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1. Introduction

We set F = R (real), C (complex) or H (quaternion) with the usual norm
and set d = dimg F. Let FP™ be the n(FF)-dimensional F-projective space. Let
Q" be the quaternionic quasi-projective space of dimension 4n — 1. Let G,,(F)
be the orthogonal group O(n), the unitary group U(n) or the symplectic
group Sp(n) respectively, according as F =R, C or H. We denote by w,(F) :
G§dn+1)=2 _, G, (F) the characteristic map for the standard sphere bundle over
Gni1(F)/Gp(F) = S4+D=1 Tet ¢: Sp(n) — U(2n) and r : U(n) — O(2n)
be the canonical inclusions. We denote by M™ = X"~2RP? for n > 2 the
Moore space of type (Za,n —1). Let i, : S"~1 — M™ and p,, : M™ — S™ be
the inclusion and collapsing maps respectively. Given an element « € 7 (S™),
an element & € 7 (M™) is called a lift of « if p,, @ = a. Let ¢, € m,(S™) be
the identity map of S™ and let 7, € m,4+1(S™) for n > 2 be the Hopf map. It
is well-known that there exists a lift of 3. We denote by 73 € m4(M?3) a lift of
n3 and 7, = L7373 for n > 3.

The purpose of this note is to study the order of the Whitehead square of
7n. This paper is some kind of a byproduct of [9] but would be able to be read
independently. Remark that in [9] the notation of the lift of 7,, to M™ was the
symbol 7},,_1. In this paper we denote it by 7,,.

It is proved in (i) of Theorem 4.1 of [9] that the Whitehead square of 7,
is of order 4 if n is odd. It is easy to see that 2[0,, Jn] = 200 [tn+1, tnt1] = 0 if
n is even.

We summarize results about the order of [7,,, 7,] as theorem, although our
result is not complete.

Theorem 1.1. (1) [N2n+1,T2n+1] is of order 4 if n > 1.
(2) [Man, Mon] is non-trivial and of order 2 if n # 2* — 1.
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Remark 1.2.  When n = 2¢ — 1, the triviality of [fja,, 2] Seems to be
related to the stable order of Mahowald element [6] 1; € mos (SY).

Let v, € mp43(S™) for n > 4 be the Hopf map. Let J : m(SO(n)) —
Tk+n(S™) be the J-homomorphism. It is well-known [2], ¥3J(rcw,(H)) =
[tan+3, tan+3]. The proof of (2) in Theorem 1.1 is partially obtained by use of
the following.

Theorem 1.3.  nn41 0 X2J (rewn (H)) = [tant1, Vant1].

2. Proof of Theorem 1.3

We need some preliminaries.

For 1 <m <n < oo, we set FP? = FP"/FP™ ! and Q% = Q>/Q™ .
We set G(F) = Goo(F). Let i (F) : G, (F) — Gpy1(F) be the inclusion and
let t: Q" — XCP?"~! be the natural map with a cofiber XHP" . For a
based space X, QX stands for a loop space of X. Note that Q(G(F)/G,(F)) a
homotopy fiber of the inclusion i(F) : G,,(F) — G(F). Then we show

Lemma 2.1.  c.(wp(H))nant2 = nwan (C)vyy,.

Proof. We denote by ig : Q3% — Sp/Sp(n) and ic : XCPgy — U/U(2n)
the canonical inclusions respectively. We consider the following commutative
diagram:

QX —9 Q(Sp/Sp(n)) —2— Sp(n)

lm l“ l
axcpye —2< . QU/U@2n) —2— U@2n),

where the maps are canonical.

We know HP?H = §iny,,, '™t So, by using the cofiber sequence
([4]) @351 — XCPgy — XHPS®, we see the (4n + 5)-skeleton of XCPsy, has the
following cell structure:

4n+1 4n+3 4n—+5
(S VS ) Unl/4n+1\/n4n+3 € .

Since t restricted on S*"*3 is just the inclusion S$4"F3 C LOPSS, we have a
relation

(1) Qt*j*n4n+2 = TLk*V4n S 7T4n+3(QZ(CP202),

where j : S4"F2 — QQ, and k : S — QXCPsS are the adjoint of the
inclusions respectively. We note that w,, (H) = 0,Qi¢,j and wa, (C) = 0,Qic.k.
Hence, by the above commutative diagram and (1), we have the assertion. This
completes the proof. O
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As is well known [4], for the projection p : SO(4n) — S4"~1 it holds that
Pi(reciwn, () = (n 4 Dvgp—1(n > 2).

Now consider the following commutative diagram up to sign:

Gin—1 B Qdn g8n—1
/‘\p TQ‘lﬂ,fl H
(2) SO(4n) —L— Qingin

J/i J/QélnE
SO(4n+1) —L— Qin+igintl
where EF : §™ — QFS™+k is the k-fold suspension map, H : Q5™ — Q§2m—1

is the Hopf invariant and J : SO(m) — Q™S™ is the J-map.
So we have

(3) HJ(rew,(H)) = £(n + 1)vgy—1.
By Lemma 2.1, we have

(4) (rewn (H))an 12 = n(rwa, (C))van.

We set a, = J(rcwp, (H)) € mgn12(S4™). Applying the composite J iy, (R)
to the above equation (4) and using the James-Whitehead theorem [2] which
asserts Jwy, (R) = [tn, tn], we obtain

Lemma 2.2. (EO[.,L)T]gn_;rg = Tl[L4n+1, V4n+1}-

Proof of Theorem 1.3. By using the Barratt-Toda formula ([10], [1]) and
(3), we have

Nint1 0 X2y, — Bt 0 Ngnts = [tan+1, tan+1) © B2 H (o)
= [tant1, tans1] © (N + 1)Vgng1
= (Tl + 1)[L47L+17 V4n+1]~

So, by Lemma 2.2, we have the assertion. This completes the proof of Theorem
1.3.

Example 2.3.

(i) moorovir = Dovi7 = [19, 1]

(i) n17 (Vg + &18) = wirvsz = [t17, V17l
(ili) 721035 = [t21, v21].

The second equalities of (i) and (ii) are obtained by [10]. The relation of
(iil) is obtained by [7] and [8].
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3. Proof of Theorem 1.1

First we show a formula which represents a relation between an absolute
Whitehead product and a relative one.

Let X be a connected space and let ¢ € m,—1(X). Then there exists
a canonical extension of ¢, ¢ : D" — X U, e". Let Q(X U, e", X) be the
homotopy fiber of the inclusion X — X U, e™ and we denote the fiber inclusion
map by 9. Consider the following commutative diagram:

7]

Q(Dn, Sn—l) Sn—l D"
(5) lﬂ(sw) fp lsﬁ
QX Uyen, X) —2— X X Uy en,

Note that 9 : Q(D",S"1) — S"~! is a homotopy equivalence. We de-
note the homotopy inverse of & by s : S"~1 — Q(D" S"71). Let v, €

adj
(X Uy ", X) =2 7,1 (Q(X Uy, e, X)) be the characteristic map of the n-
cell e”. Note that the adjoint of -, is represented by the composite:

Qp,p)
-

adj(3) : §"1 —1s (D", ") QX Uy e, X).

By definition,

Qpoadj(y,) = E: 8"t — Q8"
doadj(y,) =¢: 8" ! = X,
where p : Q(X U, e™, X)) — QS™ is the canonical projection.
For an element 8 € m(S""1), we denote 3, € mp41(X Uy, €™, X), the

adjoint of the composite map adj(y,) o 8= Q(@, ) o so L.
Then we show

Lemma 3.1.  Let 8 € mp(S™™ ). Then in mpip—1(X Uy €™, X), it holds
that

[Wru Yo ﬁ] = :l:[[’nflug]gpv

where [yn, @ o B] is the relative Whitehead product and [t,—1, )] is the absolute
one.

Proof. By the naturality of relative Whitehead products [3], we have a
commutative diagram

me(S™h) e, e (X)

l[%@,] l[wm]

Mgkt (D7, 871y 22 o (X Uy e, X)),
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where 7/, € m,(D",S""1) is the obvious map. Therefore we have [, o ]

= (@7@)*[7;u6] Since 3[7;”&] = :t[l’n—la/g]v the element (@7@)*[7;u6] iS the
adjoint of Q(@, p)oso[t,—1, f], that is, [t,—1, ],. This completes the proof. O

From now on we prove Theorem 1.1.
We show that if n # 2¢ — 1, then [z, N2n] is non-trivial.

For n = Qma we have p4m[ﬁ4mvﬁ4m] = [774ma774m} - [L4ma nim] 7é 0 by [5]

Suppose that n = 2m + 1. We denote by j : (M" %) — (M",S"1)
the inclusion map. By Theorem 1.3, Numi135%Qm € Tgmea(MA™ L) is a lift
of [tam+1,Vams1], where oy, = J(rcwy,(H)) € mgmi2(S*™). Since Y3a,, =
[L4m+3, L4m+3}, we have

S (Mams+122Q) = Mamt2[tam+3s tam+3] = [Mam-+2, Tam-+2].

Since it is easy to see that the following diagram commutes:

g odi@n) QM™

lnn—l lﬂj

gn—1 adj(yn) Q(Mn’5n71)7

we have

Jx[Mam+2, Mamt2] = J © Namt2[tam+3, Ltam+3]
= adj(Qj © adj(am+2) © X7 tam43, tam+3])
= adj(adj(Yam+2) © Nam+1 © ™ [tam 3, tam+3])
= adj(adj(Yam+2) © Nam+1 © B2evn)
= adj(adj(Vam+2) © [tam+1, Vam+1]) by Theorem 1.3

= [tam+1, Vam+ 1],

where ¢ = 2u4p,41.
By Lemma 3.1 for ¢ = 2u4y,41 and 8 = vy, 41, we have

T Mam+2, Nam+2] = [tam+1, Vamt1lo = £2[Vam+2, Vam+1)-

By Lemma 2.3 (ii) of [9], the order of [yym+2, Vam+1] is 4 for m # 271 — 1.
Therefore we have proved that [fym+2, Tam+2] # 0 for m # 2071 — 1.
This completes the proof of (2) in Theorem 1.1.
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