functions aq,... ,a,
on U, and locally integrable functions by,...,b, on U such that

co(TAG)|y =D laibi].

i=1

Thus, if K is a compact set in U, then

i/ o <If 3 laslbidn,
K |,— K;

Sa
1=1
< maxsup {las(@)]) Yo L] [hldie < o
t xcK i—1 K

Thus, we get (2).

(2) = (1): Before starting the proof, we would like to claim the following
fact. Let {Uq}aca be an open covering of M such that A is at most a countable
set. Let Ay be a locally integrable form U, with A, = Ag (a.e.) on U, N Up
for all o, 8 € A. Then, there is a locally integrable form A on M such that
A=A, (a.e.) on U, for all & € A. Indeed, let us fix a map a : M — A with
x € Uy(y) and define a form A by A(z) = A\g(z)(2). Then, A is our desired form
because for each a € A,

{z € Ua [ Az) # Aal2)} C U {z € UaNUp | As(x) # Aa(2)}
peA\{a}

and the right hand side has measure zero.

Let U be an open neighborhood of a point € M and (z1,... ,2,) a local
coordinate of U such that dz; A --- A dz,, coincides with the orientation by w.
Then, there is a positive C'*° function a on U with w = adz; A - -+ A dx,, over
U. We set

T = Z Tiyuipd'ril VANEERIVAN dﬂ?ip

11 <o <ip

for some distributions 7j, ...;,. We need to show that T, ...;, is represented by a
locally integrable function. Since M has a countable basis of open sets, by the
above claim, it is sufficient to check that T;,..;, is represented by an integral
function on every compact set K in U. Let f be a non-negative C*° function
on M such that f = 1 on K and supp(f) € U. Choose ipyi1,... i, such
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that {i1,...,i,} = {1,... ,n}. Here we set ¢ = fadx; , A---Adz;, . Then,
¢ € A" P(M) and

TN ¢ = eTili..ipfadxl JARERIVAN d:cn = Eﬂl.“ipfw,
where € = 1 or —1 depending on the orientation of {z;,,...,z; }. By our
assumption, there is a locally integrable function h on M with ¢, (T A ¢) = [h].

Thus, [e¢h] = Tj,...;, f. Therefore, T;,..;, is represented by eh on K because
f=1on K. Thus, we get (2). O

1.2. Push-forward of L!-forms as current

First of all, we recall the push-forward of currents. Let f : M — N be
a proper morphism of orientable manifolds with the relative dimension d =
dim M — dim N. Then,
f. s DP(M) — DP=(N)
is defined by (f.(T))(¢) = T(f*(¢)) for ¢ € AIMN=P+d(N) Tt is easy to see
that f. is a continuous homomorphism. Let us begin with the following lemma.

Lemma 1.2.1. Let F be an orientable compact differential manifold
and Y an orientable differential manifold. Let wp (resp. wy) be a C™ volume
element of F (resp. Y). Let p: F xY — Y be the projection to the second
factor. Then, we have the following.

(1) If g is a continuous function on F XY, then fF gwg is a continuous
function on Y.

(2) If « is a continuous mazimal form on F XY, then p.([a]) is repre-
sented by a unique continuous from. This continuous form is denoted by fp Q.

(3) For a continuous function g on F XY,

Coy (/QWF/\WY>’ < Cuy (/ lglwr /\wy> )
p p

Proof. (1) This is standard.

(2) Since wg Awy is a volume form on F' x Y, there is a continuous function
gon F xY with a = gwg A wy. Thus, it is sufficient to show that

o) = | ( [ awr) v .

Indeed, by Fubini’s theorem, for ¢ € A%(Y),

p*<[a1><¢>ny¢a/Y(Ang) poy = K/Fng> w} ().

(3) This is obvious because

/ JwF
F

< / lglwr 0
F
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Corollary 1.2.2. Let f : X — Y be a proper, surjective and smooth
morphism of connected complex manifolds. Let wx and wy be volume elements
of X and Y respectively. Then,

(1) For a continuous mazimal form o on X, f.([a]) is represented by a
unique continuous form. We denote this continuous form by ff Q.

(2) For any continuous functions g on X,

o (o) e (o)

Proof. (1) This is a local question on Y. Thus, we may assume that there
are a compact complex manifold F' and a differomorphism A : X — F x Y such
that the following diagram is commutative:

X " L FxY
h

7| E

Y —— Y,

)

where p: F' x Y — Y is the natural projection. Hence, (1) is a consequence of
(2) of Lemma 1.2.1.

(2) First, we claim that if the above inequality holds for some special
volume elements wx and wy, then the same inequality holds for any volume
elements. Let w’ and w{ be another volume elements of X and Y respectively.
We set wy = awy and wi = bwy. Then, a and b are positive C*° functions.
Let g be any continuous function on X. Then, by our assumption,

o (o) = () 2 ()= ([5)

On the other hand, for any maximal forms o on Y,

Cuy (@) =beyy, ().

Thus, we get our claim.
Hence, as in the proof of (1), using the differomorphism h and (3) of
Lemma 1.2.1, we can see (2). O

Remark 1.2.3. In the situation of Corollary 1.2.2, if « is a C'°°-form
on X, then f.([e]) is represented by a unique C'*°-form.

Proposition 1.2.4. Let f : X — Y be a proper and surjective mor-
phism of connected complex manifolds. Let U be a non-empty Zariski open set
of Y such that f is smooth over U. Let o be a compactly supported continuous
mazximal form on X. If we set

/ a onU,
=1 u)—U

0 onY\U,

>\:
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then X is integrable. Moreover, f.([a]) = [A].

Proof. Let wx and wy be volume forms of X and Y respectively. Let h be
a function on Y with A = hwy. Then, h is continuous on U by Corollary 1.2.2.
Moreover, let g be a continuous function on X with o = gwx. We need to
show that h is an integrable function. First note that [ + lglwx < 0o because g
is a compactly supported continuous function. Let {U,}22; be a sequence of

open sets such that U, C U, U, is compact, Uy C Uy C --- C U, C ---, and
U~ U, = U. Here we set

iy { MO Ty U,
" 0 otherwise.

Then, 0 < hy < hy < -+ < h, < --- and lim h,(y) = |h(y)|. By Corol-
lary 1.2.2,

Bly] < coy (/ |ng> .
f~H(U)=U
Thus,
/ Ihlwy < / (/ |g|wX>WY= / / lglwx
U, U, f*l(Un)~>U71 U, f*l(Un)HUn

n n

— [ lakex < [ lglex.
) x
L/ Bty :/ |h\wy§/ lglwx < o0.
Y U, X

n

Therefore,

Thus, by Fatou’s theorem,
L/ |hldpy, = lim Lf hpdpe, <L| |glwx < .

Hence, h is integral.
Let ¢ be any element of A%(Y). Then, since lim u,,, (Y \ U,) = 0 and h¢
n—oo

is integrable, by the absolute continuity of Lebesgue integral,

lim L/ hodp,,, = 0.
n—oo Y\U,

Thus,

L[ A= lim <L/ h¢duw+L/ h¢duw>
Y n—oo Uy, Y\U,

n

= lim L] hodu,, = lim / h¢wy = lim A.

n—oo
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In the same way,

/ af*(6) = lim af*(6).
X

e f=1(Un)

On the other hand, we have

/Un A¢=/f_1(Un)af*(¢)~

£u([a)(8) = [a](F(9)) = /X aAfH(9) = lim af*(9)

e f =1 (Un)

Hence

— Jim [ 2o=rf 2o=N)
U, Y

Therefore, f.([a]) = [A]. O

Let X be an equi-dimensional complex manifold, i.e., every connected
component has the same dimension. We denote by AP9(X) the space of C*
complex valued (p, g)-forms on X. Let AP9(X) be the subspace of compactly
supported forms. Let DP4(X) be the space of currents on X of type (p,q). As
before, there is a natural homomorphism

[1+ Lioe (QR1) — DPI(X).

Then, as a corollary of Proposition 1.2.4, we have the following main result of
this section.

Proposition 1.2.5. Let f : X — Y be a proper morphism of equi-
dimensional compler manifolds. We assume that every connected component
of X maps surjectively to a connected component of Y. Let o be an L*-form of
type (p+d, g+d) on X, where d = dim X —dim Y. Then there is a A € L, (Q59)
with f,([o]) = [\

Proof. Clearly we may assume that Y is connected. Since f is proper,
there are finitely many connected components of X, say, X1,..., X.. If we set
a; = aly, and fi = f|, for each i, then f.([o]) = (fi)«([oa])++ - -+ (fe)«([cre])-
Thus, we may assume that X is connected. Further, since f.([a A f*(¢)]) =
fe([a]) A ¢ for all ¢ € ALY —p.dim¥Y=q(y") e may assume that a is a maximal
form by Proposition 1.1.1.

Let g be a locally integrable function on X with & = gwx. Since the
question is local with respect to Y, we may assume that g is integrable. Thus,
since C2(Y) is dense on L'(Y) (cf. [23, Theorem 3.14]), there is a sequence
{gn}52 of compactly supported continuous functions on X such that

lim Lf |gn — gldiw, = 0.
b'e

n—oo
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By Proposition 1.2.4, for each n, there is an integrable function h, on Y such
that f.([grnwx]) = [Anwy]. Moreover, by (2) of Corollary 1.2.2,

|hn - hm‘ S Cuy / |gn - gm|wX
- U)—-U

over U. Thus, we can see
L[ o~ bldiay < L 19, = guldiiay
Y X

for all n,m. Hence, {h,}2>, is a Cauchy sequence in L'(Y). Therefore, by
the completeness of L!(Y), there is an integrable function h on Y with h =
lim,, o0 by, in L1(Y). Then, for any ¢ € A20(Y),

lim L/Y hpowy :L/Y howy and  lim L/X Inf (P)wx :L/X 9/ (P)wx.

Thus,
£.0D@) = 1] af*@hox = tim 1] .5 (@)ox
~ tim L hydwy — L/ howy = [hwy](6).
n—ee Jy Y
Therefore, f.([a]) = [hwy]. O

2. Variants of arithmetic Chow groups

2.1. Notation for arithmetic varieties

An arithmetic variety X is an integral scheme which is flat and quasi-
projective over Spec(Z), and has the smooth generic fiber Xg.

Let us consider the C-scheme X ®7 C. We denote the underlying analytic
space of X ®7C by X(C). We may view X (C) as the set of all C-valued points
of X. Let F, : X(C) — X(C) be the anti-holomorphic involution given by
the complex conjugation. For an arithmetic variety X, every (p, p)-form « on
X(C) is always assumed to be compatible with Fi, i.e., FX (o) = (—1)Pa.

Let E be a locally free sheaf on X of finite rank, and 7 : E — X the vector
bundle associated with E, i.e., E = Spec (D, Sym"(E)). As before, we have
the analytic space E(C) and the anti-holomorphic involution F, : E(C) —
E(C). Then, n¢ : E(C) — X(C) is a holomorphic vector bundle on X (C), and
the following diagram is commutative:
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Here note that F, : E(C) — E(C) is anti-complex linear at each fiber. Let
h be a C*° Hermitian metric of E(C). We can think h as a C*° function
on E(C) xx(cy E(C). For simplicity, we denote by F3 (h) the C*° function
(FOO X x(C) FOO)* (h) on E(C) xx(cy E(C). Then, FZ (h) is a C*° Hermitian
metric of E(C). We say h is invariant under Fy, if FX (h) = h. Moreover,
the pair (E, h) is called a Hermitian vector bundle on X if h is invariant under
F. Note that even if h is not invariant under Fu., h + FZ (h) is an invariant
metric.

2.2. Variants of arithmetic cycles

Let X be an arithmetic variety. We would like to define three types of arith-
metic cycles, namely, arithmetic A-cycles, arithmetic L-cycles, and arithmetic
D-cycles. In the following definition, g is compatible with F, as mentioned in
Section 2.1.

(a) (arithmetic A-cycle on X of codimension p) : a pair (Z, g) such that
Z is a cycle on X of codimension p and g is represented by a Green form ¢ of
Z(C), namely, ¢ is a C* form on X (C)\ Supp(Z(C)) of logarithmic type along
Supp(Z(C)) with dd°([6]) + d(c) € APP(X(C)).

(b) (arithmetic L'-cycle on X of codimension p) : a pair (Z, g) such that
Z is a cycle on X of codimension p and, there are ¢ € LL _(Q8 5P~') and

loc X(C)
w e L}OC(Q’)}”EC)) with g = [¢] and dd®(g) + dz(c) = [w].
(¢) (arithmetic D-cycle on X of codimension p) : a pair (Z,g) such that
Z is a cycle on X of codimension p and g € DP~1P~1(X (C)).
The set of all arithmetic A-cycles (resp. L'-cycles, D-cycles) of codimen-
sion p is denoted by Z4(X) (resp. Z7,(X), Z%(X)).
Let RP (X)) be the subgroup of Zp (X)) generated by the following elements:
(i) ((f), —[log|f|?]), where f is a rational function on some subvariety Y
of codimension p — 1 and [log |f|?] is the current defined by

flog [/2]() = L/y o legl71

(i) (0,0(a) + (B)), where a € DP~2P~1(X(C)), 3 € DP~1P~2(X(C)).
Here we define

CH,\(X) = Z4(X) /B2 (X) N Z4(X),
CH,1 (X) = Z5, (X)/RP(X) N 25, (X),

CHJ(X) = Z8,(X)/R?(X).

Proposition 2.2.1.  The natural homomorphism aﬁi(X) — aﬁp(X)
8 an isomorphism.

Proof. Let (Z,g) € ZP(X). By [9, Theorem 1.3.5], there is a Green form
gz of Z(C). Then, dd°(g — [9z]) € APP(X(C)). Hence, by [9, Theorem 1.2.2],
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there are a € A%4(X(C)) and v € Image(9) + Image(d) with g — [g7] =
[a] + v. Since g — [gz] is compatible with Fi, replacing a and v by (1/2)(a +
(=1)?PF% (a)) and (1/2)(v + (—=1)PEF% (v)) respectively, we may assume that a
and v are compatible with Fi. Here, gz + a is a Green form of Z. Thus,
(Z,l9z + a]) € Z%(X). Moreover, since (Z,9) — (Z,[9z + a]) € RP(X), our
proposition follows. 1

Let f: X — Y be a proper morphism of arithmetic varieties with d =
dim X — dim Y. Then, we have a homomorphism

For ZBFUX) — ZB(Y)

defined by f.(Z,g9) = (f«(Z), f«(g9)). In the same way as in the proof of [9,
Theorem 3.6.1], we can see f,(RPT4(X)) C RP(Y). Thus, the above homomor-
phism induces

— d —
£ CHY(X) = CHp(Y).
Then we have the following.

——p+d —
Proposition 2.2.2.  If f is surjective, then fi : CH% (X) — CHPD(Y)
gives rise to

—pid .
fo i CHA (X)) = CHy (V).

——p+d —
In particular, we have the homomorphism f : cH’ (X) — CHzfil(Y).

Proof. Clearly we may assume that p > 1. It is sufficient to show that
if (Z,9) € ZPF(X), then (f.(2), f.(g)) € Z?,(Y). By the definition of L'-
arithmetic cycles, g and dd°(g) + 6z(c) are represented by L'-forms. Thus, by

Proposition 1.2.5, there is an w € Llloc(Qf,’ﬁC)) with

fo(dd*(9) + 02c)) = [w].
On the other hand,
fe (dd°(9) + 0z(c)) = dd°(f(9)) + 6. (z(c))-

Moreover, by Proposition 1.2.5, f.(g) is represented by an L!-form on Y (C).
Thus, (f«(Z), f«(g)) is an element of Z7,(Y). O

2.3. Scalar product for arithmetic L'-cycles and arithmetic D-cycles

Let X be a regular arithmetic variety. The purpose of this subsection is
—— —_—
to give a scalar product on CHp(X)g = D, CHZ,;(X)@ by the arithmetic
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Chow ring aﬁ*(X)Q =®D,>0 aﬁp(X)Q. Roughly speaking, the scalar product
is defined by -

Y. f)-(Z,9) =¥ NZ fANoz+w((Y,f) Ag)

for (Y, f) € ZP(X) and (Z,g) € ’Z\%(X). This definition, however, works only
under the assumption that Y and Z intersect properly. Usually, by using
Chow’s moving lemma, we can avoid the above assumption. This is rather
complicated, so that in this paper we try to use the standard arithmetic inter-
section theory to define the scalar product.

Let x € aﬁp(X), (Z,9) € Zizj(X)7 and gz a Green current for Z. First we
shall check that

z-[(Z,92)] + [(0,w(z) A (9 — 92))]

——p+
in CHZ q(X)Q does not depend on the choice of gz. For, let ¢/, be another
Green current for Z. Then, there are n € AP~1P~1(X(C)), and v € Image(9) +

Image(9) with g/, = gz + [n] + v. Then, since [(0, [] + v)] € éﬁp(X),

z-[(Z,92)] + [(0,w(z) A (g — g7))] = )]+ 2 - [(0,[n] + )]

) A (g 9z — [n] —v))]
gz)] [(0,w(z) A ([n] +v))]
w(@) A (g — 9z — ] —v))]
( ,92)] + [(0,w(z) A (9 — 92))]-

Thus, we have the bilinear homomorphism

— 5 +
CH'(X) x Zh(X) — CHp, " (X)o

given by © - (Z,9) =z - [(Z,92)] + [(0,w(z) A (9 — gz))]. Moreover, if (Z,g) €

R?(X), then, by [9, Theorem 4.2.3], = - (Z,g) = 0 in CH "(X)g. Thus, the

above induces

(2.3.1) CH(X) @ CH}(X) — CHp *(X)o,

which may give rises to a natural scalar product of Eﬁ; (X)q over the arith-

metic Chow ring CH (X )o- To see that this is actually a scalar product, we

need to check that
(-y)z=2-(y 2)

for all z € CH' (X), y € CH' (X) and 2 € CH,,(X). If z € CH (X), then this
is nothing more than the associativity of the product of the arithmetic Chow
ring (cf. [9, Theorem 4.2.3]). Thus, we may assume that z = [(0, g)] for some
g € D"=L7=1(X(C)). Then, since

(x-y)-2=[0,w(x-y)Ag)l =[0,w(x) Aw(y) A g)]
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and

z-(y-2)=z-[0,wy) Ag)] = [(0,w(x) Aw(y) Ag)l,

we can see (x-y) -z =2a - (y-z). Therefore, we get the natural scalar product.
Moreover, (2.3.1) induces

—=p+q

(2.3.2) CH'(X) ® CH,1 (X) — CHy: (X)g.
Indeed, if (Z,g) € Z\gl (X) and gz is a Green form of Z, then,
z-[(Z,9)] =z [(Z,92)] + [(0,w(x) A (g — 92))]-
Thus, in order to see that - [(Z,g)] € Gﬁifq(X)@, it is sufficient to check that
{w<x> A9 = 97) € L (58 ),
dd° ((z) A (g — 92)) € Lo (W87,

The first assertion is obvious because ¢ and ¢z are L'-forms. Further, we can
easily see the second assertion because

dd® (w(z) A (g — gz)) = Tw(x) Add*(g — gz) = Tw(z) A (w(g) — w(gz))-

Gathering all observations, we can conclude the following proposition,
which is a generalization of [9, Theorem 4.2.3].

Proposition 2.3.3. 6ﬁ21(X>Q and éﬁ;(X)@ has a natural module
structure over the arithmetic Chow ring CH (X)q.

Moreover, we have the following projection formula.

Proposition 2.3.4. Let f : X — Y be a proper morphism of regqular
arithmetic varieties such that fg : Xo — Yo is smooth. Then, for any a €

CH'(Y) and 8 € CH,.1 (X),
fo(f*(a) - B) = a- f.(B)
— —(dim X —dim
in CH, @ (mAmdmy) gy
Proof. lfac€ Gﬁp(Y) and 8 € éﬁq(X), then this is well known (cf. [9]).
Thus, we may assume that 3 = (0,[¢]) € Z7,(Y). Then

fo(f (@) - B) = [ (0, w(f* () A [])
= (0, [fx (w(f*(e) A §))]).
On the other hand,

a- fu(B) = a-(0,[f(9)]) = (0,w(a) A [f(d)])-
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Since fi(w(f*(a))) = w(a), we have proven the projection formula. O

2.4. Scalar product, revisited (singular case)

Let X be an arithmetic variety. Here X is not necessarily regular. Let
Ratx be the sheaf of rational functions on X. We denote HY(X,Rat’ /O%)
by Div(X). An element of Div(X) is called a Cartier divisor on X. For a
Cartier divisor D on X, we can assign a divisor [D] € Z!'(X) in a natural way.
This gives rise to the homomorphism

cx : Div(X) — Z4(X).
Note that cx is neither injective nor surjective in general. An exact sequence
1 — 0% — Raty — Raty /0% — 1

induces to the homomorphism Div(X) — H'(X, O%). For a Cartier divisor D
on X, the image of D by the above homomorphism induces the line bundle on
X. We denote this line bundle by Ox (D).

Here we set

Div(X)
={(D,g) | D € Div(X) and g is a Green function for D(C) on X(C)}.

Similarly, we can define ]SRID(X ) and ﬁD(X ). The homomorphism cx :
Div(X) — Z'(X) gives rise to the homomorphism éx : Div(X) — Z'(X).

A~

Then, we define Pic(X), ﬁ?Ll(X), and P/’i\cD(X) as follows.

Pic(X) = Div(X)/éx' (RY(X)),
Picy1 (X) = Divyi (X)/éx (RY(X)),
Picp(X) = Divp(X)/éx (R (X)).
Note that if X is regular, then
Pic(X) = CH (X), Picpi(X) = CHpa(X) and Piep(X) = CHp(X).

Let (E,h) be a Hermitian vector bundle on X. Then, by virtue of [11,
Theorem 4], we have a cap product of &(E, h) on Gﬁ*(X)Q, i.e., a homomor-
phism éﬁ*(X)Q — @*(X)Q given by = — (;fl(E, h)yNnz for z € @*(X)Q. In
the same way as before, we can see that the above homomorphism extends to

CHp(X)g — CHp(X)g and CH,:(X)g — CH: (X)g
as follows. If (Z,g) € Zf-,(X) and gz is a Green current of Z, then

ch(E,h) N (Z,g) = ch(E,h) N (Z,92) + a(ch(E, k) A (g — gz)).



114 Shu Kawaguchi and Atsushi Moriwaks

In particular, we have intersection pairings
—~ —_ E— +1
Pic(X)q ® CHp(X)g — CHp, (X)qg
~ — —p+1
and Pic(X)g® CHy1(X)g — CHy: (X)g.

For simplicity, the cap product “N” is denoted by the dot “.”. Note that

——p+1

Pic(X)q ® CHp(X)o — CHp (X)o
is actually defined by
(D,g)-(Z,f)=(D-Z,gNoz+w(g) A f)
if D and Z intersect properly. Then, we have the following projection formula.

Proposition 2.4.1. Let f: X — Y be a proper morphzsm of arithmetic
varieties. Let (L, h) be a Hermitian line bundle on'Y', and z € CHD(X), Then

fe@(f7 L, f7h) - z) = eu(L; h) - fa(2).

Proof. Let (Z,g) be a representative of z. Clearly, we may assume that
Z is reduced and irreducible. We set T'= f(Z) and 7 = f|, : Z — T. Let
s be a rational section of L|,. Then, 7*(s) gives rise to a rational section of
f*(L)|, = 7* (L|). Thus, ¢, (f*L, f*h) - z can be represented by
(div (7" (s)), [=log 7™ (hlp) (7" (s), 7" (s))] + c1 (f*L, f*h) A g)
where [—logm* (h|;) (7*(s), 7*(s))] is the current given by

[—log @™ (hlp) (7" (s), 7" (s))] (¢) = /Z(C) (—logm™ (hly) (7" (s), 7" (s))) ¢-

If we set

deg () 0 ifdim7T < dim Z
eg(m) =
s deg(Z —T) if dimT =dim Z,

then
/ emewwﬁ@mWMfmz/ 7 ((—log (hly) (5, )) )
Z(C) Z(C)
mmm/ (—log (hl) (5,8)) ¥
T(C)

for a C°°-form ¢ on Y (C). Thus, we have

fel=logm™ (hlz) (7" (s), 7" (s))] = deg(m) [~ log (h|1) (s, )]
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Therefore,

f«(@(f*L, f*h) - z) = (deg(m) div(s), deg(m) [~ log (h|) (s, s)]
+ Cl(Lv h) A f*(g))
=c1(L,h) - (deg(m)T, fi(g9)) = c1(L, h) - fu(2).

Hence, we get our proposition. O

Let Z be a quasi-projective integral scheme over Z. Then, by virtue of
Hironaka’s resolution of singularities [14], there is a proper birational morphism
i Z' — Z of quasi-projective integral schemes over Z such that Z@ is non-
singular. The above u : Z' — Z is called a generic resolution of singularities
of Z. As a corollary of the above projection formula, we have the following
proposition.

Proposition 2.4.2.  Let X be a arithmetic variety, and Ly = (L,

hi),..., Ly, = (Lp, hy) be Hermitian line bundles on X. Let (Z,g) be an arith-
metic D-cycle on X, and Z = a1Z1 + - - - + a.Z, the irreducible decomposition
as cycles. For each i, let T; : Z! — Z; be a proper birational morphism of quasi-
projective integral schemes. We assume that if Z; is horizontal with respect to
X — Spec(Z), then 7; is a generic resolution of singularities of Z;. Then, we
have

¢ (Ly)---a(Ly) - (Z,9)

-
= aipi, (@ (i Th) - Ca (i Ln)) + aler(Ta) A+ Aer(Tn) A g)
i=1
in éﬁZ(X)Q, where u; is the composition of Z! — Z; < X for each i.

Proof. We prove this proposition by induction on n. First, let us consider
the case n = 1. Clearly we may assume that Z is integral, i.e., Z = Z;. Let hy
be the Hermitian metric of L1, and s a rational section of Lj| - Then,

(div(s), —log(h1|,)(s,s) + c1(L1) A g)
= (div(s), —log(h1];)(s,s)) + a(c1(L1) A g)

is a representative of ¢;(L;) - (Z, g). Moreover,

(div(ry (), = log 71 (ha|z) (11 (), 71 (s)))

is a representative of ¢ (ujL1). Hence, we have our assertion in the case n =1
because

(k1. (div(ry (s)), = log 71 (hal ) (11 (), 71 (5))) = (div(s), —log(ha] ) (s, 5)).
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Thus, we may assume that n > 1. Therefore, using Proposition 2.4.1 and
hypothesis of induction,

ei(Ly)---a(Ln) - (Z,9) =(L1) - (€1(Le)---e1(Ln) - (Z,9))
= Z a;C1 (L1) iy (C1(p7 La) -+ C1 (1 L))

+e1(L)a(cr(La) A Aer(Ly) A g)
= Z Qi [y (51(/‘;@1) o 'El(ﬂffn))
i=1
+a(61(f1)/\"'/\01(zn)/\g). |

2.5. Injectivity of i*

Let X be an arithmetic variety, U a non-empty Zariski open set of X, and
i : U — X the inclusion map. Then, there is a natural homomorphism

i*: 211 (X) = Z11 (U)

given by i*(D,g) = (Dly . 9ly(c))- Since i* ((/f\)) = (/f\U\) for any non-zero
rational functions f on X, the above induces the homomorphism

1 —1
7:* . CHLl (X) — CHLI (U)
Then, we have the following useful lemma.

Lemma 2.5.1. If X \ U does not contain any irreducible components
of fibers of X — Spec(Z), then

1 1
7:* : CHLl(X) — CHLI(U)
1 1
is injective. In particular, i* : CHp1(X)g — CHp1(U)g is injective.
1
Proof. Suppose that i*(a) = 0 for some o« € CH;1(X). Let (D,g) €

Zil (X) be a representative of a. Since i*(a) = 0, there is a non-zero rational
function f on X with

(Dl aley) = (Pl - ~1og 77y

Pick up ¢ € L{ (X(C)) with g = [¢]. Then, the above implies that [l ) =

loc

—[log \f|2HU(C). Thus, ¢ = —log|f|? (a.e.). Therefore, we have

(2.5.1.1) g9 =[] = —[log | f*].
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Here, dd®(g) 4+ dp(c) = [h] for some h € Llloc(Qﬁél((c)) and dd°(—[log |f|?]) +
5(f)((C) = 0. Thus, by (2.5.1.1), 6D((C) — 5(f)((C) = [h]. This shows us that

0 (a.e.) over X(C) \ (Supp(D(C)) U Supp((f)(C))). Hence h = 0 (a.e.)
on X (C). Therefore, we have D(C) = (f)(C), which implies D = (f) on Xg.
Thus, D — (f) is a linear combination of irreducible divisors lying on finite
fibers. On the other hand, D = (f) on U and X \ U does not contain any

irreducible components of fibers. Therefore, D = (f). Hence a = 0 because
(D, g) = (f)- 0

3. Weakly positive arithmetic divisors

3.1. Generalized metrics

Let X be a smooth algebraic scheme over C and L a line bundle on X.
We say h is a generalized metric on L if there is a C°° Hermitian metric hg of
L over X and ¢ € L (X) with h = e®hy.

To see when a metric of a line bundle defined over a dense Zariski open
set extends to a generalized metric, the following lemma is useful.

Lemma 3.1.1. Let X be a smooth algebraic variety over C and L a
line bundle on X. Let U be a non-empty Zariski open set of X and h a C'*
Hermitian metric of L over U. We fix a non-zero rational section s of L. Then,
h extends to a generalized metric of L on X if and only if log h(s,s) € L (X).

loc

Proof. 1f h extends to a generalized metric of L on X, then logh(s,s) €
L, .(X) by the definition of generalized metrics. Conversely, we assume that
log h(s,s) € Li .(X). Let hg be a C> Hermitian metric of L over X. Here we
consider the function ¢ given by

h(s,s)
ho(s,s)

d) =
Let y € U and w be a local frame of L around y. If we set s = fw for some

meromorphic function f around y, then

_ h(s, s) _ |fI2h(w,w) _ h(w,w)
hO(Sa 8) |f|2h0(w,w) hO(wvw).

This shows us that ¢ is a positive C* function on U and h = ¢hgy over U. On
the other hand,

log ¢ = log h(s, s) — log ho(s, s).

Here since log h(s, s),logho(s, s) € LL (X), we have log ¢ € L{ (X). Thus, if

loc

we set ¢ = log ¢, then p € L _(X) and h = e?hy. O
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3.2. Arithmetic D-divisors and generalized metrics

Let X be an arithmetic variety, L a line bundle on X, and h a generalized
metric of L on X(C) with FZ (h) = h (a.e.). We would like to define ¢;(L, h)

—1
as an element of CH(X). Let s, s’ be two non-zero rational sections of L, and
f a non-zero rational function on X with s’ = fs. Then, it is easy to see that

o~

(div(s'), [~ logh(s',s")]) = (div(s), [~ logh(s, s)]) + (f)
in Z\,lj(X) Thus, we may define ¢ (L, h) as the class of (div(s),[—logh(s, s)])
in CHp (X).
Let us consider the homomorphism

w: Z(X) — DPP(X(C))

given by w(Z,g) = dd°(g) + d7(c)- Since w (ﬁp(X)) = 0, the above homomor-

phism induces the homomorphism éﬁ’; (X) — DPP(X(C)). Hence, we get the

homomorphism @%(X)Q — DPP(X(C)) because DPP(X(C)) has no torsion.
By abuse of notation, we denote this homomorphism by w.

Proposition 3.2.1.  Let X be an arithmetic variety, (Z,[$]) € Divp(X)
with ¢ € L, .(X(C)), and 1 a rational section of Ox (Z) with div(1) = Z. Then,
there is a unique generalized metric h of Ox(Z) such that F* (h) = h (a.e.)
and [—logh(1,1)] = [#]. (Here uniqueness of h means that if h' is another
generalized metric with the same property, then h = h' (a.e.).) Moreover,
w(Z,[¢]) is C*° around x € X(C) if and only if h is C*° around x. We denote
this line bundle (Ox(Z), h) with the generalized metric h by Oz ((Z,[¢])). With

this notation, for (Z1,[¢1]), (Za, [$2]) € Divp(X) with ¢1,¢s € LL _(X(C)), if

(Z1,[p1]) ~ (Za,[¢2]), then Ox((Z1,[p1])) is isometric to Ox((Za,[p2])) at
every point around which w(Z1, [¢1]) = w(Za, [¢2]) is a C* form.

Proof. First, let us see uniqueness. Let h and k' be generalized metrics of
Ox(Z) with [~logh(1,1)] = [~logh’(1,1)] = [¢]. Take a € L (X (C)) with

loc
h' = e*h. Then, by our assumption, a = 0 (a.e.). Thus, h = I’ (a.e.).
Pick up an arbitrary point x € X(C). Let s be a local basis of Ox(Z)
around z. Then, there is a non-zero rational rational function f on X (C) with
1 = fs. Let us consider

exp(—¢ — log|f[*)

around z. Let s’ be a another local basis of Ox(Z) around z. We set s’ = us
and 1 = f’s’. Then,

exp(—¢ —log | f'|?) = exp(—¢ — log | f/ul?) = |u|? exp(—¢ — log | f|?),

which means that if we define the generalized metric i by

h(s,s) = exp(—¢ — log | f|*),
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then h is patched globally, and h is a generalized metric by Lemma 3.1.1.
Moreover,

—logh(1,1) = —logh(fs, fs) = —log (|f|2h(s,s)) = o.

Here, since F* (¢) = ¢ (a.e.), we can see FX(h) = h (a.e.). Thus, we can
construct our desired metric.

We set b = w(Z, [¢]) € D¥(X(C)). Then, since 1 = fs around z, we have
Z = (f) around x. Thus, since dd*([¢]) +6z(c) = b and dd®(—[log | f|*]) +6(s) =
07

dd®(—[¢ +1og | f*]) = 6z(c) —b—d(p) = —b
around z. Therefore,

h is C*° around =
= —¢ —log|f|* is C* around z
= dd°(—[¢ + log|f|?]) is C°° around =  (*. [9, Theorem 1.2.2])
< bis C* around =

Finally, let us consider the last assertion. By our assumption, there is a
rational function z on X such that

—

(Z1,[61]) = (Z2, [#2]) + (2).

Then, Z; = Zy+(z) and ¢; = ¢ —log |z|?. Let us consider the homomorphism
a : Ox(Z1) — Ox(Z2) defined by a(s) = zs. Then, « is an isomorphism.
Let 1 be the unit in the rational function field of X. Then, 1 gives rise to
canonical rational sections of Ox(Z;) and Ox(Z2). Let x be a point of X (C)
such that w(Z1, [¢1]) is C°° around z, and s a local basis of Ox(Z;) around
x. Then, a(s) = zs is a local basis of Ox(Z2) around z. Choose a rational
function f with 1 = fs. Then, 1 = 27! fa(s). Thus, if by and hy are metrics
of Ox((Z1,[¢1])) and Ox((Za, [¢2])) respectively, then

hi(s, s) = exp(—¢1 —log | f|?) = exp(—¢2 — log [z 7" f[*) = ha(a(s), a(s))

Hence, « is an isometry. O

3.3. Semi-ampleness and small sections

Let X be an arithmetic variety and S a subset of X (C). We set
1 1
CH;1(X;8)g ={a € CH:1(X)g | w(a) is C°° around z for all z € S}.

—1 o~ ~ —
In the same way, we can define CH;1(X;5), Z7.(X;5), Z].(X;S)q, Divy: (X;
S), Divp1(X; S)g, Picpi1(X; S) and Picp1(X; S)g. Let x be a closed point of
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Xg. An element a of éﬁil(X; S)g is said to be semi-ample at x with respect
to S if there are a positive integer n and (E, g) € 2%1 (X; S) with the following
properties:

(a) E is effective and = ¢ Supp(FE).

(b) g(z) > 0 for each z € S. (Note that g(z) might be c0.)

(¢) na coincides with (E,g) in Gﬁlp(X; S)o-

We remark that a € éﬁILl(X; S)g by the condition (c). Moreover, it is
easy to see that if a; and a9 are semi-ample at = with respect to S, so is
Aay + pag for all non-negative rational numbers A and p.

In terms of the natural action of Gal(Q/Q) on X (Q), we can consider the
orbit Oy q) (@) of z. If we fix an embedding Q — C, we have an injection

X(Q) — X (C). It is easy to see that the image of OGa1(@/g)(®) does not depend

on the choice of the embedding Q — C. By abuse of notation, we denote this
image by Og,;@/0)(®)- Then, Og,q/q) (%) is one of the examples of S.

Let U be a Zariski open set of X, and F' a coherent O x-module such that F'
is locally free over U. Let hp be a C*° Hermitian metric of F over U(C). We as-
sume that S C U(C). For a closed point x of Uy, we say (F, hp) is generated by
small sections at x with respect to S if there are sections s1,...,s, € H(X, F)
such that F, is generated by si,...,s,, and that hp(s;, s;)(z) < 1 for all
1<i<nand ze€S.

Proposition 3.3.1.  We assume that S C U(C). For an element (Z, g)
of ]SRILI(X; S), (Z,g) is semi-ample at x with respect to S if and only if there
is a positive integer n such that Ox(n(Z,g)) is generated by small sections at
x with respect to S.

Proof. First, we assume that (Z, g) is semi-ample at x with respect to S.
Then, there is (E, f) € 211} (X;S) and a positive integer n such that n(Z, g) ~
(E, f), E is effective, ¢ Supp(F), and f(z) > 0 for each z € S. Note that
E is a Cartier divisor. Then, by Proposition 3.2.1, Ox(n(Z,g)) ~ Ox((E, f)).
Moreover, if h is the metric of Ox((£, f)) and 1 is the canonical section of
Ox(E) with div(1) = E, then —log(h(1,1)) = f. Here f(z) > 0 for each
z € S. Thus, h(1,1)(z) <1 for each z € S. Therefore, Ox((E, f)) is generated
by small sections at x with respect to S.

Next we assume that Ox (n(Z, g)) is generated by small sections at x with
respect to S for some positive integer n. Then, there is a section s of Ox(n2)
such that h(s,s)(z) < 1 for each z € S. Thus, if we set E = div(s) and
f = —logh(s,s), then we can see (Z,g) is semi-ample at = with respect to
S. 0

Proposition 3.3.2.  Let U be a Zariski open set of X, and L a line
bundle on X. Let h be a C* Hermitian metric of L over U(C). Fizx a closed
point x of Ug. If X is projective over Z, then the followings are equivalent.

(1) (L,h) is generated by small sections at x with respect to U(C).
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(2) (L,h) is generated by small sections at x with respect to any finite
subsets S of U(C).

Proof. Clearly, (1) implies (2). So we assume (2). First of all, we can
easily find z1,..., 2, € U(C) such that, for any s € H°(X(C), L¢), if s(z;) =
-+ = 8(zn) =0, then s = 0. Thus, if we set

sl = Vh(s;8)(z1) + -+ V/h(s,5)(2n)

for each s € H°(X(C), L¢), then || || gives rise to a norm on H°(X(C), L¢).
Here we set

B, ={sc H'(X,L) | h(s,s)(z) <1}

for each z € U(C). Then, since H(X, L) is a discrete subgroup of H%(X(C),
L¢), Ni, B, is a finite set. Thus, adding finite points z,41,... ,2y € U(C)
to z1,..., 2, if necessary, we have

N
ﬂ B, = ﬂ B...
=1

zeU(C)

By our assumption, there is a section s € HY(X, L) such that s(z) # 0 and
h(s,s)(z;) <1lforalli=1,... N. Then, s € ﬂf\il B.. =N.cv(c) Bz Thus,
we get (2). O

3.4. Restriction to arithmetic curves

Let X be an arithmetic variety, S a subset of X(C), = a closed point of
Xq, K the residue field of z, and Ok the ring of integers in K. We assume
that the orbit of x by Gal(Q/Q) is contained in S, namely, Oca@/g(®) €9,
and that the canonical morphism Spec(K) — X induced by z extends to Z :
Spec(Ok) — X.

Proposition 3.4.1.  There is a natural homomorphism
— 1
z* : Picp1(X;S)g — CH (Spec(Ok))o

such that the restriction of * to ﬁi\c(X)Q coincides with the usual pull-back
homomorphism.

Proof. Leta € ﬁi\cLl X:;5)g. Choose (Z, g GISR/Ll X; S) and a positive
Q

integer e such that the class of (1/e)(Z,g) in Picp:(X;S)g coincides with a.
We would like to define #*(«) by

(1/e)er (77(0x (2, 9)))) -
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For this purpose, we need to check that the above does not depend on the
choice (Z,g) and e. Let (Z’,¢’) and €’ be another L!-cycle of codimension 1
and positive integer such that the class of (1/€¢')(Z’,¢’) is a. Then, there is a
positive integer d such that de’(Z,g) ~ de(Z’, g’). Thus, by Proposition 3.2.1,
Oz(de/(Z,g)) is isometric to Oz(de(Z’,¢')). Hence,

de'cy (°(0x((Z,9)))) = &1 (3" (Ox (de'(Z, g
1 (7(Ox (de(Z', g
= dec: g

1 (@7 (0x((Z,

)
M)
M-

Therefore,
(1/e)er (27(0x((Z.9)))) = (1/e)er (27 (0Ox((Z'. 9)))) -
Thus, we can define £*. O

3.5. Weak positivity of arithmetic L'-divisors

Let X be an arithmetic variety, S a subset of X(C), and z a closed
point of Xg. Let a € @21(X'S)Q and {a,}52, a sequence of elements
of aﬁ}:l(X;S)Q. We say « is the limit of {ozn} >, as n — 00, denoted by
a = lim oy, if there are (1) Z1,...,2Z;, € CHLl(X;S)Q, (2) g1,--- .41, €

n—oo
—1
L}OC(X((C)) with a(g;) € CH1(X;S)q for all j, (3) sequences {al}oe ...,
{ali}°2; of rational numbers, and (4) sequences {b}}°%,, ..., {bl2}°2, of real

numbers with the following properties:
(a) 1y and Iy does not depend on n.
(b) lim a;, = lim &, =0forall 1 <i<l;and1<j <l
11 Iy
(¢) a=a,+ Za;Zi + Z (b),g;) in CHLl(X S)q for all n.
i=1 j=1
It is easy to see that if « = lim «,, and 8 = hm Bp in CHL1 (X;S)qg, then
a+f= lim (ap+[Gn).

1

An element « of CH 1 (X; 9)q is said to be weakly positive at x with respect
to S if it is the limit of semi-ample Q-cycles at = with respect to S, i.e., there is

1
a sequence {ay, 152 of elements of CH,:(X; S)g such that ,’s are semi-ample
at « with respect to S and a = lim «,,.
n—oo

Let K be the residue field of  and Ok the ring of integers in K. We
assume that Og,g/q)(z) € S, and the canonical morphism Spec(K) — X
induced by x extends to # : Spec(Ox) — X. Then, we have the following
proposition.

1
Proposition 3.5.1.  If X is regular and an element o of CHp1(X; S)g
is weakly positive at x with respect to S, then deg(Z*(a)) > 0.
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Proof. Take D1y, 2, G1s--- 5 Glys {alyoe .. {alr}e
{bLyoe .. {bl2}22, and {a,}°; as in the previous definition of weak pos-

itive arithmetic divisors. Then,

1A lo
deg(7*(a)) = deg(7* (o)) + Y al,deg(*(Z:)) + D _ bl deg(i"a(g)))-

i=1 j=1

Thus, since lim a; = lim bZZ =0foralll <i<lyand1 < j <y and

n—oo n—oo

gc%(i*(an)) > 0 for all n, we have d/e\g(i*(a)) > 0. O

3.6. Characterization of weak positivity

Let X be a regular arithmetic variety, S a subset of X(C), and x a closed

1
point of Xqg. For an element o € CH;:(X)qg, we say « is ample at = with
respect to S if there are (A, f) € Z},(X;S) and a positive integer n such that
A is an effective and ample Cartier divisor on X, ¢ Supp(A4), f(z) > 0 for all
1
z € S, and na is equal to (4, f) in CH;1(X)g.
First, let us consider the case where X = Spec(Ok).

Proposition 3.6.1. We assume that X = Spec(Ok), x is the generic
of X, and S = X(C). For an element a € CH' (X;8)q, we have the following.

(1) « is ample at x with respect to S if and only if (Te\g(oz) > 0.

(2) « is weakly positive at x with respect to S if and only if d/e\g(oz) > 0.

Proof. (1) Clearly, if « is ample at « with respect to S, then d/e\g(a) > 0.
Conversely, we assume that (Te\g(a) > 0. We take a positive integer e and a
Hermitian line bundle (L, k) on X such that & (L, h) = ea. Then, deg(L,h) >
0. Thus, by virtue of Riemann-Roch formula and Minkowski’s theorem, there
are a positive integer n and a non-zero element s of L®" with (h®")(s, s)(z) < 1
for all z € S. Thus, « is ample at « with respect to S.

(2) First, we assume that « is weakly positive at « with respect to S. Then,
by Proposition 3.5.1, deg(a)) > 0. Next, we assume that deg(«) > 0. Let 3 be

1
an element of CH (X;S)g such that 3 is ample at = with respect to S. Then,
for any positive integer n, deg(a + (1/n)3) > 0. Thus, a + (1/n)8 is ample at

x with respect to S by (1). Hence, a is weakly positive at « with respect to
S. O

Before starting a general case, let us consider the following lemma.

Lemma 3.6.2.  We assume that S is compact. Let « be an element of

1
CH;:(X)g such that o is ample at x with respect to S. Then, we have the
following.
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(1) Let 3 be an element oféﬁlLl (X;S)q. Then, there is a positive number
€0 such that a+e€f is semi-ample at x with respect to S for all rational numbers
e with |e| < €.

(2) Let g be alocally integrable function on X (C) with a(g) € éﬁlLl (X;9)0-
Then, there is a positive number €y such that a+ a(eg) is semi-ample at x with
respect to S for all real numbers e with |e| < €.

Proof. (1) First, we claim that there is a positive number ¢y such that
ta+ (3 is semi-ample at x with respect to S for all rational numbers ¢ > .

Let us choose (4, f) € Z},(X;S) and a positive integer ng such that A
is an effective and ample Cartier divisor on X, x ¢ Supp(A), f(z) > 0 for all

—1
z € S, and noa is equal to (A4, f) in CH1(X)g. Moreover, we choose (D, g) €

Zil (X;S) and a positive integer e such that ef is equal to (D, g) in @21 (X)o-
Since A is ample, there is a positive integer n; such that Ox(n14) ® Ox (D)
is generated by global sections at x. Thus, there are (Z, h) € 2}1 (X;S)q such
that Z is effective, z & Supp(Z) and (Z,h) ~ni(A, ) + (D, g).

We would like to find a positive integer ne with naf(z) + h(z) > 0 for
all z € S. Let U be an open set of X(C) such that S C U, and w(A4, f) and
w(Z,h) are C* over U. We set ¢ = exp(—f) and ¢ = exp(—h). Then, ¢ and
1 are continuous on U, and 0 < ¢ < 1 on S. Since nof + h = —log(¢™v),
it is sufficient to find a positive integer ne with ¢™2¢ < 1 on S. If we set
a = sup,eg ¢(z) and b = sup,cg1(2), then 0 < a < 1 and 0 < b because S
is compact. Thus, there is a positive integer ny with a™2b < 1. Therefore,
o™y <1lonS.

Here we set tg = (n1 +n2)npe*. In order to see that ta + (3 is semi-ample
at x with respect to S for t > t, it is sufficient to show that (n1 +n2)nea +ef
is semi-ample at x with respect to S because et > (ny + ng)ng. Here

(nl + ’I’Lg)’l’Loa +el~ ’I’Lg(A,f) + (nl(A’f) + (Dvg»
~na(A, f)+(Z,h)
== (TL2A+Z,TLQf+h),

x & Supp(nasA+Z), and (naf +h)(z) > 0 for all z € S. Thus, (n1+ng2)noa+ef
is semi-ample at x with respect to S. Hence, we get our claim.

In the same way, we can find a positive number ¢; such that ta— ( is semi-
ample with respect to S for all ¢ > ¢;. Thus, if we set ¢¢ = min{1/ty,1/t1},
then we have (1).

(2) In the same way as in the proof of (1), we can find a positive number
€o such that (f 4+ engg)(z) > 0 for all z € S and all real number € with |e| < ep.
Thus we have (2) because ng(a + a(eg)) ~ (A, f + engg). O

Proposition 3.6.3. We assume that S is compact. Let 3 be an element

—1
of CH;1(X;S)g. Then the following are equivalent.
(1) B is weakly positive at x with respect to S.
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1
(2) B+a is semi-ample at x with respect to S for any ample o € CHy1 (X;.9)g
at x with respect to S.

Proof. (1) = (2): Since (3 is weakly positive at x with respect to S,

—1
there is a sequence of {3,} such that 8, € CH;.1(X;S)g, 3.’s are semi-ample
at x with respect to S, and lim, o B, = 8. Take Z1,...,Z1,, g1,---,41,,

{alyee ;... {alr}e,, and {bL}22,, ... {bl2}2°, as in the definition of the

limit in éﬁlLl(X;S)Q. Then, by Lemma 3.6.2, there is a positive number ¢
such that a+e€Z;’s are semi-ample at  with respect to S for all rational numbers
e with |e] < €y, and o+ a(eg;)’s are semi-ample at x with respect to .S for all
real numbers € with || < eg. We choose n such that (I; + I2)]al,| < € and
(I + 15)|b7| < €o for all 4 and j. Then,

l2

11 . .
l l2)at Z; l 12)b? g
ﬂ+a:5n+zo‘+(1+ 2)ay, +Z@+a((1+ 2)b09;)
=1

1+ 15 I+ 1o

Here, a+ (I3 + l2)a’, Z; and a + a((l; + l2)b,g;) are semi-ample = with respect
to S. Thus, we get the direction (1) = (2).

1

(2) = (1): Let a be an element of CH;1(X)g such that « is ample at z
with respect to S. We set 8, = 5+ (1/n)a. Then, by our assumption, f3, is
semi-ample at = with respect to S. Further, 0 = lim,,_.oc 3. 1

3.7. Small sections via generically finite morphisms

Let g : V — U be a proper and étale morphism of complex manifolds. Let
(E, h) be a Hermitian vector bundle on V. Then, a Hermitian metric g.(h) of
9«(FE) is defined by

g*(h)(s,t)(y) = Z h(&t)(x)

€9 (y)

for any y € U and s,t € g.(E),.

Proposition 3.7.1.  Let X be a scheme such that every connected com-
ponent of X is a arithmetic variety. Let Y be a regular arithmetic variety, and
g: X — Y a proper and generically finite morphism such that every connected
component of X maps surjectively to Y. Let U be a Zariski open set of Y such
that g is étale over U. Let S be a subset of U(C) and y a closed point of Ug.
Then, we have the following.

(1) Let ¢ : E — Q be a homomorphism of coherent Ox-modules such
that ¢ is surjective over g~ (U), and E and Q are locally free over g~1(U).
Let hg be a C> Hermitian metric of E over g~ (U)(C), and hg the quotient
metric of Q induced by hg. If (9.(E),g«(hg)) is generated by small sections
at y with respect to S, then (9.(Q), g«(hq)) is generated by small sections at y
with respect to S.
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(2) Let Ey and E3 be coherent Ox-modules such that E1 and Es are
locally free over g~Y(U). Let hy and hy be C*° Hermitian metrics of Ey and
Ey over g~ Y U)(C). If (9«(E1), g«(h1)) and (g«(FE2), g«(h2)) are generated by
small sections at y with respect to S, then so is (¢«(E1 @ E2), g«(h1 @ h2)).

(3) Let E be a coherent Ox -module such that E is locally free over g~ *(U).
Let hg be a C* Hermitian metric of E over g~ (U)(C). If (g.(E),
9«(hg)) is generated by small sections at y with respect to S, then
(9+«(Sym"™(E)), g«(Sym"™(hg))) is generated by small sections at y with respect
to S. (For the definition of Sym™(hg), see Section 7.1.)

(4) Let F be a coherent Oy -module such that F is locally free over U. Let
hr be a C* Hermitian metric of F' over U(C). Since det(F)|, is canonically
isomorphic to det( F|;;), det(hp) gives rise to a C*° Hermitian metric of det(F)
over U(C). If (F, hg) is generated by small sections at y with respect to S, then
so is (det(F),det(hp)).

Proof. (1) By our assumption, g.(¢) : g.(E) — ¢.(Q) is surjective over
U. Let s1,...,s € H(Y,9.(E)) = H°(X, E) such that g.(F), is generated
by s1,...,s;, and that g.(hg)(si, s;)(2) <1 for all ¢ and z € S. Then, g.(Q)y
is generated by g.(4)(s1),...,9x(¢)(s;). Moreover, by the definition of the
quotient metric hg,

9+(h@)(9:(0)(s:), 9:(¢)(5:))(2)
= Y ho(é(si).(si)(@) < Y hp(sisi)(z) <1

zeg—1(z) z€g~1(2)

for all z € S. Hence, g.(@) is generated by small sections at y with respect to
S.

(2) Since g is étale over U, « : g«(E1) ® g«(E2) — g«(E1 ® E3) is sur-
jective over U. By our assumption, there are s1,...,s; € H°(Y, g.(FE;)) and
tis. .. tm € H(Y, g.(E>)) such that g.(E1), (resp. g.(Es),) is generated by
S1,...,8; (resp. t1,... ,tm), and that g.(h1)(s;, s;)(2) < 1 and g.(h2)(t;,t;)(2)
<1forall i, j and z € S. Then, g.(E1 ® E»), is generated by {a(s; ® t;)}i ;-
Moreover,

g (h1 ® ha)(a(s; @ t;), as; ®t5))(2)
= Z (b1 ® h2)(si ®t, 8 ® ;) ()

z€g~1(z)
= > Ia(sisi)(@)ha(ty, t5)(x)
z€g~1(2)
< Z hl(si, sz)(x) Z h2(tj7 t])(x)
z€g—1(z) z€g~1(2)
<1
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for all z € S. Thus, we get (2).
(3) This is a consequence of (1) and (2).

(4) Let r be the rank of F'. Since F is generated by small sections at y with
respect to S, there are sq,...,s, € H*(Y, F) such that F ® k(y) is generated
by s1,...,8 and h(s;,s;)(z) <1 for all ¢ and z € S. Let us consider an exact
sequence:

0— Fyop = F — F/Fyr — 0.

Then, det(F') = det(F/For) ® det(Fio). Noting that Fy,. = 0 on U, let g be
a Hermitian metric of det(F/Fi,.) over U(C) given by det(hr). Then, there
is a Hermitian metric k of det(Fi,,.) over U(C) such that (det(F),det(hr)) =
(det(F/Fior),g) ® (det(Fior), k) over U(C). If we identify det(Fi,.) with Oy
over U, k is nothing more than the canonical metric of Oy over U(C).

Let us fix a locally free sheaf P on Y and a surjective homomorphism

P — F,,,. Let P’ be the kernel of P — F},,. Here (/\rk F P’) is an invertible
sheaf on Y because Y is regular. Thus we may identify det(F},,.) with

rk P rk P’

ANPe| A\ P

Further, a homomorphism A™ Ppr, A" P induced by P’ < P gives rise
to a non-zero section t of det(F},,.) because

rk P’ rk P rk P’ rk P

Hom | \ P, \P|=Hom| \ P.Oy|& /P

Here Fi,, = 0 on U. Thus, det(F},,-) is canonically isomorphic to Oy over U.
Since P’ = P over U, under the above isomorphism, ¢ goes to the determinant

of P/ 14, P, namely 1 € Oy over U. Thus, k(t,t)(z) =1 for each z € S.

Let 5; be the image of s; in F/Fi,.. Then, 51 A--- A'S, gives rise to a
section s of det(F'/Fi,r). Thus, s®t is a section of det(F'). By our construction,
(s ®t)(y) # 0. Moreover, using Hadamard’s inequality,

det(hr)(s®t, s ®t)(2) = g(s,5)(2) - k(t,t)(2) = det (h(s;, 55)(2))
< s, 51)(2) - Alsr5)(2) < 1

for each z € S. Thus, we get (4). O
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4. Arithmetic Riemann-Roch for generically finite morphisms

4.1. Quillen metric for generically finite morphisms

Before starting Proposition 4.1.1, we recall the tensor product of two ma-
trices, which we will use in the proof. For an r x r matrix A = (a;;) and an
n X n matrix B = (by;), consider the following rn X rn matrix

anB a2B -+ a.B
anB a»B - aB
arlB ar2B o aTrB

This matrix, denoted by A ® B, is called the tensor product of A and B. Then
for 7 x r matrices A, A’ and n x n matrices B, B’, we immediately see

(A2 B)(A'® B') = AA' @ BB',
det(A® B) = (det A)"(det B)".

Let X be a smooth algebraic scheme over C, Y a smooth algebraic variety
over C, and f: X — Y a proper and generically finite morphism. We assume
that every connected component of X maps surjectively to Y. Let W be the
maximal open set of Y such that f is étale over there. Let (E, h) be a Hermitian
vector bundle on X such that on every connected component of X, E has the
same rank r.

Proposition 4.1.1.  With notation and assumptions being as above, the

Quillen metric hg on det Rf.(E) over W extends to a generalized metric on
det Rf.(E) over Y.

Proof. Let n be the degree of f. Since f is étale over W, f.(FE) is a locally
free sheaf of rank rn and R'f,(E) = 0 for i > 1 over there. Thus

det Rf.(E)|w = /\f*(E)|W

If y € W is a complex point and X, = {x1,x9, -+ ,z,} the fiber of f over y,
then we have

det Rf.(E), = det H*(X,, E).

The Quillen metric on det Rf,(E) over W is defined as follows. On H°(X,, E)
the L2-metric is defined by the formula:

hpa(s,t) = Y h(s,t)(za),

a=1
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where s,t € H°(X,,E). This metric naturally induces the L?-metric on
det H°(X,, E). Since X, is zero-dimensional, there is no need for zeta function
regularization to obtain the Quillen metric. Thus the Quillen metric hQ on
det Rf.(E)|w is defined by the family of Hermitian line bundles {det H°(X,,
E)}yew with the induced L?-metrics pointwisely.

To see that the Quillen metric over W extends to a generalized metric
over Y, let sq,89, -+ ,8, be rational sections of F such that at the generic
point of every connected component of X, they form a basis of E. Also let
w1, wa, - ,w, be rational sections of f.(Ox) such that at the generic point
they form a basis of f,.(Ox). Since

(4.1.1.1) det Rf.(E) = (/\(f*(E))) :

over Y, we can regard /\i,c SiwE = S1w1 ASjwa A+ ASjwy A+ N\ Spw, as a non-
zero rational section of det Rf,(E). Shrinking W, we can find a non-empty
Zariski open set Wy of W such that s;’s and w;’s has no poles or zeros over

FHWY).

To proceed with our argument, we need the following lemma. 1

Lemma 4.1.2.  Let L be the total quotient field of X, and K the func-
tion field of Y. Then,

loghg (/\ siwk,/\siwk> = rlog |det(Try, k (w; - wj))| + f«log det(h(s;, s;))
ik ik

over Wy.

Proof. Let y € Wy be a complex point, and {x1,xs,...,z,} the fiber of
f~Y(y) over y. Then,

log h§ (/\ siwr, [\ Siwk> ()
ik ik
= log det (Z h(siwg, sjwl)(xa)>
ikl

n
= IOg det Z l‘a S’m S])('/I:Ol)wl(ma)>
a=1 ij,kl

( xl) 0
= log det tIlr ®9Q)

H{(zn)

= log det { | det(Q)|*" H det (h(s;,55)( ))”}
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= rlogdet |det(Q)[* + ) _logdet (h(si, s;)) (za),

a=1

where Q = (wi(xa))ka and H(zo) = (h(s;,5j)(xa))i;- On the other hand, we
have

" logdet (h(si, s)) (wa) = (f- log det (h(si, s;))) (9).

Moreover, using the following Lemma 4.1.3, we have

|det(Q)P = | det(Q2'0)

= |det <Z wk@a)%@a))
kl

a=1

= | det (TrL/K(wk -wl))kl |.

Thus we get the lemma. a

Lemma 4.1.3.  Let f : Spec(B) — Spec(A) be a finite étale morphism
of regular affine schemes. Let m be the mazimal ideal of A and ny,no,--- 0y,
the prime ideals lying over m. Assume that k(m) is algebraically closed and
hence k(n;) is (naturally) isomorphic to k(m) for each 1 < i < n. Let b be an
element of B and b(n;) the value of b in k(n;) = k(m). Then

Trpa(b)(m) =) b(n;)

i=1

in k(m), where Trg,4(b)(m) is the value of Trp (D) in r(m).

Proof. 1t is easy to see that every n; is the maximal ideal and that mB =
ning---n,. Let A be the completion of A with respect to m, B the completion
of B with respect to mB, and B; the completion of B with respect to n; for
each 1 < 7 < n. Then by Chinese remainder theorem, B = T, B; as an

A-algebra. Note that A/mA = r(m) and B; /nzB = k(n;). Since A — B;
is étale and k(m) = k(n;), we have A Bi. Let e = (1,0,- 0) ey =
(0,1,---,0),--- ,e, = (0,0,---, ) € Hl 1B = B be a free basis of B over
A We put be; = b;e; with b; € BZ =~ A for each 1 < ¢ < n. Then b; = b(n;)
(mod n;). Now the lemma follows from

TI'B/A(b) TI‘E/A‘ ):Zbl

-~

in A. |
Let us go back to the proof of Proposition 4.1.1. Since
det(Trr, /i (wi -wj))|W0 extends to a rational function det(Try /g (w; - w;)) on

?

log ’det(TI‘L/K(Wi 'Wj))‘ € Lip(Y).
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Moreover, by Proposition 1.2.5, f,logdet(h(s;,s;)) € L .(Y). Thus, by
Lemma 4.1.2,

log hg </\ SiWk, /\ siwk>
ik ik

extends to a locally integrable function on Y. Hence by Lemma 3.1.1 the
Quillen metric over W extends to a generalized metric over Y. O

Wo

Remark 4.1.4. In the above situation, Let W’ be a open set of Y such
that f is flat and finite over there. Then the Quillen metric extends to a
continuous function over W' by the same formula as in (4.1.2)

4.2. Riemann-Roch for generically finite morphisms

In this subsection, we formulate the arithmetic Riemann-Roch theorem for
generically finite morphisms.

Theorem 4.2.1.  Let X be a scheme such that every connected compo-
nent of X is an arithmetic variety. Let Y be a regular arithmetic variety, and
f: X =Y a proper and generically finite morphism such that every connected
component of X maps surjectively to Y. Let (E,h) a Hermitian vector bundle
on X such that on each connected component of X, E has the same rank r.
Then,

&1 (det RE(B), hE) — 12y (det R.(0x),h3¥ ) € CH,. (V)

and

& <det Rf.(E), hg) i (det Rf.(Ox), hgx) = f. (@1(E,h))

1 _ —
in CHp1(Y)q, where hg and hgx are the Quillen metric of det Rf.(E) and
det Rf.«(Ox) respectively.

Proof. Let X = Hae 4 Xao be the decomposition into connected com-
ponents of X. Since f is proper, A is a finite set. We set f, = f|X(, and
(Ea,ha) = (E, h)|Xa. Then

Rf.(E) = @ R(fa)+(Ea),

a€cA

Rf.(Ox) = D R(fa)«(Ox.),

acA

a(B,h) =Y @ (Eaha).

acA
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Hence we have the following:

& (det Rf.(E), b ) = Z (det R(fo)o(Ea) HE" ),

(detRf*(OX) hgx ) = ( et R(fa)«(Ox ),hg"a),
acA
Js (El(Evh)) = Z Je (El(Eavha))'

a€cA
Thus, we may assume that X is connected, i.e., X is an arithmetic variety.

Let K = K(Y) and L = K(X) be the function fields of Y and X respec-
tively. Let m be the degree of f and wy,ws, -+ ,w, rational functions on X
such that at the generic point they form a basis of K-vector space L. Further,
let s1,s9,...,s, be rational sections of £ such that at the generic point they
form a basis of L-vector space Ej. Then sjwy Asjwo A« ASiwp A« A Spwp,
s1 A+ Aspand wy A- -+ Aw, are non-zero rational sections of det fi(E), det(E)
and det f.(Ox) respectively. Here we shall prove the following equality in
ZL(Y):

(4.2.1.1) (div <{k\ siwk> : [— logh§ ({k\ siwk,{k\siwkﬂ)
ol e )
= f. (dw (/\ ) : l log det h (/\sz,/\sz>]> ,

where A, siwr = siwi AS1iwa A+ AsSiwp A ASpwn, N\pwi = wi A+ Awy
and A, s; =s1 A~ Asp.

First we shall show the equality of divisors. Let Y{ be the maximal Zariski
open set of X such that f is flat over Yy. Then, codimy (Y \ Yy) > 2 by [13,
ITI, Proposition 9.7]. Since f is generically finite, f is in fact finite over Y.
Then Z1(Y) = Z(Yp) and thus it suffices to prove the equality of divisors over
Yy. Since it suffices to prove it locally, let U = Spec(A) be an affine open set
of Yy and f~1(U) = Spec(B) the open set of Xog = f~1(Yy). Shrinking U if
necessary, we may assume that B is a free A-module of rank n and that E
is a free B-module of rank r. Let dy,ds,--- ,d, be a basis of B over A, and
e1, e, -+ ,e. be a basis of E over B. Note that K and L are the quotient fields
of A and B respectively. In the following we freely identify a rational function
(or section) by the corresponding element at the generic point. In this sense,
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we set

wp =Y a% (k=12 n)
=1

r
Si = E 0;5€5 (i:172,"'7T),
=1

where a¥! € K (1 <k,l <n)and o;; € L(1<4i,j <r).

For each (1 <i,j <), let T,,, : L — L be multiplication by o;;. With
respect to a basis wi,ws, -+ ,wy of L over K, T, gives rise to the matrix
(ij)lgk,lgn S Mn(K) defined by

n
ki
0wk = E Cigwi (k=1,2,--- ,n).
=1

We also denote this matrix by 7,,,. Then,

3

n

r

§ : § : kl
/\siwk = /\ 0;5€5 | Wk = /\ Cij €W
ik

ik \j=1 ik \j=11=1

n
= det(cﬂ)ik,jl /\eiwk = det(cff)ikyﬂ /\ei (Z akldl>
ik ik =1

.
kl kl
= det(c}irgi \ | D disa™ | e

ik \j=1

= det(cff)ik,jl det(&ijakl)ik’jl /\ eidl.
ik

On the other hand, since the matrices Ty,; and Tgi,j, commute with each other,
we have

T T

o11 o12 Iir
TO’21 TO’22 TUQT
det(cff)ik,jl =det [ . :
T(T1'1 T<71-2 U TU”'
= det < Z Sign(T)To'l‘r(l) ..... TUrr(r))
7'667‘
= det(Tdet(G'ij)ij)
= Normy, /g (det(0ij)i5)-

Moreover, we have
det(éijakl)ikyﬂ = det(]r ® (akl)kl)
= (det(akl)kl)r.
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From the above three equalities, div (/\;, siwx) is given by the rational function
NormL/K(det(aij)ij)(det(akl)kl)r.
Further

/\slf det(o4j)i5) /\e;€ and /\wk (det(a )kl)/\dk.

k

Hence we have

) o) o)

Next we shall show the equality of currents. Since all the currents in the
equality come from locally integrable functions by Propositions 1.2.5 and 4.1.1,
it suffices to show the equality over a non-empty Zariski open set of every
connected component of Y(C). So let Wy be a non-empty Zariski open set of
a connected component of Y(C) such that fc is étale and that s; (1 < i < r)
or wi (1 < k < n) have no poles or zeroes over there. Then over W all these
currents are defined by C'*° functions. Let y € Y(C) be a complex point and
T1,To, - , Ty be the fiber f@l(y) over y. From the proof of Lemma 4.1.2, as
C* functions around vy,

— log hg </\ SilWk; /\Siwk> ()
ik ik
—log det { det(Q)|*" H det (h(sq, s5)( ))”} ,

where Q = (Wi (2a)) ke and H(za) = (h(s;, sj)(xa))i;. Also,

floghgx (/\wk, /\wk> (y) = —log det | det ()%

k k

On the other hand, by the definition of the push-forward f,,

fe (—logdeth</\si,/\si>>( Z logdeth(/\sz,/\sz> Ta)
—Z log det (h(si, s;)(za)),; -

Hence we have the desired equality of currents by the above three equalities.
Thus we have showed the equality (4.2.1.1). Since the right hand side

belongs in fact to 2;1 (Y), the left hand side must also belong to Zil (Y), and

thus we have the equality in ’Z}l (V). O
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5. Arithmetic Riemann-Roch for stable curves

5.1. Bismut-Bost formula

Let X be a smooth algebraic variety over C, L a line bundle on X, and h
a generalized metric of L over X. Let s be a rational section of L. Then, by
the definition of the generalized metric h, —logh(s, s) gives rise to a current
—[log h(s, s)]. Moreover, it is easy to see that a current

ddc(_[log h(57 S)]) =+ 5div(s)
does not depend on the choice of s. Thus, we define ¢; (L, h) to be
c1(L, h) = dd°(—[log h(s, s)]) + ddiv(s)-

Let f: X — Y be a proper morphism of smooth algebraic varieties C such
that every fiber of f is a reduced and connected curve with only ordinary double
singularities. We set ¥ = {x € X | f is not smooth at z.} and A = f.(X). Let
|A| be the support of A. We fix a Hermitian metric of wx/y. Then, in [1],
Bismut and Bost proved the following.

Theorem 5.1.1.  Let E = (E,h) be a Hermitian vector bundle on X.

Then, the Quillen metric hg of det Rf«(E) on Y \|A| gives rise to a generalized
metric of det Rf.(E) on'Y. Moreover,

22) rtkFE
12

ol (det Rf*(E),hg) = —f. [td@x/y ") ch(E)]" N

5.2. Riemann-Roch for stable curves

In this subsection, we prove the arithmetic Riemann-Roch theorem for
stable curves.

Theorem 5.2.1. Let f : X — Y be a projective morphism of reqular
arithmetic varieties such that every fiber of fc : X(C) — Y (C) is a reduced and
connected curve with only ordinary double singularities. We fixz a Hermitian
metric of the dualizing sheaf wx,y. Let E = (E,h) be a Hermitian vector
bundle on X. Then,

& (det RE(B), hE) —rk(E)ar (det RE.(Ox),h3¥ ) € CH,. (V)
and

& (det Rf.(E), hg) —rk(E)e (det Rf.(Ox), hSX)

= f, (% (@(E)? —a(E) -a(@xy)) — Eg(E))

—1 — -
in CHp1(Y)q, where hg and hgx are the Quillen metric of det Rf.(E) and
det Rf.(Ox) respectively.
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Proof. We prove the theorem in two steps.
Step 1. First, we assume that fg : Xg — Yp is smooth. In this case, by
[11],
& (det Rf.(E), hg)
—~ . 1
= f. (h(E, WEATf, hy) - a(ch(Ee) (T fe) R(T fe))

in (/Eﬁl (Y)q. Since

ch(E) = 1k(E) + & (E) + (%’c\l (E)? - & (E)) + (higher terms)
and
td(Tf, hy)=1- %El(wx/y) +tdo(T'f, hy) + (higher terms),
we have

~ ~ (2
(ch(E, WA(T, hf))
1 o= = o .
=5 (@(E)? - (E) & (@x)y)) — &2(E) + tk(E)tda (T f, hy).
On the other hand, since the power series R(z) has no constant term, the (1, 1)
part of
ch(Ec) td(T'fe) R(T fc)
is tk(F)R1(T fc), where Ry (T fc) is the (1,1) part of R(T fc). Therefore, we
obtain
1 —

(5.2.1.1) & (det Rf*(E),hg) =fs <§ (@(E) —a(E) a(@xy)) — &(E))

+1k(B) f. (t5(T S, ) — a(Ra(Tfc)) ).
Applying (5.2.1.1) to the case (E, h) = (Ox, hcan), we have
(52.12) @ (det Rf*((’)x),hg") — f (deg(Tf, hy) — a(Rl(TfC))) .
Thus, combining (5.2.1.1) and (5.2.1.2), we have our formula in the case where
fo 1 Xg — Yp is smooth.

Step 2. Next, we consider the general case. The first assertion is a con-
sequence of Theorem 5.1.1 because using Theorem 5.1.1,

a (det Rf.(E), hg) k() (det Rf.(Ox), hSX)

= —f. [td@x,/y ") ch(E)] @2 k(). [td(@x/y 1) ch(Ox)] (22)



Inequalities for Semistable Families of Arithmetic Varieties 137

belongs to LIOC(Q%C)
quence of the useful Lemma 2.5.1. In fact, both sides of the second assertion
are arithmetic L'-cycles on Y by the first assertion and the Proposition 2.2.2: If
we take A = {y € Yg | fo is not smooth over y} and define A to be the closure
of A'in Y, then the compliment U = Y \ A contains no irreducible components
of fibers of Y — Spec(Z) and fc is smooth over U(C): The arithmetical linear
equivalence of both sides restricted to U is a consequence of Step 1. Thus by

Lemma 2.5.1, we also have our formula in the general case. O

) by Proposition 1.2.5. The second assertion is a conse-

6. Asymptotic behavior of analytic torsion

Let M be a compact Kihler manifold of dimension d, £ = (E,hg) a
flat vector bundle of rank r on M with a flat metric hg, and A = (A, hy)
a Hermitian vector bundle on M. For 0 < ¢ < d, let A, be the Laplacian
on A%9 (Sym (E)® A) and Af . the restriction of A, ,, to Image d ® Image 0.
Let o(A},) = {0 < A1 < A2 < ---} be the sequence of eigenvalues of A
Here we count each eigenvalue up to its multiplicity. Then, the associated zeta
function ;. (s) is given by

Con() = Tr [(A7,) 7] = DoA™

It is well known that ¢, ,(s) converges absolutely for R(s) > d and that it has
a meromorphic continuation to the whole complex plane without pole at s = 0.
The analytic torsion T’ (Sym”(E) ® A) is defined by

d
T (Sym"(E = (=1)%q¢) . (

q=0

In the following we closely follow [26, Section 2].
The Theta function associated with o(A; ) is defined by

o0

Ogn(t) = Tr [exp(—tA] )] = Ze"\"t.

i=1

By taking Mellin transformation, we have, for R(s) > d,

Gn) =57 [ Ountt .

S

)= ey o ()05

Then we have

We put

1

S ——— s) =n"Con(s
rk(Sym"(E)) quﬂ( ) Cq,n( )
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and thus
1
Tk(Sym” ()

Bismut and Vasserot [3, (14), (19)] showed that O, ,(¢) has the following
properties (note that these parts of [3] do not depend on the assumption of
positivity of a line bundle, as indicated in Vojta [26, Proposition 2.7.3]):

(a) For every k € N, 0 < ¢ < d and n € N, there are real numbers
a} , (—d < j < k) such that

(6.1) 1= (0) = —(logn)Cy.n(0) + 5. (0)

1 —d v i 7 k
k(Sym"(E)) " @< ) > ot 4o

j=—d

as t | 0, with o(t*) uniform with respect to n € N. _
(b) For every 0 < ¢ <d and j > —d, there are real numbers aj such that

. . 1
g = ag + O (ﬁ)
as n — o0.

Also by (b), we can replace the o(t*) in (a) by O(t*T1) and still have the
uniformity statement. Thus we can write, for every k € N,

k

vy O (1) = 32 dhat’ a0

j=—d

)= e T /100 O (2) &

q,n Jj+s—1
+—F(s)/0 t dt + E /pqn(t)dt

_ 1 n—d 1 * E s@
(e >> r<s>/1 O (n) "
1t Ldt
" Z 1) F(s)/o a7

In the last expression, the first integral is holomorphic for all s € C, while
the second integral is holomorphic for $(s) > —k — 1; the middle term is a
meromorphic function in the whole complex plane.

Putting £ = 0 and s = 0 in the above equation, we have

(6.2) Cam(0) =al .
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Moreover, by differentiating the above equation when k& = 0, we have

(6:3) GCn(0) = rk(SyTln(E))n_d /100 Oy (%) %

—1 . 1
al 1 dt
q,n 0 / 0
2 g0 T'(1) 4+ —— t)—.
+];d ] aqm ( ) + F(S) /() pq,n( ) t

We have now the following Proposition.
Proposition 6.4.  There exists a constant ¢ such that for all n € N,

¢!, (0) > —entm " ogn

q,n

Proof. By (6.1), (6.2) and (6.3), we have

Con(0) = = rk(Sym™ (E))n?(log n)ag,,,
n 1 _ *° t\ dt
k(s 0 (e [0 (7)

1 : 1
al 1 dt
q,m 0 0
+ . E —J — aq)nF’(l) + —P(S) /0 pq,n(t)?

j=—d

In the first term of the right hand side, agm is bounded with respect to n by
(b). In the second term of the right hand side, the first integral is non-negative;
the sum of aJ ,’s is bounded with respect to n by (b); the term —aJ ,I"(1) is
also bounded with respect to n by (b); the second integral is also bounded with
respect to n, for p)  (t) = O(t) uniformly with respect to n. Moreover,

-1
sy (£) = (" 777 = 00
r—
as n — oo. Thus, there is a constant ¢ such that for all n € N,

¢ (0) > —en®tLlogn. O

q,n

In the following sections, we only need the case of d = 1, namely where M
is a compact Riemann surface. In this case, the above Proposition 6.4 gives an
asymptotic upper bound of analytic torsion.

Corollary 6.5. Let C be a compact Riemann surface, _E = (E,hg) a
flat vector bundle of rank r on C with a flat metric h, and A = (A, ha) a
Hermitian vector bundle on C. Then, there is a constant ¢ such that for all
n €N,

T (Sym™(E) ® A) < cn” logn.
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Proof. Since dimC =1
T (Sym"(E) ® A) = —(1 ,,(0).

Now the corollary follows from Proposition 6.4. O
7. Formulae for arithmetic Chern classes

7.1. Arithmetic Chern classes of symmetric powers

Let M be a complex manifold and (E, h) a Hermitian vector bundle on M.
Since E®™ has the natural Hermitian metric h®™, we can define a Hermitian
metric Sym”(h) of Sym"(E) to be the quotient metric of E®" in terms of the
natural surjective homomorphism E®" — Sym"(FE). We denote (Sym"(FE),
Sym"(h)) by Sym"(E,h). If x € M and {ey,...,e.} is an orthonormal basis
of E, with respect to h,, then it is easy to see that

(Sym™(h))a (e?l .. .egw,efl .. .efr)

arl---a!

— ,n| if(ah""ar):(ﬁl?"'aﬁ?")7

0 otherwise.
Then we have the following proposition.

Proposition 7.1.1.  Let X be an arithmetic variety and E = (E,h) a
Hermitian vector bundle of rank v on X. Then, we have the following.

W & s ®) =2 ("7 a®

r r—1

n!
log [ — %
+a Z og<a1!_._ar!>
ar o fap=n,

a1>0,... ,a»>0

(2) If X is regular, then

Proof. 1In [24], C. Soulé gives similar formulae in implicit forms. We follow
his idea to calculate them.
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(1) First of all, we fix notation. We set

Srn ={(a1,...;0p) € (Z4)" |1 + -+ + ap = n},

where Z; = {zx € Z|x > 0}. For I = (a1,... ,a,) € S, and rational sections
81,..., 8. of E, we denote s ---s% by s’ and aq!---a,! by I!.
Let si1,...,s, be independent rational sections of E. Then, {sI}[egryn

forms independent rational sections of Sym"™(E). First, let us see that

. n{n+r—1\ ..
(7.1.1.1) div | A s'| = 7~< .1 > div(sy A+ Asy).
I€Smn
This is a local question. So let z € X and {w1,... ,w,} be a local basis of E

around x. We set s; = Z§:1 a;jwj. Then, sy A--- A s, =det(ai;)wi A Awy.
Let K be a rational function field of X. Since the characteristic of K is zero,
any l-dimensional representation of GL,(K) is a power of the determinant.
Thus, there is an integer N with

/\ S—deta” /\ w!

I€Srn I€Srn

Here, by an easy calculation, we can see that

Nn<n+r—1>'
r r—1

Thus, we get (7.1.1.1).
Next, let us see that

(7.1.1.2) —logdet (Sym”(h)(s’, SJ))I,JGSM

nin+r—1 n!
:_;< .1 >logdet(h(sz,s] i+ Z log(p>

I€S,n

Let z € X(C) and {e1,...,e,} an orthonormal basis of E ® x(z). We set
si = ;_y bijej. Moreover, we set s' =3, ¢ brye’. Then, in the same way
as before, det(br;) = det(b;;)". Further, since

Symn(h)(SIvsJ)z Z brr Symn(h)(el,,ej/)bJ'L
I',J'€Spn

we have

det (Sym"(h)(s', s7)) = | det(brs)|* det (Sym"(h

I
2
\det ij | H —'

€Sy,

o
1,JE€Spn ))I,Jesm
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Thus, we get (7.1.1.2). Therefore, combining (7.1.1.1) and (7.1.1.2), we obtain
(1).

(2) First, we recall an elementary fact. Let ® € R[Xy,...,X,] be a sym-
metric homogeneous polynomial, and M,.(C) the algebra of complex r X r ma-
trices. Then, there is a unique polynomial map ® : M,.(C) — C such that ®
is invariant under conjugation by GL,(C) and its value on a diagonal matrix
diag(A1, ..., Ar) is equal to ®(Aq, ..., \).

Let us consider the natural homomorphism

Prn  Autc(C™) — Aute(Sym"(C"))
as complex Lie groups, which induces a homomorphism

Yrn = A(prn)ia : Endc(C") — Endc(Sym”™(C"))

as complex Lie algebras. Let {e1,...,e,} be the standard basis of C". Then,
{er}res,, forms a basis of Sym"(C"), where e; = ef'---epr for I =
(a1,... ;). Let us consider the symmetric polynomial
™ = = > X7
2 5 I
I€S,

in R[X7]ses, .. Then, by the previous remark, using the basis {er}ses, ,, we

have a polynomial map

rmn?

chy™ : End¢(Sym™(C")) — C

such that chy™ is invariant under conjugation by Autc(Sym”™(C")) and

Ch;’n (diag()\j)jes7m) = Chg’n(. .. ,)\], - )

Here we consider a polynomial map given by

rn
Yr,n 2

0 : Endc(C") —"— Ende(Sym™(C")) —— C.

Since Yy (PAP™Y) = ppn(P)Yrn(A)prn(P)~! for all A € Endc(C") and P €
Autc(CT), 6, is invariant under conjugation by Autc(C"). Let us calculate

Or n(diag(A1,. .., Ar)).
First of all,
Yrn(diag(Ar, ..., ) =diag (.., (A1 + -+ ar A, ... )(ah“_ ) ESmm

Thus,

1
Orn(diag(Ai, ..., Ar)) = 3 Z (ahi + -+ aph)”.

(a1,ee.,00)ESr
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On the other hand, by easy calculations, we can see that

Z (al)\l + -+ a7')\r)2

(1, 0 )ESr
n+r 9 9 n+r—1 2
= AN A4+ M)
<7~+1)(1Jr +T)+< r+1 )(1+ )
Therefore, we get

Orn(diag(A1, ..., Ar))

1 1 —1
=§(n+r) (/\§+~-~+>\$)+—<n+r )(A1+---+Ar)2.

r+1 2 r+1

Hence,

n+r l/m+r—-1 9
1.1 O = hy + - ;
(7.1.1.3) ’ <7~+1>C—2+2< r 1 >(Cl)

1
wherechQ(Xl,...,Xr):E(X12+--.+XE)andcl(Xl,...,XT):X1+--.+
X,

Let M be a complex manifold and F = (F, hr) a Hermitian vector bundle
of rank r on M. Let K7 be the curvature form of F', and K, Sym” (F) the curvature

form of Sym” (F). Then,

KSym"(f) = ('Yr,n & idAl,l(M)) (Kf)
Thus, by (7.1.1.3),
(7.1.1.4)

n n+r 1/n+r—-1
chg(Sym (F7hF)):(T+1)Ch2(F7hF)+§( a1 )Cl(F,hF)Q.

Now let E = (E, h) be a Hermitian vector bundle on a regular arithmetic
variety X. Let A’ be another Hermitian metric of E. Then, using the definition
of Bott-Chern secondary characteristic classes and (7.1.1.4),

chy (Sym™ (E, h)) — chy (Sym™(E, b))

_ n+r\ — N, L(nt+r—1\3 ,
a((r+1>ch2(E,h,h)+2< ril >01(E,h,h) .

Thus,

~ n n+r\ -~ 1/n+r—1\_.
dia Sy (£.) = ("1 )z - 5 (T sy

does not depend on the choice of the metric k. Therefore, in order to show (2),
by using splitting principle [10, 3.3.2], we may assume that

(B,h)=Li®-- & L,
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where L; = (L, hi)’s are Hermitian line bundles. Then,

— —Ra —QRa,- [ ! NG '
S}’mn(E) = @ L(lg) ' ®®L? ® (OX7%hCLM’L> .
art-tar=n, '

a120,...,0,.20

Therefore, chy (Sym™(E)) is equal to

3 {cTu (Z‘f’“ ®- ®fo’ar)

a1t Fap=n,
l... | . —
—log (M) a (01 (L?al ®,..®L§§>cw))}'
n.

a1 20,...,,20

On the other hand, since

|
S log | ) (X1 -+ a,X,)
ar!lan!

(a1, ar)ESrn

!
| Z log(L> (X1+-+X,),
r a1

L al
(0‘17"' 70‘7‘)687‘,71, r

we have

chy (Sym™(E))

_ (’ZH)&Q(E) +%<”+“ 1)5@)?

P e e@al) o ea()

(e, ,07)ESrn

n+r\~ —= l/n+r—1\_. =,
(r+1)c 2( )+2< r+1 )Cl( )

Thus, we get (2). O

7.2. Arithmetic Chern classes of F ® Fv

Here, let us consider arithmetic Chern classes of E ® B

Proposition 7.2.1.  Let X be a regular arithmetic variety and (E,h) a
Hermitian vector bundle of rank v on X. Then,

cho(E® EY,h®@hY) = 2rche(E, h) — &1 (E, h)?
= (r— 1) (E, h)* = 2rcy(E, h).
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Proof. Since ch;(EV,hY) = (—1)ich;(E,h) and ch(E @ EV,h ® hV) =
ch(E, h) - ch(EY,hY), we have

cha(E® BV, h @ hY) = rcho(E, h) + & (B, h) - e (BY, hY) + rchy(EY, hY)
= 27“(?/1\12(E, h) - /C\l(E, h)2

The last assertion is derived from the fact

-~ 1
chy(E,h) = 5a(E, h)? — & (E, h). ad

8. The proof of the relative Bogomolov’s inequality in the arith-
metic case

The purpose of this section is to give the proof of the following theorem.

Theorem 8.1 (Relative Bogomolov’s inequality in the arithmetic case).
Let f : X — Y be a projective morphism of regular arithmetic varieties such
that every fiber of fc : X(C) — Y (C) is a reduced and connected curve with
only ordinary double singularities. Let (E,h) be a Hermitian vector bundle of
rank v on X, and y a closed point of Y. If f is smooth over y and E|X77 18
semi-stable, then (

disx/y (E,h) = f. (2r62(E, h) — (r — )& (E, h)?)

is weakly positive at y with respect to any subsets S of Y (C) with the following
properties: (1) S is finite, and (2) fz'(2) is smooth and E(C‘fc—l(z) is poly-stable
forallz € S.

8.2. Sketch of the proof of the relative Bogomolov’s inequality
The proof of the relative Bogomolov’s inequality is very long, so that for
reader’s convenience, we would like to give a rough sketch of the proof of it.

Step 1. Using the Donaldson’s Lagrangian, we reduce to the case where
the Hermitian metric & of E along fz '(2) is Einstein-Hermitian for each z € S.

Step 2. We set
F, =Sym" (¢nd(E) @ f*(H)) @ Ao f*(H),

where A is a Hermitian line bundle on X and H is a Hermitian line bundle on
Y. Later we will specify these A and H. By virtue of the arithmetic Riemann-
Roch for stable curves (cf. Theorem 5.2.1) and formulae of arithmetic Chern
classes for symmetric powers (cf. Section 7.1), we can see that

1 oo nl C) «(Frn s Iim
iy () = — Jim SO

n— 00 nr2+1 ’
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Where h, is a generalized metric of det Rf.(F,) such that ¢ (det Rf«(Fy), hn) €
CH Ll( ) and h,, coincides with the Quillen metric hQ" at each z € S.

Step 3. We assume that A is very ample and A ® w;(}y is ample. We

choose an arithmetic variety B C X such that B € |A®?|, B — Y is étale
over y, and B(C) — Y(C) is étale over each z € S. (Exactly speaking, B
is not realized as an element of |A®2|. For simplicity, we assume it.) We set
G, = F, ‘B and g = f|g. Here we suppose that g.(End(E)|,) ® H and
Jx A‘ B ® H are generated by small sections at y with respect to S.

Applying the Riemann-Roch formula for generically finite morphisms (cf.

Theorem 4.2.1), we can find a generalized metric g,, of det g.(G,,) such that g, is

il 1
equal to the Quillen metric of G,, at each z € S, ¢;(det g« (Gy,), gn) € CH;1(Y),
and

lim C1 (det Gx (Gn)v gn)

n—oo n"'2+1

=0.

Let us consider the exact sequence:
0 — fu(Fy) — g.(Gn) — RYf.(F, ® A®2)
induced by 0 — F,, ® A®~2 - F,, — G, — 0. Let Q,, be the image of
9.(Gp) — R f.(F, @ A®7?).

The natural L2-metric of ¢.(G,,) around z induces the quotient metric G, of
@, around z for each z € S. Thus, we can find a C'°® metric ¢, of det @,, such
that ¢, is equal to det ¢, at each z € S.

Since

det Rf.(F,) = det g.(Gp) @ (det Q,)® ' @ (det R* £, (F))® ™",
we have the generalized metric ¢,, of det R! f..(F,) such that
(det Rf(F), hn) = (det g.(Gn), gn) @ (det Qn, ¢n)® ' @ (det R fu(F), 1) ® "

Step 4. We set a, = max,es{logtn(sn,sn)(2)}, where s, is the canon-
ical section of det R!f.(F,). In this step, we will show that ¢i(det Qn,qx)
is semi-ample at y with respect to S and a, < O(n" log(n)). The semi-
ampleness of El(det Qn,qn) at y is derived from Proposition 3.7.1 and the fact
that g.(End(E |B ® H and g*(Z}B) ® H are generated by small sections at
y with respect to S. The estimation of a,, involves asymptotic behavior of an-
alytic torsion (cf. Corollary 6.5) and a comparison of sup-norm with L?-norm
(cf. Lemma 8.3.1).

Step 5. Thus, using the last equation in Step 3, we can get a decomposi-
tion

¢ * F7L7 n
_cl(detR{QJ(rl Jha) o
n
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such that v, is semi-ample at y with respect to S and lim, .., 6, = 0.

8.3. Preliminaries

First of all, we will prepare three lemmas for the proof of the relative
Bogomolov’s inequality.

~ Lemma 8.3.1.  Let M be a d-dimensional compact Kdhler manifold,
E = (E,h) a flat Hermitian vector bundle of rank r on M, and V = (V,k) a
Hermitian line bundle. Then, there is a constant ¢ such that, for any n > 0
and any s € H'(M,Sym™(E)® V),
Isllsup < en®™ sz

Proof. Let f: P = Proj (@izo Symi(E)) — M be the projective bundle
of E, and L = Op(1) the tautological line bundle of E on P. Let hz be the
quotient metric of L induced by the surjective homomorphism f*(£) — L and
the Hermitian metric f*(h) of f*(E). Let Qs be a Kéhler form of M. Since E
is flat, ¢1 (L, hy) is positive semi-definite of rank r—1. Thus, f*(Qa)+c1(L, hyr)

gives rise to a fundamental 2-form {2p on P. Moreover, by virtue of the flatness
of E, we have ¢1(L,hy)" = 0. Thus,

r— d+r—1 * r—
Q%F 1( J )f(Q%)/\cl(L,hL) 1

By [11, Lemma 30], there is a constant ¢ such that

I lsup < e '] 2

for any n > 0 and any s’ € H°(P, L®"® f*(V)), where ||s'|| 2 = / |s'|2Qdrr =L,
P
We denote a homomorphism
fr(Sym™(E)) ® f1(V) — L @ f*(V)

by a,. As in the proof of [11, (44)], we can see that, for any s € H°(M,
Sym"(E)® V),

n+r—1 —
e R N A e
r—1 P—M
Thus,

n+r—1 _ nt+r—1
< (TN [tz = (T e,
P—M

r r

Therefore, we get

n+r—1
Ist < ("7 7Y lanto) 12,
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for all s € HO(M,Sym™(E) ® V).
On the other hand,

lon(o) = [ lan(o)Pe

d+r—1
_( )/ o ()2 () A er (L hr)'™
P—M
d -1
:( tr )/ 04, v (8)2er (L, b))t
d M P—M
d+r—1\(n+r—1\"" 9d
= Q
(LTI e
_fd+r—=1\(n+r—-1 71”5”2
N d r—1 Lz
Therefore,
n+r—1
Ist < ("7 7Y lanto)12,
< (n "1 1>C2”Q(d+”)||%(s)|iz
r—1
-1
_ <d+r )CQnZ(d+r—l)|S|%2.
d
Thus, we get our lemma. O

Here we recall Einstein-Hermitian metrics of vector bundles. Let M be
a d-dimensional compact Kéahler manifold with a Kéhler form Q,;, and E a
vector bundle on M. We say E is stable (resp. semistable) with respect to Qpy
if, for any subsheaf F' of E with 0 C F' C E,

1
Qd 1 E Qd*ll
rkF/ e (F M S E Cl( ) A QY

1 _ 1 _
<resp. rkF/Mcl(F)/\Q‘fw1 < rkE/Mcl(E)/\lewl‘>

Moreover, E is said to be poly-stable with respect to 2y if E is semistable with
respect to 37 and E has a decomposition E = E1 ® - - - ® E, of vector bundles
such that each FE; is stable with respect to Q). Let h be a Hermitian metric of
E. We say h is Finstein-Hermitian with respect to 2y if there is a constant p
such that K(F,h) A Q%" = pQ4, @ idg, where K(E, h) is the curvature form
given by (E,h) and idg is the identity map in Hom(F, E). The Kobayashi-
Hitchin correspondence tells us that E has an Einstein-Hermitian metric with
respect to 2,/ if and only if E is poly-stable with respect to Q.
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Lemma 8.3.2.  Let M be a compact Kdahler manifold with a Kdahler form
Qur, and E a poly-stable vector bundle with respect to Qpy on M. If h and h'
are Einstein-Hermitian metrics of E with respect to Qpy, then so is h + h'.

Proof. Let E = E; ® --- ® Es; be a decomposition into stable vector
bundles. If we set h; = h[g, and h; = W|p, for each i, then h; and h} are
Einstein-Hermitian metrics of FE; and we have the following orthogonal decom-
positions:

S S

(E,h) = EP(Ei,hi) and (E,N)=ED(E; n)

i=1 i=1

(cf. [16, Chater IV, Section 3]). Thus, we may assume that E is stable. In
this case, by virtue of the uniqueness of Einstein-Hermitian metric, there is a
positive constant ¢ with k' = ch. Thus, h + k' = (1 + ¢)h. Hence h + R’ is
Einstein-Hermitian. O

Lemma 8.3.3.  Let C be a compact Riemann surface. Considering C
as a projective variety over C, let C = C ®c C be the tensor product via the
complex conjugation. Let E be a vector bundle on C, and E = E ®c C on C.
Then, E is poly-stable on C if and only if E is poly-stable on C.

Proof. This is an easy consequence of the fact that if F' is a vector bundle
on C, then deg(F) = deg(F). O

8.4. Complete proof of the relative Bogomolov’s inequality

Let us start the complete proof of the relative Bogomolov’s inequality.

Considering S U F(S) instead of S, we may assume that F.(S) = S by
virtue of Lemma 8.3.3. For each z € S, let ), be the Kahler form induced by the
metric of Wy,y along f(El(z). Since E(C|fa:_1(z) is poly-stable for all z € S, there
is a C°° Hermitian metric b’ of E¢ such that h/| F ) 8 Einstein-Hermitian

with respect to Q, for all z € S. It is easy to see that Fx (h/) P is Einstein-
z

C

Hermitian with respect to €, for all z € S. Thus, if A/ is not invariant under
F, then, considering h’ + F* (h'), we may assume that A’ is invariant under
F,,. For, by Lemma 8.3.2, b/ + F* (k') is Einstein-Hermitian with respect to
Q. on fz'(2) for each z € S.

Here we claim:

Claim 8.4.1.  There is a v € LL (Y (C)) such that a(y) € éﬁil(Y;S)
and y(z) > 0 for each z € S, and

disx/y (B, h) = disx)y (E, ') + a(v).
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Proof. We set ¢ = v/det(h/)/det(h). Then, it is easy to see that
disx/y (E, ¢h) = disx/y (E,h). Thus, we may assume that det(h) = det(h’).
Then, we have

disx /v (B, h) = disx )y (B, 1) = a (= f.(2rcha (B, b, 1)) ).

Hence if we set v = —fi(2rche(E, h,h')), then a(y) € éﬁil(Y;S). On the
other hand, by [2, (ii) of Corollary 1.30], — f.(cha(E, h, h’))(2) is nothing more
than Donaldson’s Lagrangian (for details, see [18, Section 6]). Thus, we get
~v(z) > 0 for each z € S. O

By the above claim, we may assume that A £712) is Einstein-Hermitian

for each z € S. Let A = (A, ha) be a Hermitian line bundle on X such that

A is very ample, and A ® w??/_; is ample. If we take a general member M’

of |Ag2|, then, by Bertini’s theorem (cf. [15, Theorem 6.10]), M’ is smooth
over Q, and M’ — Yy is étale over y. Note that if Z is an algebraic set
of P, U is a non-empty Zariski open set of PY, and U(Q) C Z(C), then
Z = PY. Hence, we may assume that M'(C) — Y(C) is étale over z for all
z€S. Let M = M{ +---+ M| + M | +---+ M be the decomposition
of M’ into irreducible components (actually, the decomposition into connected
components because M’ is smooth over Q) such that fo(M}) =Yg forl <i <l
and fQ(MJ’) CYyforly +1 <j <ly. Let M; (i =1,...,l;) be the closure
of M in X. Weset M = My +---+ M, and B = M, [[---][ M;, (disjoint
union). Then, there is a line bundle L on X with M € |A®2? @ L|. Note that
L|Xy ~ Ox, and L@\fc_l(z) ~ Ofc—l(z) for all z € S because y & U;2:11+1 fo(M])

and z ¢ U;2=ll+1 fe(M;(C)). We denote the morphism B — M — X by ¢, and

the morphism B —— X Ly by g. We remark that the morphism B — M is
an isomorphism over Q. Further, we set

F=¢&ndE,h)=(E®EY, h®hY).

Then, h ® h" is a flat metric along fél(z) for each z € S because h ® h" is
Einstein-Hermitian and deg (F ® EY) = 0 along fz'(z). We choose a Hermi-
tian line bundle H = (H, hy) on Y such that g,(:*(A4)) ® H and g.(¢*(F))® H
are generated by small sections at y with respect to S. Moreover, we set

F,=Sym" (F® f*(H)) ® A® f*(H)
= (Sym" (F® f*(H)) @ A® f*(H), k) -

Claim 8.4.2. There are Zy,... ,Z,2 € Gﬁil(Y; S)g and 3 € Ll (Y (C))

loc
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such that a(f) € éﬁil (Y;S), and

o 1/\ . R n?“2+1 —~
Jx <Ch2(Fn) — sc1(Fn) 'Cl(wX/Y)> = mf*(ch2(F))
+ Z Zini + a(bnﬂ)a
i=0

n!
where bn = Z log (m) .

ar+-ta2=n,
a120,...,a,2>0

_Proof. Since Sym™(F © f*(H)) ® A® f*(H) is isometric to Sym"(F) ®
f*(H)®(”+1) ® A,

chy(F,) = chy(Sym™(F)) + & (Sym"™(F)) - & (f*(H)® "V @ 4)
n (n ; Ti 1 1)&12<f*<ﬁ>®<"+” ® 4).

7"2
Here since det(F) = Ox, by Proposition 7.1.1,
B Sy (F) = a(b) and - chaSym"(F) = (
Thus, by Proposition 2.4.1,
£ (@Sym™ (F) - au(f* (@) @ A))

= f« (bna ((n + 1) f*(ci(H)) + (Z)))

=a (bnf.(c1(A))).
On the other hand, using the projection formula (cf. Proposition 2.4.1),

£ (cha(f*(H)*0 D A))
= 5 [( 4 DE () + @ ()]

= %f* [(n+ )% (f*(H))? + 2(n + V)er(f*(H)) - @1(A) + e (A)?]

NI IS
= (n+1)deg;(A)cr(H) + if* (01(A)2) :
where deg; (A) is the degree of A on the generic fiber of f. Therefore, we have

_ <n+r )f*chg( )

241 g
(”+7“ _1> <n+1 ) deg(A)er (H) + f* (@4 )2)>
)

+a( nf* Cl
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1
Thus, there are Zj,... ,Z/, € CH (Y;S)q such that

2
n’ 211 T

Fecha(F) + " Zin' + a (bn fi(er(A))) .

(8.4.3) fuchy(F,) = (CES
=0

Further, since ¢;(Fy,) - ¢1(@Wx,y) is equal to

n+r2—1
r2 —1

(El(symn(F)) + ( ) ((n+1)a (f*(H)) + & @)) (@xyy),

we have

f* (/C\l(Fn) '/C\l (wX/Y))

= a (buf(cr@x/)
+ (" L 1) ((n+1)(2g — 22 (H) + f. (@1(A) -1 (@x/))) -

1
Thus, there are Zg, ..., Z/, € CH (Y;5)q such that

(8.4.4) f* (/C\l(F ) c1 wX/y ZZHH +a b f*(cl(wx/y))).
Thus, combining (8.4.3) and (8.4.4), we get our claim. O

Let hx/y be a C*° Hermitian metric of det Rf.Ox over Y (C) such that
hxy is invariant under Fi,. Then, since the Quillen metric hSX of det Rf.Ox

is a generalized metric, there is a real valued ¢ € Li (Y (C)) such that hgix =
e®hx/y and Fi (¢) = ¢ (a.e.). Adding a suitable real valued C*° function ¢’
with F% (¢) = ¢’ to ¢ (replace hx/y by e hx/y accordingly), we may assume

2 1 —
that ¢(z) = 0 for all z € S. Here, we set h,, = exp (— <n ;T_ 1 >¢> hg

Then, h,, is a generalized metric of det Rf, F,, with F% (hy,) = hy, (a.e.). More-
over,

R n+r?—1
C1 (det Rf*Fnahn) - ( r2 1

— & (det REF ) - <n 472 - 1>51 (et R7.Ox,n3¥).

r? —

)51 (det Rf.Ox, hx/y)

Here, since

n+r2

r2 —

~ F, —1 —~ Ox —1 )
& (detRf*Fn,hQ ) - ( e (detRf*oX,th) e CH,.(Y;9)g
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—1
by Theorem 5.2.1 and ¢;(det Rf.Ox,hx/y) € CH (Y;S), we have

—1
El (det Rf*Fn, hn) S CHL1 (Y, S)Q

Further, by the arithmetic Riemann-Roch theorem for stable curves (cf. The-
orem 5.2.1),

2 _
& (det Rf.(Fy), hn) — (” :f_ , 1)81 (det Rf.(Ox), hx/y)
=f. <cAhz(7n) - %El(Fn) 'El(wx/Y)> :

1
Therefore, by Claim 8.4.2, there are Wy,... ,W,2 € CH;1(Y;S)g and g €

Li (Y(C)) such that a(3) € aﬁil(Y; S), and
N nr2+1 —~ r .
(8.4.5) @ (det Rfu(Fp), hn) = mf*(Chz(F)) + ) Win' + a(bnB).

=0

in
n— oo nT2+1

' 1 T - . c (det Rf, (Fn)a hn)
Claim 846 mdlSX/y(E) = — lim

CH,.(Y;5)q.

Proof. By virtue of Proposition 7.2.1, f*(&lz (F)) = *&i\S)(/y(E). Thus,
by (8.4.5), it is sufficient to show that 0 < b, < O(n"").
It is well known that

10g(91) + - +10g(9N) < log 0, +---+0n
N N

- . n!
for positive numbers 61, ... ,0y. Thus, noting E —_— = ()",
ar!- - aye!
ai+-to 2=n,
a120,... 2,220

we have

0= Y () < () (%) <o),

ap+-ta2=n, r2—1
a120,...,a,22>0

We set G, = t*(F,,). Then, by Theorem 4.2.1,

n+r?—1
r2 —1

a (det Rg.(Gy), hgn) - ( )a (det Rg.(Op), th) € CH,. (Y3 9)



154 Shu Kawaguchi and Atsushi Moriwaks

and

n+r:—1
r2 —1

&1 (det Ry (G), hG" ) — ( )a (det Rg.(05),hG") = 9. (@1(G))

As before, we can take a C'°° Hermitian metric hp,/y of det Rg.(Op) over Y (C)
and a real valued ¢ € L (Y(C)) such that th = e?hp)y, Fi(hp)y) =

hpy, Fi(p) = ¢ (ae.), and (z) =0 for all z € 5. We set
n+r?—1 G.
e

n+r2—1
r2 —1

Then,
& (det Rga () gn) — ( )a (det Rg. (Op), hsyy) = 9. (61(C)

1
and ¢; (det Rg«(Gr),g9n) € CH1(Y;S). Moreover, in the same as in Claim
8.4.2, we can see that

= n+r2—1 P PpRp—
g- (€1(Gn)) =a(deg(g)bn)+( 21 ) ((n+Dgeer(g"(H)) + g1 (" (A))) -
Thus, there are Wy,... , W/, € éﬁlLl(Y; S)go such that

1,,2

@1 (det Rg.(Ghn), gn) = Y Win' + a(by deg(g)).
=0

Therefore, we have

(847) hm 61 (det Rg* (Gn)a gn)

n— oo n?“2+1

=0

1
in CH.: (Y; 5)q.
Let us consider an exact sequence:

0—-F,@A° 2@ L% ' - F, — F,|,;, —0.
Since F' is semi-stable and of degree 0 along X, and L|Xy = Ox,,, we have
fo(F, @ A22@ L8 1) =0
on Y. Thus, the above exact sequence gives rise to
0= fe(Fn) = (fla)e(Fulpy) = RU(Fo @ A2 @ L97Y) — R fu(Fy).
Let Q,, be the cokernel of

fe(Fy) — (f'M)*(Fn|M) — g+(Gn).
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Let U be the maximal Zariski open set of Y such that f is smooth over U and
g is étale over U. Moreover, let U,, be the maximal Zariski open set of ¥ such
that

(a) U, CU,

(b) (fly)«(Fnly,) coincides with g, (Gy) over Uy,
(c) RY f.(F,) = 0 over U, and

(d) fe(Fn), g«(Grn) and @, are locally free over U,.

Then, y € (Up)g and S C U, (C). For, since A®w;(}y is ample on X, and E is
semi-stable on X, we can see that R f.(F,) = 0 around y, which implies that
f«(Fy,) is locally free around y. Further, since f,(F,) and ( f],,)«(Fnl,,) are
free at y, R'f.(F,) = 0 around y, and (f|,;)«(Fnl,;) coincides with g.(G,)
around y, we can easily check that @, is free at y. Thus, y € (Uy,)g. In the
same way, we can see that S C U, (C).

Next let us consider a metric of det @,,. ¢.(G,) has the Hermitian metric
(flap)« (knlyy) over U, (C), where k, is the Hermitian metric of F,. Let g,
be the quotient metric of @, over U,(C) induced by (f|,;)« (knly). Let gy
be a C'*™ Hermitian metrics of det @,, over Y (C) such that F% (¢,) = ¢, and
qn(2) = det G, (z) for all z € S. (If g, is not invariant under Fi,, then consider

(1/2) (40 + Fiolan)) )

Here since det Rf.(F),) ~ det f.(F,)® (det le*(Fn))fl and det f.(F,) ~
det g.(G,) ® (det Q,,) ™1, we have

det Rf.(F,) =~ det g.(Gp) ® (det Q,) "' ® (det R f,(F,)) .

Further, we have generalized metrics h,,, g, and ¢, of det R f*( n)s det g.(Gy)
and det Q,,. Thus, there is a generalized metric ¢, of det R f,(F},) such that
the above is an isometry.

As in the proof of Proposition 3.7.1, let us construct a section of det R! f. (F},).
First, we fix a locally free sheaf P, on Y and a surjective homomorphism
P, — RYf.(F,). Let P, be the kernel of P, — R'f.(F,). Then, P is a
torsion free sheaf and has the same rank as P, because R!f.(F},) is a torsion

sheaf. Noting that (/\rkP P ) is an invertible sheaf on Y, we can identify
det R f.(F,) with

rk P, rk P,
N P.o| N\ P
Moreover, the homomorphism A™F* P/ — A™" P induced by P! < P,

gives rise to a non-zero section s,, of det R f.(F,). Note that s, (y) # 0 and
sn(2) # 0 for all z € S because R'f.(F,) =0 at y and z.
Here we set

Ay = I?gé({log tn(sna Sn)(z)}
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By our construction, we have
——1
¢i(det R* f.(F,), e "t,) € CH. (Y S).
and an isometry

(8.4.8)
(det Rf.(Fp), hy) =~

(det g+ (Gn), gn) ® (det Qun,gn) " © (det R fo(Fp), e ") 7' @ (Oyy e " hean)-
Here we claim:

Claim 8.4.9.  (det Qn, ) is generated by small sections at y with respect
to S.

Proof. First of all,
9« ((F) @ g"(H)) = g.("(F)) @ H and g. (1"(A) ® g"(H)) = g«(."(A)) @ H

are generated by small section at y with respect to S. Thus, by (2) and (3) of
Proposition 3.7.1,

9«(Gn) = g« (Sym" (" (F) @ g*(H)) @ " (A) @ g*(H))

is generated by small sections at y with respect to S. Thus, by (1) of Proposi-
tion 3.7.1, (Qn, Gn) is generated by small sections at y with respect to S. Hence,
by (4) of Proposition 3.7.1, (det @y, ¢») is generated by small sections at y with
respect to S because ¢, (z) = det ¢, (z) for all z € S. O

Next we claim:

Claim 8.4.10.  a, < O(n" log(n)).

Proof. 1t is sufficient to show that logt,(sn,sn)(z) < O(nr2 log(n)) for
each z € S. Let {e1,... e, } be an orthonormal basis of ¢.(G,) ® k(z) with
respect to g.(kn|g)(z) such that {e1,... e, } forms a basis of f.(F,) ® k(z).
Then, e; A« - -Aep,,, €1/ - -Aep, and &y, 11/ - -Ag;, form bases of det(f.(F,))®
k(z), det(g«(Gr)) @ k(z), and det(Q,) ® k(z) respectively, and (e; A -+ A
em,) ® (Em,+1 N---Né, ) =e1 A---Ney,, where &, +1,... ,€, are images of
€m, 41y -+ »€1, N Qn ® Kk(z). Then,

n

9 les Ao- e |? (2)
z

_ dn
O e N T AL (),

e A Aem) ©557

_ —2
(Z) - |Sn|tn (2)7
where |a|y = \/A(a,a) for X = hy, gn, Gn,tn. Moreover, let Q, be the Kéhler

form induced by the metric of W,y along fc 1(z). Then, there is a Hermitian
metric v, of HO(fz'(2), F,,) defined by

vn(s,s") = / kn(s,8)9,.
)
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Here R'f.(F,) = 0 at z. Thus, (det R'f.(F,)), is canonically isomorphic to
Oy (c),z- Since (P)). = (Py)., under the above isomorphism, s, goes to the
determinant of (P,). d, (Pp)z, namely 1 € Oy (), .. Hence, by the definition
of Quillen metric,

2

’(61 Ao Nep, ) ®sE1 e (z) = det(vn(es, €5)) exp (—T (Fn|f€1(z)>) .

Therefore,
log |snlf (2) =T (Fn’fc—l(z)) — log det(vy, (€5, €5)).

By Corollary 6.5,

T (Ful o)) < O log(n)).
Je (2)
Thus, in order to get our claim, it is sufficient to show that
—logdet(vy(€s,€5)) < O(n"z_1 log(n)).
Let s be an arbitrary section of H°(fz'(z), F,,). Then, by Lemma 8.3.1,

g« (knlp) (5,5)

= Y sk (@) <deglg) suwp {lsl?, ()} < deg(g)c*n®" ||

w9z (2) wele’ ()

for some constant ¢ independent of n. Thus, by [18, Lemma 3.4] and our choice
of e;’s,

o\ dime HO(f5 1 (2),Fy)
1= det (g. (il ) (€5, 5)) < (deg(g)cn®”) ’ det (va (i, ¢5)) -

Using Riemann-Roch theorem, we can easily see that
dime HO(fZ'(2), F) < O(n”" 7).
Thus, we have
—log det(vy (e, ¢;)) < O(n” ' log(n)).
Hence, we obtain our claim. O

Let us go back to the proof of our theorem. By the isometry (8.4.8), we
get
—¢i(det Rf(Fp), hn)
= —21(det g.(Grn), gn) + 21 (det Qu, ga) + E1(det R fu(Fy), e~ 1) — a(ay,)
= [¢1(det Qn, qn) + C1(det R f.(Fy,), e " t,) + a (max{—a,, 0})]
+ [—C1(det g.(Gn), gn) + a(min{—ayn, 0})] .
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Here we set

r2+1)!
Qp = %[cl(det Qn» qn)
n

+ci(det R . (Fy), e " t,) + a (max{—a,, 0})],

Bn = % [_El (det 9*(Gn)a9n) + a(min{—an, 0})} .

Then,

—(r? + 1)1 (det Rf.(Fp), hn)
nri+l

= an + On-

—1
By (8.4.7) and Claim 8.4.10, lim £, =0 in CH;:(Y;S)g. Therefore, by
Claim 8.4.6,

—~ _ (2 1~
Toxy (B) = lim — T 1)1 (det BE (Fr), ho)

n— o0 nri+l

= lim (o, + Bp) = lim ay,

——1
in CH;:(Y; S)g. On the other hand, it is obvious that
¢i(det R* f.(Fy,),e %t,) and a(max{—ay,,0})

is semi-ample at y with respect to S. By Claim 8.4.9, ¢;(det Q,,, ¢,) is semi-
ample at y with respect to S. Thus, «,, is semi-ample at y with respect to S.
Hence we get our theorem.

9. Preliminaries for Cornalba-Harris-Bost’s inequality

This section is a preparatory one for the next section, where we will prove
the relative Cornalba-Harris-Bost’s inequality (cf. Theorem 10.1.4). Moreover,
in the next section, we will see how the relative Bogomolov’s inequality (The-
orem 8.1) and the relative Cornalba-Harris-Bost’s inequality (Theorem 10.1.4)
are related (cf. Proposition 10.2.2).

9.1. Normalized Green forms

Let Y be a smooth quasi-projective variety over C, E = (FE, h) a Hermitian
vector bundle of rank r on Y. Let 7w : P(F) — Y be the canonical morphism,
where P(E) = Proj(@D,-, Sym'(E")). We equip the canonical quotient bundle
Og(1) on P(E) with the quotient metric via 7*(EY) — Og(1). We will denote
this Hermitian line bundle by Og(1). Furthermore, let Q = ¢;(Og(1)) be the
first Chern form.

The purpose of this subsection is that, for every cycle X C P(E) whose all
irreducible components map surjectively to Y, we give a Green form gx such
that on a general fiber, it is an Q2-normalized Green current in the sense of [5,
2.3.2].
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Let X be a cycle of codimension p on P(E) such that every irreducible
component of X maps surjectively to Y. An L'-form gy on P(E) satisfying
the following conditions is called an Q-normalized Green form, (or simply a
normalized Green form when no confusion is likely).

(i) There are d-closed L!-forms «; of type (p—i,p—i)onY (i =0,...,p)
with

p

dd®([gx]) +6x = Z [7* (i) A Q']

=0

(il) me(gx AQ"P) =0.
Note that v, is the degree of X along a general fiber of .

Let X = >, a;X; be the irreducible decomposition of X as cycles. Let
X, — X; bea desingularization of X;, and ﬁ : X; — Y the induced morphism.
The main result of this subsection is the following.

Proposition 9.1.1. With notation as above, there exists an 2-normalized
Green form gx on P(E) satisfying the following property. If y € Y and f; is
smooth over y for every i, then there is an open set U containing y such that

Y0, - ,Yp are C*° on U and that gX|7T,1(U) is a Green form of logarithmic type
for Xy, where vo, ... 7y, are L*-forms in the definition of Q-normalized Green
form.

To prove the above proposition, let us begin with the following two lemmas.

Lemma 9.1.2.  There exist a Green form g of logarithmic type along
X, and d-closed C* forms (B; of type (p—i,p—i) onY (i =0,...,p) such that

p

ade([g]) + ox = [+*(8) A ).

=0

Proof. We divide the proof into three steps.

Step 1.: The case where Y is projective.
Let g1 be a Green form of logarithmic type along X such that

dd®([g1]) + ox = [w]

where w is a smooth form on P(FE). Then, we can find a smooth form 7 on
P(E) of the form

P
=37 (B A
=0

which represents the same cohomology class as w, where 3; is a d-closed C'°°-
form of type (p —i,p —4) on Y. Since w — 7 is d-exact (p,p)-form, by the
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dd°-lemma, there is a smooth (p —1,p — 1)-form ¢ with w —n = dd°(¢). Thus,
if we set g = g1 — ¢, then g is of logarithmic type along X and

dd®([g]) + 6x = dd*([g1]) — dd“(¢) + 6x = [n].

Step 2.: Let h' be another Hermitian metric of F, and Q' the Chern form
of Og(1) arising from A’. In this step, we will prove that if the lemma holds
for k', then so does it for h.

By our assumption, there exist a Green form ¢’ of logarithmic type along
X, and d-closed C* forms ] (i =0,... ,p) of type (p—i,p—1i) on Y such that

() +0x =3 @A
i=0

On the other hand, there is a real C*°-function a on P(E) with Q' —Q = dd°(a).
Here note that if v is a 9 and 0-closed form on P(E), then dd°(vAa) = vAdd®(a).
Thus, it is easy to see that there is a C*° form 6 on P(E) such that

P 4 P _
DT (B A =dd(0) + Y7t (5]) A
i=1 i=1
Therefore, if we set g = ¢’ — 6 and §; = 3}, then we have our assertion for h.

Step 3.: General case.

Using Hironaka’s resolution [14], there is a smooth projective variety Y’
over C such that Y is an open set of Y'. Moreover, using [13, Exercise 5.15
in Chapter II], there is a coherent sheaf E' on Y’ with E’|,, = E. Further,
taking a birational modification along Y’ \ Y if necessary, we may assume that
E’ is locally free. Let h' be a Hermitian metric of E’ over Y’. Since P(E) is
an Zariski open set of P(E’), let X’ be the closure of X in P(E’). Then, by
Step 1, our assertion holds for (E’,h’) and X’. Thus, so does it for (E, h'|y)
and X. Therefore, by Step 2, we can conclude our lemma. O

Lemma 9.1.3.  Let g be a Green form of logarithmic type along X and
w a C®-form with dd°([g]) + éx = [w]. If we set ¢ = m(g A Q""P), then
s € LL.(Y) and dd<([s]) € L},.(%"). Moreover, if y € Y and f; is smooth
over y for every i, then ¢ is C* around y.

Proof. By Proposition 1.2.5, ¢ is an L'-function on ¥ and
dd([s]) = dd*(m.([g AN Q")) = mdd®([g A QP))

mdd([g]) AN QTP = m (W] AQ"TP) — . (6x AQTTP)

=mJwAQTP] — Zaﬂr* ox, NQ"TP)

= M fwAQTP) Zaz F)<lfF ().
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Thus, dd°([¢]) € ZOC(QI ). Moreover, if y € Y and f; is smooth over y for
every 4, then, by the above formula, dd°([¢]) is C*° around y. Thus, by virtue
of 9, (i) of Theorem 1.2.2], ¢ is C'*° around y. O

Let us start the proof of Proposition 9.1.1. Let g be a Green form con-
structed in Lemma 9.1.2. Then, there are d-closed ;s with 3; € AP~4P=¢(Y)
and

dd([g]) + 0x = _ [7*(B:) A Q']

=0

If we set ¢ = m.(g A Q"7P), then by Lemma 9.1.3, < is locally an L!-form. We
put

gx =g — ()",

which is clearly locally an L!-form on P(F ) We w111 show that gx satisfies the

conditions (i) and (ii). Using fP(E)HYQ 1, (ii) can be readily checked.
Moreover,
p .
dd*([gx]) + 0x = Y _ [7"(8i) A Q] — dd° [ ()]
i=0
= By + 7 ([Bpa] — dd”(([s]) A 9P 1+Z “(8) A Y]
The remaining assertion is easily derived from Lemma 9.1.3. O

Remark 9.1.4. Let y be a point of Y such that f; is smooth over y for
every i. Then, by Proposition 9.1.1, on the fiber 7= 1(y), 9X|7r—1(y) is a Green
form of logarithmic type along X,. Moreover,

dd*([9x | z=1y)) + 0x, = deg(Xy)[ Q7] 1 ()]

and

/w1<y> <gX‘”‘1<y>) (Qrfp|w-1(y>) =0

Thus, gx]| is a Q-normalized Green form on 7~ !(y), and it is also a -

7 1(y)
normalized Green current in the sense of [5, 2.3.2].

9.2. Associated Hermitian vector bundles

Let GL, = SpecZ[X11, X12, "+, Xrr]aet(x,;) e the general linear group
of rank r and SL, = SpecZ[X11, X12,--- , X;r]/(det(X;;) — 1) be the special
linear group of rank r.
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Let p : GL, — GLg be a morphism of group schemes. First, we note that

p(C)(A) = p(C)(4),

where p(C) : GL,(C) — GLE(C) is the induced morphism and A € GL,.(C).
Indeed, the above equality is nothing but the associativity of the map

SpecC — SpecC -2 GL, -2 GLg.
Next, we consider the following condition for p;
(9.2.1) p(tA) ="p(A) for any A € GL,.

In the group scheme language, this condition means p commutes with the trans-
posed morphism.

Let U,(C) = {4 € GL,(C) | *A- A = I,.} be the unitary group of rank r. If
a group morphism p : GL, — GLi commutes with the transposed morphism,
then

Ir = p(C)(Ir) = p(C)("A- A4)
= p(C)("A) - p(C)(4) ="p(C)(A) - p(C)(A),

namely, p(C) maps U,(C) into Ug(C).
Let k be an integer. A morphism p : GL,, — GLp of group schemes is said
to be of degree k if

p(tl,) = tFIg for any t.
In the group scheme language, this means that the diagram

GL, -2 GL,

al lp
GL; —22 . GLg

commutes, where A\, and A\ are given by t — diag(¢,t, - ,t) and « is given
by t — tF.

Let Y be an arithmetic variety, ¥ = (E, h) a Hermitian vector bundle of
rank r on Y and p : GL, — GLg be a morphism of group schemes satisfying
commutativity with the transposed morphism. In the following, we will show
that we can naturally construct a Hermitian vector bundle E” = (E* he),
which we will call the associated Hermitian vector bundle with respect to E
and p.

First, we construct E”. Let {Y,} be an affine open covering such that
bo : Ely, — O;‘?: gives a local trivialization. On Y, NY3, we set the transition

function gas = ¢q - ¢El, which can be seen as an element of GL,(I'(Oy,ny;))-
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Then we define the associated vector bundle E? as the vector bundle of rank
R on Y with the transition functions p(I'(Oy,ny;))(9as);

B =]Jog"/ ~.

Next, we define metric on E”. Let h* be the Hermitian metric on (9;‘?{:
over Y, such that ¢, : Ely, — O%’“ becomes isometry over Y, (C). Let

et ="(1,0,---,0),--- ey =*(0,---,0,1) € L(OF),
f{l :t(l,ov"' aO)v"' af}% :t(oa"' 7031) EF(O;‘?@R)
be the standard local frames of (’);‘Z and O%R. We set
Ho = (h%(ef', €7))1<ij<r-

Then H, is a C*°-map over Y, (C) and, for each point y in Y, (C), Hy(y) is a
positive definite Hermitian matrix. Let p(C*°(Y,(C))) : GL,.(C*(Y,(C))) —
GLR(C>°(Y,(C))) be the induced map.

Claim 9.2.2.  p(C*(Y4(C)))(Ha) is a C*°-map over Y, (C) and, for each
point y in Y, (C), p(C*°(Y,(C)))(Ha)(y) is a positive definite Hermitian matrix.

Proof.  The first assertion is obvious. For the second one, we note that
there is a matrix A € GL,(C) such that A - A = H,(y). Then it is easy to
see that p(C>*(Ya(C)))(Ha)(y) is a positive definite Hermitian matrix by using
(9.2.1). O

Now we define a metric h”> on O;‘?QR over Y, by
hee (i 1) = p(C% (Ya(C))) (Ha) ki
for 1 <k,l <R.

Claim 9.2.8.  {hP=~}, glue together to form a Hermitian metric on E”.

Proof. Let so ="'(s§, -+ ,s%) € F(O$5|yamyﬂ) and s = (s} ,--- ,sh) €
F(O;‘?ﬁR vany;)- Then they give the same section of EP|y, ny, if *(sf, -+, s%) =
p(gag)t(sf, e ,S%). In this case, we write so ~ s3. Now we take s, ~ sg
and t, ~ tg. Then by a straightforward calculation using (9.2.1) and Hg =
'90pHoGap, We get hPo(sq,tq) = hP7(sg,tg) on Y, NYj. O

Remark 9.2.4. Let id, : GL, — GL, be the identity morphism, p; =
(id,)®*, py = Sym®(id,), and ps = A"(id,). Further, let ps : GL, — GL, be
the group homomorphism given by A + A~ Then p1, p2, p3 and py are of
degree k, k, k and —1, respectively. Let (E,h) be a Hermitian vector bundle
of rank 7. Then the associated vector bundles are (E®*, h®), (Sym"(E), h*?),
(AN"(E),h#*) and (EY,hY). Note, for example, that h?? is not the quotient
metric hguor given by E®F — Symk(E); Indeed, for a locally orthogonal ba-
sis €1, ,e, of E and g, -+, € Z, hP2(ef -+ €27 e - %) = 1, while
hguot (€7 - -eXr el - ef) = aq!- -/l



164 Shu Kawaguchi and Atsushi Moriwaks

9.3. Chow forms and their metrics

Let Y be a regular arithmetic variety, and E = (E, h) a Hermitian vector
bundle of rank r on Y.

Let p : GL,, — GLR be a group scheme morphism of degree k& commuting
with the transposed morphism and E” = (E?,hP) the associated Hermitian
bundle of rank R. We give the quotient metric on Qg (1) via 7*(E*Y) —
Ogr(1). We denote this Hermitian line bundle by Ogs(1). Further, let Q, =
¢1(Ogr (1)) be the first Chern form.

Let X be an effective cycle in P(E?) such that X is flat over Y with the rel-
ative dimension d and degree ¢ on the generic fiber. Let gx be a {2,-normalized
Green form for X and we set X = (X,9x). Then Xe Z\fflfd(IP’(E”)). Thus

[ o~ /\R
¢1(Ope (1)) - X belongs to CH,: (P(E*))g. Hence,

_ ~ —1
- (a(oEp(U)dH .X) e CH,. (Y)q.
Let us consider elementary properties of . (El(OEp(l))d“ X )

Proposition 9.3.1. Let X = 22:1 ap X be the irreducible decomposi-
tion of X as cycles. Let ¢y, : Xy — Xj be a generic resolution of singularities
of Xy for each k, i.e., ¢ is a proper birational morphism such that (Xk)Q 18
smooth over Q. Let iy, : X < P(EP) be the inclusion map and jj, : Xj, — P(EP)
the composition map iy - x. Also we let fr : Xy — Y be the composition map
m i and fi : X, — Y the composition map 7 - ji. Let Yy be the maximal
open set of Y such that fi is smooth over there for every k. Then, we have the
following.

l
(1) 7 (@@ M) %) =3 apfie @ (i0p (1)),

In particular, T, (El(OEp(l))d+l )A() is independent of the choice of normal-

ized Green forms gx for X, and m. (El(OEp(l))d+1 )A() € éﬁil(Y;
¥5(C)).

(2) Lety be a closed point of (Yo)g, and I the closure of {y} in'Y. Here
we choose gx as in Proposition 9.1.1. Then, there is a representative (Z,gz)
of &1 (Ope (1))41- X such that 7=2(I") and Z intersect properly, and 97|12
is locally integrable for each z € OGEI(@/Q)(y).

Proof. We may assume that X is reduced and irreducible, so that we will
omit index k in the following.

(1) Let gx be a Q,-normalized Green form for X. Then, by virtue of
Proposition 2.4.2,

O ()™ X = . (A" Op M)*) +a(@8 A [gx]).
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Therefore, since m,(gx A Qg“) = 0 by the definition of gy, we get
T (a(oEp(U)dH fc) - (a(j*oEpa)')dH) _ i (a(j*oEpu))dH) .

(2) First of all, we need the following lemma.

Lemma 9.3.2. Let T be a quasi-projective integral scheme over Z,
Li,...,L, line bundles on T, and T' a cycle on T. Then, there is a cycle
Z on T such that Z is rationally equivalent to ¢1(L1)---c1(Ly), and that Z
and I" intersect properly.

Proof. We prove this lemma by induction on n. First, let us consider the
casen=1. Let I' = Zzzl a;I'; be the irreducible decomposition as cycles. Let
~i be a closed point of T'; \ Uj# I';, and m; the maximal ideal at «;. Let H be
an ample line bundle on X. Choose a sufficiently large integer N such that

HY T, H* @m1 ®@---@m,)=HY (T, H® @ Ly ®@m; @ ---®@m,) = 0.

Then, the natural homomorphisms

HYT, H®N) — D HON @ k()
=1

and HO(T,H®*N @ L) — @ H®N @ Ly @ k()

i=1

are surjective. Thus, there are sections s; € HY(T, H®Y) and s, € HO(T,
H®N @ L) such that si(7;) # 0 and sa(v;) # 0 for all 5. Then, div(sg) —
div(s1) ~ ¢1(L1), and div(s2) — div(sy) and T intersect properly.

Next we assume n > 1. Then, by hypothesis of induction, there is a cycle
Z' such that Z’ ~ ¢1(L1) - c1(Lp—1), and Z’ and T intersect properly. Let
7" =%,b;T; be the decomposition as cycles. We set I'; = (T; N Supp(I'))rea-
Then, using the case n = 1, there is a cycle Z; such that Z; ~ cl(Ln|Tj)7
and Z; and I'; intersect properly. Thus, if we set Z = Zj b;jZj, then Z ~
c1(L1) - -c1(Ln), and Z and T intersect properly. O

Let us go back to the proof of (2) of Proposition 9.3.1. By virtue of
Lemma 9.3.2, there is a cycle Z on X such that Z ~ ¢1 (i*Opge (1)), and
that Z and f~!(I") intersect properly. Then, Z ~ ¢;(Og»(1))%*! . X, and Z
and 7~ 1(I") intersect properly. Let ¢x be a Green form of logarithmic type
for X. Then, since

&(Om )™ - (X, px) € CH (P(EF)),

there is a Green form ¢z of logarithmic type for Z such that (Z,¢z) is a
representative of ¢;(Og»(1))4! - (X, ¢x). Thus, if we set

9z = ¢z +c1(Ops (1) A (9x — dx),
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then (Z,gz) is a representative of ¢1(Op»(1))4t! - X. Since Z and 7~ (")
intersect properly and gx has the property in Proposition 9.1.1, we can easily
see that gy is locally integrable along 7~ !(z) for each z € OGal(@ /Q) (y)- a

Here we recall some elementary results of Chow forms. Details can be
found in [4]. Consider the incidence subscheme I' in the product

P(E?) xy P(EPY) = P(EP) xy P(EPY) xy --- xy P(EPY).

Let 2 : T — P(E?) and j : T' — P(EPV)?*! be projection maps. The Chow
divisor Ch(X) of X is defined by

The following facts are well-known:
1. Ch(X) is an effective cycle of codimension 1 in P(E°Y)4+1;
2. Ch(X) is flat over Y7
3. For any y € Y, Ch(X), is a divisor of type (4,6,---,d) in P(EFY)d+1,

Let p : P(EPV)4*! — Y be the canonical morphism, and p; : P(EPV)d+l —
P(E*Y) the projection to the i-th factor. Then, by the above properties, there
is a line bundle L on Y and a section ® x of

d+1
H° (P(EPV )L pr( ®®szEpv )

such that div(®x) = Ch(X). Since
d+1
P (p*(L) ® ®p2‘0EW(5)> = L ® (Sym’(E7))=*,
i=1

we may view ®x as an element of HO(Y, L ® (Sym?®(E*))®4t1). We say &y is
a Chow form of X. Clearly ®y is uniquely determined up to H°(Y, Oy).
As in [4, Proposition 1.2 and its remark], we have

Cl(L) = Tx (Cl(OEp(l))d+1 . X) .
We give a generalized metric hz on L so that L = (L, hy) satisfies the equality

(9.3.3) (@) =, (a(oEpu))d+1 X*)

1
in CHLl (Y) .
Note that we can also give a metric L by the equation

d+1
Op P(EeV)d+1 (Ch( ® ®p7’ OEV
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and by suitably metrizing other terms, as is implicitly done in [27, 1.5]. We do
not however pursue this here.

9.4. Restriction of Chow forms on fibers

In this section we will consider the restriction of Chow forms on fibers.

Let Y, E, p, X be as in Section 9.3. Let y be a closed point of Yg. Let I'
be the closure of {y} in Y, and T' the normalization of I". Let f : T — Y be
the natural morphism. We set Er = f*(FE) and Er = (Er, f*(h)). Also we put
(EP)r = f*(E*) and (E°)r = ((E°)r, f*(h*)). Then (Er)” is equal to (E°)r,
so that we denote (E”)r by Ef, and (E?)r by Ef. Considering the following
fiber product

p(EL) — . p(EP)

r ., Y
we set Xp = f/*(X). Then Xt is flat over I with the relative dimension d and

the degree ¢ on the generic fiber. For this quadruplet (T, Er, p, Xr) in place of
the quadruplet (Y, F, p, X), we can define in the same way the Hermitian line

bundle Ope (1) on P(Ef), an arithmetic L'-divisor Xr = (X1, gx,) on P(Ef)
and the arithmetic L'-divisor 7/, (El((? Jo (1))d+t. )/(\p) on I'. Further, we have

L_F = (LF, hr) Satisfying

a(Tr) = 7 (@s (M) - X

—1
in CH:(T"). We also have Ch(Xr). Moreover, letting p; : P((Ef)V)H —
P((E%)Y) be the i-th projection, there is a section ®x,. of
d+1
H° <]P)((Ef))v)d+lyp/ (Lr) ® ®p; O(E{:)V(@)
i=1
= 1 (T, Ly @ (Sym® ((EQ))® 1) |

such that div(®x.) = Ch(Xr).
Let us consider the following fiber product,

P((E)")H! —L— B((Er)")H!

b b

T — Y

Then, we have the following proposition.
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Proposition 9.4.1. (i) ¢'* Ch(X) = Ch(Xr). Moreover, we can choose
Ox. to be f[*Px.

(ii) Let X1,---, X be the irreducible components of X,eq. Assume that,
for every 1 < i < I, there is a generic resolution of singularities ¢; : X; — X;
such that the induced map X; — Y is smooth over y for every i. Then the
equality

~

. (/c\l(m)d-&-l -X) =l f* <€l(m)d+1 X—)
— (a(mr”l : X}) .

holds in GﬁlLl(F) In other words, f*(L,hr) = (Lr,hr,).

Proof. (i) If f is flat, then this follows from the base change theorem. In
the case f is not flat, we refer to the remark [5, 4.3.2(i)], or we can easily see
this using Appendix A. R

(i) We take gx as in Proposition 9.1.1. Let o = ¢1(Og»(1))?*! - X €

1
CH;:(Y). By Proposition 9.3.1, we can take a representative (Z, gz) of « such
that Z and 7—1(I') intersect properly, and gz is locally integrable along 71 (w)
for all w € O, @) (¥)- Now we have

frmda) = f(m.Z, [meg2])

= | .z :
RS ><Alwf”> !

wEOGag/0) (¥
On the other hand, we have
e (wra S ([ )
weOGal(@/@) () Tr_l(w)
Moreover, by Appendix A, f*m.Z is equal to 7., f*Z as a cycle. Thus we have
proven the first equality.

Now we will prove the second equality. Let ¢x be a Green form of loga-
rithmic type for X. Since

£ @CH (B(E") — @ CH (P(EL))

i>0 i>0

is a homomorphism of rings (cf. [9, 5) of Theorem in 4.4.3]). Thus,

57 (B @Y (X)) = 176 @5 (D) 17 (X. )
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Therefore, since we take gx as in Proposition 9.1.1, we can see

77 (@@p M) - X) = 1 (@10p )™ (X, 6x) + (0,9x — 6x)))
= " (305 D)™ - (X.0x))
+a (" (@@ M)™! Algx —6x)))
= 7O )" (X, 6x)
+a (" (@@ M)™! Algx - 6x)))
= [ (0w (1) 7 (X, 9x)

Moreover, as pointed out in Remark 9.1.4, f*gx is a normalized Green form
for f*X. Thus we have got the second equality. O

9.5. Chow stability and field extensions

Let p : GL,, — GLR be a group scheme morphism of degree k& commuting
with the transposed morphism. Let S be a ring (commutative, with the multi-
plicative identity). For a positive integer § and d, we consider Sym?® ($%)®d+1,
Then through the induced group homomorphism p(S) : GL,.(S) — GLg(5),
GL,(S) (or SL.(S)) acts on Sym®(S7)®d+1,

Proposition 9.5.1.  Let K be an infinite field and L an extension field
of K. Let P be a homogeneous polynomial of degree e on Sym‘s(LR)‘@dH, i.e.,
P € Sym®(Sym® (L7)®4+1V) " Then we have the following.

(i) P is SL,.(K)-invariant if and only if P is SL,(L)-invariant.

(ii) If P is SL,(K)-invariant, then

P(UJ)T — (det O,)ek(dJrl)ziP(U)r

in L for all v € Sym® (LR)®4+1 and o € GL,.(L).

Proof. (i) We only need to prove the ‘only if” part. Let Sp(P) = {o €
SL,(L) | P? = P} be the stabilizer of P in SL,(L). Sp(P) is a closed algebraic
set of SL, (L) and contains SL,.(K'). Since SL,(K) is Zariski dense in SL,.(L),
S (P) must coincide with SL,.(L).

(ii) Let M be an extension field of L such that it has an r-th root £ of det o.
If o/ is defined by o = &0’ then o’ € SL,.(M). Since P is SL,.(M)-invariant by
(i), we find

P7)" = P((p(C)(¢0")) -v)" = P ((€*(C)(")) -v)"
_ grek(d+1)5P(v)r _ (det O')Ek(dJrl)[sP(U)r.

in M. Hence the equality holds in L because both sides belong to L. O
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Remark 9.5.2.  More strongly, we can show that, for any integral do-
main S of characteristic zero, if P € Sym®(Sym®(SE)®d+1V) is SL,(Z)-
invariant, then P is SL,(S)-invariant.

Now let Y, E, p and X be as in Section 9.3. Recall that for a closed point
y of Y, Ch(X), is a divisor of type (6,6, -- ,6) in P(E#¥)4+1. Hence the Chow
form restricted on y, i.e., x|, = ®x, is an element of Sym?’ (K #)d+1, We say

that X, is Chow semi-stable if ®x € Sym® (K ®)4+! is semi-stable under the
action of SL,.(K), where K is the residue field of y.

Lemma 9.5.3.  There are a positive integer e and SL,.(Q)-invariant ho-
mogeneous polynomials Py, , P, € Sym®(Sym®(Z2)4H1V) | which depend only
on p, d and §, with the following property. For any closed points y € Yy, if X,
is Chow semistable, then there is a P; such that P;(®x,) # 0.

Proof. SL,(Q) acts linearly on Sym®(Q)4*1. Since SL,(Q) is a reductive
group, we can take SL, (Q)-invariant homogeneous polynomials Q1, - - - , Q; such
that they form generators of the algebra of SL,.(Q) invariant polynomials on
Sym‘S (QF)4+1. By clearing the denominators, we may assume that Qq,--- ,Q;
is defined over Z. Let e; be the degree of Q; fori =1,--- 1. We take a positive
integer e such that e;|e for i = 1,--- 1. We set P; = Qf/ei.

Let us check that P;’s have the desired property. Since X, is Chow
semistable, there is a SL,(K)-invariant homogeneous polynomial F on
Sym® (K)4+1 with F(®x,) # 0, where K is the residue field of y. Let us
choose ay, ... ,a, € K and homogeneous polynomials Fy,... , F, over Q such
that F = oy F1 + - - - + a, F,, and that aq, ... , a, are linearly independent over
Q. Here, for o € SL,.(Q),

F° = F{ + -+ a, F7

and FY’s are homogeneous polynomials over Q. Thus, we can see that F;’s are
SL,(Q)-invariant. Moreover, since

F(®x,) =1 F1(®Px,) + -+ anFo(®x,),

there is F; with Fi(®x,) # 0. On the other hand, F; is an element of

Q[Q1,...,Q]. Thus, we can find Q; with Q;(®x,) # 0, namely P;(®x, ) #
0. 1

10. Semi-stability and positiveness in a relative case

10.1. Cornalba-Harris-Bost’s inequality in a relative case

Let Y be an arithmetic variety and E = (F, h) a Hermitian vector bundle
of rank 7 on Y. Let p : GL, — GLg be a group scheme morphism of degree k
commuting with the transposed morphism.



Inequalities for Semistable Families of Arithmetic Varieties 171

Before we prove the relative Cornalba-Harris-Bost’s inequality, we need
three lemmas.

Lemma 10.1.1.  Let L be a line bundle on Y. Let P be an element
of Sym®(Sym? (ZR)4+1V)I\{0} and suppose that P is SL,(Q)-invariant. Then
there is a polynomial map of sheaves

©p L® Symé(Ep)®d+1 — [®er ® (det E)®ek(d+l)6

given by P", namely, op is locally defined by the evaluation in terms of P".

Proof. Let U be a Zariski open set, and ¢ : E|;; — OF™ and ¢ Ly, =
Ov local trivializations of E and L respectively. Then, by the construction of
E? we have

bps.d (Sym5 (Ep)®d+1) ‘U -~ Sym5 (OIQJBR)®d+1 .

Thus we get

VR Gpsd: (L ® Sym’ (Ep)®d+1) ‘U — Sym’ (OI?R)MH :

Here, we define

oply - (L ® Sysz(Ep)@d-i-l) ‘U R (L®er ® (det E)®ek(d+1)6) ’U

such that the following diagram is commutative.

PRy .5,d ®d+1
—

(L@ Sym? (B7)=+) }U Syt (05")

erly | |

er e ek(d+1)8
(L®e7‘ ® (det E)@ek(dJrl)(S) YT @det () Oy,

v

where P" is the map given by the evaluation in terms of the polynomial P".
In order to see that the local pp|; glues together on Y, it is sufficient to show
that yp|, does not depend on the choice of local trivializations ¢ and ). Let
¢ : Bl,; = OF™ and ¢’ : L|;, — Oy be another local trivializations. In the
same way, we have the following commutative diagram.

V'R, 5.4 )®d+1

(L@ sym’ (B0)°*)| Sy’ (05"

w&:\ul JPT

rer o det(g’)eF(d+1)8
(L& @ (det B)®ek(@+D3)| o' @det(¢') o,

We set the transition functions g = ¢ - (¢')~! and h = ¢ - (¢/)~!. Then by a
straightforward calculation using (ii) of Proposition 9.5.1, we get, on U,

pPr. (w ® ¢p,6,d) = e det(g)ck(d—l-l)&Pr . (¢/ ® ¢;767d>7
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which implies

(v @ det(@) D7) - (pp|,))
— 1 det(g) D (¢ @ det(¢)) T - ().
Here note that
hTe det(g)eR(@+D8 — (wer ® det(¢)ek(d+l)6) ) (Wer ® det(¢l)ek(d+1)6)_l .
Thus, we obtain p|,; = ¢pl,. O
Suppose now L is given a generalized metric hr. Since both sides of
op:L® Sym5(Ep)®d+1 — LB g (det E)®ek(d+1)6

in the lemma above are then equipped with metrics, we can consider the norm
of pp. Before evaluating the norm of ¢p, we define the norm of P as follows;
We first define the metric || - [|can on Sym®(C™)®4+1 induced from the usual
Hermitian metric on C; We then define || P|| by

[P (v)]

vesyms(€mea+n\ (o} [Vll&an

1Pl =

where P is regarded as an element of Sym®((Sym?(C™))®4+1)V),

Lemma 10.1.2.  For any section s € H(Y, L ® (Sym®(E?))®4*+1) and
any complex point y € Y (C) around which hy @ (Sym®(h?))®41 js C>, we
have

lep ()W) < IPI" (sl (y)-

Proof. By choosing bases, E(y) and in L(y) are isometric to C" and C
with the canonical metrics, respectively. Then, with respect to these bases, E’
is by its construction isomorphic to C® with the canonical metric. Recalling
that ¢p is given by the evaluation by P" once we fix local trivializations of F
and L, the desired inequality follows from the definition of || P||. O

Now let X be an effective cycle in P(E®) such that X is flat over Y with
the relative dimension d and the degree § on the generic fiber. In Section
9.3 we constructed a Chow form ®x of X, which is an element of H(Y, L ®
(Sym?® (EP))®4+1) Recall that L is given a generalized metric by (9.3.3). For
each irreducible component X; of X,.q, let X; — X; be a generic resolution of
singularities of X;. Moreover, let Y be the maximal open set of Y such that
the induced morphism X; — Y is smooth over Y; for every i.

Further, we fix terminologies. Let T be a quasi-projective scheme over Z,
t a closed point of Ty, and K the residue field of t. By abuse use of notation,
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let ¢ : Spec(K) — T be the induced morphism by ¢. We say t is extensible in
T if t : Spec(K) — T extends to f : Spec(Og) — T, where Ok is the ring of
integers in K. Note that if T is projective over Z, then every closed point of
T is extensible in T'.

Let V be a set, ¢ a non-negative function on V', and S a finite subset of
V. We define the geometric mean g.m.(¢; S) of ¢ over S to be

1/#(5)
gm.(¢;9) = (H ¢>(S)) :

seS
We will evaluate the norm of ®x.

Lemma 10.1.3.  There is a constant ¢1(R,d,0) depending only on R,d
and § with the following property. For any closed points y of (Yo)g with y
extensible in'Y,

g, (19 |ze syms @ o0 Oca@o®)) < a(R,d,0).

Proof. Let K be the residue field of y. Let I be the normalization of the
closure of {y} in Y. Then, since y is extensible in Y, T' = Spec(Of). Thus,
by virtue of Proposition 9.4.1, we may assume Y = Spec(Og). In this case,
the estimate of the Chow form was already given in [4, Proposition 1.3] and [5,
4.3]. Indeed if we let kz, be the metric on L such that

||‘I)XH(L,kL)®(sym6(Ef’))®d+1(w) =1

for every w € Ogu /) (v), then d/c%(LJLL) = hm(X) and d/eTg(L, kr) =
herm(Ch(X)), in the notation of [5]. O

Now we will state a relative case of Cornalba-Harris-Bost’s inequality.

Theorem 10.1.4.  Let Y be a regular arithmetic variety, E = (E,h)
a Hermitian vector bundle of rank r on'Y, p : GL, — GLg a group scheme
morphism of degree k commuting with the transposed morphism. Let X be an
effective cycle in P(EP) such that X is flat over Y with the relative dimension d
and degree § on the generic fiber. Let Xy, ... ,X; be the irreducible components
of Xyeq, and X; — X, a generic resolution of singularities of X;. Let Yy be the
mazximal open set of Y such that the induced morphism X; — Y is smooth over
Yo for every i. Let (B,hp) be a line bundle equipped with a generalized metric
on'Y given by the equality:

&1(B,h) = rr. (1(0p (D) - X ) + ko(d + e (E).
Then, hp is C™ over Yy. Moreover, there are a positive integer e = e(p, d, d),

a positive integer 1 = 1(p,d, ), a positive constant C = C(p,d,?), and sections
51,...,5 € H(Y, B®®) with the following properties.
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(i) e, 1, and C depend only on p, d, and §.

(ii) For a closed point y of Yy, if X, is Chow semistable, then s;(y) # 0
for some 1.

(iii) For alli and all closed points y of (Yo)g with y extensible in'Y,

g.m. ((h%e) (si,51); Oga@/0) (y)) <C.

In particular, if we set
B=e (m (a(oEpu))dH : )?) +EkO(d+ )5 (E)) +a(log O),

then, for any closed point y € (Yy)g with X, Chow semistable, there is a
representative (D, g) of B such that D is effective, y ¢ D, and that

Y. 9w =0

wE€Ogu@/e) (%)
for all z € (Yy)q with z extensible in'Y .

Note that if p is the identity morphism, then, by the proof below, C(p, d, J)
is depending only on 7, d, d.

Proof. First of all, by Proposition 9.3.1,
P o LA T =~ e O (V-
ro, (cl(OEp(l)) : X) +k6(d + 1)e1(E) € CH,, (Y Yo(C)).

Thus, hp is C* over Yy(C).

By Lemma 9.5.3, there are a positive integer e and SL,(Q)-invariant ho-
mogeneous polynomials P, --- , P, € Sym®(Sym®(Z7)%+1V) depending only on
p, d and ¢ such that if X, is Chow semistable for a closed point y of Ygp, then
P;(®x,) # 0 for some P;. For later use, we put ca2(p,d,d) = max{[|P]],---,
2]l }, which is a constant depending only on p, d and .

Recall that the Chow form ®x is an element of H°(Y, L& (Sym® (EP))&d+1)
and by Lemma 10.1.1 P; induces a polynomial map of sheaves

©p, : L® Symé(EP)®d+1 _ [,®er ® (det E)ek(d+1)6.
Hence we have

@Pi(q)X) e HO (Y, L®er ® (det E)ek(d+1)6> _ HO(K B®e)

by (9.3.3). Here we set s; = ¢p,(Px). Then, the property (ii) is obvious by
the construction of ¢p, and (i) of Proposition 9.4.1.

Now we will evaluate ||s;||. Let y be a closed point of (Yp)g with y exten-
sible in Y. Combining Lemmas 10.1.2 and 10.1.3, we have

gm. (sl Ogaey®) < gm. (IPI 1917 Oguge)®)
< ca(p,d,0)"c1(R,d,6)°".
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Now we put
C(pa da 6) = (R7 d7 6)27‘02 (p, d7 6)26r7
which is a positive constant depending only on p, d and 6. Thus, we get (iii). [

Remark 10.1.5. Here let us consider the geometric analogue of The-
orem 10.1.4. Let Y be an algebraic variety over an algebraically closed field
k, E a vector bundle of rank r, p : GL, — GLg a group scheme morphism of
degree [ commuting with the transposed morphism. Let X be an effective cycle
in P(E®) such that X is flat over Y with the relative dimension d and degree §
on the generic fiber. Here we set

bx)y (B, p) = rm. (c1(Ope (1)) - X) +16(d + 1)c1 (E),

which is a divisor on Y. In the same way as in the proof of Theorem 10.1.4
(actually, this case is much easier than the arithmetic case), we can show the
following.

There is a positive integer e depending only on p, d, and § such
that, if X, is Chow semi-stable for some y € Y, then

HP(Y, Oy (ebxy (E,p))) ® Oy — Oy (ebx/y (E, p))
is surjective at y.

This gives a refinement of [4, Theorem 3.2].

10.2. Relationship of two theorems

In this subsection we will see some relationship between the relative Bogo-
molov’s inequality (Theorem 8.1) and the relative Cornalba-Harris-Bost’s in-
equality (Theorem 10.1.4). For this purpose, we will first show a more intrinsic
version of Theorem 10.1.4.

Proposition 10.2.1. Let f : X — Y be a flat morphism of reqular
projective arithmetic varieties with dim f = d. Let L be a relatively very ample
line bundle such that E = f.(L) is a vector bundle of rank r on'Y. Let n be
the generic point of X and 6 = deg(Lg), Moreover, let i : X — P(EV) be the
embedding over Y. Assume that E is equipped with an Hermitian structure h
so that L is also endowed with the Hermitian structure by i*Opgv (1) ~ L. Let
Yy be the mazimal open set of Y such that f is smooth over Yy. Then, there is
a positive integer e(r,d,d) and a positive constant C(r,d,d) depending only on
r,d, 6 with the following properties. If we set

8= e(r,d,8) (rf.(@(L)™") - 5(d + 1)@y (B)) + a(log C(r, d, 5)),

then, for any closed point y € (Yy)g with X, Chow semistable, there is a
representative (D, g) of B such that D is effective, y ¢ D, and

Y gw) =0

wEOGa/0) (%)
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for all z € (Yp)q-

Proof. We identify X with its image by i. Let 7 : P(E) — Y be the
projection. Then, by Proposition 9.3.1, we get

m. (2@ )™ X) = L@@
Thus, applying Theorem 10.1.4 for (Y, EV,id, X), we get our assertion. O

The following proposition will be derived from Theorem 8.1.

Proposition 10.2.2.  Let f: X — Y be a projective morphism of regu-
lar arithmetic varieties such that every fiber of fc : X(C) — Y(C) is a reduced
and connected curve with only ordinary double singularities. We assume that
the genus g of the generic fiber of f is greater than or equal to 1. Let L be a
line bundle on X such that (1)the degree 6 of L on the generic fiber is greater
than or equal to 29 + 1, (2) E = f.(L) is a vector bundle of rank r on'Y (ac-
tually r = § + 1 — g), and that (3) f*(E) — L is surjective. Assume that E
s equipped with an Hermitian structure h so that L is also endowed with the
quotient metric by f*(F) — L. Let Yy be the mazimal open set of Y such that
f is smooth over Yy. Then, for any closed points y of (Yo)q,

rf.(€1 (D)%) — 26¢(FE)
is weakly positive at y with respect to any finite subsets of Yo(C).
Note that if the base space is Spec(Of ), then the second author showed in
[21, Theorem 1.1] the above inequality (under weaker assumptions) using [18,

Corollary 8.9]. Since we can prove Proposition 10.2.2 in the same way as [21,
Theorem 1.1], we will only sketch the proof.

Proof. Let S = Ker(f*(E) — L) and hg the submetric of S induced by
h. Then, by [7], S, is stable for all z € Y,(C). Applying Theorem 8.1 for
S = (S, hg), we obtain that if y is a closed point of (Yp)g, then

fo2(r = 1)&(S) — (r - 2)a(S)?)

is weakly positive at y with respect to any finite subsets of Yy(C). If we set
p=70C2(f*E) — (S & L), then there is g € L}, (Y (C)) such that f.(p) = a(g),
g is C* over Yy(C), and g > 0 on Yp(C). Now by a straightforward calculation,
we have

F20r = 1)E(S) = (r = 2)e1(5)*) +2(r — 1) f.(p)
= fo (2(r = V)&(f*E) — (r = 2)a(f"E)?) + fu (rea(L)* — 261 (fE) - &1(L))
= rfu((L)?) — 20¢1(E). O
Let us compare Proposition 10.2.1 with Proposition 10.2.2. Both of them

give some arithmetic positivity of the same divisor (although d = 1 in Proposi-
tion 10.2.2), under the assumption of some semi-stability (of Chow or of vector
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bundles). The former has advantage since it treats varieties of arbitrary rel-
ative dimension. On the other hand, the latter has advantage since it shows
that the anonymous constant in the former is zero (see also [27]). Moreover,
in the complex case, the counterpart of the relative Bogomolov’s inequality of
Theorem 8.1 has a wonderful application to the moduli of stable curves ([22]).

Appendix A. Commutativity of push-forward and pull-back

Let f : X — Y be a smooth proper morphism of regular noetherian
schemes, and « : Y/ — Y a morphism of regular noetherian schemes. Let
X' =X xy Y and

X % x

7| |7

y % vy’

the induced diagram. Let Z be a cycle of X of codimension p and |Z| the
support of Z. We assume that codimy (v~ '(|Z|)) > p. Then, it is easy to see
that codimy (u=1(|f.(Z)|)) > p — d, where d = dim X — dim Y. Thus, we can
define f(u'*(Z)) and u*(f«(Z)) as elements of ZP~4(Y"). It is well known, we
believe, that f.(u'*(Z)) = u*(f.(Z)) in ZP~4(Y"). We could not however find
any suitable references for the above fact, so that in this section, we would like
to give the proof of it.

Let X be a regular noetherian scheme, and T a closed subscheme of X.
We denote by K/7.(X) the Grothendieck group generated by coherent sheaves F
with Supp(F') C Tyeq modulo the following relation: [F] = [F’] 4+ [F"] if there
is an exact sequence 0 — F/ — F — F" — 0.

Let p be a non-negative integer, and X ® the set of all points z of X with
codimy {2} = p. We define Z2(X) to be

Zp(X)= @ z-{z}.
zeX®NT

We assume that codimyx T > p. Then, we can define the natural homomor-
phism

2P K (X) — ZE(X)
to be

PEN = Y o, (Fu) - {z},

zeX®NT

where o, (F;) is the length of F, as Ox ,-modules. Note that if codimx 7" >
p, then 2P = 0.
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Let f: X — Y be a proper morphism of regular noetherian schemes, and
T a closed subscheme of X. Then, we define the homomorphism f, : K.(X) —
K’y (Y) to be

FIF]) =D [RUf(F)].

i>0

Here we set d = dim X —dim Y. Let p be a non-negative integer with codimyx T’
> pand p > d. Then, codimy f(T) > p—d. First, let us consider the following
proposition.

Proposition A.1. With notation as above, the diagram

Kn(X) —"— ZB(X)

‘| |-

2P~ —d
Ky (Y) —— Zy ) (Y)

1s commutative.

Proof. Since codim(Supp(R'f.(F))) > p —d for all i > 0, it is sufficient
to show that zP~¢([f.(F)]) = f«(2P([F])). This is a local question with respect
to Y, so that we may assume that f(7T') is irreducible and codim(f(7")) = p—d.
Let T'=Ty U---UT, be an irreducible decomposition of T. Clearly we may
assume that f(T;) = f(T) for all i. Let a; (resp. y) be the generic point of T;
(resp. f(T)). Then, our assertion is equivalent to saying that

Loy, (F(F)y) = Y lox.., (Fe)lr(a)  K(9)].

Considering X xy Spec(Oy,,) — Spec(Oy,y) instead of X — Y, we may assume
that y,z1,... ,z, are closed points. Then, there are subsheaves Fi,... , F,, of
F with F = F1 ®---®F,, and Supp(F;) C {x;} for all i. Thus, we may assume
that n = 1. In this case, there is a filtration 0 = Go C G1 C --- C G; = F of
F with G;/Gj-1 = k(x1), so that we get our proposition. O

Let g : Z — X be a morphism of regular noetherian schemes, and T a
closed subscheme of X. Then, we define the homomorphism g¢* : K7.(X) —

K}_l(T)(Z) to be

g ([F) = D (~1)'[Lif*(F))-

i>0

Let p be a non-negative integer with codimyx 7' > p and codimyz (g~ (7)) > p.
Here let us consider the following proposition.
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Proposition A.2. Let F and G be coherent sheaves on X with Supp(F),
Supp(G) € Trea- If 2P([F]) = 2P([G]), then 2P (g™ ([F])) = 2P (¢"([G]))-

Proof. This is a local question with respect to X, so that we may assume
that X is affine. Let 0 =Fp C F3, C---CF,=Fand0=Gy C G, C--- C
G, = F be filtrations of F and G respectively such that F;/F;_y ~ Ox/P;
and G;/Gj-1 ~ Ox/Q; for some prime ideal sheaves P; and @); on X. Then,

{zp(g*([F])) — " 22 (g*([Ox/P)))
2(g*([Q]) = X0, (9" ([0x/Q5]))

Thus, it is sufficient to show that zP(¢g*([Ox/P])) = 0 for all prime ideals P
with

Supp(Ox /P) C Tyeq, codimx (Supp(Ox /P)) > p
and codimy (g~ (Supp(Ox/P))) = p.
This is a consequence of the following lemma. 1

Lemma A.3. Let (A,m) and (B,n) be regular local rings, ¢ : A — B a
homomorphism of local rings, and M an A-module of finite type. If Supp(M ® 4
B) ={n} and

COdimSpcc(B) (Supp(M ®A B)) < COdimSpcc(A) (Supp(M))a
then

S (=1)ils(Tor (M, B)) = 0.
i>0

Proof. We freely use notations in [25, Chapter I]. Let f : Spec(B) —
Spec(A) be a morphism induced by ¢ : A — B. We set Y = Supp(M) and
q = codimgyec(a)(Supp(M)). Let P. — M be a free resolution of M. Then,
[P] € FIK{ (Spec(A)). Thus, by [25, (iii) of Theorem 3 in 1.3],

1 (P)] = [P ©a B] € FUE" (Spec(B))q
because f~1(Y) = Supp(M @4 B) = {n}. On the other hand, since
q > codimgpee(p)(Supp(M ®4 B)) = dim B,

we have FIK™ (Spec(B))g = {0}. Thus, [P. ®4 B] = 0 in K™ (Spec(B))
because

Ké{"}(Spec(B)) ~7
has no torsion. This shows us our assertion. O

As a corollary of Proposition A.2, we have the following.
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Corollary A.4.  With notation as in Proposition A.2,

P

Ep(X) ——  Z3(X)

g*l lg*

Kyoqy(2) —— Z]-1 )

is commutative. Note that g* : Z5(X) — Z?,I(T)(Z) is defined by g*(Z) =
2P(g*([0z])) for each integral cycle Z in ZL(X).
Let f: X — Y be a flat proper morphism of regular noetherian schemes,

and u : Y/ — Y a morphism of regular noetherian schemes. Let X' = X xy Y’
and

X —“ x

f J, lf !

Y «—— Y’
the induced diagram. We assume that X’ is regular. Note that if f is smooth,
then X’ is regular. We set d = dimX — dimY = dim X’ — dimY’. Let T
be a closed subscheme of X, and p a non-negative integer with codimyx T' >
p, codimx (v~ '(T)) > p and p > d. Note that codimy f(T) > p — d and
codimy (u=Y(f(T))) > p—d because v (f(T)) = f'(v/~*(T)). Then, we have
the following proposition.

Proposition A.5.  The diagram

Zg“(X) e Zngl(T)(Xl)

.| K

—d u* —d
Ziny(Y) —— 2.5y ()

18 commutative.

Proof. Since f is flat, by [12, Proposition 3.1.0 in IV], for any coherent
sheaves F' on X,

Lo (R f.(F)) <> R fL (Lu*(F)),
which shows that the diagram

Kp(X) —0 KL, (X0
f*l Lfi
Ky (V) —— Koy (Y)

is commutative. Thus, by virtue of Proposition A.1 and Corollary A.4, we can
see our proposition. O
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