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Abstract

This is a continuation of the previous work [CKMS01] by the au-
thors on classification of equivariant complex vector bundles over a circle.
In this paper equivariant real vector bundles over a circle with a compact
Lie group action are classified, by characterizing their fiber representa-
tions, and by using the result of the complex case. Their triviality is also
treated. The basic phenomenon is similar to the complex case but more
complicated here.

1. Introduction

In [CKMS01] we classified equivariant complex vector bundles over a circle,
and in this paper we classify equivariant real ones. The argument developed in
this paper is similar to that in [CKMS01] but is rather more complicated. The
complexity arises from two aspects: one is topology and the other is represen-
tation theory. For instance, any (nonequivariant) complex line bundle over a
circle is trivial while there are two non-isomorphic real line bundles, that is, the
Hopf line bundle and the trivial one. This is an evidence of the topological com-
plexity in the real case. It is also recognized in general that real representation
theory is more complicated than complex representation theory.

Our classification result can be applied to various problems in transfor-
mation group theory. For example, when G is a compact abelian Lie group,
the first author showed in his thesis [Cho99, Theorem 4.3.8] using a similar
classification that every closed smooth orientable G-manifold of dimension 3 is
algebraically realized, that is, it is equivariantly diffeomorphic to a nonsingular
real algebraic G-variety.
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In the following, some notation to state our results will be introduced. Let
G be a compact Lie group and let ρ : G → O(2) be an orthogonal representation.
The unit circle of the corresponding G-module is denoted by S(ρ). It is well
known that any circle with G-action is equivalent to S(ρ) for some ρ. We set
H = ρ−1(1), so that H acts trivially on S(ρ) and the fiber H-module of a real
G-vector bundle over S(ρ) is determined uniquely up to isomorphism.

Let Irr(H) be the set of characters of irreducible real H-modules. It has
a G-action defined as follows: For χ ∈ Irr(H) and g ∈ G, gχ ∈ Irr(H) is
defined by gχ(h) = χ(g−1hg) for h ∈ H. Since a character is a class function,
the isotropy subgroup Gχ of G at χ ∈ Irr(H) contains H. We choose and
fix a representative from each G-orbit in Irr(H) and denote the set of those
representatives by Irr(H)/G. Denote by VectG(S(ρ)) the set of isomorphism
classes of real G-vector bundles over S(ρ) and by VectGχ

(S(ρ), χ) the subset of
VectGχ

(S(ρ)) with a multiple of χ as the character of fiber H-modules. They
are semi-groups under Whitney sum. The decomposition of a G-vector bundle
into the χ-isotypical components induces an isomorphism

VectG(S(ρ)) ∼=
⊕

χ∈Irr(H)/G

VectGχ
(S(ρ), χ),

see [CKMS01, Section 2]. This reduces the study of VectG(S(ρ)) to that of
VectGχ

(S(ρ), χ), and since χ is Gχ-invariant and Gχ is again a compact Lie
group, we are led to study VectG(S(ρ), χ) where χ is G-invariant, namely gχ =
χ for all g ∈ G.

Let E ∈ VectG(S(ρ), χ). The fiber H-module of E has a multiple of χ as
the character by definition. In fact, the fiber Ez of E over a point z ∈ S(ρ) is
a real module of the isotropy subgroup Gz at z, and unless ρ(G) ⊂ SO(2), Gz

properly contains H for some z. It turns out that these fiber Gz-modules almost
distinguish elements in VectG(S(ρ), χ). To be more specific, we shall introduce
some more notation. Unless ρ(G) ⊂ SO(2), ρ(G) is O(2) or a dihedral group
Dn of order 2n for some positive integer n. We identify S(ρ) with the unit
circle of the complex line C, so that the dihedral group Dn is generated by the
rotation through an angle 2π/n and the reflection about the x-axis. Then the
isotropy subgroups Gz at z = 1 (and z = eπi/n when ρ(G) = Dn) contain H as
an index two subgroup unless ρ(G) ⊂ SO(2). For a group K containing H we
denote by Rep(K, χ) the set of isomorphism classes of real K-modules whose
characters restricted to H are multiples of χ. The set Rep(K, χ) is a semi-group
under direct sum. Restriction of elements in VectG(S(ρ), χ) to fibers at 1 (and
µ = eπi/n when ρ(G) = Dn) yields a semi-group homomorphism

Γ: VectG(S(ρ), χ) →




Rep(H, χ), if ρ(G) ⊂ SO(2),
Rep(G1, χ), if ρ(G) = O(2),
Rep(G1, Gµ, χ), if ρ(G) = Dn,

where Rep(G1, Gµ, χ) denotes the subsemi-group of Rep(G1, χ) × Rep(Gµ, χ)
consisting of pairs of the same dimension. The map Γ can also be defined in the
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complex case and is proved to be an isomorphism in [CKMS01, Proposition 6.2].
However, Γ is not always an isomorphism in the real case, for instance the two
non-isomorphic line bundles over a circle (when G is trivial) mentioned before
have obviously the same Γ image. Nevertheless it turns out that Γ is an isomor-
phism in most cases. Remember that χ is called of real, complex, or quaternion
type if the H-endomorphism algebra of the irreducible real H-module with χ
as the character is isomorphic to R, C, or H respectively, and that χ is called
K-extendible if it extends to a character of a group K containing H. There are
two cases in which the classification works somewhat exceptionally.

Case A. ρ(G) � SO(2) and χ is of real type.

Case B. ρ(G) = Dn, χ is of real type and neither G1- nor Gµ-extendible.

Theorem 1.1. Except for Cases A and B, the semi-group homomor-
phism Γ is an isomorphism. In Case A or B, Γ is a two to one map; more
precisely, there is a free involution on VectG(S(ρ), χ) given by tensoring with
a nontrivial G-line bundle (with trivial fiber H-module) and Γ induces an iso-
morphism on the orbit space.

The study of VectG(S(ρ), χ) is reduced to real representation theory by
Theorem 1.1, especially to the study of Rep(K, χ) where K is a compact Lie
group containing H as an index two subgroup and χ is K-invariant. The
complexity of real representation theory emerges here. Namely, the number
of K-extensions of χ can be zero, one, or two, while it is always two in the
complex case. Combining this observation with Theorem 1.1, one sees that the
semi-group structures on VectG(S(ρ), χ) are of five types depending on ρ(G)
and χ (see Theorem 5.1) while they are of three types in the complex case
(see [CKMS01, Theorem B]).

The paper is organized as follows. In Section 2 we shall determine the
semi-group structure of the target space of the semi-group homomorphism Γ.
For this we need to study some representation theory, especially on extensions
of representations. The semi-group structure of the target space of Γ is given
in Corollary 2.2 and Lemma 2.3.

In Section 3 we prove Theorem 1.1 except for Cases A and B. Indeed,
Proposition 3.2 shows that Γ is always surjective, and Proposition 3.3 shows
that Γ is injective except for Cases A and B.

Cases A and B are treated in Section 4. Case A can easily be proved
by reducing it to the nonequivariant case. For Case B we consider possible
complex G vector bundle structures on an element of VectG(S(ρ), χ). Then
we use the classification results of complex G vector bundles over a circle in
[CKMS01], and some counting argument to finish the proof for Case B.

The semi-group structure of VectG(S(ρ), χ) is given in Theorem 5.1 of
Section 5 by figuring out the generators with their relations. Theorem 6.2 in
Section 6 shows which of the generators of VectG(S(ρ), χ) are trivial.
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2. Ingredients from representation theory

We shall determine the semi-group structure of the target space of Γ.
For that, the following lemma from representation theory plays a key role.
Throughout this section, H is an index two normal subgroup of a group K and
U is a real irreducible H-module with K-invariant character. By the type of
U we mean the type of the character of U . As is well known, any K-extension
of U appears in indK

H U as a direct summand at least once, which follows from
the Frobenius reciprocity, and resH indK

H U ∼= 2U because H is of index two
and the character of U is K-invariant.

Lemma 2.1. (1) Suppose U is K-extendible.
(a) If U is of real type, there are two mutually non-isomorphic K-

extensions of real type and they are related through tensor prod-
uct with the nontrivial real K-module of dimension one with trivial
H-action.

(b) If U is of complex type, there are either two mutually non-
isomorphic K-extensions of complex type or unique K-extension
of real type, not both.

(c) If U is of quaternionic type, there are either two mutually non-
isomorphic K-extensions of quaternionic type or unique K-
extension of complex type, not both.

(2) Suppose U is not K-extendible. Then U is not of quaternionic type, and
indK

H U is irreducible of complex or quaternionic type according as U is of real
or complex type, respectively. Moreover, any K-extension of 2U is isomorphic
to indK

H U .

Proof. (1) Let W be a K-extension of U . Since U is irreducible, so is
W . Set d(W ) = dimR HomK(W, W ) and d(U) = dimR HomH(U, U). Note that
d(U) = 1, 2, or 4 according as U is of real, complex, or quaternionic type,
respectively. Since resH W ∼= U , it follows from the Frobenius reciprocity that

m(W ) · d(W ) = dimR HomK(W, indK
H U) = dimR HomH(resH W, U) = d(U),

(*)

where m(W ) denotes the multiplicity of W in indK
H U . On the other hand,

since

dimR indK
H U = 2 dimR U = 2 dimR W,

the multiplicity m(W ) must be either 1 or 2.
If m(W ) = 1 (i.e., d(W ) = d(U)), then indK

H U ∼= W ⊕ W ′ for some K-
module W ′ which is not isomorphic to W . Since resH indK

H U ∼= 2U , resH W ∼=
U is isomorphic to resH W ′, so that W ′ is also a K-extension of U . Since W ′

appears in indK
H U once, m(W ′) = 1. Therefore the identity (*) applied to W ′

implies d(W ′) = d(U). This together with the equality d(W ) = d(U) implies
that the two mutually non-isomorphic K-extensions W and W ′ of U are of the
same type as U .
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If m(W ) = 2, then indK
H U ∼= 2W . Since any K-extension of U is contained

in indK
H U as a direct summand, W is the unique K-extension of U . The type of

W can be read from the equality d(W ) = d(U)/2. This equality in particular
implies that d(U) must be even, in other words, U is not of real type when
m(W ) = 2.

If U of real type has two K-extensions W and W ′, then HomH(W, W ′) is
a nontrivial real K-module of dimension one with trivial H-action, and W ⊗
HomH(W, W ′) is isomorphic to W ′. This completes the proof of (1).

(2) Suppose U has no K-extension. If indK
H U is reducible, then each direct

summand of indK
H U is a K-extension of U which contradicts the assumption

that U has no K-extension. Therefore, indK
H U is irreducible. Noting that

resH indK
H U ∼= 2U , it follows from the Frobenius reciprocity that

d(indK
H U) = dimR HomK(indK

H U, indK
H U) = dimR HomH(2U, U) = 2d(U),

which implies the statement on the type of indK
H U . In particular, U can not

be of quaternionic type because d(indK
H U) = 1, 2, or 4 and so d(U) = 1 or 2.

The last statement in (2) follows again from the Frobenius reciprocity.

Corollary 2.2. Let χ be the K-invariant character of U , and let e be
the number of K-extensions of U . Then e = 0, 1, or 2, and

(1) if e = 0, then Rep(K, χ) is generated by indK
H U ,

(2) if e = 1, then Rep(K, χ) is generated by a K-module of the same
dimension as U ,

(3) if e = 2, then Rep(K, χ) is generated by two K-modules of the same
dimension as U such that one is isomorphic to the tensor product of the other
with the nontrivial real K-module of dimension one with trivial H-action.

Let K1 and K2 be two groups containing H as an index two subgroup, and
let χ be a real irreducible character of H which is K1- and K2-invariant. We
next consider the subset Rep(K1, K2, χ) of Rep(K1, χ)×Rep(K2, χ) consisting
of pairs of the same dimension. Denote by e1 and e2 the number of K1- and
K2-extensions, respectively.

Lemma 2.3. The semi-group Rep(K1, K2, χ) is generated by


one element Rχ, if (e1, e2) = (0, 0), (1, 0), (0, 1), or (1, 1),
two elements R±

χ , if (e1, e2) = (2, 1) or (1, 2),
three elements R̃0

χ, R̃±
χ , if (e1, e2) = (2, 0) or (0, 2),

four elements R±±
χ , if (e1, e2) = (2, 2),

with relations 2R̃0
χ = R̃+

χ + R̃−
χ and R++

χ + R−−
χ = R+−

χ + R−+
χ .

Proof. For i = 1 and 2, denote by R̃i, Ri and R±
i the set of generators of

Rep(Ki, χ) according to ei = 0, 1 and 2, respectively. Note that the dimension
of R̃i is twice that of Ri and R±

i . Then it is easy to find the generators and
relations of Rep(K1, K2, χ) according to (e1, e2) as in Table 1.
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Table 1. Generators and relations of Rep(K1, K2, χ) according to (e1, e2)
(e1, e2) Generators Relations

(0, 0) Rχ = (R̃1, R̃2)

(1, 0) Rχ = (R1 ⊕ R1, R̃2)

(0, 1) Rχ = (R̃1, R2 ⊕ R2)
none

(1, 1) Rχ = (R1, R2)

(2, 1) R±
χ = (R±

1 , R2)

(1, 2) R±
χ = (R1, R

±
2 )

none

R̃0
χ = (R+

1 ⊕ R−
1 , R̃2),

(2, 0)
R̃±

χ = (R±
1 ⊕ R±

1 , R̃2)

R̃0
χ = (R̃1, R

+
2 ⊕ R−

2 ),
2R̃0

χ = R̃+
χ + R̃−

χ

(0, 2)
R̃±

χ = (R̃1, R
±
2 ⊕ R±

2 )

(2, 2) R±±
χ = (R±

1 , R±
2 ) R++

χ + R−−
χ = R+−

χ + R−+
χ

Remark. For i = 1 and 2, denote by R+
i and R−

i , respectively, the
trivial and the nontrivial real Ki-module of dimension one with trivial H-
action. Then the set of pairs (R±

1 , R±
2 ) forms a group isomorphic to Z/2×Z/2

under tensor product on each factor, and it acts by the same operation on
the generators in Lemma 2.3. The action is transitive except for the third
case where Rep(K1, K2, χ) is generated by three elements. In that case, R̃±

χ

constitute one orbit and R̃0
χ is fixed by the action of the pairs (R±

1 , R±
2 ).

We recall some facts on the extension of an H-module, which will be used
in Section 6.

Lemma 2.4. Let H be a normal subgroup of G and let U be a real
irreducible H-module with G-invariant character.

(1) Suppose G/H is finite cyclic of odd order. Then U has a G-extension,
and the G-extension is unique if U is of real type.

(2) Suppose G/H is a dihedral group of order 2n for odd n. Then
(a) U has a G-extension if and only if it has a K-extension for some

subgroup K of G which contain H as an index two subgroup,
(b) 2U always has a G-extension.

Proof. See [CMS01] for the former statements in (1) and (2-a). To see
the uniqueness in (1), we note that if U1 and U2 are G-extensions of U , then
HomH(U1, U2) ∼= R. Since H acts trivially on HomH(U1, U2) and G/H is of odd
order, HomH(U1, U2) must be a trivial G-module. Therefore HomG(U1, U2) is
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also isomorphic to R, which means that U1 and U2 are isomorphic as G-modules.
This proves the uniqueness of the G-extension of U .

It remains to prove (2-b). Let P be a normal subgroup of G which contains
H and P/H is a normal cyclic subgroup of G/H of order n. By (1) above, U
has a P -extension, say W . Then indG

P W is a G-extension of 2U .

3. Fiber modules

In this section we prove Theorem 1.1 except for Cases A and B. The fol-
lowing two propositions can be proved by the same argument as in the complex
case, see Theorem A and its subsequent remark in [CKMS01].

Proposition 3.1. A real H-module is the fiber H-module of a real G-
vector bundle over S(ρ) if and only if its character is G-invariant and G1-
extendible (and Gµ-extendible when ρ(G) = Dn).

Proposition 3.2. Given Gz-extensions Vz of a real H-module with G-
invariant character for z = 1 (and µ when ρ(G) = Dn), there exists a real
G-vector bundle E over S(ρ) such that the fiber Ez of E over z is isomorphic
to Vz as Gz-modules.

Proposition 3.1 gives a characterization of the fiber H-module of a real
G-vector bundle over S(ρ), and Proposition 3.2 shows that the semi-group
homomorphism Γ in the introduction is surjective. On the other hand, the
following proposition shows that Γ is injective except for Cases A and B, which
proves Theorem 1.1 except for Cases A and B.

Proposition 3.3. Let χ be a real irreducible character of H which is
G-invariant. Except for Cases A and B, two real G-vector bundles E and E′

in VectG(S(ρ), χ) are isomorphic if and only if the fiber Gz-modules Ez and
E′

z at z ∈ S(ρ) are isomorphic for z = 1 (and for z = µ when ρ(G) = Dn).

Proof. The proof of [CKMS01, Theorem 6.1] holds in the real category
with slight modification. For reader’s convenience we shall give the argument
when ρ(G) is finite. The case when ρ(G) is infinite is easy since the action of
G on S(ρ) is transitive, see [CKMS01, Proposition 2.3] for details.

The necessity is obvious so we prove the sufficiency. We first note that if
there exists an equivariant isomorphism Ψ: E → E′, then it must satisfy the
equivariance condition Ψρ(g)z = gΨzg

−1 for any g ∈ G where Ψz = Ψ|Ez
.

Suppose ρ(G) � SO(2). Then G1 = H, ρ(G) is finite cyclic, say, of order
n, and since Case A is excluded, χ is not of real type. Choose an element a ∈ G
such that ρ(a) is the rotation through the angle 2π/n. By the assumption we
have an H-linear isomorphism Ψ1 : E1 → E′

1. Set Ψρ(a)1 = aΨ1a
−1, which is

also an H-linear isomorphism. Then we connect Ψ1 and Ψρ(a)1 continuously
in the set of H-linear isomorphisms of the fiber H-module along the arc of
S(ρ) joining 1 and ρ(a)1 = e2πi/n. This is possible because the set of H-
linear isomorphisms of the fiber H-module is homeomorphic to a general linear
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group over C or H depending on the type of χ (remember that χ is not of
real type), and it is arcwise connected. Thus we have a bundle isomorphism
between E and E′ restricted to the arc of S(ρ) joining 1 and ρ(a)1. We extend
this isomorphism to an entire isomorphism over S(ρ) using the equivariance
condition Ψρ(a)z = aΨza

−1.
When ρ(G) = Dn, we choose a G1-linear isomorphism Ψ1 and a Gµ-linear

isomorphism Ψµ. Similarly to the above, we connect Ψ1 and Ψµ as H-linear
isomorphisms along the arc of S(ρ) joining 1 and µ = eπi/n, and then extend
it to an isomorphism over S(ρ) using the equivariance condition. But it is not
always possible to connect Ψ1 and Ψµ when χ is of real type because the set
of H-linear isomorphisms of the fiber H-module, which is homeomorphic to
GL(m, R), is not arcwise connected. In this case, however, another assump-
tion is that χ is Gz-extendible for z = 1 or µ since Case B is excluded. By
Lemma 2.1 (1-a) χ has two Gz-extensions, say χ̃1 and χ̃2. Thus the character
of Ez

∼= E′
z as a Gz-module is of the form m1χ̃1 + m2χ̃2 for some nonnegative

integers m1 and m2 with m = m1 + m2, so that the set of Gz-linear isomor-
phisms between Ez and E′

z is homeomorphic to GL(m1, R)×GL(m2, R). Since
the inclusion map from GL(m1, R)×GL(m2, R) to GL(m, R) induces a surjec-
tion on the π0 level, it is possible to choose a Gz-linear isomorphism Ψz so that
Ψ1 and Ψµ can be connected in the set of H-linear isomorphisms of the fiber
H-module.

4. Topological complexity: Cases A and B

Propositions 3.2 and 3.3 show that the map Γ is an isomorphism except for
Cases A and B. In this section we investigate the structure on VectG(S(ρ), χ)
for Cases A and B, and complete the proof of Theorem 1.1.

Case A. The case where ρ(G) � SO(2) and χ is of real type. In this
case one can reduce the study of VectG(S(ρ), χ) to the nonequivariant case.

Lemma 4.1. In Case A, the semi-group VectG(S(ρ), χ) is generated
by two elements N±

χ with relation 2N+
χ = 2N−

χ . Moreover, N±
χ have χ as the

character of the fiber H-modules, and they are related in such a way that N−
χ is

obtained from N+
χ by tensoring with a real G-line bundle over S(ρ) with trivial

fiber H-module.

Proof. There is an element L in VectG(S(ρ), χ) with χ as the character
of the fiber H-module by Proposition 3.1, and we have the semi-group isomor-
phisms

VectG(S(ρ), χ) ∼= VectG/H(S(ρ)) ∼= Vect(S1),

where the former isomorphism is given by sending E to HomH(L, E) and the
latter is given by taking orbit spaces by the G/H-action. In fact, since χ is
of real type, the map sending F ∈ VectG/H(S(ρ)) to L ⊗ F is the inverse of
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the former isomorphism, where F is viewed as a G-vector bundle through the
quotient map from G to G/H (see Lemma 2.2 in [CKMS01] for details), and
the latter is an isomorphism because the action of G/H on S(ρ) is free. As
is well known, Vect(S1) is generated by the trivial line bundle ε and the Hopf
line bundle η with relation 2ε = 2η. Therefore, if we denote by N±

χ the two
generators of VectG(S(ρ), χ) corresponding to ε and η in Vect(S1) through the
above isomorphism, then the lemma follows except the last statement. To see
the last statement, we note that HomH(N+

χ , N−
χ ) is a real G-line bundle over

S(ρ) with trivial fiber H-module and that

N+
χ ⊗ HomH(N+

χ , N−
χ ) ∼= N−

χ ,

proving the last statement.

Case B. The case where ρ(G) = Dn, χ is of real type, and neither
G1- nor Gµ-extendible. In this case we investigate complex structures on the
bundles in VectG(S(ρ), χ).

Let F = R or C, and set

J (Fk) ≡ {J ∈ GL(k, F) | J2 = −I},

which is the set of complex structures on Fk. Needless to say, J (Rk) is empty
unless k is even. Viewing C as R2 in a natural way induces an injective ho-
momorphism from GL(k, C) to GL(2k, R), so that it induces an injection from
J (Ck) to J (R2k) and we view J (Ck) as a subset of J (R2k) through this map.

Lemma 4.2.
(1) J (Ck) has k + 1 connected components.
(2) J (R2k) has two connected components.
(3) If k is odd, then each connected component of J (R2k) contains (k +

1)/2 connected components of J (Ck), while if k is even, then one connected
component of J (R2k) contains k/2 and the other contains k/2 + 1 connected
components of J (Ck).

Proof. (1) We note that GL(k, C) acts on J (Ck) by conjugation. Since
the minimal polynomial of any element in J (Ck) has distinct roots it is di-
agonalizable. So two elements in J (Ck) are in the same orbit if and only if
they have the same eigenvalues which are ±i because J2 = −I. This implies
that J (Ck) has exactly k + 1 connected components because there are k + 1
possibilities of the k eigenvalues.

(2) GL(2k, R) acts transitively on J (R2k), and the isotropy subgroup at
any element of J (R2k) is isomorphic to GL(k, C); so J (R2k) is homeomor-
phic to a homogeneous space GL(2k, R)/ GL(k, C) which has two connected
components (see [MS98, Proposition 2.48] for more details).

(3) As observed in (1) above, k + 1 elements

diag(i, i, . . . , i), diag(−i, i, . . . , i), . . . , diag(−i,−i, . . . ,−i)
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respectively lie in the k+1 different connected components of J (Ck). Through
the inclusion map from J (Ck) to J (R2k), they respectively are mapped to

diag(J0, J0, . . . , J0), diag(−J0, J0, . . . , J0), . . . , diag(−J0,−J0, . . . ,−J0),

where J0 is the 2 × 2 matrix
(

0 −1
1 0

)
. Since −J0 and J0 are conjugate by ( 0 1

1 0 )
whose determinant is negative, the k+1 elements above in J (Ck) are in a same
connected component of J (R2k) if and only if the number of J0’s as entries are
congruent modulo 2. This implies (3).

For a real G-module V , we denote the set of G-invariant complex structures
on V by

J (V )G ≡ {J ∈ GL(V )G | J2 = −I},
where GL(V )G denotes the G-linear automorphisms of V . A pair (V, J) is a
complex G-module whose realification is V . We note that GL(V )G acts on
J (V )G by conjugation and that two complex G-modules (V, J) and (V, J ′) are
isomorphic if and only if J and J ′ are in the same orbit of the GL(V )G action.

We consider the following setting for later use.

Lemma 4.3. Let K be a group and let H be a normal subgroup of K.
Suppose

(a) W is an irreducible real K-module of complex type,
(b) U is an irreducible real H-module of real type,
(c) resH W ∼= 2U .

Then, for any positive integer k, J (kW )K can naturally be viewed as a subspace
of J (2kU)H , and we have

(1) J (kW )K has k + 1 connected components,
(2) J (2kU)H has two connected components,
(3) if k is odd, then each connected component of J (2kU)H contains (k +

1)/2 connected components of J (kW )K , while if k is even, then one connected
component of J (2kU)H contains k/2 and the other contains k/2+1 connected
components of J (kW )K .

Proof. It follows from the assumptions (a) and (b) that GL(kW )K ∼=
GL(k, C) and GL(2kU)H ∼= GL(2k, R). Therefore the lemma follows from
Lemma 4.2.

We return to the original setting of Case B. Denote by U a real irreducible
H-module with χ as its character. Since χ is neither G1- nor Gµ-extendible
and of real type, indGz

H U is the unique Gz-extension of 2U , which is of complex
type, for z = 1 and µ by Lemma 2.1 (2). Therefore we are in a setting to
which Lemma 4.3 can be applied. Moreover this shows that an element E in
VectG(S(ρ), χ) must have the fibers at z = 1 and µ isomorphic to k(indGz

H U)
for some integer k. In particular, its fiber H-module is 2kU .

A G-invariant complex structure on E is a G-vector bundle automorphism
J of E such that J2 = −I. A pair (E, J) is a complex G-vector bundle whose
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realification is E. We say that two G-invariant complex structures J and J ′ on
E are equivalent if (E, J) and (E, J ′) are isomorphic as complex G-vector bun-
dles, that is, if J and J ′ are conjugate by a real G-vector bundle automorphism
of E.

Lemma 4.4. The number of inequivalent G-invariant complex struc-
tures on E is (k + 1)2/2 if k is odd, and k(k/2 + 1) or k(k/2 + 1) + 1 if k is
even.

Proof. Let J (Ez) be the set of (not necessarily invariant) complex struc-
tures on the fiber Ez. The collection J (E) of J (Ez) over z ∈ S(ρ) forms a
G-fiber bundle over S(ρ), the G-action on J (E) being induced from that on E.
Then a G-invariant complex structure on E can be viewed as a continuous G-
equivariant cross section of the G-fiber bundle. The image of the cross section
lies in J (E)H because H acts trivially on S(ρ).

In order to construct a continuous G-equivariant cross section of J (E) →
S(ρ), we choose a pair of points from J (E1)G1 and J (Eµ)Gµ (i.e., one point
from each), which can be connected by a continuous cross section of J (E)H

restricted to the arc R in S(ρ) joining 1 and µ = eπi/n. Not all pairs of
those points are connected by such a cross section as observed later. But,
once we find such a cross section, we can extend it to an entire G-equivariant
cross section using the equivariance as is done in the proof of Proposition 3.3.
On the other hand, it is known in [CKMS01, Theorem 6.1] that isomorphism
classes of complex G-vector bundles over S(ρ) are distinguished by the complex
fiber G1- and Gµ-modules. Therefore, the number CS(E)G of inequivalent G-
invariant complex structures on E is equal to the number of pairs of connected
components in J (E1)G1 and J (Eµ)Gµ which are connected through J (E)H |R.

Suppose k is even. Denote by C1
z and C2

z , for z = 1 and µ, the connected
components of J (Ez)H |R containing k/2 and k/2+1 connected components of
J (Ez)Gz , respectively. If C1

1 and C1
µ are connected through J (E)H |R, then so

are C2
1 and C2

µ. Counting the number of choices of pairs of connected compo-
nents in J (E1)G1 and J (Eµ)Gµ which are connected through J (E)H |R, one
has

CS(E)G =
(

k

2

)2

+
(

k

2
+ 1

)2

= k(k/2 + 1) + 1.

On the other hand, if C1
1 and C2

µ are connected through J (E)H |R, then so are
C2

1 and C1
µ and one has

CS(E)G =
k

2

(
k

2
+ 1

)
+

k

2

(
k

2
+ 1

)
= k(k/2 + 1).

For k odd, a similar argument proves that

CS(E)G =
(

k + 1
2

)2

+
(

k + 1
2

)2

= (k + 1)2/2.
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Lemma 4.5. In Case B, the semi-group VectG(S(ρ), χ) is generated by
two elements M±

χ with relation 2M+
χ = 2M−

χ . Moreover, M±
χ have 2χ as the

character of the fiber H-modules, and they are related in such a way that M−
χ is

obtained from M+
χ by tensoring with a real G-line bundle over S(ρ) with trivial

fiber H-module.

Proof. Since χ is of real type, the character of U ⊗ C is also χ; so
we may view χ as a complex irreducible character of H. We have proved
in [CKMS01, Theorem B] that the semi-group VectC

G(S(ρ), χ) of isomorphism
classes of complex G-vector bundles over S(ρ) with multiples of χ as the char-
acter of fiber H-modules is generated by four elements L±±

χ with relation
L++

χ +L−−
χ = L+−

χ +L−+
χ , where L±±

χ are complex G-vector bundles over S(ρ)
with U ⊗ C as the fiber H-module such that the fiber G1-modules (resp. Gµ-
modules) of Lst

χ and Ls′t′
χ , where s, s′, t and t′ denote + or −, agree if and

only if s = s′ (resp. t = t′). In fact, the two non-isomorphic fiber G1-modules
(resp. Gµ-modules) of L±±

χ are complex conjugate to each other, so the com-
plex conjugate (or dual) bundles of L++

χ and L+−
χ are respectively L−−

χ and
L−+

χ .
Let Φ: VectC

G(S(ρ), χ) → VectG(S(ρ), χ) be the realification map. It is
surjective by Lemma 4.4. Since any complex G-vector bundle is isomorphic
to its complex conjugate bundle as real G-vector bundles, Φ(L++

χ ) = Φ(L−−
χ )

and Φ(L+−
χ ) = Φ(L−+

χ ). Therefore the relation L++
χ + L−−

χ = L+−
χ + L−+

χ

on VectC

G(S(ρ), χ) reduces to 2Φ(L++
χ ) = 2Φ(L+−

χ ) on VectG(S(ρ), χ). It fol-
lows that for each fixed fiber dimension there are at most two elements in
VectG(S(ρ), χ). We claim that there is no other relation. It suffices to show
that there are exactly two elements in VectG(S(ρ), χ) for a fixed fiber dimen-
sion. If there is only one element for a fixed fiber dimension, say 2k dimU ,
then the unique bundle must have (k + 1)2 inequivalent G-invariant complex
structures because the number of elements in VectC

G(S(ρ), χ) of (real) fiber di-
mension 2k dim U is exactly (k+1)2 [CKMS01, Corollary 5.2]. This contradicts
Lemma 4.4.

It remains to show that the two generators Φ(L++
χ ) and Φ(L+−

χ ) are related
by tensoring with a real G-line bundle with trivial fiber H-module. The fiber
G1-modules of L+−

χ and L++
χ at 1 are isomorphic but the fiber Gµ-modules of

them at µ are not, more precisely, they are related through the tensor product
with the nontrivial real 1-dimensional Gµ-module defined by Gµ → Gµ/H ∼=
{±1}, see Lemma 2.1 (1). Therefore Φ(L+−

χ ) is obtained from Φ(L++
χ ) by

tensoring with a real G-line bundle with trivial fiber H-module, whose fiber at
1 is the trivial G1-module and the fiber at µ is the nontrivial Gµ-module. The
existence of such line bundle is guaranteed by Proposition 3.2.

Proof of Theorem 1.1. The map Γ is surjective by Proposition 3.2 and
injective except for Cases A and B by Proposition 3.3. In both Cases A and B
the target of Γ is a semi-group generated by one element by Lemma 2.3 while the
domain of Γ is generated by two elements with the relation shown in Lemmas 4.1
and 4.5. This implies that Γ is two to one.
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Finally, we note that tensoring elements in VectG(S(ρ), χ) with the real
G-line bundles with trivial H-module does not change the fiber G1-modules
(resp. fiber G1- and Gµ-modules) in Case A (resp. Case B). This implies the
last statement in the theorem.

5. The semi-group structure on VectG(S(ρ), χ)

In this section we determine the semi-group structure on VectG(S(ρ), χ).
Let e1 and eµ denote the numbers of G1- and Gµ-extensions of χ, respectively.
When ρ(G) agrees with O(2) or is contained in SO(2), we define eµ to be 1 for
convenience. In both real and complex category, the semi-group structure on
the target of Γ is determined by the numbers e1 and eµ. The numbers e1 and
eµ depend only on the types of ρ(G) in the complex category, but this is not
true in the real category. This is another complexity in our study arising from
real representation theory.

The possible values of e1 and eµ according to ρ(G) and the type of χ are
given by Tables 2 and 3.

Table 2. The possible values of (e1, eµ) according to ρ(G)
(e1, eµ) (0, 0) (1, 0) (0, 1) (2, 0) (0, 2) (1, 1) (2, 1) (1, 2) (2, 2)

ρ(G) ⊂ SO(2) × × × × × © × × ×
ρ(G) = O(2) × × © × × © © × ×
ρ(G) = Dn © © © © © © © © ©

Table 3. The possible values of (e1, eµ) according to the type of χ when ρ(G) =
Dn

(e1, eµ) (0, 0) (1, 0) (0, 1) (2, 0) (0, 2) (1, 1) (2, 1) (1, 2) (2, 2)
real © × × © © × × × ©

complex © © © © © © © © ©
quaternionic × × × × × © © © ©

We state here the semi-group structure on VectG(S(ρ), χ) according to the
values of e1 and eµ.

Theorem 5.1. Except for Cases A and B, the semi-group VectG(S(ρ),
χ) is generated by

(1) one element Lχ, if (e1, eµ) = (0, 0), (1, 0), (0, 1) or (1, 1),
(2) two elements L±

χ , if (e1, eµ) = (2, 1) or (1, 2),
(3) three elements L̃0

χ, L̃±
χ with relation 2L̃0

χ = L̃+
χ + L̃−

χ , if (e1, eµ) = (2, 0)
or (0, 2),
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(4) four elements L±±
χ with relation L++

χ +L−−
χ = L+−

χ +L−+
χ , if (e1, eµ) =

(2, 2).
In Case A or B, it is generated by

(5) two elements ˜̃
L±

χ with relation 2˜̃
L+

χ = 2˜̃
L−

χ .
Moreover, except for L̃0

χ in the case (3), the generators are related through
tensor product with real G-line bundles over S(ρ) with trivial fiber H-module
in each case.

Proof. The statements (1)–(4) follow from Corollary 2.2, Lemma 2.3 and
Theorem 1.1, and the statement (5) follows from Lemmas 4.1 and 4.5.

We now prove the last statement in the theorem. After setting K1 = G1

and K2 = Gµ, it is obvious that the inverse images of the pairs (R±
1 , R±

2 ) in the
remark after Lemma 2.3 by the semi-group homomorphism Γ in Theorem 1.1
are real G-line bundles with trivial fiber H-module. Moreover, Γ preserves the
two tensor product operations, one on VectG(S(ρ), χ) with real G-line bundles
and the other on Rep(G1, Gµ, χ) by the pairs (R±

1 , R±
2 ). Therefore, Proposi-

tion 3.3 implies that, except for Cases A and B, the generators of VectG(S(ρ), χ)
are related through tensor product with real G-line bundles with trivial fiber
H-module. The same argument also holds for Rep(G1, χ) by Corollary 2.2. For
Cases A and B, the statement follows from the last statement in Lemmas 4.1
and 4.5.

Corollary 5.2. Let N be the number of isomorphism classes of real G-
vector bundles over S(ρ) with mχ as the character of the fiber H-modules. If m
is odd and either e1 or eµ is zero then N is zero. Otherwise, except for Cases
A and B,

N =




1, if (e1, eµ) = (0, 0), (1, 0), (0, 1), or (1, 1),
m + 1, if (e1, eµ) = (2, 0), (0, 2), (2, 1), or (1, 2),
(m + 1)2, if (e1, eµ) = (2, 2).

In Case A or B, the number N is exactly two.

Proof. The proof is elementary and left to the reader.

6. Triviality of real G-vector bundles over a circle

In this section we investigate triviality of the generators in Theorem 5.1
when ρ(G) is finite. Triviality of a G-vector bundle is closely related to the
existence of a G-extension of the fiber H-module in the following sense: For
a given H-module V , there exists at least one trivial G-vector bundle with V
as its fiber H-module if V extends to a G-module. In the following we denote
by Zn the finite cyclic subgroup of SO(2) generated by the rotation through
an angle 2π/n. Then ρ(G) = Zn for some n if ρ(G) � SO(2). Denote by 1
the trivial real H-module of dimension one, in other words, H acts trivially on
1. In the notation of Lemma 4.1 and Theorem 5.1, real G-line bundles over
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S(ρ) with trivial fiber H-module are denoted by N±
1 and L±±

1 according as
ρ(G) = Zn and Dn, respectively.

Lemma 6.1. (1) Suppose ρ(G) = Zn. If n is even, then N±
1 are both

trivial. If n is odd, then one of them, say N+
1 , is trivial and N−

1 is nontrivial.
(2) Suppose ρ(G) = Dn. If n is even, then L±±

1 are all trivial. If n is
odd, then two of them, say L++

1 and L−−
1 , are trivial and the other two are

nontrivial.

Proof. (1) Since G/H acts freely on S(ρ), every real G-line bundle over
S(ρ) with trivial fiber H-module is the pull-back of a real line bundle over
S1 by the quotient map π : S(ρ) → S(ρ)/G ∼= S1. Suppose n is even. Then
π∗ : H1(S(ρ)/G, Z/2) → H1(S(ρ), Z/2) is trivial, so pullback line bundles by π
have trivial first Whitney classes, which means that the underlying line bundles
over S(ρ) are trivial. According to [KM94, Proposition 1.1], an equivariant line
bundle is trivial if and only if its underlying bundle is trivial. Thus, N±

1 are
both trivial when n is even.

If n is odd, then π∗ above is an isomorphism. Therefore, exactly one of
N±

1 has trivial first Whitney class. This together with the result in [KM94]
mentioned above shows that exactly one of N±

1 is trivial equivariantly.
(2) Set P = ρ−1(Zn). Since P/H acts freely on S(ρ), L±±

1 are pullback
of real G/P -line bundles over S(ρ)/P by the quotient map π : S(ρ) → S(ρ)/P .
Here G/P is of order two and acts on the circle S(ρ)/P as reflection, so we
may think of G/P as D1. According to Theorem 5.1 (or Corollary 5.2) there
are four real D1-line bundles over S(ρ)/P . Since the map Γ is an isomorphism
in this case, they are distinguished by their fiber D1-modules over the points
±1 ∈ S(ρ)/P . More precisely, there are two possibilities for the fiber D1-
modules at 1 and −1 respectively since there are two real one-dimensional D1-
modules (the trivial one and the nontrivial one), and hence altogether there are
four real D1-line bundles over S(ρ)/P . Moreover, D1-line bundles are trivial if
and only if the fiber D1-modules at ±1 are isomorphic (see also [Kim94]).

If n is even, then all pullback line bundles by π are trivial as discussed
in (1); so L±±

1 are all trivial. If n is odd, then the pullback by π preserves the
triviality of line bundles because π∗ : H1(S(ρ)/P ; Z/2) → H1(S(ρ); Z/2) is an
isomorphism. Since there are exactly two trivial D1-line bundles over S(ρ)/P ,
two of L±±

1 are trivial and the other two are nontrivial.

Remark. Suppose ρ(G) = Dn. For z = 1 and µ, denote by R+
z and

R−
z , respectively, the trivial and the nontrivial real Gz-module of dimension

one with trivial H-action, see also the remark after Lemma 2.3. Then we may
assume without loss of generality that the images of Lst

1 by Γ in Theorem 1.1
are (Rs

1, R
t
µ), where s and t denote a sign + or −.

Theorem 6.2. Let ρ(G) = Zn or Dn, and let χ be a real irreducible
character of H which is G-invariant. If n is even, then the generators in
Theorem 5.1 except for L̃0

χ are all trivial or all nontrivial in each case. If n is
odd, then
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(1) Lχ is trivial,
(2) L±

χ are both trivial,
(3) L̃0

χ and L̃±
χ are all trivial,

(4) two of L±±
χ are trivial and the other two are nontrivial,

(5) one of ˜̃
L±

χ is trivial and the other is nontrivial.

Proof. Recall from the last statement in Theorem 5.1 that all generators
are related through tensor product with the real G-line bundles N±

1 and L±±
1

according as ρ(G) = Zn and Dn, respectively. These line bundles are all trivial
if n is even by Lemma 6.1. So the existence of one trivial generator implies
triviality of the other generators, and this finishes the proof in case that n is
even.

In the following we assume that n is odd. Denote by U a real irreducible H-
module with χ as its character. Recall that the fiber H-module of a generator
is U if both e1 and eµ are nonzero, and 2U otherwise. In case ρ(G) = Dn,
we choose elements a and b in G such that ρ(a) is the rotation through the
angle 2π/n and ρ(b) is the reflection about the x-axis. Then G1 (resp. Gµ) is
generated by H and b (resp. ab).

(1) It suffices to show that the fiber H-module of a generator extends to
a G-module. In case that e1 = eµ = 1, the fiber H-module of Lχ is U and
it is G-extendible by Lemma 2.4. The other case is that either e1 = 0 or
eµ = 0 and in this case the fiber H-module of Lχ is 2U which is G-extendible
by Lemma 2.4 (2-b).

(2) In this case ρ(G) = Dn by Table 2 and the fiber H-modules of gener-
ators are U which is G-extendible by Lemma 2.4 (2). So there is at least one
trivial generator, say L+

χ . Since (e1, eµ) = (2, 1) or (1, 2), the tensor product
of L+

χ with L−−
1 has different fiber Gz-module from that of L+

χ at the point z

such that ez = 2. Thus we get the other generator L−
χ

∼= L+
χ ⊗ L−−

1 . Since
L−−

1 is trivial by Lemma 6.1, so is L−
χ .

(3) In this case ρ(G) = Dn by Table 2 and the fiber H-modules of gener-
ators are 2U because either e1 or eµ is zero. Set P = ρ−1(Zn). Then U has
a P -extension, say V , by Lemma 2.4 (1). Note that the fiber modules of L̃0

χ

at 1 and µ are isomorphic to indG1
H U and indGµ

H U , respectively. Thus L̃0
χ is

isomorphic to the product bundle S(ρ) × indG
P V by Proposition 3.3.

We next consider triviality of the generators L̃±
χ . It suffices to show that

at least one generator, say L̃+
χ , is trivial. Then so is the other generator L̃−

χ
∼=

L̃+
χ ⊗ L−−

1 . We assume that (e1, eµ) = (2, 0). The other case (e1, eµ) = (0, 2)
can be proved similarly.

Claim. χ is of real type.

Proof of Claim. Since χ is not of quaternionic type by Table 3, it suffices
to prove that χ is not of complex type. Suppose that χ is of complex type.
Then there is a complex H-module V such that U ⊗ C ∼= V ⊕ V and V � V
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as complex H-modules. We note that the realifications of V and V are U , and
since χ is G-invariant, gχV = χV or χV for g ∈ G where χV and χV denote the
characters of V and V respectively.

Since e1 = 2 and eµ = 0 by assumption, U has two G1-extensions of
complex type by Lemma 2.1 but no Gµ-extension. It follows that V is G1-
extendible but not Gµ-extendible, so χV is G1-invariant but not Gµ-invariant.
Namely, bχV = χV and abχV = χV , so that aχV = χV . Therefore an

χV = χV

because n is odd. On the other hand, since an is an element of H, an

χV = χV .
Therefore χV = χV , but this contradicts that V � V . Thus χ must be of real
type.

Since χ is of real type by the claim above, U⊗C is irreducible and its char-
acter is G-invariant. It follows that there is a trivial complex G-vector bundle
F over S(ρ) with U ⊗C as the fiber H-module, see [CKMS01, Theorem C (3)].
Since e1 = 2, there are two G1-extensions of U , say Ũ1 and Ũ2. Their complex-
ifications Ũ1 ⊗ C and Ũ2 ⊗ C are non-isomorphic because Ũ1 � Ũ2. Moreover
these modules are both G1-extensions of U ⊗C. Thus the fiber G1-module, say
F1, of F at 1 must be either Ũ1 ⊗C or Ũ2 ⊗C. It follows that the realification
of F1 is either 2Ũ1 or 2Ũ2. Therefore the realification of F , which is trivial, is
isomorphic to one of L̃±

χ .
(4) In this case ρ(G) = Dn by Table 2 and the fiber H-modules of the

generators are U . By a similar argument to case (2) there are two trivial
generators, L++

χ and L−−
χ

∼= L++
χ ⊗L−−

1 . It suffices to show that the other two
generators L+−

χ
∼= L++

χ ⊗L+−
1 and L−+

χ
∼= L++

χ ⊗L−+
1 are nontrivial. Consider

the following isomorphisms

HomH(L++
χ , L+−

χ ) ∼= HomH(L++
χ , L++

χ ⊗ L+−
1 ) ∼= HomH(L++

χ , L++
χ ) ⊗ L+−

1 .
(**)

Note that HomH(L++
χ , L++

χ ) is isomorphic to the product bundle S(ρ) × Rk,
where k = 1, 2, or 4 according to the type of χ. It follows that HomH(L++

χ ,

L+−
χ ) ∼= kL+−

1 .

Claim. Both kL+−
1 and kL−+

1 are nontrivial for all k > 0.

Proof of Claim. Note that the fiber G1-module of L+−
1 at 1 ∈ S(ρ) is

the trivial G1-module R+
1 , while the fiber Gµ-module at µ is the nontrivial

Gµ-module R−
µ by the remark after Lemma 6.1. Then b (resp. ab) acts on R+

1

(resp. R−
µ ) as multiplication by 1 (resp. −1). Recall that H acts on both R+

1

and R−
µ trivially, i.e., as multiplication by 1.

Assume that kL+−
1 is trivial. Then there exists a G-module W such that

resG1 W ∼= kR+
1 and resGµ

W ∼= kR−
µ . Thus b and ab act on W as multiplication

by 1 and −1, respectively. Hence a acts on W as multiplication by −1, and
since n is odd, an also acts on W as multiplication by −1. But this contradicts
that an ∈ H acts trivially on W . In the same way we can prove that kL−+

1 is
also nontrivial.
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Since L++
χ is trivial, L+−

χ must be nontrivial by the equation (**) and
the claim above. Replacing L+−

χ by L−+
χ we can similarly prove that L−+

χ is
nontrivial.

(5) Case A. In this case ˜̃
L±

χ are N±
χ in Lemma 4.1. Since n is odd, U

has a G-extension by Lemma 2.4 (1). So we may assume that one generator,
say N+

χ , is trivial. Then the following isomorphisms

HomH(N+
χ , N−

χ ) ∼= HomH(N+
χ , N+

χ ⊗ N−
1 ) ∼= HomH(N+

χ , N+
χ ) ⊗ N−

1
∼= N−

1

imply that N−
χ is nontrivial since N−

1 is nontrivial by Lemma 6.1 (1).

Case B. In this case ˜̃
L±

χ are M±
χ in Lemma 4.5. Remember that M+

χ =
Φ(L++

χ ) = Φ(L−−
χ ) and M−

χ = Φ(L+−
χ ) = Φ(L−+

χ ) from the proof of Lemma
4.5. Since L++

χ ∈ VectC

G(S(ρ), χ) is trivial by Theorem C in [CKMS01], M+
χ is

also trivial. In the following we shall prove that M−
χ is nontrivial.

Assume that M−
χ is trivial, i.e., it is isomorphic to the product bundle

S(ρ) × W for some G-extension W of the fiber H-module 2U .

Claim. W is of real type.

Proof of Claim. If W is not of real type, then we may view M−
χ as the real-

ification of a complex product bundle S(ρ)×W , but this contradicts that M−
χ is

the realification of the nontrivial bundles L+−
χ and L−+

χ in VectC

G(S(ρ), χ).

Denote by χW the character of W . Every fiber Gz-module of M−
χ , which

is resGz
W , is isomorphic to indGz

H U and it is irreducible of complex type by
Lemma 2.1 (2). It is well known in representation theory that the character of
resGz

W ∼= indGz

H U is zero on Gz \H. Thus χW is always zero on
⋃

z∈S(ρ) Gz \
H = G \ P , where P = ρ−1(Zn). It follows that we have

1 =
∫

G

χW (g)2dg =
1
2

∫
P

χW (p)2dp +
1
2

∫
G\P

χW (p)2dp =
1
2

∫
P

χW (p)2dp,

(see [BtD85, Exercises 6.10 (3), Chapter II] for the first equality) so∫
P

χW (p)2dp = 2. This implies that resP W is either irreducible of complex

type or reducible with different direct summands of real type. In the sequel we
show that neither case occurs.

It is easy to see that the latter case does not occur because if it does,
then each summand of resP W is a P -extension of U which contradicts the
uniqueness of the P -extension of U by Lemma 2.4 (1).

Now, suppose resP W is irreducible and of complex type. We claim that
the set J (W )G of G-invariant complex structures on W is not empty. Then it
contradicts that W is of real type. Since resG1 W is irreducible and of complex
type, there exists a G1-invariant complex structure on W , i.e., (J (W )H)G1/H =
J (W )G1 �= ∅. This means that each connected component of J (W )H ∼=
J (R2) is invariant under the action of G1/H because J (W )H ∼= J (R2) has
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two connected components and G1/H is of order two. On the other hand,
since the order n of P/H is odd and the number of connected components of
J (W )H is two, each connected component is also invariant under the P/H-
action. Therefore, it is invariant under the G/H-action because P and G1

generate G. Now we note that each connected component of J (W )H ∼= J (R2)
is homeomorphic to R2 (see [MS98, Exercise 2.57]) and that any smooth action
of a finite group on R2 is linear, so the G/H-action on J (W )H has a fixed
point, i.e., J (W )G �= ∅.
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