The Whitehead square of a lift of the Hopf map to a mod 2 Moore space

Dedicated to the memory of Professor Katsuo Kawakubo

By

Kaoru Morisugi and Juno Mukai

1. Introduction

We set $\mathbb{F}=\mathbb{R}$ (real), \mathbb{C} (complex) or \mathbb{H} (quaternion) with the usual norm and set $d=\operatorname{dim}_{\mathbb{R}} \mathbb{F}$. Let $\mathbb{F} P^{n}$ be the $n(\mathbb{F})$-dimensional \mathbb{F}-projective space. Let Q^{n} be the quaternionic quasi-projective space of dimension $4 n-1$. Let $G_{n}(\mathbb{F})$ be the orthogonal group $O(n)$, the unitary group $U(n)$ or the symplectic group $S p(n)$ respectively, according as $\mathbb{F}=\mathbb{R}, \mathbb{C}$ or \mathbb{H}. We denote by $\omega_{n}(\mathbb{F})$: $S^{d(n+1)-2} \rightarrow G_{n}(\mathbb{F})$ the characteristic map for the standard sphere bundle over $G_{n+1}(\mathbb{F}) / G_{n}(\mathbb{F})=S^{d(n+1)-1}$. Let $c: S p(n) \rightarrow U(2 n)$ and $r: U(n) \rightarrow O(2 n)$ be the canonical inclusions. We denote by $M^{n}=\Sigma^{n-2} \mathbb{R} P^{2}$ for $n \geq 2$ the Moore space of type $\left(\mathbb{Z}_{2}, n-1\right)$. Let $i_{n}: S^{n-1} \rightarrow M^{n}$ and $p_{n}: M^{n} \rightarrow S^{n}$ be the inclusion and collapsing maps respectively. Given an element $\alpha \in \pi_{k}\left(S^{n}\right)$, an element $\widehat{\alpha} \in \pi_{k}\left(M^{n}\right)$ is called a lift of α if $p_{n_{*}} \widehat{\alpha}=\alpha$. Let $\iota_{n} \in \pi_{n}\left(S^{n}\right)$ be the identity map of S^{n} and let $\eta_{n} \in \pi_{n+1}\left(S^{n}\right)$ for $n \geq 2$ be the Hopf map. It is well-known that there exists a lift of η_{3}. We denote by $\widehat{\eta_{3}} \in \pi_{4}\left(M^{3}\right)$ a lift of η_{3} and $\widehat{\eta}_{n}=\Sigma^{n-3} \widehat{\eta}_{3}$ for $n \geq 3$.

The purpose of this note is to study the order of the Whitehead square of $\widehat{\eta}_{n}$. This paper is some kind of a byproduct of [9] but would be able to be read independently. Remark that in [9] the notation of the lift of η_{n} to M^{n} was the symbol $\tilde{\eta}_{n-1}$. In this paper we denote it by $\widehat{\eta}_{n}$.

It is proved in (i) of Theorem 4.1 of [9] that the Whitehead square of $\widehat{\eta}_{n}$ is of order 4 if n is odd. It is easy to see that $2\left[\widehat{\eta}_{n}, \widehat{\eta}_{n}\right]=2 \widehat{\eta}_{n}\left[\iota_{n+1}, \iota_{n+1}\right]=0$ if n is even.

We summarize results about the order of $\left[\hat{\eta}_{n}, \widehat{\eta}_{n}\right]$ as theorem, although our result is not complete.

Theorem 1.1. (1) $\left[\widehat{\eta}_{2 n+1}, \widehat{\eta}_{2 n+1}\right]$ is of order 4 if $n \geq 1$.
(2) $\left[\widehat{\eta}_{2 n}, \widehat{\eta}_{2 n}\right]$ is non-trivial and of order 2 if $n \neq 2^{i}-1$.

Remark 1.2. When $n=2^{i}-1$, the triviality of $\left[\widehat{\eta}_{2 n}, \widehat{\eta}_{2 n}\right]$ seems to be related to the stable order of Mahowald element [6] $\eta_{j} \in \pi_{2^{j}}\left(S^{0}\right)$.

Let $\nu_{n} \in \pi_{n+3}\left(S^{n}\right)$ for $n \geq 4$ be the Hopf map. Let $J: \pi_{k}(S O(n)) \rightarrow$ $\pi_{k+n}\left(S^{n}\right)$ be the J-homomorphism. It is well-known [2], $\Sigma^{3} J\left(r c \omega_{n}(\mathbb{H})\right)=$ $\left[\iota_{4 n+3}, \iota_{4 n+3}\right]$. The proof of (2) in Theorem 1.1 is partially obtained by use of the following.

Theorem 1.3. $\quad \eta_{4 n+1} \circ \Sigma^{2} J\left(r c \omega_{n}(\mathbb{H})\right)=\left[\iota_{4 n+1}, \nu_{4 n+1}\right]$.

2. Proof of Theorem 1.3

We need some preliminaries.
For $1 \leq m \leq n \leq \infty$, we set $\mathbb{F} P_{m}^{n}=\mathbb{F} P^{n} / \mathbb{F} P^{m-1}$ and $Q_{m}^{\infty}=Q^{\infty} / Q^{m-1}$. We set $G(\mathbb{F})=G_{\infty}(\mathbb{F})$. Let $i_{n}(\mathbb{F}): G_{n}(\mathbb{F}) \rightarrow G_{n+1}(\mathbb{F})$ be the inclusion and let $t: Q^{n} \rightarrow \Sigma \mathbb{C} P^{2 n-1}$ be the natural map with a cofiber $\Sigma \mathbb{H} P^{n-1}$. For a based space $X, \Omega X$ stands for a loop space of X. Note that $\Omega\left(G(\mathbb{F}) / G_{n}(\mathbb{F})\right)$ a homotopy fiber of the inclusion $i(\mathbb{F}): G_{n}(\mathbb{F}) \rightarrow G(\mathbb{F})$. Then we show

Lemma 2.1. $\quad c_{*}\left(\omega_{n}(\mathbb{H})\right) \eta_{4 n+2}=n \omega_{2 n}(\mathbb{C}) \nu_{4 n}$.
Proof. We denote by $i_{Q}: Q_{n+1}^{\infty} \rightarrow S p / S p(n)$ and $i_{\mathbb{C}}: \Sigma \mathbb{C} P_{2 n}^{\infty} \rightarrow U / U(2 n)$ the canonical inclusions respectively. We consider the following commutative diagram:

where the maps are canonical.
We know $\mathbb{H} P_{n}^{n+1}=S^{4 n} \cup_{n \nu_{4 n}} e^{4 n+4}$. So, by using the cofiber sequence ([4]) $Q_{n+1}^{\infty} \rightarrow \Sigma \mathbb{C} P_{2 n}^{\infty} \rightarrow \Sigma \mathbb{H} P_{n}^{\infty}$, we see the $(4 n+5)$-skeleton of $\Sigma \mathbb{C} P_{2 n}^{\infty}$ has the following cell structure:

$$
\left(S^{4 n+1} \vee S^{4 n+3}\right) \cup_{n \nu_{4 n+1} \vee \eta_{4 n+3}} e^{4 n+5} .
$$

Since t restricted on $S^{4 n+3}$ is just the inclusion $S^{4 n+3} \subset \Sigma C P_{2 n}^{\infty}$, we have a relation

$$
\begin{equation*}
\Omega t_{*} j_{*} \eta_{4 n+2}=n k_{*} \nu_{4 n} \in \pi_{4 n+3}\left(\Omega \Sigma \mathbb{C} P_{2 n}^{\infty}\right), \tag{1}
\end{equation*}
$$

where $j: S^{4 n+2} \rightarrow \Omega Q_{n+1}^{\infty}$ and $k: S^{4 n} \rightarrow \Omega \Sigma \mathbb{C} P_{2 n}^{\infty}$ are the adjoint of the inclusions respectively. We note that $\omega_{n}(\mathbb{H})=\partial_{*} \Omega i_{Q_{*}} j$ and $\omega_{2 n}(\mathbb{C})=\partial_{*} \Omega i_{\mathbb{C} *} k$. Hence, by the above commutative diagram and (1), we have the assertion. This completes the proof.

As is well known [4], for the projection $p: S O(4 n) \rightarrow S^{4 n-1}$, it holds that

$$
p_{*}\left(r_{*} c_{*} \omega_{n}(\mathbb{H})\right)=(n+1) \nu_{4 n-1}(n \geq 2)
$$

Now consider the following commutative diagram up to sign:

where $E^{k}: S^{m} \rightarrow \Omega^{k} S^{m+k}$ is the k-fold suspension map, $H: \Omega S^{m} \rightarrow \Omega S^{2 m-1}$ is the Hopf invariant and $J: S O(m) \rightarrow \Omega^{m} S^{m}$ is the J-map.

So we have

$$
\begin{equation*}
H J\left(r c \omega_{n}(\mathbb{H})\right)= \pm(n+1) \nu_{8 n-1} \tag{3}
\end{equation*}
$$

By Lemma 2.1, we have

$$
\begin{equation*}
\left(r c \omega_{n}(\mathbb{H})\right) \eta_{4 n+2}=n\left(r \omega_{2 n}(\mathbb{C})\right) \nu_{4 n} \tag{4}
\end{equation*}
$$

We set $\alpha_{n}=J\left(r c \omega_{n}(\mathbb{H})\right) \in \pi_{8 n+2}\left(S^{4 n}\right)$. Applying the composite $J \circ i_{4 n}(R)$ to the above equation (4) and using the James-Whitehead theorem [2] which asserts $J \omega_{n}(\mathbb{R})=\left[\iota_{n}, \iota_{n}\right]$, we obtain

Lemma 2.2. $\quad\left(\Sigma \alpha_{n}\right) \eta_{8 n+3}=n\left[\iota_{4 n+1}, \nu_{4 n+1}\right]$.
Proof of Theorem 1.3. By using the Barratt-Toda formula ([10], [1]) and (3), we have

$$
\begin{aligned}
\eta_{4 n+1} \circ \Sigma^{2} \alpha_{n}-\Sigma \alpha_{n} \circ \eta_{8 n+3} & =\left[\iota_{4 n+1}, \iota_{4 n+1}\right] \circ \Sigma^{2} H\left(\alpha_{n}\right) \\
& =\left[\iota_{4 n+1}, \iota_{4 n+1}\right] \circ(n+1) \nu_{8 n+1} \\
& =(n+1)\left[\iota_{4 n+1}, \nu_{4 n+1}\right] .
\end{aligned}
$$

So, by Lemma 2.2, we have the assertion. This completes the proof of Theorem 1.3.

Example 2.3.

(i) $\eta_{9} \sigma_{10} \nu_{17}=\bar{\nu}_{9} \nu_{17}=\left[\iota_{9}, \nu_{9}\right]$.
(ii) $\eta_{17}\left(\nu_{18}^{*}+\xi_{18}\right)=\omega_{17} \nu_{33}=\left[\iota_{17}, \nu_{17}\right]$.
(iii) $\eta_{21} \sigma_{22}^{*}=\left[\iota_{21}, \nu_{21}\right]$.

The second equalities of (i) and (ii) are obtained by [10]. The relation of (iii) is obtained by [7] and [8].

3. Proof of Theorem 1.1

First we show a formula which represents a relation between an absolute Whitehead product and a relative one.

Let X be a connected space and let $\varphi \in \pi_{n-1}(X)$. Then there exists a canonical extension of $\varphi, \bar{\varphi}: D^{n} \rightarrow X \cup_{\varphi} e^{n}$. Let $\Omega\left(X \cup_{\varphi} e^{n}, X\right)$ be the homotopy fiber of the inclusion $X \rightarrow X \cup_{\varphi} e^{n}$ and we denote the fiber inclusion map by ∂. Consider the following commutative diagram:

Note that $\partial: \Omega\left(D^{n}, S^{n-1}\right) \rightarrow S^{n-1}$ is a homotopy equivalence. We denote the homotopy inverse of ∂ by $s: S^{n-1} \rightarrow \Omega\left(D^{n}, S^{n-1}\right)$. Let $\gamma_{n} \in$ $\pi_{n}\left(X \cup_{\varphi} e^{n}, X\right) \stackrel{\text { adj }}{\cong} \pi_{n-1}\left(\Omega\left(X \cup_{\varphi} e^{n}, X\right)\right)$ be the characteristic map of the n cell e^{n}. Note that the adjoint of γ_{n} is represented by the composite:

$$
\operatorname{adj}\left(\gamma_{n}\right): S^{n-1} \xrightarrow{s} \Omega\left(D^{n}, S^{n-1}\right) \xrightarrow{\Omega(\bar{\varphi}, \varphi)} \Omega\left(X \cup_{\varphi} e^{n}, X\right)
$$

By definition,

$$
\begin{gathered}
\Omega p \circ \operatorname{adj}\left(\gamma_{n}\right)=E: S^{n-1} \rightarrow \Omega S^{n}, \\
\partial \circ \operatorname{adj}\left(\gamma_{n}\right)=\varphi: S^{n-1} \rightarrow X,
\end{gathered}
$$

where $p: \Omega\left(X \cup_{\varphi} e^{n}, X\right) \rightarrow \Omega S^{n}$ is the canonical projection.
For an element $\beta \in \pi_{k}\left(S^{n-1}\right)$, we denote $\beta_{\varphi} \in \pi_{k+1}\left(X \cup_{\varphi} e^{n}, X\right)$, the adjoint of the composite map $\operatorname{adj}\left(\gamma_{n}\right) \circ \beta=\Omega(\bar{\varphi}, \varphi) \circ s \circ \beta$.

Then we show
Lemma 3.1. Let $\beta \in \pi_{k}\left(S^{n-1}\right)$. Then in $\pi_{n+k-1}\left(X \cup_{\varphi} e^{n}, X\right)$, it holds that

$$
\left[\gamma_{n}, \varphi \circ \beta\right]= \pm\left[\iota_{n-1}, \beta\right]_{\varphi}
$$

where $\left[\gamma_{n}, \varphi \circ \beta\right]$ is the relative Whitehead product and $\left[\iota_{n-1}, \beta\right]$ is the absolute one.

Proof. By the naturality of relative Whitehead products [3], we have a commutative diagram

$$
\begin{array}{ccc}
\pi_{k}\left(S^{n-1}\right) & \stackrel{\varphi_{*}}{ } & \pi_{k}(X) \\
\downarrow\left[\gamma_{n}^{\prime},\right] & & \downarrow\left[\gamma_{n},\right] \\
\pi_{n+k-1}\left(D^{n}, S^{n-1}\right) & \xrightarrow{(\bar{\varphi}, \varphi)_{*}} & \pi_{n+k-1}\left(X \cup \cup_{\varphi} e^{n}, X\right),
\end{array}
$$

where $\gamma_{n}^{\prime} \in \pi_{n}\left(D^{n}, S^{n-1}\right)$ is the obvious map. Therefore we have $\left[\gamma_{n}, \varphi \circ \beta\right]$ $=(\bar{\varphi}, \varphi)_{*}\left[\gamma_{n}^{\prime}, \beta\right]$. Since $\partial\left[\gamma_{n}^{\prime}, \beta\right]= \pm\left[\iota_{n-1}, \beta\right]$, the element $(\bar{\varphi}, \varphi)_{*}\left[\gamma_{n}^{\prime}, \beta\right]$ is the adjoint of $\Omega(\bar{\varphi}, \varphi) \circ s \circ\left[\iota_{n-1}, \beta\right]$, that is, $\left[\iota_{n-1}, \beta\right]_{\varphi}$. This completes the proof.

From now on we prove Theorem 1.1.
We show that if $n \neq 2^{i}-1$, then $\left[\widehat{\eta}_{2 n}, \widehat{\eta}_{2 n}\right]$ is non-trivial.
For $n=2 m$, we have $p_{4 m}\left[\widehat{\eta}_{4 m}, \widehat{\eta}_{4 m}\right]=\left[\eta_{4 m}, \eta_{4 m}\right]=\left[\iota_{4 m}, \eta_{4 m}^{2}\right] \neq 0$ by $[5]$.
Suppose that $n=2 m+1$. We denote by $j:\left(M^{n}, *\right) \rightarrow\left(M^{n}, S^{n-1}\right)$ the inclusion map. By Theorem 1.3, $\widehat{\eta}_{4 m+1} \Sigma^{2} \alpha_{m} \in \pi_{8 m+4}\left(M^{4 m+1}\right)$ is a lift of $\left[\iota_{4 m+1}, \nu_{4 m+1}\right]$, where $\alpha_{m}=J\left(r c \omega_{m}(\mathbb{H})\right) \in \pi_{8 m+2}\left(S^{4 m}\right)$. Since $\Sigma^{3} \alpha_{m}=$ $\left[\iota_{4 m+3}, \iota_{4 m+3}\right]$, we have

$$
\Sigma\left(\widehat{\eta}_{4 m+1} \Sigma^{2} \alpha\right)=\widehat{\eta}_{4 m+2}\left[\iota_{4 m+3}, \iota_{4 m+3}\right]=\left[\widehat{\eta}_{4 m+2}, \widehat{\eta}_{4 m+2}\right] .
$$

Since it is easy to see that the following diagram commutes:

$$
\begin{array}{cc}
S^{n} \xrightarrow{\operatorname{adj}\left(\hat{\eta}_{n}\right)} & \Omega M^{n} \\
\downarrow^{\eta_{n-1}} & \downarrow^{\Omega j} \\
S^{n-1} \xrightarrow{\operatorname{adj}\left(\gamma_{n}\right)} & \Omega\left(M^{n}, S^{n-1}\right),
\end{array}
$$

we have

$$
\begin{aligned}
j_{*}\left[\widehat{\eta}_{4 m+2}, \widehat{\eta}_{4 m+2}\right] & =j \circ \widehat{\eta}_{4 m+2}\left[\iota_{4 m+3}, \iota_{4 m+3}\right] \\
& =\operatorname{adj}\left(\Omega j \circ \operatorname{adj}\left(\widehat{\eta}_{4 m+2}\right) \circ \Sigma^{-1}\left[\iota_{4 m+3}, \iota_{4 m+3}\right]\right) \\
& =\operatorname{adj}\left(\operatorname{adj}\left(\gamma_{4 m+2}\right) \circ \eta_{4 m+1} \circ \Sigma^{-1}\left[\iota_{4 m+3}, \iota_{4 m+3}\right]\right) \\
& =\operatorname{adj}\left(\operatorname{adj}\left(\gamma_{4 m+2}\right) \circ \eta_{4 m+1} \circ \Sigma^{2} \alpha_{m}\right) \\
& =\operatorname{adj}\left(\operatorname{adj}\left(\gamma_{4 m+2}\right) \circ\left[\iota_{4 m+1}, \nu_{4 m+1}\right]\right) \quad \text { by Theorem } 1.3 \\
& =\left[\iota_{4 m+1}, \nu_{4 m+1}\right]_{\varphi},
\end{aligned}
$$

where $\varphi=2 \iota_{4 m+1}$.
By Lemma 3.1 for $\varphi=2 \iota_{4 m+1}$ and $\beta=\nu_{4 m+1}$, we have

$$
j_{*}\left[\widehat{\eta}_{4 m+2}, \widehat{\eta}_{4 m+2}\right]=\left[\iota_{4 m+1}, \nu_{4 m+1}\right]_{\varphi}= \pm 2\left[\gamma_{4 m+2}, \nu_{4 m+1}\right] .
$$

By Lemma 2.3 (ii) of [9], the order of $\left[\gamma_{4 m+2}, \nu_{4 m+1}\right]$ is 4 for $m \neq 2^{i-1}-1$. Therefore we have proved that $\left[\widehat{\eta}_{4 m+2}, \widehat{\eta}_{4 m+2}\right] \neq 0$ for $m \neq 2^{i-1}-1$.

This completes the proof of (2) in Theorem 1.1.

Department of Mathematics
Faculty of Education
Wakayama University
Wakayama 640-8510, Japan
e-mail: kaoru-m@math.edu.wakayama-u.ac.jp
Mathematical Sciences
Faculty of Science
Shinshu University
Matsumoto 390-8621, Japan
e-mail: jmukai0@gipac.shinshu-u.ac.jp

References

[1] M. G. Barratt, Note on a formula due to Toda, J. London Math. Soc., 36 (1961), 95-96.
[2] I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres I, Proc. London Math. Soc. Third Series, 4 (1954), 196-218.
[3] I. M. James, On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford Second Series, 5 (1954), 260-270.
[4] I. M. James, The Topology of Stiefel Manifolds, London Math. Soc. Lecture Note 24, Cambridge Univ., 1976.
[5] M. A. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math., 4 (1960), 161-169.
[6] M. Mahowald, A new infinite family in ${ }_{2} \pi_{*}^{S}$, Topology, 16 (1977), 249-256.
[7] M. Mimura, On the generalized Hopf homomorphism and the higher composition. Part II. $\pi_{n+i}\left(S^{n}\right)$ for $i=21$ and 22., J. Math. Kyoto Univ., 4 (1965), 301-326.
[8] M. Mimura, M. Mori and N. Oda, Determination of 2-components of the 23 and 24 -stem in homotopy groups of spheres, Mem. Fac. Sci. Kyushu Univ. A, 29 (1975), 1-42.
[9] K. Morisugi and J. Mukai, Lifting to mod 2 Moore spaces, J. Math. Soc. Japan, 52 (2000), 515-533.
[10] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton, 1962.

