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A Topological Proof of Real and Symplectic
Bott Periodicity Theorem
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1. Introduction

The purpose of this paper is, as in title, to prove real and symplectic Bott
periodicity. For introduction I’ll tell, roughly, the way of the proof. Because
the goal of this paper is that BSp � (Ω4BO)〈0〉 and BO � (Ω4BSp)〈0〉 (For a
topological space X, X〈n〉 means n-connected fiber space of X and let prn :
X〈n〉 → X be an ordinary projection.), we must construct maps that is λ :
S4 ∧ BO → BSp and µ : S4 ∧ BSp → BO. (To do that, we use the word of
K-theory.) By some of good cohomological properties of BO and BSp, we can
tell the almost same thing as Ad4 λ and Ad4 µ are homotopy equivalence, and
we remove ‘almost’ later.

2. Main theorem

Theorem 2.1. Let X,Y be of finite type CW-complex which are H-
spaces having following properties,

(1) H∗(X; Z/2Z) = Z/2Z[w1, w2, w3, . . . ],
where |wi| = i.
wi’s have following relation;

Sq1 w2i ≡ w2i+1 mod J2

Sq2 w2i ≡ w2i+2 mod J2

Sqi−1 wj ≡ w2i−1 mod J2

Sq2i−2 w2i ≡ w4i−2 mod J2

Sq4i−3 w4i ≡ 0 mod J2

(where J = (w1, w2, . . . ))
(2) H∗(Y ; Z) = Z[p1, p2, p3, . . . ], |pi| = 4i.
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(3) There exist maps
j : RP∞ → X, j′ : HP∞ → Y
λ : S4 ∧ X → Y, µ : S4 ∧ Y → X
such that

(a) (λ ◦ (S4 ∧ j))∗ : H4∗(Y ; Z/2Z) → H4∗(S4 ∧ RP∞; Z/2Z)
(µ ◦ (S4 ∧ j′))∗ : H∗(X; Z/2Z) → H∗(S4 ∧ HP∞; Z/2Z)
are epic.

(b) Ad4 λ : X → Ω4Y, Ad4 µ : Y → Ω4X
are H-maps.

Then the maps Ãd4λ : Y → Ω4X〈0〉, Ãd4µ : X → Ω4Y 〈0〉 are mod C2-
homotopy equivalence as Serre’s meaning.

(Ãd4λ and Ãd4µ are lifts of Ad4 λ and Ad4 µ. C2 is a class of all finite
abelian groups whose orders are odd.)

Proof. First I show Ãd4µ is mod C2 -homotopy equivalence. Setting k’s
as follows.

k = µ ◦ (S4 ∧ j′) :S4 ∧ HP∞ → X

k1 = Adµ ◦ (S3 ∧ j′) :S3 ∧ HP∞ → ΩX

k2 = Ad2 µ ◦ (S2 ∧ j′):S2 ∧ HP∞ → Ω2X

k3 = Ad3 µ ◦ (S1 ∧ j′):S1 ∧ HP∞ → Ω3X

k4 = Ad4 µ ◦ j′ :HP∞ → Ω4X

Let αm ∈ H∗(Sm; Z/2Z), β ∈ H∗(HP∞; Z/2Z) be generators as ring and
αmβn be the element coming to αm × βn by the canonical map H∗(Sm ∧
HP∞; Z/2Z) → H∗(Sm × HP∞; Z/2Z).

First of all, we have

H∗(X〈1〉; Z/2Z) = Z/2Z[w′
2, w

′
3, w

′
4, . . . ],

where w′
i = pr∗1wi (i > 2).

Beginning to calculate of the spectral sequence of path fibration, we let
σ be a suspension map and, with grance at relation of Sq1 and Sqj−1, have
following:

H∗((ΩX)〈0〉; Z/2Z) = Z/2Z[σ(w′
2), σ(w′

4), σ(w′
6), . . . ]

σ(w′
2n(2i−1)−1) = σ(w′

2i)
2n

.

Then,

H∗((ΩX)〈1〉; Z/2Z) = Z/2Z[t3, t5, t7, . . . ],
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where t2i−1 = σ(w′
2i), Sq2 t2i−1 = t2i+1, Sq2i−2 t2i−1 = t4i−3, Sq2j−3 t2i−1 = 0,

and k̃1(t4i+3) = α3β
i.

Next considering the relation of Sq2 and Sq2i−2 between t2i−1’s, we have
following:

H∗((Ω2X)〈0〉; Z/2Z) = Z/2Z[y2, y6, y10, . . . ],

where yi = σ(ti+1), Sq4i−3 y4i = 0 and k̃2
∗
(y4i+2) = α2β

i

Then,

H∗((Ω2X)〈1〉; Z/2Z) = Z/2Z[y2, y6, y10, . . . ],

where Sq4i−3 y4i = 0 and k̃2
∗
(y4i+2) = α2β

i.

Calculate the spectral sequence of path fibration in the same way,

H∗((Ω3X)〈0〉; Z/2Z) =
∧

(x1, x5, x9, . . . ),

where σ(yi+1) = xi, |xi| = i and k̃3
∗
(x4i+1) = α1β

i.

Then we have the following.

H∗((Ω3X)〈1〉; Z/2Z) =
∧

(x5, x9, x13, . . . ),

where k̃3
∗
(x4i+1) = α1β

i.

To calculate the spectral sequence of path fibration further, we take dual
with the fact that xi’s are primitive.

H∗((Ω3X)〈1〉; Z/2Z) =
∧

(ξ5, ξ9, ξ13, . . . ),

where ξ4i+1 = (x4i+1)∗, k̃3∗((α1β
i)∗) = ξ4i+1.

Let τ be a transgression map. Now we have the following.

H∗((Ω4X)〈0〉; Z/2Z) = Z/2Z[q4, q8, q12, . . . ],

where q4i = τ (ξ4i+1) and k̃4∗((βi)∗) = q4i.

As the image of a map k̃4∗ includes generators of H∗((Ω4X)〈0〉; Z/2Z),

so does Ãd4µ∗. Then Ãd4µ∗. is an isomorphism and, by mod C2-Whitehead’s
theorem, Ãd4µ is mod C2-homotopy equivalence.
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I show Ãd4λ’s case next.

Setting h’s as follows.

h = λ ◦ (S4 ∧ j) :S4 ∧ RP∞ → Y

h1 = Ad λ ◦ (S3 ∧ j) :S3 ∧ RP∞ → ΩY

h2 = Ad2 λ ◦ (S2 ∧ j):S2 ∧ RP∞ → Ω2Y

h3 = Ad3 λ ◦ (S1 ∧ j):S1 ∧ RP∞ → Ω3Y

h4 = Ad4 λ ◦ j :RP∞ → Ω4Y

Let αm ∈ H∗(Sm; Z/2Z), β ∈ H∗(RP∞; Z/2Z) be generators as ring
and αmβn be the element coming to αm × βn by a canonical map H∗(Sm ∧
RP∞; Z/2Z) → H∗(Sm × RP∞; Z/2Z).

Calculate the spectral sequence of path fibration,

H∗(ΩY ; Z/2Z) =
∧

(d3, d7, d11, . . . ),

where d4i−1 = σ(p4i) and h1
∗(d4i−1) = α3β

4(i−1).

To calculate more, we have to take dual with the fact that xi’s are primi-
tive. Then we have the following:

H∗(ΩY ; Z/2Z) =
∧

(δ3, δ7, δ11, . . . ),

where (d4i−1)∗ = δ4i−1 and h1∗((α3β
4(i−1))∗) = δ4i−1.

Calculate the spectral sequence of path fibration,

H∗(Ω2Y ; Z/2Z) = Z/2Z[c2, c6, c10, . . . ],

where, c4i−2 = τ (δ4i−1), h2∗((α2β
4(i−1))∗) = c4i−2.

Now that we know Y(2) � ((Ω4X)〈1〉)(2), then we can use the homology
operation in [2]. So, setting b’s as follows:

b2n = c2
2(n−1)

, b2n(4i−2) = c4i−2
2n

,

we get the relations Sq2
∗b4i+2 = b2i

2 and

H∗(Ω2Y ; Z/2Z) = Z/2Z[b2, b6, b10, . . . ].

Now we can calculate spectral sequence by using transgression and have
relation between cohomology of Ω3Y and S1 ∧ RP∞ with help of above Sq2

∗
relation and that Sq2

∗ α1β
4i = α1β

4i−2.

H∗(Ω3Y ; Z/2Z) = Z/2Z[a1, a3, a5, . . . ],
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where τ (bi+1) = ai and h3∗((α1β
2i)∗) = a2i+1.

Then,

H∗(Ω3Y 〈1〉; Z/2Z) = Z/2Z[a1
2, a3, a5, . . . ]

Again, using above homology operation, we have Sq1
∗ a2n(2i−1)−1 = an

2i−1.
Finally, in the same way and grance at the relation that Sq1

∗ β2i = β2i−1, we
have following:

H∗(Ω4Y 〈0〉; Z/2Z) = Z/2Z[v1, v2, v3, v4, . . . ]

where h4∗((βi)∗) = vi.

Then checking the generators similarly, we see that Ãd4λ is mod C2-
homotopy equivalence.

Next lemma shows that if there is a space Z which is related to X and Y
by certain maps, we can tell X and Y are homotopy equivalent.

Lemma 2.2. Suppose the following.
(1) X and Y satisfy the conditions in Theorem 2.1 and rank of π4∗(Y ) =

rank of π4∗(X).
(2) There exists a space Z whose homotopy groups are free.
(3) There exist maps as ρ : π∗(Z) → π∗+4(Z), which is isomorphism

after tensoring Z[1/2], c′ : π∗(Y ) → π∗(Z), c : π∗(X) → π∗(Z), which are
splitting and monic after tensoring Z[1/2]. They satisfy following commutative
diagrams.

π∗(X)

�c

��

( gAd4λ)∗�� π∗+4(Y )

c′

��
π∗(Z)

ρ �� π∗+4(Z)

π∗(Y )

�c′

��

( gAd4µ)∗�� π∗+4(X)

c

��
π∗(Z)

ρ �� π∗+4(Z)

Then (Ãd4λ)∗ : X � (Ω4Y )〈0〉 and (Ãd4µ)∗ : Y � (Ω4X)〈0〉.

Proof. By the assumption, we see that π∗(X) and π∗(Y ) are odd torsion

free, and that (Ãd4λ)∗ and (Ãd4µ)∗ are mod C2-homotopy equivalence. So we

only need to check (Ãd4λ)∗ and (Ãd4µ)∗ on the free parts of π∗(X) and π∗(Y ).
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π∗(Y ) has free parts only when * is divided with 4, because of its coho-

mology. So we need to know (Ãd4λ)∗ : π4∗(X) → π4∗+4(Y ) and (Ãd4µ)∗ :
π4∗(Y ) → π4∗+4(X) are isomorphism

But it is easily verified by that π4∗(Z) is free, rank of π4∗(Y ) = rank of
π4∗(X) and the commutative diagrams in the assumption.

3. The case of BO and BSp

To apply theorem to BO and BSp, we have to construct maps λ, µ, j and
j′ for BO and BSp. To do that, we set notations of vector bundles.

lR, mC and nH are rank l trivial real bundle, rank m trivial complex bundle
and rank n trivial symplectic bundle.

Let ζ and η be the Hopf bundle of S2 and S4, and, η2, η∞, ξBO(n), ξBU(n)

and ξBSp(n) be the universal bundles of HP2, HP∞, BO(n), BU(n) and BSp(n),
and virtual vector bundles ξBO, ξBU, ξBSp and ξRP∞ be limn→∞(ξBO(n) − nR),
limn→∞(ξBU(n) − nC), limn→∞(ξBSp(n) − nH) and ξBO|RP∞ = ξRP∞

We consider a virtual vector bundle (η − 2C)⊗̂RξBO which is the element
of K̃Sp(S4 ∧BO). We set λ : S4 ∧ BO → BSp be a classifying map of the one.

Similarly we set µ′ : HP2 ∧ BSp → BU be a classifying map of (η2 −
2C)⊗̂CξBSp ∈ K̃U(HP2 ∧BSp). Since tensor product of two symplectic bundles
has a real structure i.e. (η2 − 2C)⊗̂CξBSp = ξ ⊗R 1C, for certain virtual real
vector bundle ξ on HP2∧BSp, we can set µ : S4∧BSp → BO be the classifying
map of ξ|S4∧BSp ∈ K̃O(S4 ∧ BSp).

Similarly we have (η2 − 2C)⊗̂C(η∞ − 2C) = ξ′⊗R 1C for certain virtual real
vector bundle ξ′ on HP2 ∧ HP∞.

Let j : RP∞ → BO and j′ : HP∞ → BSp be inclusion.

It is easily seen as in [1] that Ad4 λ and Ad4 µ are H-maps.

Lemma 3.1. (λ◦(S4∧j))∗ : H4∗(BSp; Z/2Z) → H4∗(S4∧RP∞); Z/2Z)
(µ ◦ (S4 ∧ j′))∗ : H∗(BO; Z/2Z) → H∗(S4 ∧ HP∞; Z/2Z) are epic.

Proof. Calculate total Chern class for λ.

(λ ◦ (S4 ∧ j))∗c(ξBSp) ≡ (S4 ∧ j)∗c((η − 2C)⊗̂RξBO)

≡ c((η − 2C)⊗̂R(ξRP∞ − 1R))

≡ c(η⊗̂RξRP∞)c(ξRP∞⊗̂R1C)−2c(η)−1

≡ (1 + α + β2)(1 + β)−2(1 + α)−1

≡ 1 +
∞∑

i=1

αβ2i (mod 2)
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(α = c2(η) β = c1(1c⊗̂RξRP∞) = w1(ξRP∞)2, where w1 is a first Stiefel-
Whitney class)

Then, (λ ◦ (S4 ∧ j))∗ : H4∗(BSp; Z/2Z) → H4∗(S4 ∧ RP∞; Z/2Z) is epic.

Calculate total Chern class for µ.

(µ̃′ ◦ (HP2 ∧ j′))∗c(ξBU) ≡ c((η2 − 2C)⊗̂C(η∞ − 2C))
≡ c(ξ′ ⊗R 1C)

≡ w(ξ′)2 (mod 2)

On the other hand,

(µ̃′ ◦ (HP2 ∧ j′))∗c(ξBU) ≡ c(η2 − 2C⊗̂Cη∞ − 2C)

≡ c(η2⊗̂Cη∞)c(η2)−2c(η∞)−2

≡ (1 + α−2 + β−2)(1 + α)−2(1 + β)−2

≡ {1 + α

∞∑
i=1

βi}2 (mod 2)

(α = c2(η2), β = c2(η∞))

Then we get w(ξ′) = 1+α
∑∞

i=1 βi +α2f(α, β). (f(α, β) is a formal power
series of α and β)

Restricting to S4 ∧ HP∞, we have the following.

(µ ◦ (S4 ∧ j′))∗w(ξBO) ≡ 1 + c2(η)
∞∑

i=1

βi (mod 2)

So, (µ ◦ (S4 ∧ j′))∗ : H∗(BO; Z/2Z) → H∗(S4 ∧ HP∞; Z/2Z) is epic.

Now that we only need to show the next lemma to prove Bott periodicity
theorem.

Corollary 3.2 (Bott Periodicity Theorem).

BSp � (Ω4BO)〈0〉, BO � (Ω4BSp)〈0〉

Proof. Recall that BU, BO and BSp are classifying spaces of cohomology
theories K̃U, K̃O and K̃Sp, we can define maps ρ′ and ρ′′ : S2 ∧ BU → BU to
be the classifying maps of (ζ − 1C)⊗̂CξBU and (ζ̄ − 1C)⊗̂CξBU (see [1]), and,
r : π∗(BU) → π∗(BO), c′ : π∗(BSp) → π∗(BU), c : π∗(BO) → π∗(BU) and
q : π∗(BU) → π∗(BSp) to be the maps which induced from realization of com-
plex bundle, complexification of symplectic one, complexification of real one
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and quaterniation of complex one.

We have c ◦ r = 2 and q ◦ c′ = 2, then c∗ : π ∗ (BO) ⊗ Z[1/2] →
π ∗ (BU)⊗Z[1/2] and c′∗ : π ∗ (BSp)⊗Z[1/2] → π ∗ (BU)⊗Z[1/2] are splitting
and monic.

We set ρ = (Ãd2ρ′)∗◦(Ãd2ρ′′)∗ : π∗(BU) → π∗+4(BU). Then, by definition
of ρ′ and ρ′′, and by the fact (ζ − 1C)⊗̂C(ζ̄ − 1C) = η − 1C, we also have
commutative diagrams below.

π∗(BO)

�c

��

( gAd4λ)∗�� π∗+4(BSp)

c′

��
π∗(BU)

ρ �� π∗+4(BU)

π∗(BSp)

�c′

��

( gAd4µ)∗�� π∗+4(BO)

c

��
π∗(BU)

ρ �� π∗+4(BU)

We already know that Z/2Z-coefficient cohomology rings and homotopy
goups of BO, BU and BSp, and that ρ is isomorphism, so we can apply Lemma
2.2 and have periodicity.

4. Characterization of BO

Let Y be a topological space and Q(Y ) = limn→∞ ΩnSnY .
Let X be an infinite loop space. We consider a map ΞX : Q(X) → X

which is defined as ΞX = limn→∞ εn
−1 ◦ Ωn(Adn εn)−1 : Q(X) → X, where

εn : X
∼→ ΩnBn.

We can see in [3] that there exists a map ε : BSp → Q(HP) s.t. ΞBSp ◦
Q(i) ◦ ε � idBSp, where i : HP∞ → BSp is inclusion. And, by ε, we have
Q(HP∞) � BSp × F and π∗(F ) is finite, so H∗(F ; Z) is finite.

We try to characterize BO through the characterization of BSp by means
of homotopy equivalence above and by that BSp is an infinite loop space.

Theorem 4.1. Suppose the following.
(1) Spaces X and Y satisfy the condition of Lemma 2.2.
(2) The map j′ : HP∞→Y also satisfies that the image of j′∗ : H∗(HP∞; Z)

→ H∗(Y ; Z) includes all algebra generators of H∗(Y ; Z).
Then ΞY ◦ Q(j) ◦ ε : BSp → Y is homotopy equivalence. And BO is homotopy
equivalent to X.
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Proof. We denote i : HP∞ → Q(HP∞) be inclusion, so we have, by
definition, that ΞY ◦ Q(j) ◦ i = j : HP∞ → Y .

Then we can consider a commutative diagram below.

HP∞ j ��

i

��

Y

Q(HP∞)
Q(j)

�� Q(Y )
ΞY

�� Y

And now we have a commutative diagram below.

H∗(HP∞; Z)
j∗ ��

i∗
��

H∗(Y ; Z)

H∗(BSp; Z)
ε∗ �� H∗(Q(HP∞); Z)

(ΞY ◦Q(j))∗��

proj

��

H∗(Y ; Z)

H∗(BSp; Z) ∼
=

�� H∗(Q(HP∞); Z)/ Tor ϕ
�� H∗(Y ; Z)

Since H∗(Y ; Z) is free and Im ϕ ⊃ Im j∗, in other words Im ϕ includes all
algebra generators of H∗(Y ; Z), ϕ is isomorphism.

Then (ΞY ◦Q(j)◦ε)∗ : H∗(BSp; Z) → H∗(Y ; Z) is isomorphism and, finally,
we have ΞY ◦ Q(j) ◦ ε : BSp → Y is homotopy equivalence. And this says that
BO is homotopy equivalent to X.
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