The Whitehead square of a lift of the Hopf map to a mod 2 Moore space

Dedicated to the memory of Professor Katsuo Kawakubo

By

Kaoru Morisugi and Juno Mukai

1. Introduction

We set $\mathbb{F} = \mathbb{R}$ (real), \mathbb{C} (complex) or \mathbb{H} (quaternion) with the usual norm and set $d = \dim_{\mathbb{R}} \mathbb{F}$. Let $\mathbb{F}P^n$ be the $n(\mathbb{F})$ -dimensional \mathbb{F} -projective space. Let Q^n be the quaternionic quasi-projective space of dimension 4n - 1. Let $G_n(\mathbb{F})$ be the orthogonal group O(n), the unitary group U(n) or the symplectic group Sp(n) respectively, according as $\mathbb{F} = \mathbb{R}$, \mathbb{C} or \mathbb{H} . We denote by $\omega_n(\mathbb{F})$: $S^{d(n+1)-2} \to G_n(\mathbb{F})$ the characteristic map for the standard sphere bundle over $G_{n+1}(\mathbb{F})/G_n(\mathbb{F}) = S^{d(n+1)-1}$. Let $c: Sp(n) \to U(2n)$ and $r: U(n) \to O(2n)$ be the canonical inclusions. We denote by $M^n = \Sigma^{n-2}\mathbb{R}P^2$ for $n \geq 2$ the Moore space of type $(\mathbb{Z}_2, n-1)$. Let $i_n: S^{n-1} \to M^n$ and $p_n: M^n \to S^n$ be the inclusion and collapsing maps respectively. Given an element $\alpha \in \pi_k(S^n)$, an element $\widehat{\alpha} \in \pi_k(M^n)$ is called a lift of α if $p_{n*}\widehat{\alpha} = \alpha$. Let $\iota_n \in \pi_n(S^n)$ be the identity map of S^n and let $\eta_n \in \pi_{n+1}(S^n)$ for $n \geq 2$ be the Hopf map. It is well-known that there exists a lift of η_3 . We denote by $\widehat{\eta_3} \in \pi_4(M^3)$ a lift of η_3 and $\widehat{\eta}_n = \Sigma^{n-3}\widehat{\eta_3}$ for $n \geq 3$.

The purpose of this note is to study the order of the Whitehead square of $\hat{\eta}_n$. This paper is some kind of a byproduct of [9] but would be able to be read independently. Remark that in [9] the notation of the lift of η_n to M^n was the symbol $\tilde{\eta}_{n-1}$. In this paper we denote it by $\hat{\eta}_n$.

It is proved in (i) of Theorem 4.1 of [9] that the Whitehead square of $\hat{\eta}_n$ is of order 4 if n is odd. It is easy to see that $2[\hat{\eta}_n, \hat{\eta}_n] = 2\hat{\eta}_n[\iota_{n+1}, \iota_{n+1}] = 0$ if n is even.

We summarize results about the order of $[\hat{\eta}_n, \hat{\eta}_n]$ as theorem, although our result is not complete.

Theorem 1.1. (1) $[\widehat{\eta}_{2n+1}, \widehat{\eta}_{2n+1}]$ is of order 4 if $n \ge 1$. (2) $[\widehat{\eta}_{2n}, \widehat{\eta}_{2n}]$ is non-trivial and of order 2 if $n \ne 2^i - 1$.

Received March 21, 2001

Revised July 10, 2001

Remark 1.2. When $n = 2^i - 1$, the triviality of $[\widehat{\eta}_{2n}, \widehat{\eta}_{2n}]$ seems to be related to the stable order of Mahowald element [6] $\eta_j \in \pi_{2^j}(S^0)$.

Let $\nu_n \in \pi_{n+3}(S^n)$ for $n \ge 4$ be the Hopf map. Let $J : \pi_k(SO(n)) \to \pi_{k+n}(S^n)$ be the *J*-homomorphism. It is well-known [2], $\Sigma^3 J(rc\omega_n(\mathbb{H})) = [\iota_{4n+3}, \iota_{4n+3}]$. The proof of (2) in Theorem 1.1 is partially obtained by use of the following.

Theorem 1.3. $\eta_{4n+1} \circ \Sigma^2 J(rc\omega_n(\mathbb{H})) = [\iota_{4n+1}, \nu_{4n+1}].$

2. Proof of Theorem 1.3

We need some preliminaries.

For $1 \leq m \leq n \leq \infty$, we set $\mathbb{F}P_m^n = \mathbb{F}P^n/\mathbb{F}P^{m-1}$ and $Q_m^\infty = Q^\infty/Q^{m-1}$. We set $G(\mathbb{F}) = G_\infty(\mathbb{F})$. Let $i_n(\mathbb{F}) : G_n(\mathbb{F}) \to G_{n+1}(\mathbb{F})$ be the inclusion and let $t : Q^n \to \Sigma \mathbb{C}P^{2n-1}$ be the natural map with a cofiber $\Sigma \mathbb{H}P^{n-1}$. For a based space X, ΩX stands for a loop space of X. Note that $\Omega(G(\mathbb{F})/G_n(\mathbb{F}))$ a homotopy fiber of the inclusion $i(\mathbb{F}) : G_n(\mathbb{F}) \to G(\mathbb{F})$. Then we show

Lemma 2.1. $c_*(\omega_n(\mathbb{H}))\eta_{4n+2} = n\omega_{2n}(\mathbb{C})\nu_{4n}$.

Proof. We denote by $i_Q : Q_{n+1}^{\infty} \to Sp/Sp(n)$ and $i_{\mathbb{C}} : \Sigma \mathbb{C}P_{2n}^{\infty} \to U/U(2n)$ the canonical inclusions respectively. We consider the following commutative diagram:

$$\begin{array}{cccc} \Omega Q_{n+1}^{\infty} & \xrightarrow{\Omega i_Q} & \Omega(Sp/Sp(n)) & \xrightarrow{\partial} & Sp(n) \\ & & & & & \downarrow \Omega c & & \downarrow c \\ \Omega \Sigma \mathbb{C} P_{2n}^{\infty} & \xrightarrow{\Omega i_{\mathbb{C}}} & \Omega(U/U(2n)) & \xrightarrow{\partial} & U(2n), \end{array}$$

where the maps are canonical.

We know $\mathbb{H}P_n^{n+1} = S^{4n} \cup_{n\nu_{4n}} e^{4n+4}$. So, by using the cofiber sequence ([4]) $Q_{n+1}^{\infty} \to \Sigma \mathbb{C}P_{2n}^{\infty} \to \Sigma \mathbb{H}P_n^{\infty}$, we see the (4n+5)-skeleton of $\Sigma \mathbb{C}P_{2n}^{\infty}$ has the following cell structure:

$$(S^{4n+1} \lor S^{4n+3}) \cup_{n\nu_{4n+1} \lor \eta_{4n+3}} e^{4n+5}.$$

Since t restricted on S^{4n+3} is just the inclusion $S^{4n+3} \subset \Sigma CP_{2n}^{\infty}$, we have a relation

(1)
$$\Omega t_* j_* \eta_{4n+2} = nk_* \nu_{4n} \in \pi_{4n+3}(\Omega \Sigma \mathbb{C} P_{2n}^{\infty}),$$

where $j : S^{4n+2} \to \Omega Q_{n+1}^{\infty}$ and $k : S^{4n} \to \Omega \Sigma \mathbb{C} P_{2n}^{\infty}$ are the adjoint of the inclusions respectively. We note that $\omega_n(\mathbb{H}) = \partial_* \Omega i_{Q_*} j$ and $\omega_{2n}(\mathbb{C}) = \partial_* \Omega i_{\mathbb{C}*} k$. Hence, by the above commutative diagram and (1), we have the assertion. This completes the proof. As is well known [4], for the projection $p: SO(4n) \to S^{4n-1}$, it holds that

$$p_*(r_*c_*\omega_n(\mathbb{H})) = (n+1)\nu_{4n-1} (n \ge 2).$$

Now consider the following commutative diagram up to sign:

$$S^{4n-1} \xrightarrow{E^{4n}} \Omega^{4n} S^{8n-1}$$

$$\uparrow^{p} \qquad \uparrow^{\Omega^{4n-1}H}$$

$$SO(4n) \xrightarrow{J} \Omega^{4n} S^{4n}$$

$$\downarrow^{i} \qquad \downarrow^{\Omega^{4n}E}$$

$$SO(4n+1) \xrightarrow{J} \Omega^{4n+1} S^{4n+1},$$

where $E^k: S^m \to \Omega^k S^{m+k}$ is the k-fold suspension map, $H: \Omega S^m \to \Omega S^{2m-1}$ is the Hopf invariant and $J: SO(m) \to \Omega^m S^m$ is the J-map.

So we have

(3)
$$HJ(rc\omega_n(\mathbb{H})) = \pm (n+1)\nu_{8n-1}.$$

By Lemma 2.1, we have

(4)
$$(rc\omega_n(\mathbb{H}))\eta_{4n+2} = n(r\omega_{2n}(\mathbb{C}))\nu_{4n}.$$

We set $\alpha_n = J(rc\omega_n(\mathbb{H})) \in \pi_{8n+2}(S^{4n})$. Applying the composite $J \circ i_{4n}(R)$ to the above equation (4) and using the James-Whitehead theorem [2] which asserts $J\omega_n(\mathbb{R}) = [\iota_n, \iota_n]$, we obtain

 $(\Sigma \alpha_n)\eta_{8n+3} = n[\iota_{4n+1}, \nu_{4n+1}].$ Lemma 2.2.

Proof of Theorem 1.3. By using the Barratt-Toda formula ([10], [1]) and (3), we have

$$\eta_{4n+1} \circ \Sigma^2 \alpha_n - \Sigma \alpha_n \circ \eta_{8n+3} = [\iota_{4n+1}, \iota_{4n+1}] \circ \Sigma^2 H(\alpha_n)$$

= $[\iota_{4n+1}, \iota_{4n+1}] \circ (n+1)\nu_{8n+1}$
= $(n+1)[\iota_{4n+1}, \nu_{4n+1}].$

So, by Lemma 2.2, we have the assertion. This completes the proof of Theorem 1.3.

Example 2.3.

(i)
$$\eta_9 \sigma_{10} \nu_{17} = \bar{\nu}_9 \nu_{17} = [\iota_9, \nu_9].$$

(ii) $\eta_{17} (\nu_{18}^* + \xi_{18}) = \omega_{17} \nu_{33} = [\iota_{17}, \nu_{17}].$
(iii) $\eta_{21} \sigma_{22}^* = [\iota_{21}, \nu_{21}].$

The second equalities of (i) and (ii) are obtained by [10]. The relation of (iii) is obtained by [7] and [8].

3. Proof of Theorem 1.1

First we show a formula which represents a relation between an absolute Whitehead product and a relative one.

Let X be a connected space and let $\varphi \in \pi_{n-1}(X)$. Then there exists a canonical extension of φ , $\bar{\varphi} : D^n \to X \cup_{\varphi} e^n$. Let $\Omega(X \cup_{\varphi} e^n, X)$ be the homotopy fiber of the inclusion $X \to X \cup_{\varphi} e^n$ and we denote the fiber inclusion map by ∂ . Consider the following commutative diagram:

(5)
$$\Omega(D^{n}, S^{n-1}) \xrightarrow{\partial} S^{n-1} \longrightarrow D^{n}$$
$$\downarrow^{\Omega(\bar{\varphi}, \varphi)} \qquad \qquad \downarrow^{\varphi} \qquad \qquad \downarrow^{\bar{\varphi}}$$
$$\Omega(X \cup_{\varphi} e^{n}, X) \xrightarrow{\partial} X \xrightarrow{} X \cup_{\varphi} e^{n}.$$

Note that $\partial : \Omega(D^n, S^{n-1}) \to S^{n-1}$ is a homotopy equivalence. We denote the homotopy inverse of ∂ by $s : S^{n-1} \to \Omega(D^n, S^{n-1})$. Let $\gamma_n \in \pi_n(X \cup_{\varphi} e^n, X) \stackrel{\text{adj}}{\cong} \pi_{n-1}(\Omega(X \cup_{\varphi} e^n, X))$ be the characteristic map of the *n*-cell e^n . Note that the adjoint of γ_n is represented by the composite:

$$adj(\gamma_n) : S^{n-1} \xrightarrow{s} \Omega(D^n, S^{n-1}) \xrightarrow{\Omega(\bar{\varphi}, \varphi)} \Omega(X \cup_{\varphi} e^n, X).$$

By definition,

$$\Omega p \circ adj(\gamma_n) = E : S^{n-1} \to \Omega S^n,$$

$$\partial \circ adj(\gamma_n) = \varphi : S^{n-1} \to X,$$

where $p: \Omega(X \cup_{\varphi} e^n, X) \to \Omega S^n$ is the canonical projection.

For an element $\beta \in \pi_k(S^{n-1})$, we denote $\beta_{\varphi} \in \pi_{k+1}(X \cup_{\varphi} e^n, X)$, the adjoint of the composite map $adj(\gamma_n) \circ \beta = \Omega(\bar{\varphi}, \varphi) \circ s \circ \beta$.

Then we show

Lemma 3.1. Let $\beta \in \pi_k(S^{n-1})$. Then in $\pi_{n+k-1}(X \cup_{\varphi} e^n, X)$, it holds that

$$[\gamma_n, \varphi \circ \beta] = \pm [\iota_{n-1}, \beta]_{\varphi},$$

where $[\gamma_n, \varphi \circ \beta]$ is the relative Whitehead product and $[\iota_{n-1}, \beta]$ is the absolute one.

Proof. By the naturality of relative Whitehead products [3], we have a commutative diagram

$$\pi_k(S^{n-1}) \xrightarrow{\varphi_*} \pi_k(X)$$

$$\downarrow [\gamma'_n,] \qquad \qquad \qquad \downarrow [\gamma_n,]$$

$$\pi_{n+k-1}(D^n, S^{n-1}) \xrightarrow{(\bar{\varphi}, \varphi)_*} \pi_{n+k-1}(X \cup_{\varphi} e^n, X)$$

334

where $\gamma'_n \in \pi_n(D^n, S^{n-1})$ is the obvious map. Therefore we have $[\gamma_n, \varphi \circ \beta] = (\bar{\varphi}, \varphi)_*[\gamma'_n, \beta]$. Since $\partial[\gamma'_n, \beta] = \pm[\iota_{n-1}, \beta]$, the element $(\bar{\varphi}, \varphi)_*[\gamma'_n, \beta]$ is the adjoint of $\Omega(\bar{\varphi}, \varphi) \circ s \circ [\iota_{n-1}, \beta]$, that is, $[\iota_{n-1}, \beta]_{\varphi}$. This completes the proof. \Box

From now on we prove Theorem 1.1. We show that if $n \neq 2^i - 1$, then $[\hat{\eta}_{2n}, \hat{\eta}_{2n}]$ is non-trivial. For n = 2m, we have $p_{4m}[\hat{\eta}_{4m}, \hat{\eta}_{4m}] = [\eta_{4m}, \eta_{4m}] = [\iota_{4m}, \eta_{4m}^2] \neq 0$ by [5]. Suppose that n = 2m + 1. We denote by $j : (M^n, *) \to (M^n, S^{n-1})$ the inclusion map. By Theorem 1.3, $\hat{\eta}_{4m+1}\Sigma^2\alpha_m \in \pi_{8m+4}(M^{4m+1})$ is a lift of $[\iota_{4m+1}, \nu_{4m+1}]$, where $\alpha_m = J(rc\omega_m(\mathbb{H})) \in \pi_{8m+2}(S^{4m})$. Since $\Sigma^3\alpha_m = [\iota_{4m+3}, \iota_{4m+3}]$, we have

$$\Sigma(\widehat{\eta}_{4m+1}\Sigma^2\alpha) = \widehat{\eta}_{4m+2}[\iota_{4m+3}, \iota_{4m+3}] = [\widehat{\eta}_{4m+2}, \widehat{\eta}_{4m+2}].$$

Since it is easy to see that the following diagram commutes:

$$S^{n} \xrightarrow{adj(\widehat{\eta}_{n})} \Omega M^{n}$$

$$\downarrow^{\eta_{n-1}} \qquad \qquad \downarrow^{\Omega j}$$

$$S^{n-1} \xrightarrow{adj(\gamma_{n})} \Omega(M^{n}, S^{n-1}),$$

we have

$$\begin{aligned} j_*[\hat{\eta}_{4m+2}, \hat{\eta}_{4m+2}] &= j \circ \hat{\eta}_{4m+2}[\iota_{4m+3}, \iota_{4m+3}] \\ &= adj(\Omega j \circ adj(\hat{\eta}_{4m+2}) \circ \Sigma^{-1}[\iota_{4m+3}, \iota_{4m+3}]) \\ &= adj(adj(\gamma_{4m+2}) \circ \eta_{4m+1} \circ \Sigma^{-1}[\iota_{4m+3}, \iota_{4m+3}]) \\ &= adj(adj(\gamma_{4m+2}) \circ \eta_{4m+1} \circ \Sigma^2 \alpha_m) \\ &= adj(adj(\gamma_{4m+2}) \circ [\iota_{4m+1}, \nu_{4m+1}]) \quad \text{by Theorem 1.3} \\ &= [\iota_{4m+1}, \nu_{4m+1}]_{\varphi}, \end{aligned}$$

where $\varphi = 2\iota_{4m+1}$. By Lemma 3.1 for $\varphi = 2\iota_{4m+1}$ and $\beta = \nu_{4m+1}$, we have

$$j_*[\widehat{\eta}_{4m+2},\widehat{\eta}_{4m+2}] = [\iota_{4m+1},\nu_{4m+1}]_{\varphi} = \pm 2[\gamma_{4m+2},\nu_{4m+1}].$$

By Lemma 2.3 (ii) of [9], the order of $[\gamma_{4m+2}, \nu_{4m+1}]$ is 4 for $m \neq 2^{i-1} - 1$. Therefore we have proved that $[\widehat{\eta}_{4m+2}, \widehat{\eta}_{4m+2}] \neq 0$ for $m \neq 2^{i-1} - 1$.

This completes the proof of (2) in Theorem 1.1.

DEPARTMENT OF MATHEMATICS FACULTY OF EDUCATION WAKAYAMA UNIVERSITY WAKAYAMA 640-8510, JAPAN e-mail: kaoru-m@math.edu.wakayama-u.ac.jp

MATHEMATICAL SCIENCES FACULTY OF SCIENCE SHINSHU UNIVERSITY MATSUMOTO 390-8621, JAPAN e-mail: jmukai0@gipac.shinshu-u.ac.jp

References

- M. G. Barratt, Note on a formula due to Toda, J. London Math. Soc., 36 (1961), 95–96.
- [2] I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres I, Proc. London Math. Soc. Third Series, 4 (1954), 196–218.
- [3] I. M. James, On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford Second Series, 5 (1954), 260–270.
- [4] I. M. James, The Topology of Stiefel Manifolds, London Math. Soc. Lecture Note 24, Cambridge Univ., 1976.
- [5] M. A. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math., 4 (1960), 161–169.
- [6] M. Mahowald, A new infinite family in $_{2}\pi_{*}^{S}$, Topology, **16** (1977), 249–256.
- [7] M. Mimura, On the generalized Hopf homomorphism and the higher composition. Part II. $\pi_{n+i}(S^n)$ for i = 21 and 22., J. Math. Kyoto Univ., 4 (1965), 301–326.
- [8] M. Mimura, M. Mori and N. Oda, Determination of 2-components of the 23 and 24-stem in homotopy groups of spheres, Mem. Fac. Sci. Kyushu Univ. A, 29 (1975), 1–42.
- [9] K. Morisugi and J. Mukai, Lifting to mod 2 Moore spaces, J. Math. Soc. Japan, 52 (2000), 515–533.
- [10] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton, 1962.