Topological characterization of Bott map on BU

By

Daisuke KISHIMOTO

1. Introduction

As in [1], if a Hopf space X, which is of finite type CW-complex and has the same cohomology ring as BU, is equipped with a map $\lambda : S^2 \wedge X \to X$ and λ satisfies some of the properties of Bott map $\beta : S^2 \wedge BU \to BU$, we see that X is an infinite loop space. Using this fact, they construct a homotopy equivalence $h : BU \xrightarrow{\sim} X$. But they don't pursue h on the relation between λ , β and h. In this paper, we can see the perfect relation between λ , β and hwith a help of [4]. Actually we construct a new Hopf equivalence $h' : BU \xrightarrow{\sim} X$ which satisfies the following homotopy commutative diagram.

2. Characterization of BU

In this section, we recall the contents in [1] to prepare for the characterization of Bott map, and give some refinement.

Theorem 2.1. Let $\mu : X \times X \to X$ be a Hopf space which is of finite type CW-complex and its cohomology be the following.

$$H^*(X) = \mathbb{Z}[x_1, x_2, \dots], |x_i| = 2i$$

There exist two maps with the following properties.

$$j: \mathbb{C}P^{\infty} \to X, \qquad \lambda: S^2 \wedge X \to X$$

(1) $(\lambda \circ (1 \wedge j))^* : H^*(X) \to H^*(S^2 \wedge \mathbb{C}P^{\infty})$ is epic. (2) Ad² λ is a Hopf map. Then we have the following homotopy equivalence.

$$\widetilde{\mathrm{Ad}}^2(\lambda): X \xrightarrow{\sim} \Omega^2 X \langle 2 \rangle,$$

where $X\langle 2 \rangle$ is 2-connected fibre space of X and $\widetilde{\mathrm{Ad}}^2(\lambda)$ is a lift of $\mathrm{Ad}^2 \lambda$.

Proof. See [1].

Theorem 2.2. Let X be the space as in Theorem 2.1. There exists a following Hopf equivalence.

$$h: \mathrm{BU} \xrightarrow{\sim} X$$

Proof. There exists a homotopy equivalence $h : \mathrm{BU} \xrightarrow{\sim} X$ constructed in [1] in the following way.

Prepare the maps below (see [2]):

$$\begin{cases} \epsilon : \mathrm{BU} \to Q(\mathbb{C}\mathrm{P}^{\infty}) & \text{the Segal splitting,} \\ \xi_X : Q(X) \to X & \text{an infinite loop map} \end{cases}$$

Then $h = \xi_X \circ Q(j) \circ \epsilon : \mathrm{BU} \xrightarrow{\sim} X$ (see [1]). Since the Segal splitting ϵ is the loop map of the James-Miller splitting $\epsilon' : \mathrm{SU} \to Q(\Sigma \mathbb{CP}^{\infty})$ (see [3]), all of the maps above are loop maps and then h is a loop map.

3. Characterization of Bott map

Let $S^2 \hookrightarrow BU$ and $S^2 \hookrightarrow X$ be 2-skeleton of BU and X. Denote the universal bundle of BU(n) by ξ_n , the Hopf bundle on S^2 by η , of rank n trivial bundle by \underline{n} and $\lim(\eta - \underline{1}) \otimes (\xi_n - \underline{n}) \in \widetilde{K}(S^2 \wedge BU)$ by ξ_{∞} .

Bott map $\beta: \overset{n}{S^2} \wedge \mathrm{BU} \to \mathrm{BU}$ is defined as a classifying map of ξ_{∞} .

Denote $c_1(\eta - \underline{1}) \in H^2(S^2)$ by α , a generator of $H^2(\mathbb{C}\mathbb{P}^{\infty})$ by $e, c_n(\xi_{\infty}) \in H^{2n}(\mathrm{BU})$ by c_n and $s_n(c_1, c_2, \ldots, c_n) \in H^{2n}(\mathrm{BU})$ by s_n (the power sum symmetric polynomial). We know that s_n is a generator of $PH^{2n}(\mathrm{BU})$ and $\lambda^*(s_n) = n\alpha \otimes s_{n-1}$. (see [4])

Theorem 3.1. Let X be the space as in Theorem 2.1 and $h : BU \xrightarrow{\sim} X$ be the Hopf equivalence in Theorem 2.2. Then we have a new Hopf equivalence $h' : BU \xrightarrow{\sim} X$ which satisfies the homotopy commutative diagram below.

Proof. Let x_n and u_n be $h^*(u_n) = s_n$ and $h^*(x_i) = c_i$, and then we see $H^*(X) = \mathbb{Z}[x_1, x_2, \ldots].$

250

Since $\operatorname{Ad}^2\lambda$ is a Hopf map, we have a homotopy commutative diagram below.

where $\omega = \mathrm{Ad}^{-2}(\mathrm{Ad}^2 \lambda \times \mathrm{Ad}^2 \lambda).$

We see ω more clearly by the following factorization.

where \triangle is a diagonal map and $T: S^2 \times X \to X \times S^2$, $(s, x) \mapsto (x, s)$.

Denote $\lambda^*(u_n)$ by $\alpha \otimes v_{n-1}$ $(v_{n-1} \in H^{2n-2}(X))$, and we have the following from the diagram (1).

$$\begin{array}{cccc} \alpha \otimes \mu^*(v_{n-1}) & \longleftarrow & \alpha \otimes v_{n-1} \\ & & & & \uparrow \\ & & & & \uparrow \\ u_n \otimes 1 + 1 \otimes u_n & \longleftarrow & u_n \end{array}$$

We also have the following from the diagram (2).

Then we see that v_{n-1} is primitive, because $H^*(S^2)$ and $H^*(X)$ are torsion free. Hence we have $v_{n-1} = \delta_n u_{n-1}$ for some $\delta_n \in \mathbb{Z}$.

Denote $j^*(u_n)$ by $\theta_n e^n \ (\theta_n \in \mathbb{Z})$.

Now we know Newton's formula as $u_n = \sum_{i=1}^{n-1} (-1)^{i-1} x_i u_{n-i} + (-1)^{n-1} n x_n$, then we have $\lambda^*(u_n) = (-1)^{n-1} n \lambda^*(x_n)$ and $(\lambda \circ (1 \land j))^*(x_n) = \pm \alpha \otimes e^{n-1}$ by the fact that $\lambda^*(\text{decomposables}) = 0$ and that $(\lambda \circ (1 \land j))^* : H^*(X) \to H^*(S^2 \land \mathbb{CP}^\infty)$ is epic. Therefore we see $n \mid \delta_n$.

Now we have the following.

$$(\lambda \circ (1 \wedge j))^* (u_n) = \delta_n (1 \wedge j)^* (\alpha \otimes u_{n-1})$$
$$= \delta_n \theta_{n-1} \alpha \otimes e^{n-1}$$
$$= \pm n (\lambda \circ (1 \wedge j))^* (x_n)$$
$$= \pm n \alpha \otimes e^{n-1}$$

Then we can tell $\delta_n = \epsilon_n n$. $(\epsilon_n = \pm 1)$

In the same way with the proof of theorem in [4], we see $\epsilon_{2n} = \epsilon_2$ and $\epsilon_{2n+1} = \epsilon_3$ for any n.

Let h' be the following.

$$h' = \begin{cases} h & \epsilon_2 = +1, \epsilon_3 = +1, \\ h \circ C & \epsilon_2 = +1, \epsilon_3 = -1, \\ h \circ I \circ C & \epsilon_2 = -1, \epsilon_3 = +1, \\ h \circ I & \epsilon_2 = -1, \epsilon_3 = -1, \end{cases}$$

where $I, C : BU \to BU$ are the homotopy inverse map and the conjugation map.

Since both I and C are Hopf equivalences, h^\prime is a Hopf equivalence in any cases.

Replace α , x_n and u_n with α' , x'_n and u'_n which are $h'|_{S^2}(\alpha') = \alpha$, $h'^*(x'_n) = c_n$ and $h'^*(u'_n) = s_n$, we have the following relation between (α, u_n) and (α', u'_n) .

$$(\alpha', u_n') = \begin{cases} (\alpha, u_n) & \epsilon_2 = +1, \epsilon_3 = +1, \\ (-\alpha, (-1)^n u_n) & \epsilon_2 = +1, \epsilon_3 = -1, \\ (\alpha, (-1)^{n-1} u_n) & \epsilon_2 = -1, \epsilon_3 = +1, \\ (-\alpha, -u_n) & \epsilon_2 = -1, \epsilon_3 = -1. \end{cases}$$

It is easily verified that $\lambda^*(u'_n) = n\alpha' \otimes u'_{n-1}$ in any cases, then we have the following for any n.

$$(\lambda \circ (h'|_{S^2} \wedge h'))^*(u'_n) = (h' \circ \beta)^*(u'_n)$$

Now we have $\lambda^*(u'_n) = (-1)^{n-1}n\lambda^*(x'_n)$ and $\beta^*(s_n) = (-1)^{n-1}n\beta^*(c_n)$, we see the following for any n.

$$n(\lambda \circ (h'|_{S^2} \wedge h'))^*(x'_n) = n(h' \circ \beta)^*(x'_n)$$

Since $H^*(S^2 \wedge BU)$ is torsion free, we finally see the following for any n.

$$(\lambda \circ (h'|_{S^2} \wedge h'))^*(x'_n) = (h' \circ \beta)^*(x'_n)$$

In other words,

$$\lambda \circ (h'|_{S^2} \wedge h') \simeq h' \circ \beta.$$

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY KYOTO 606-8502, JAPAN

252

References

- [1] A. Kono and K. Tokunaga, A topological proof of Bott periodicity theorem ana characterization of BU, J. Math. Kyoto Univ., **34** (1994), 873–880.
- [2] J. C. Becker, Characteristic class and K-theory, Lecture Note in Math. 428, Springer, Berlin, 1974.
- [3] H. Miller, Stable splitting of Stiefel Manifolds, Topology, 24-4 (1985), 411– 419.
- [4] A. Kono and D. Kishimoto, Topological characterization of extensor product on BU, to appear in J. Math. Kyoto Univ.