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An analogue of Hardy’s theorem for the
Heckman-Opdam transform

By
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Abstract
A theorem of Hardy asserts that a function on the real line and
its Fourier transform cannot both be very small. We generalize Hardy’s
theorem for the Heckman-Opdam transform associated with hypergeo-
metric functions.

Introduction

Hardy’s theorem on Fourier transform [3] asserts that f and its Fourier
transform f cannot both be very small. More precisely, let p and ¢ be positive
constants and assume that f is a function on the real line satisfying |f(z)| <
Ce~?1=" and |f(\)| < Ce~ 1" for some positive constant C. Then (i) f = 0
if pg > 1/4; (ii) f = Ae?*" for some constant A if pg = 1/4; (iii) there are
infinitely many f if pg < 1/4.

Theory of Fourier analysis on the real line has been generalized to the
setting of harmonic analysis on Lie groups and homogeneous spaces. In [7],
[8], [9] and [2], generalizations of part (i) of Hardy’s result to Lie groups were
studied. Sitaram and Sundari [8] proved an analogue of Hardy’s theorem for the
Harish-Chandra transform for spherical functions on a Riemannian symmetric
space of the non-compact type.

On the other hand, Heckman and Opdam generalized the theory of spher-
ical functions to the theory of hypergeometric functions associated with root
systems. Namely, in the case of rank one symmetric spaces, spherical func-
tions can be expressed by the Gauss hypergeometric function F'(a, b, ¢; z) with
a=(A+kaso+2ka)/2, b= (=X+kaso +2ka)/2, ¢ = kqj2 + ka +1/2, where
2kq 2 € Z>o and 2k, € Z( are multiplicities of restricted roots and A € C
is the spectral parameter, whereas the theory of Heckman and Opdam in the
rank one case covers arbitrary values of &, /o and k,. Opdam [5] generalized the
inversion formula and the Plancherel theorem of the Harish-Chandra transform
to the case of arbitrary nonnegative multiplicities.
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In this paper we establish an analogue of Hardy’s theorem for the Heckman-
Opdam transform associated with the multivariate hypergeometric functions.
The strategy of Sitaram and Sundari [8] and machinery of Heckman and Opdam
[4, Part I] [5], [6] are enough to work out.

We are grateful to the referee, whose suggestions improved the presentation
of the paper.

1. The Heckman-Opdam transform

Let a be a Euclidean vector space of dimension n with inner product (-, ).
We use the same notation for the corresponding inner product on the dual
space a*. Let h = a ®r C be the complexification. Define A = expa and
e=exp0 € A.

Let R C a* be a root system. For a € a*, let X, € a be the element
determined by (X,, X) = a(X) for all X € a. For « € R, define

o 2Xa
(Xa, Xa)

We put RV = {a¥; a € R}. Let Q = Q(R) = ZR and QY = Q(RY) be the
root lattice and the coroot lattice respectively. Let P = Homgz(QV,Z) be the
weight lattice. Let W be the Weyl group of R. Choose and fix a positive
system Ry C R. Let ay C a be the corresponding positive Weyl chamber and
Af =expay.

A real multiplicity function k is a map R — R, denoted by a — k, and
satisfying k, = kg if @ and [ are in the same W-orbit. We set

p(k‘):%Zk’aaeh*.

acRy

Let {&1,...,&,} be an orthonormal basis of a. We define

=%+ ka%&l .
j=1

acRy

Notice that L(0) = E;-lzl 8§j is the Laplacian on a, which is independent of
the choice of orthonormal basis. In a series of papers, Heckman and Opdam

proved:

Theorem 1.1 ([4] Part I, [6]). (1) There is a commutative algebra D(k)
of W -invariant differential operators such that
(a) L(k) € D(k),
(b) There is an algebra isomorphism v : D(k) — S(h)W, where S(h)W
is the set of W-invariant elements in the symmetric algebra S(h),
(©) AEE)A) = () — (p(k), p(R)).
(2) Assume é(p(k), k) # 0, where

ek =TI vorev 20 L)

acRy
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Then there is a unique function F(X\, k;-) on A such that
(a) DF(\k;-) =~v(D)A)F(Ak;-) for all D € D(k),
(b) F(\ k;-) is W-invariant and analytic at e,
(¢c) F(\kje)=1.

Remark 1.2. (1) F(\k;-) is called the Heckman-Opdam hypergeomet-
ric function.

(2) If ko > 0 for any o € R, then é(p(k), k) # 0.

(3) If 2k, (o € R) are root multiplicities of the restricted root system
of a Riemannian symmetric space G/K of the non-compact type, then the
Heckman-Opdam hypergeometric function is the radial part of the spherical
function on G/K.

Let da denote the Lebesgue measure on A normalized by vol(A/ exp(QY))
=1 and dX denote the Lebesgue measure on v/—1a normalized by vol(v/—1a/
V—=1P)=1. For f € C=(A)" and X € h*, define

(1.1) F(HO) = / F(@)F (=), k: a)5u(a)da,
A

where

c0(X)/2 _ —a(X)/2 2o

or(exp X) = H

acRy

for X € a. Notice that 65 is W-invariant. We call F the Heckman-Opdam
transform. It coincides with the Harish-Chandra transform for spherical func-
tions if 2k, correspond to the root multiplicities of a Riemannian symmetric
space. The inversion formula and the Plancherel theorem for F was proved in
this case by Harish-Chandra. For general case, Opdam proved:

Theorem 1.3 ([5], [6]). Assume kq >0 for any o € R.
(1) Let f € C.(A)W. Then we have

f@= [ FONFO k0

where

r v )T (= XY o
sy = ] DO+ EDEA@) + k),
F(A(a¥))L(=A(a))
a€ER
(2) The Heckman-Opdam transform extends to a unitary isometry

F o L*(A, 6k(a)da) — L*(v/—1a*,0"(\)d)).

2. An analogue of Hardy’s theorem

We now state and prove an analogue of Hardy’s theorem for the Heckman-
Opdam transform.
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Theorem 2.1.  Assume ko > 0 for all o € R. Let p and q be positive
constants. Suppose f is a W-invariant measurable function on A satisfying

(2.1) |flexp X)| < Cexp(—p(X, X)), X€a
and
(2.2) IF(N(V=1IN] < Cexp(—q(A\, X)), A€,

where C is a positive constant. If pg > 1/4, then f =0 almost everywhere.

The proof follows closely that of Sitaram and Sundari [8], where an ana-
logue of Hardy’s theorem was proved for group case, i.e. the case of the Harish-
Chandra transform on a Riemannian symmetric space.

Let || - || denote the Euclidean norm on . We claim that

(2.3) IF(HN)] < Coexp (4%/“'2) for all \ € b,

for some positive constants Cy and p’ such that 0 < p’ < p and p’q > 1/4.
To show (2.3), we express F(f) as the Cherednik-Opdam transform ([1],

5], [6):
(2.4) F(HO) = /A F(a)G(—wo, k; woa)du(a)da,

where G(\, k; -) is a simultaneous eigenfunction of the Dunkl-Cherednik opera-
tors and wy is the longest element of W. The function G(A, k; -) is holomorphic
in A € h and in z = exp X on a tubular neighbourhood of A. We have by [5,
Proposition 6.1]

(2.5) |G, ks exp X)| < [W|1/2emaxw Re(wA(X)) = x ¢ ¢

where |W| denotes the order of W. Since f is W-invariant, we can rewrite (2.4)
as

(2.6) F(fYN) = Z [ f(a)G(—wo, k; wowa)dy(a)da .
wew 7 A+

Moreover we have an estimate of dy,
(2.7) Sr(exp X) < Cpe@ Xl

for some positive constants C; and C’. Tt follows from (2.1), (2.5), (2.7) and
holomorphy of G(\ k;-) in A € h that F(f)(\) defines an entire function on
A€ h. By (2.6), (2.1), (2.5) and (2.7), we have

FOO] < Ca [ exp(-p(X,X) + (X, X,) + C'[H])dX

at



Hardy’s theorem for the Heckman-Opdam transform 255

for some positive constant Co, where 1 € Re WA such that X,, € o and dX is
the Lebesgue measure on a corresponding to da on A. Since

exp(—p(X, X) + C/HH”) <C3 exp(—p/(X, X))

for positive constants C3 and p’ such that 0 < p’ < p and p’q > 1/4. Thus we
have

F(HN)] < Cs / exp(—p/(X, X) + (X, X,))dX

at+

< Crewp (506X ) [ e/ (X 0)x

1
< Cyexp <4—p,|A||2)

for some positive constant Cy. This proves (2.3).
On the other hand, since p'q > 1/4, it follows from (2.2) that

(2.8) F(H (VTN < Cexp (_i||A|2> for all € a”.

4p’
Since F(f) satisfies the estimates (2.3) and (2.8), it follows from [8, Lemma 2.1]
that

(2.9) F(f)(A) = Aexp <—4Lp,(/\7 )\))

for some constant A. Equations (2.2) and (2.9) imply A = 0, since p’q > 1/4.
Hence f = 0 almost everywhere by Theorem 1.3 (2). The proof of Theorem 2.1
is finished.

Remark 2.2. By [4, Part ITI], Theorem 2.1 gives an analogue of Hardy’s
theorem for K-invariant functions on certain semisimple symmetric spaces

G/H.
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