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Topological characterization of Bott map on BU

By

Daisuke Kishimoto

1. Introduction

As in [1], if a Hopf space X, which is of finite type CW-complex and has
the same cohomology ring as BU, is equipped with a map λ : S2 ∧ X → X
and λ satisfies some of the properties of Bott map β : S2 ∧ BU → BU, we see
that X is an infinite loop space. Using this fact, they construct a homotopy
equivalence h : BU ∼→ X. But they don’t pursue h on the relation between λ,
β and h. In this paper, we can see the perfect relation between λ, β and h
with a help of [4]. Actually we construct a new Hopf equivalence h′ : BU ∼→ X
which satisfies the following homotopy commutative diagram.

S2 ∧ BU
h′|S2∧h′
−−−−−→ S2 ∧X

β

� �λ

BU −−−−→
h′

X

2. Characterization of BU

In this section, we recall the contents in [1] to prepare for the characteri-
zation of Bott map, and give some refinement.

Theorem 2.1. Let µ : X ×X → X be a Hopf space which is of finite
type CW-complex and its cohomology be the following.

H∗(X) = Z[x1, x2, . . . ], |xi| = 2i

There exist two maps with the following properties.

j : CP∞ → X, λ : S2 ∧X → X

(1) (λ ◦ (1 ∧ j))∗ : H∗(X)→ H∗(S2 ∧ CP∞) is epic.
(2) Ad2 λ is a Hopf map.
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Then we have the following homotopy equivalence.

Ãd
2
(λ) : X

∼→ Ω2X〈2〉,

where X〈2〉 is 2-connected fibre space of X and Ãd
2
(λ) is a lift of Ad2 λ.

Proof. See [1].

Theorem 2.2. Let X be the space as in Theorem 2.1. There exists a
following Hopf equivalence.

h : BU ∼→ X

Proof. There exists a homotopy equivalence h : BU ∼→ X constructed in
[1] in the following way.

Prepare the maps below (see [2]):{
ε : BU→ Q(CP∞) the Segal splitting,

ξX : Q(X)→ X an infinite loop map.

Then h = ξX ◦ Q(j) ◦ ε : BU ∼→ X (see [1]). Since the Segal splitting ε is
the loop map of the James-Miller splitting ε′ : SU→ Q(ΣCP∞) (see [3]), all of
the maps above are loop maps and then h is a loop map.

3. Characterization of Bott map

Let S2 ↪→ BU and S2 ↪→ X be 2-skeleton of BU and X. Denote the
universal bundle of BU(n) by ξn, the Hopf bundle on S2 by η, of rank n trivial
bundle by n and lim

n
(η − 1) ⊗̂ (ξn − n) ∈ K̃(S2 ∧ BU) by ξ∞.

Bott map β : S2 ∧ BU→ BU is defined as a classifying map of ξ∞.
Denote c1(η− 1) ∈ H2(S2) by α, a generator of H2(CP∞) by e, cn(ξ∞) ∈

H2n(BU) by cn and sn(c1, c2, . . . , cn) ∈ H2n(BU) by sn (the power sum
symmetric polynomial). We know that sn is a generator of PH2n(BU) and
λ∗(sn) = nα⊗ sn−1. (see [4])

Theorem 3.1. Let X be the space as in Theorem 2.1 and h : BU ∼→ X
be the Hopf equivalence in Theorem 2.2. Then we have a new Hopf equivalence
h′ : BU ∼→ X which satisfies the homotopy commutative diagram below.

S2 ∧ BU
h′|S2∧h′
−−−−−→ S2 ∧X

β

� �λ

BU −−−−→
h′

X

Proof. Let xn and un be h∗(un) = sn and h∗(xi) = ci, and then we see
H∗(X) = Z[x1, x2, . . . ].
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Since Ad2 λ is a Hopf map, we have a homotopy commutative diagram
below.

S2 ∧ (X ×X)
1∧µ−−−−→ S2 ∧X

ω

� �λ

X ×X −−−−→
µ

X

(1)

where ω = Ad−2(Ad2 λ×Ad2 λ).
We see ω more clearly by the following factorization.

S2 ∧ (X ×X) ω−−−−→ X ×X

�∧1

� �λ×λ

(S2 × S2) ∧ (X ×X) −−−−→
1×T×1

(S2 ∧X)× (S2 ∧X)

(2)

where � is a diagonal map and T : S2 ×X → X × S2, (s, x) 	→ (x, s).
Denote λ∗(un) by α⊗vn−1 (vn−1 ∈ H2n−2(X)), and we have the following

from the diagram (1).

α⊗ µ∗(vn−1) ←−−−− α⊗ vn−1

ω∗
� �

un ⊗ 1 + 1⊗ un ←−−−− un

We also have the following from the diagram (2).

α⊗ (vn−1 ⊗ 1 + 1⊗ vn−1)
ω∗←−−−− un ⊗ 1 + 1⊗ un� �

α⊗ 1⊗ vn−1 ⊗ 1
+ 1⊗ α⊗ 1⊗ vn−1

←−−−− α⊗ vn−1 ⊗ 1⊗ 1
+ 1⊗ 1⊗ α⊗ vn−1

Then we see that vn−1 is primitive, because H∗(S2) and H∗(X) are torsion
free. Hence we have vn−1 = δnun−1 for some δn ∈ Z.

Denote j∗(un) by θnen (θn ∈ Z).
Now we know Newton’s formula as un =

∑n−1
i=1 (−1)i−1xiun−i+(−1)n−1nxn,

then we have λ∗(un) = (−1)n−1nλ∗(xn) and (λ ◦ (1 ∧ j))∗(xn) = ±α ⊗ en−1

by the fact that λ∗(decomposables) = 0 and that (λ ◦ (1 ∧ j))∗ : H∗(X) →
H∗(S2 ∧ CP∞) is epic. Therefore we see n | δn.

Now we have the following.

(λ ◦ (1 ∧ j))∗(un) = δn(1 ∧ j)∗(α⊗ un−1)

= δnθn−1α⊗ en−1

= ±n(λ ◦ (1 ∧ j))∗(xn)

= ±nα⊗ en−1



�

�

�

�

�

�

�

�

252 Daisuke Kishimoto

Then we can tell δn = εnn. (εn = ±1)
In the same way with the proof of theorem in [4], we see ε2n = ε2 and

ε2n+1 = ε3 for any n.
Let h′ be the following.

h′ =


h ε2 = +1, ε3 = +1,

h ◦ C ε2 = +1, ε3 = −1,

h ◦ I ◦ C ε2 = −1, ε3 = +1,

h ◦ I ε2 = −1, ε3 = −1,

where I, C : BU → BU are the homotopy inverse map and the conjugation
map.

Since both I and C are Hopf equivalences, h′ is a Hopf equivalence in any
cases.

Replace α, xn and un with α′, x′
n and u′

n which are h′|S2
∗(α′) = α,

h′∗(x′
n) = cn and h′∗(u′

n) = sn, we have the following relation between (α, un)
and (α′, u′

n).

(α′, u′
n) =


(α, un) ε2 = +1, ε3 = +1,

(−α, (−1)nun) ε2 = +1, ε3 = −1,

(α, (−1)n−1un) ε2 = −1, ε3 = +1,

(−α,−un) ε2 = −1, ε3 = −1.

It is easily verified that λ∗(u′
n) = nα′ ⊗ u′

n−1 in any cases, then we have
the following for any n.

(λ ◦ (h′|S2 ∧ h′))∗(u′
n) = (h′ ◦ β)∗(u′

n)

Now we have λ∗(u′
n) = (−1)n−1nλ∗(x′

n) and β∗(sn) = (−1)n−1nβ∗(cn),
we see the following for any n.

n(λ ◦ (h′|S2 ∧ h′))∗(x′
n) = n(h′ ◦ β)∗(x′

n)

Since H∗(S2 ∧ BU) is torsion free, we finally see the following for any n.

(λ ◦ (h′|S2 ∧ h′))∗(x′
n) = (h′ ◦ β)∗(x′

n)

In other words,
λ ◦ (h′|S2 ∧ h′) � h′ ◦ β.

Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan



�

�

�

�

�

�

�

�

Topological characterization of Bott map on BU 253

References

[1] A. Kono and K. Tokunaga, A topological proof of Bott periodicity theorem
ana characterization of BU, J. Math. Kyoto Univ., 34 (1994), 873–880.

[2] J. C. Becker, Characteristic class and K-theory, Lecture Note in Math.
428, Springer, Berlin, 1974.

[3] H. Miller, Stable splitting of Stiefel Manifolds, Topology, 24-4 (1985), 411–
419.

[4] A. Kono and D. Kishimoto, Topological characterization of extensor prod-
uct on BU, to appear in J. Math. Kyoto Univ.


