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A lower bound on the spectral gap of the
3-dimensional stochastic Ising models
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Nobuaki SUGIMINE

1. Introduction

Let us consider the Glauber dynamics at low temperature (large 5 > 0)
which evolves on a cube A4(L) = (—L, L]*NZ% (L € N) whose side-length is 2L
with a boundary condition w. By gap(A4(L),w), we will denote the spectral
gap corresponding to a boundary condition w. Especially, By gap(Aq(L), ¢)
and gap(Aq(L),+), we will mean spectral gaps corresponding to free and +
boundary conditions, respectively. L. E. Thomas proved in [Tho89] that

(1.1) gap(Ag(L), ¢) < Bexp(—pCLI™) forany LeN

for any d > 2 and sufficiently large 5 > 0, where B = B(f#,d) > 0 and
C = C(B,d) > 0. For d = 2 and any 8 > [3.(2), it is known that the speed
at which gap(As2(L),+) shrinks to zero as L /" oo is different from the one at
which gap(Az(L), ¢) does (see [Ma94], [Ma99] and [CGMS96]). In this paper,
we confirm that it is also true for d > 3 and sufficiently large 8 > 0. In fact,
we prove that for sufficiently large 8 > 0, some B > 0 and some C > 0,

(1.2)  gap(Aq(L),+) > Bexp(—BCL*?(log L)?) for any L e N.

For each 6 € [0,1], we will consider the boundary condition 75 which is
defined by

+1 if 2¢9=—-L and —6L <" <SL (i#d),
0 otherwise.

(1.3)  ns(z) = {

For d = 3, we also prove that for sufficiently large § > 0, some B > 0 and some
C >0,
(1.4)  gap(As(L),m) > Bexp(—BCL3(logL)?)  for any L €N,

which implies at least that the speed at which gap(As(L),n;) shrinks to zero as
L /' oo is different from the one at which gap(As(L), ¢) does, as was expected
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from the result for d = 2 (see [Ma94]). The proof of (1.2) and (1.4) goes along
the line of [Ma94], but the dimensionality comes in, and we have to introduce
some new geometrical lemmas besides estimates given in [D72].

Organization of the paper. In Section 1, we will introduce our results
and key ingredients of cluster expansion and the notion of standard walls. In
Section 2, we will introduce Propositions 2.1 and 2.2 and sketch the proof of
our results along the line of [Ma94]. In Section 3, we will introduce a lemma
about cluster expansion and give the proof of Proposition 2.1. In Section 4,
we will give the proof of Proposition 2.2. Because of the boundary condition
71, the standard wall which includes much more boundary faces than interior
faces has less energy than we expect from the size of it. For this reason, we
decompose such a standard wall into pieces which do not belong the boundary
of Q(A3(L)) (see (4.38)—(4.46)). We analyze the energy-entropy competition
coming from these pieces. In Appendix, we will prove geometrical lemmas used
in Section 4.

Basic definitions. For z = (%)%, € Z%, we will use the [;-norm ||z||; =

2?21 |z°| and loo-norm ||z||ee = max{|z!|,...,|z%}. Let p=1or p=oco. A
set A C Z% is said to be l,-connected if for each distinct x,y € A, we can find
some {zg,...,2m} C A with 29 = z, 2z, = y and ||z; — z;—1]|, = 1 for all

i < m. The interior and exterior boundaries of a set A C Z¢ will be denoted
respectively by

OinA ={z € A;||lx —y|1 =1 for some y ¢ A}

and
Oex\ = {y & A; ||z — y|l1 =1 for some x € A}.

We will use the notation A CC Z¢ to indicate that A is a non-empty finite subset
of Z%. The number of points contained in a set A CC Z? will be denoted by
A

The boundary conditions and the Gibbs states. In addition to the usual
spin configuration spaces

Qp =40 = (0(2))zer;o(x) =+1or —1} for any A C Z%
we will introduce a configuration space €2}, . for boundary conditions
Qp.e. ={w = (W(2))peza;w(x) = +1, 0or —1}.
We define ¢ € Qy, .. and + € Q. by
p(x) =0 forallzecZ® and + (x)=+1 forallzcZ? respectively.

The set of all real functions on 4 will be denoted by Cx. For each A CC Z¢
and each w € Oy, ., the Hamiltonian HY € Cy is defined by

Hi@)=—5 3 olool)— Y ol
nﬁiﬁf =1 |Tx€f\g} \?1@1
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A Gibbs state in A CC Z? with a boundary condition w € €, .. and inverse
temperature 3 > 0 is the probability distribution pf§ such that the probability
of each configuration o € 2, is given by

pi{o}) = 75 eXp[ BHE (o)),

where Z% is the normalization constant.

Stochastic Ising models. Let A CC Z% and let w € Q.. The generator
of a stochastic Ising model is the linear operator A% : CA — Ca given by

(o) =) & )f(e") = flo)l,

zEA

where ¢ € Cp is the transition rate and o” is the configuration obtained from
o by replacing o(z) with —o(z). We will assume the following conditions on
the transition rate c¢:

(H1) Detailed balance condition. It holds that

(15) (o) expl-BHTN (0())] = ¢ (0”) exp[- BHEA (o ()],

where opw is the configuration such that cpw = 0 on A and oyw = w on A°.
(H2) Positivity and boundedness. There exist ¢, = ¢n(8,d) € (0,00) and
ey = e (B,d) € (0,00) such that for any A CC Z¢

em <inf{c¥(c);z € A, w € Q. and o € Qp}

1.6
(16) <sup{c(o);z € A, w € Q. and 0 € Qp} < cpy.

(H3) Nearest neighbor interaction. If o(y) = o'(y) for all y with ||[y—z|j; =
1, then it holds that ¢¥ (o) = ¢¥(o”).
(H4) Attractivity. If o < o’ and o(z) = o’(x), then it holds that

(1.7) o(z)c (o) > o' (z)c (o).
An example of functions ¢ is given by

c4(0) = exp | <G HT (o)~ HT )]

—ew | <o) [ e+ Y el
yeA;|lz—ylli=1 yEA;[lz—yll=1

It can be seen by (1.5) that for any f,g € Ca

—px[fARg] = —MA[gA /]

=3 Z D R (0)e5 (0)[f(0%) = f(o)]lg(a”) — g(0)).

TEN cEQA
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Finally, we define

: —pilfARS]
(1.8) gap(A,w) = 1nf{ = = i fE€CA ¢,
uRLLf = pR A1 ]
which is the smallest positive eigenvalue of —AY, and hence it is called the

spectral gap.

Main Results. Let Ay(L) = (—L,L]? N Z? for each L € N. For each
w € Qp.c., we define

Fif (w) = {y € Oeaha(L);w(y) = +1}.

Theorem 1.1. Let d > 3. Consider a stochastic Ising model on the
square Ay(L). Then, there exists By = Bo(d) > 0 such that for any 8 > Gy and
any L € N

(1.9) gap(Ag(L),+) > Bexp(—BCL¥2(log L)?)
holds, where B = B(cp,d) >0 and C = C(8,d) > 0.

Theorem 1.2. Let d = 3. Consider a stochastic Ising model on the
square As(L). Suppose that a boundary condition w € Qy, .. satisfies that w(x) >
0 for all x € Z¢ and

(1.10) F (@) 5 {y € duha(L)sy = —L}.

Then, there exists B > 0 such that for any § > (B} and any L € N
(1.11) gap(As(L),w) > B exp(—BC' L3 (log L)?)

holds, where B' = B'(¢m,cm) >0 and C' = C'(3) > 0

Hereafter, we will introduce key ingredients for the proof of Theorems 1.1
and 1.2. We will also introduce some basic lemmas which we will use here.

Block dynamics (See [Ma94] and [Ma99]). From now on, we will use
the following modified Hamiltonian for convenience: For each A cC Z?, each
w € Q. and cach J = (J,,) € [0,1)% %% we define

1

(1.12) HK’J(0)=—§ Yo e@aly) -1 = D Jaylo(@wly) —1).
n:—%ﬁ\:l :ﬁf_Aynyl@

By MX’J and Z(A,w,J), we will denote the Gibbs state in A with having HX’J as
its Hamiltonian and the normalization constant, respectively. By gap(A,w, ),
we will also denote the spectral gap of the generator

(A o) =D — f(o)],

zEA
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where ¢ satisfy (H1) for HK"‘U, (H3), (H4) and that for any A cC Z4

cm < inf{cgj’J(U);x EN weE e, 0 €Ny and J € [0, 1]dezd}

< sup{ch’J(U);x EN weEe, 0 €Ny and J €0, 1}dezd} <cum.

For a finite family {Q;} with @Q; C A and U;Q; = A, we define

(1.13) AL @) =30 N Wy Wi — fo),

i NEQQ,

where ¢" is the configuration such that ¢”7 =7 on ); and ¢" = o on Qf. The

dynamics having A;{\Qi}’w“ﬂ as its generator is called the block dynamics. By
Jw,J

gap(A, {Q;},w,J), we will denote the spectral gap of the generator A/{\Qi}
and we have that

_ w,J A{Ql}’w“]]f]
Aa Qia 7J:f Ea [fA 5 EC}
sp (A AQi . ) m{%%fuﬂmmf §

For each | < 2L, set
Qi={r e Ny(L);—L+(i— 1)l <a®<—L+(i+3)l}.

Then, we have (see Section 2 in [Ma94] or the proof of Theorem 5 in [Sch94])
that

gap(Aa(L),w,J)

d
Cm § : k—2

k=2

(1.14)
gap(Aa(L), {Qz}v w,J).

Contours and the cluster expansion (See [KP86]). Let Q(z) =
T, [ —(1/2), 2 + (1/2)] € R? and let Q(V) = UpeyQ(z) C R for each
V c R% By 0Q(V), we will denote the boundary of Q(V) in R%. Let us fix
L e N. For each L; € ZU {—00,00} and each Ly € ZU {—00, 00}, we set

A(Lq,Lg) = Ag(L, Lo)
={zez2 Ly <al<Ly+1, -L<a',... 2971 <L}

We will call v C R? a contour (in A(Ly, Ls)) if v = 0Q(O) for a finite lu-
connected set ® C A(Ly, L) which satisfies that ©°¢ is l,-connected. By
C(L1, Ly), we will denote the collection of contours in A(Li, Ls). For each
n € Z, we define a boundary condition w,, € .. by

—1 if 24>
(1.15) wn(z) = o=
+1 otherwise.
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We will write w = wg. Let us fix a negative integer L; and Lo € N. For each
o€ QA(L1,L2)’ let

z,y € A(L17 L2) U 88:IJA(L17 LZ)
A(Ly, Ly, 0,w) = < (z,y); such that ||z —ylj; =1 and
ON(L1, L)W (T) F OA(Ly,L5) @ (Y)

For a given configuration o € 2z, 1,), we decompose

(1.16) Ue,y)€A(L1,La,ow) (Q(2) N Q(y))

into the connected components. Then, there exists a unique component which
does not belong to C(Ly, Ly). We will call such a component an open contour
ino. By I'Y LhLz)(O'), we will denote the open contour in 0. By O(Ly, Ls), we
will denote the collection of open contours for some o € Q4(z,,1,). We define
C(—00,0) = UnenC(—N, N) and O(—00,0) = UnenO(—N, N). We define
the maps h™ : O(—o00,00) — Z and h™ : O(—o0, 00) — Z, respectively, by

(1.17)
h*(I) = max{z? + (1/2);2 € '} and h~ () = min{z? + (1/2);z € T}.

Let us fix I' € O(Ly, Ly) and v € C(L1, L) such that TN~y = (. Then,
there exists the unique configuration or € 4z, 1,) which satisfies that I" is
the open contour in or, and that there are no contours in or. We can also see
that there exists the unique configuration or, € Q4(z,,1,) in which I" is the
open contour and -y is also the unique contour. We define

B(T) = exp[~BHE, . (o7)

and
B3(y) = expl-BHLL , (ors) — HS o (00))].

For each pair {71,7v2} C C(L1, L2) UO(L1, Ls), we will mean by 717, that
v1 N2 # 0. We will call a nonempty set C C C(L1, L) a cluster if it is not
decomposable into two nonempty sets, C' = Cy U Cs, such that there are no
pairs (y1,72) € C1 x Oy satisfying that v;ty2. For each T' € O(Lq, L) and each
cluster C C C(Ly, Ls), TtC will indicate that ' C' # 0.

Let X C C(Ly,Ls). By D(X), we will denote the family of subsets v C X
such that there are no pairs {y1,v2} C v with vy1ty2. We define B

2(X;®) = > [ty
YED(X) €Y

if X is non-empty, and define Z(0; ®y) = 1. Let Pp, r, be the family of all
subsets of C(L1, La).

Lemma 1.1.  Let functions a : C(L1,Ls) — [0,00) and d : C(L1, Ls) —
[0,00) be such that

(1.18) > expla(y') +d(7)]|®s(v)] < a(y)

Y €C(L1,La);y vy
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for each v € C(L1, L2). Then, Z(X; ®y) # 0 and there exists a unique function
@} : Pr,,1, — R such that

(1.19) log Z(X;®p) = Y ®F(C)
[CHOIaP. ¢

for every X C C(L1, La). Moreover, the function @} is given by the formula

(1.20) of(C) = Y (—1)I9"1Flog Z(B; ®y),
B;BCC

the estimate

(1.21) > Ief(@)exp | > d(¥)| < a(v)

CCX;Cuvy y'eC
holds true for every v € C(L1, L2), and

(1.22) @] (C) = 0 whenever C is not a cluster.

Standard walls (See [D72]). Let d > 3. We will introduce the notion
of standard walls to express contour models and to use it in the proof of key
propositions (Propositions 2.1 and 2.2). We define H(z) = {z € R%; 2% = 2} for
each z € R. Let 7 be the orthogonal projection: R? — H(—1/2) and let H" be
the n-dimensional standard Hausdorff measure in R? for each n < d — 1. We
will call w a face if

w € {Q(z) N Q(y); z,y € Z¢ such that ||z — y|: = 1}.

Let us fix A(Ly, Ls) and T' € O(Ly, Ly). For a face w C T, we will call w a
ceiling face (of T') if H4~1(7(w)) = 1 and there is no other face w’ C T such
that w(w) = w(w’). The other faces (in I') will be called wall faces (of T). By
walls (of T'), we will mean connected components of the set

{v € R% for some wall face w of I',v € w}.

Let W' be a wall. Then, there exists a configuration o € Q4 (r, 1,) such
that the family of walls corresponding to I'j ; LZ)(U) consists of the only wall
W which is obtained by the vertical shift of W’. We will call W a standard wall.
For the family of walls {W/} (of I'), we have a unique family of standard walls
{W;} (corresponding to T'). By SW(Li, Ls), we will denote the collection
of families of standard walls which correspond to NN LQ)(U) for some o €
QA(Ly,L,)- We define SW(—00,00) = UnyenSW(—N,N). Note that there
is one-to-one correspondence between O(—o0,00) and SW(—o0, 00). By W(I)
and T'(W), we will mean the family of standard walls corresponding to the open
contour I' € O(—o00,00) and the open contour corresponding to the family of
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standard walls W € SW(—o00, 00), respectively. For each W € SW(—o0, c0),
we define

(1.23) ht(W) =h*(T(W))  and  h™ (W) =h"(D(W)).

We will introduce a partial order < for standard walls of each W €
SW(—00,00). We define the map 7 : RY DV — #(V) C H(—1/2) by

(1.24)

1 1
(V) = {x €eH <—§> ;any path v: 2 — oo in H (—§> intersects W(V)} .

We define the partial order < naturally induced by ({#(W); W € W}, C) for
each W € SW(—o00,0). Let W € SW(—00,00) and let W € W. We define

(1.25) W(W) = (W e W\{W}; W' = W.

Note that W(W) € SW(—o0,00). We can see that 24 = y¢ for any z,y €
I'(W(W)) such that w(x) € #(W) and n(y) € #(W). Then,

(1.26)
b(W, W) =z + (1/2) for some x € I'(W(W)) such that 7(z) € #(W)

is well-defined. For each I' € O(—o00, 00) and each W € W(I'), we also define
(1.27) b(W,T') = b(W, W(T)).

Lemma 1.2. Let W € SW(—o00,00). Suppose that {W;}_; C W and
Wy < --- < W,,. Then, it holds that H*=Y(W,,) > n.

Lemma 1.3. Let W € SW(—o00,00). Suppose that {W1,Wa} C W and
Wi < Wsy. Then, it holds that

hT(W(W2)) < h¥(W(Wh))

and
h™ (W(Ws)) > h™ (W(Wy)).

Lemma 1.4. Let W € SW(—o00,00). Then, it holds that
h™ (W) = max{h™(W(W) U {W?}); W is a minimal standard wall in W}
and
h™ (W) = min{h= (W(W) U {W}); W is a minimal standard wall in W}.

We omit the proof of these lemmas.
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Lemma 1.5.  Suppose that {W, W'} C SW(—o00,00) such that W N
W =0 and WUW' € SW(—o00,00). Then, we have that

h*(WUW’) <ht (W) +ht (W)

and
h™(WUW') >h™ (W) +h~ (W’).

Proof. Without loss of generality, we can assume by Lemma 1.4 that
there exists a unique minimal standard wall W € WU W’. Moreover, we can
assume that W € W. Note that there exist unique minimal standard walls in
W and W', respectively, and that there exist unique maximal standard walls
in WUW, W and W, respectively. Rearrange W U W’ in order of ». The
family of standard walls W U W’ is divided into blocks of standard walls each
of which is a subset of either W or W’'. We will show Lemma 1.5 only for h*
by induction on the number of these blocks. To be more precise, we will show
by induction that for any k& € N,

(1.28) h*(WUW’) <h™ (W) +ht(W’)
if
WUW' = {Wytl o Wit W WY

{Wi}2, CW for odd j, (W7}, c W' for even j

7 7

k 1
L WE LW

nyot

and

{Whtl e = W W s W = WL - =
The inequality for h™ can be obtained in a similar way.
We will first consider the case where k = 1. In this case, we can see that
WE = W, for the maximal standard wall W} € W and the minimal standard
wall W2 € W’. Then, we can see that
1 1
(WUWH(W,)=W' and  b(W,

ni?

WUW') <ht(W).
Therefore, we have that

ht(WUW’)
(1.29) = max{hT(WUW')(W,)), b(W,

w WUW') 4+ ht (W)}
<h*(W') + ht(W),

which implies (1.28) for k = 1.

We will next consider the case where k = m assuming that (1.28) is true
when k& = m — 1. Suppose that the maximal standard wall in WU W’ is the
maximal standard wall in W (m is even). Note that
(1.30) b(W™ WUW') =b(W™m L W).

Nom Mm—1"
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Then, we have by induction hypothesis, (1.30) and Lemmas 1.3 and 1.4 that

(1.31)
hH(WUW’)
= max{h" (WUW") (W )),
bW, WUW')+ht({W ... Wi}
< max{h™ (W), bW~ W) + h* (W\{W;" 1} ) + b (W)}

Nm—17

< ht (W) +ht (W),

which implies (1.28) for £k = m. Similarly, we can obtain (1.31) in the case
where the maximal standard wall in W U W’ is the maximal standard wall in
W (m is odd). O

2. Key propositions for the proof of Theorems 1.1 and 1.2

We have only to modify Propositions 3.1 and 4.1 in [Ma94] to prove Theo-
rems 1.1 and 1.2, respectively. Throughout this section, we assume that § > 0
is sufficiently large. For r > 0, [r] stands for the smallest integer larger or
equal to r. We will introduce a modified proposition for the proof of Theorem
1.1. We consider the block dynamics generated by A}{SZ}J’)—F’JEI.

Proposition 2.1.  Suppose that 3 > 0 is sufficiently large. Let | =
[Ki(logL)?] and M € N with 4 < M < 2L — 1. Then, for any € > 0
there exists K1 = K1(8,e) > 0 such that for sufficiently large L € N and
any x € A(—L,—L+ M —3l)

(2.1) NXEJ_EL{_L_kM) (0’(1‘) = +1) - NX’EH_EL17_L+M) (0’(1‘) = +1) < EL_da
where we write 1 = w_p+pm+1 (see (1.15)).

We can obtain from (2.1) (see Section 3 in [Ma94]) that for sufficiently
large L € N,

(2.2) gap(Aq(L),{Qi}, +,J = 1) > exp[-L].

From (1.14) and (2.2), we have that for some B = B(cy,d) > 0, some C =
C(K1,8,d) >0 and for any L € N
gap(Ag(L), +,J = 1) = Bexp[~FCL " (log L)?],

which implies (1.9).
~ We will introduce a modified proposition for the proof of Theorem 1.2. Let
Js be given by

= J1if zeA3(L), 2¥ =—-L+1, y € OexAs(L) and y® = —L,
Y16 otherwise.
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From the direct calculation, we have that
(2.3) gap(As(L), +,Jo) > % exp[—16080L%] gap(A3(L), +,J5)-

A{Qz‘},+,ja .

We consider the block dynamics generated by Aa(L)

Proposition 2.2.  Suppose that d = 3 and 8 > 0 is sufficiently large.
Let | = [KoL?3(logL)?] and M € N with 41 < M < 2L — 1. Let § =
L=2/3log L. Then, for any ¢ > 0 there exists Ky = Ko(8,€) > 0 such that
for sufficiently large L € N and any x € A(—L,—L + M — 31)

24)  pi, (@) = +1) = pd L an(o(z) = +1) <L,
where we write n = w_p+a+1 (see (1.15)).

We can obtain from (2.4) that for sufficiently large L € N,
(2.5) gap(As(L), {Qi}, +T5) > expl—1].

From (1.14), (2.3) and (2.5), we have that for some B’ = B'(¢y, cpr) > 0, some
C'=C'(Ks,8) > 0 and for any L € N,

gap(As(L), +,Jo) > B’ exp[—ﬁC’L%(log L)?],
which implies (1.11).
3. Proof of Proposition 2.1
For simplicity we will prove Proposition 2.1 for d = 3. Let us fix M € N
with 4] < M < 2L — 1. We will omit the notation J = 1. We will write
N=w_rym+1 and ¢ = w_p 12 (see (1.15)) in this section. We assume that

B > 0 is sufficiently large throughout this section. We define open contours for
each o0 € Qp(_r _r4a) under the boundary conditions 1 and ¢ (see (1.16)).

By T} . _pian(0)and Fi(_L’_LJrM)(a), we will denote the open contours for
each o € Qp(_r,—r4+n) under the boundary conditions n and ¢, respectively.
We consider the events

AR o niany =10 € Qarn—remyh (TR piany(0)) > —L+ M =31}
and

Af\(—L,—L-{-M) ={oe QA(fL,fLJrM);h_(Ff\(_L_L_i_M) (0)) >—-L+ M —3l}.
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Then, we have by FKG inequality that for any « € A(—L,—L + M — 3l),
(3.1)
MX(_L)_L.;,_M)(U(JJ) =+1) - MX(_L,_L.;,_M)(U(JJ) =+1)

< HX(_L7_L+M)(O'(1') = +1)

— AL @ (@) = FV VAR p o) HR —p—pean (AR (1~ L4 ar)
<AL -t (AR L —ran))
¢ ¢ c
S PA-L—nean) (AN L pyan)9):

We define the event

AR Cartaion = {0 € Qaarsa2sh™ (DR (Copq1,20)(0) > —1},

where we write w = wp (see (1.15)). We also have by FKG inequality that

(3'2) /‘/C\(fL,fL+M)((A/C\(fL,fL+M))C) < NX(—2L+2l,2l)((AX(—QL—Q—QI,QI))C)'

Therefore, we can obtain Proposition 2.1 from (3.1), (3.2) and the following
lemma.

Lemma 3.1.  Suppose that 8 > 0 is sufficiently large. Let | = [K1(log
L)?]. Then, for any ¢ > 0 there evists K1 = Ki(8,€) > 0 such that for
sufficiently large L € N

(3.3) MX(_2L+21,21)((AX(—2L+21,21))C) <eL™%.

We will use cluster expansion to prove Lemma 3.1. Recall that by W(T')
and T'(W), we will mean the family of standard walls corresponding to the
open contour I' and the open contour corresponding to the family of standard
walls W, respectively, and that SW(—o00,00) = UyenSW(—N, N). We define
SW(—L1,00) = UyenSW(—L1,N) and SW(—o0,L1) = UnyenSW(—N, L)
for each L; € N. For each W € SW(—o00,0), we define

5 (W) = B(T(W))/e 5
' = exp[=BH ) (orem) e~
for some N € N such that I'(W) € O(—N, N). We can see that it is well-defined.
We define
C = Unen{C C C(—N, N);C is a cluster}.

We also define for each n € N
(3.5) C(n) = {C € C;diam(C) > n},

where diam(C) = sup{dist;(z,y); z,y € C} and dist; is the metric induced by
li-norm. For each I' € O(—o00,00), let >, stand for the summation over all
elements C' € C such that C'I'.
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For each 0 € Q7 (_co,00), let

A(o,w) = {(I, ;B2 € A(=00,00) U ez A(—00, 00) sich that } |

|2 —ylli =1 and oA(—oo,00)@ () # TA(—c0,00)@(Y)

For a given configuration o € Qx(_oo,00), We decompose

U(m,y)GA(o’,w) (Q(.’II) N Q(y))

into the connected components. Then, there exists a unique connected compo-
nent which includes a point (L +1,0,—1/2). We will denote such a component
by T'R (~ .00 (0). Note that I3 oo.00) (o) includes

Uz,y)ene. (o) (Q(T) N Q(Y)),
where

_ &,y € OezA(—00,00) such that
Acy(w) = {(x’y)’ [ =yl = 1 and w(z) # w(y) }

Let L; € N. We similarly define F‘/‘((_Ll OO)(U) and IR o
0 € Qp(—L,,00) and each 0 € Qp(_oo,1,), Tespectively.

L) (o) for each

Lemma 3.2.  Suppose that B > 0 is sufficiently large, L1 € N and
Ly € N. Let 11,1, : C — {0,1} be the indicator function of the event
that C C C(—Ly,Ls). Then, there exists a function Ot such that for each
I'e O(—L1, L)

ﬂLX(—Ll,Lz)(FX(—Ll,Lg)(U) =1)

(3.6)
:Z(SW(_LlaLQ))_lq)( eXp Z]'LhLz C) )
C.
where
Z(SW(—Ly, Ly)) = > Wyexp |[— > 11,.1,(C)®7(C)
WeSW(—L1,Ls) CuT'(W)

Moreover, we have that

(3.7)  Z(SW(—00,0)) = O(Wyexp |- > @T(C)| < o0,
WeSW(—o0,00) C.I'(W)

and that for each T' € O(—00,0)

lu’tlk\)(foo,oo) (]‘—‘7\)(700,00) (U) = F)

(38) = Z(SW(—00,00)) 1 Q(W(I)) exp |- Y @T(C)

c.r
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We also have that for each T € O(—Ly, 0)

HA (= Ly 00) (TR (2 11,00y (0) = T)

3.9
(3.9 = Z(SW(—L1,00)) ' ®(W(T))exp | — Z 17, (C)@T(C) ],
c.r
where
(3.10)
Z(SW(—Ly,0)) = > Wyexp [— > 11,(C)2T(O),
WeSW(—Lq,00) C.I(W)
and that for each T' € O(—00, L1)
1R (—oo ) TR (o0 0) (@) =T)
3.11
(8.11) = Z(SW(—00, L1)) 1 ®(W(T)) exp Z 1oz, ( ],
c.r
where
(3.12)
Z(SW(—00,L1)) = Y. W)exp |[= Y 1o, (C)2"(C)
WeSW(—o0,L1) C.T (W)

Proof. Let us fix Ly € N and Ly € N. Set A = A(—Lq,Ls) and
() = TR p,0,)(). Let A) = {z € 73; distoo (z,T) = 1/2} for each
I' € O(—Lq, L), where disty, is the metric induced by lo.-norm. Let us fix
I' € O(—Lq, Ly). We decompose A\A(L") into two sets R;" and Ry which lie,
in a natural way, below and above I, respectively. We have by Lemma 1.1 that

(3.13)
> exp[-BHR(0)] = ®(T)Z(R}, +)Z(Ry, —)

oc€Qp;I(o)=I

(A + eXP Z 1L17L2 C)
Cc.r

Set in Lemma 1.1, a(-) = 6H2(-) and d(-) = (3 — B)H2(-) for sufficiently large
8 > 0. We have that for any v € C(—Lq, Ls)
(3.14) ®(7) = exp[-26H*(7)].

Therefore, we can see by Lemma 1.1 that there exist ¢; > 0 and ¢ > 0 such
that for each z € A(—o00,00) and any n € N (see (3.5)),

(3.15) > [@T(O)] < crexp[—(8 — B)ean]

CeC(n);CoQ(x)
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Note that ﬁ, c1 and ¢y do not depend on >0, L1 € N, Lo € Nand L € N.
For each T' € O(—Lq, Ly), we can see from (3.4) and (3.13) that

> exp[-BHR(0)]

geQp;l(o)=T

(3.16)
= efsfaLQZ(A,+) ( eXp [ 2:].L1 Lz C)] .
C.T
Then, we have that
(3.17)
MX(F(U) = F) = Z(SW(_LLLQ))_I(I)( eXp [ Z 1L17L2 C) )
c.r
where
Z(SW(—Ly, Ls)) = > W)exp |— > 11,.1,(C)27(C)
WGSW(*Ll,Lz) CLF )

We obtained (3.6). We can also obtain from (3.4) and (3.15) that
S awen | 3 [870)] <,
WeSW(—o00,00) C.I'(W)
which implies (3.7). We have by the definition of Z(SW(—o00,00)) that
I\}im Z(SW(—N,N)) = Z(SW(—00, x)),
which implies (3.8). Similarly, we can obtain (3.9) and (3.11). O

Let L1 € NU{oo} and Ly € NU {o0}. For each W € SW(—Ly, Ls), we
define

(3.18)

Pr(=11,00) (W) = Z(SW(=L1, L)) ' ®(W)exp | — Y 11,.1,(C)7(C)
C.T'(W)

Proof of Lemma 3.1. Let A = A(—2L+21,2l). We have by FKG inequal-
ity that

(3.19) PR ((AR)) < B (00,21 (AL,

where
1=1{0 € Qn(—oo21i b (TR (Coo2y(0)) < —1}-
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We also have by FKG inequality that

where
Ay = {0 € Qp (o020 h (TR (Loo,20(0)) > 1}

and
AI2I = {0' € QA(foo,oo); h+(F7\J(—oo,oo) (U)) Z l}
Let
SW = {W € SW(—00,20);h™ (W) < —1, h* (W) < I}
and let

SW' = [W € SW(—o0, 00); bt (W) > I}.
Then, we have from (3.8), (3.11), (3.18), (3.19) and (3.20) that

HR((AR)) < 1R (oo ,20) (AT\NAS) + 1R (00 00) (A7)

(3.21) = Z PA(,OO’QZ)(W)‘F Z PA(foc,oo)(W)'
WedSW ™ WeSW"

We will estimate the first term in RHS of (3.21) from above. Note that
®7T is invariant under the vertical shift. Therefore, we can see from (3.15) that
there exists c¢3 = ¢3(0, ¢1,¢2) > 0 such that for any W € SW(—o0, 00),

(3.22) doooeTe)- D oT(CO)| <esH* (W) forall WeW.
CuT(W\{W}) CuT (W)
Note that c3 is independent of L € N. We can also see from (3.15) that

(3.23)

2 Y S 2T(O)| < 8L% expl—(8 — B)eaK (log L)?/2).

zEAT3=21 |CEC(1/2);CLOQ(x)

Let {c;}i>4 be some positive constants which may depend on B > 0 and
B > 0. Note that by the definition of standard walls

(3.24) H (n(W)) < %HZ(W)

for any {W} € SW(—o00,00). For any pair {W, W'} € SW(—o0, 2l) such that
W =W\{W} for some W € W, h* (W) <[ and h™(W’) < 31/2, we have from
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(3.22), (3.23) and (3.24) that for sufficiently large L € N,

(3.25)
P (=0,21) (W) / Pa(—o0,20) (W)
= (P(W)/D(W'))

x lexp = D 1eu(C)2T(C) / exp |[— Y 1leu(C)2T(C)

CT (W) CuT(W')
< D) explesHA(W) + eqe ™=K (o L))

< c exp[-28(HA(W) = H2(x(W))) + caH*(W)]

< e exp[— (8 — es HA(W)].

Let K3 > 0 be a large constant to be specified later. Suppose that L €
N is sufficiently large and K; > 2(K3)2. Then, for any W € SW' there

exists W € W such that H2(W) > KslogL, W\{W} € SW(—o0c,2l) and

ht(W\{W?}) < 31/2. To see this, we will first show that the set

(3.26) Wiy = {W' € W;H*(W') > Kjzlog L}

is not empty. Assuming that Wy,, is empty, we can see by Lemma 1.2 that
the number of elements of W(W) < |K3log L|

for all W € W, where || denotes the integer part of r for each € R. By this,

the hypothesis that H2(W) < K3z log L for all W € W, Lemmas 1.3 and 1.5, we

have that

(3.27) h™ (W) > —(K3log L)? > —I,

which contradicts that W € SW . Since Wiig is not empty, we can take a
minimal element W from Wy;,. We will next show that h™(W\{W}) < 31/2.
We can see by Lemmas 1.3, 1.4 and 1.5 that

(3.28)

b+ (W\{W}) = max{h* (W), h+(W(W)U{W' € W\{W} W <W}}
< max{h* (W), h* (W(W)) + bt ({W € W\{W} W' < W})}
< b (W) + b+ ({W € W\{W}; W' < W}).

We can also see by Lemmas 1.2, 1.5 and the definition of W that
(3.29) ht({(W e W\{W} W <W}) < (KslogL)? < 1/2,

which together with W € SW  and (3.28) implies that h* (W \{W}) < 31/2.



768 Nobuaki Sugimine

Note that W is the union of all faces belonging to W. Therefore, we have
from (3.25) that

(3.30)
D Pa(mooan(W)
WeSW™
< Z Pr(—ooony(W') | x [ 4L? Z K" cge—(B=ca)n

W’ eSW(—o0,2l) n>Kslog L
< crexp[—(B — cg) K3 log L],

where xk > 0 is the connectivity constant.
Similarly, we can estimate the second term in RHS of (3.21) from above
by

(3.31) cg exp[—(8 — c10) K3 log L.
From (3.21), (3.30) and (3.31), we have that
(3.32) % ((A2)°) < 261y exp[—(F — c12) K3 log I).
Let us fix € > 0. From (3.32), we can obtain (3.3) for some K3 > 0 and

K1 > 2(K3)? large enough and for sufficiently large L € N, and we finished the
proof of Proposition 2.1. O

4. Proof of Proposition 2.2

Let L' =2L — 2] and L” = L' — I. We define Js by

;o § if xeA(—L',2l), y € OeuA(—L',2l) and — L" < 23, 4> <0,
“Y 11 otherwise.

In the same way as in the proof of Proposition 2.1, we can obtain Proposition
2.2 from the following lemma. Throughout this section, we assume that 3 > 0
is sufficiently large. Let {c¢;};>13 be some positive constants which may depend
on 3> 0 (see (4.4)) and 3 > 0.

Lemma 4.1.  Suppose that 3 > 0 is sufficiently large. Let
| = [KyL*?(ogL)?] and 6= L™ *3logL.

Then, for any ¢ > 0 there exists Ko = Ko(8,¢) > 0 such that for sufficiently
large L € N

(4'1) N‘;\}’(J_JL/,QZ)((A‘;\J(—L’,Ql))c) S EL_S'
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Let A = A(—L’,2l). For each § € [0,1] and each W € SW(—L/, 2l), we set
O5(W) = &5(T(W)) /e~
= exp[—BH " (opw))]/e 5.

Lemma 4.2.  Suppose that 3 > 0 is sufficiently large and 6 € [0,1].
Then, there exists a function ®F such that for each T' € O(—L',2l)

(4.2)

H (TR (0) =T)

(4.3)
= Z(SW(=L',21),J5) " ®5(W(T)) exp | — > 11/ )],
(e N
where
Z(SW(-L',21),15) = Z ®;5(W) exp Z 12(C)®5(C)
WESW(—L',21) CuI(W)

Moreover, there exist 3 > 0, ¢j > 0 and ¢ > 0 such that for each x € A and
any n € N (see (3.5)),

(4.4) > @5 (O)] < ¢} exp[—(5 — B)cyn.

CeC(n);CoQ(x)

The constants (3, ¢, and ¢}, do not depend on >0, § € [0,1] and L € N.

Proof. 1In the same way as we obtained (3.6), we can see that there exists
a function ®] satisfying (4.3). Set in Lemma 1.1, a(-) = 6H?(-) and d(-) =
(B — BYH?(-) for sufficiently large 3 > 0. We have from (A.6) (see Appendix)
that for any v € C(—L/, 21),

(4.5) Do (y) < exp [— SHZ(W)] :

Therefore, we can see by Lemma 1.1 that there exist ¢f > 0 and ¢§ > 0 such
that for each x € A and any n € N|

> |5 (O)] < ¢} exp[—(5 — B)can].

CeC(n);CoQ(x)
Note that 3, ¢} and ¢j do not depend on 3 >0, 6 € [0,1] and L € N. O
For each W € SW(—L’,2l), we define

(4.6) PR(W) = Z(SW(-L',21),J5) "' ®s(W)exp | — Y 11,2(C)2F(C)

C' (W)
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Proof of Lemma 4.1. We define the events
Fi={0€QpnhT(TK(0)) > 1}

and
.7:{ = {0’ S QA(*L/,OO);h+(FX(—L',oo)(U)) Z l}
We have by FKG inequality that

(4.7) R () < B oy (FU).
We also have by FKG inequality that

w,J1 w,J1
(4-8) 'uA(—L’,oo)(]:é) < :uA(—oo,oo)( é/)r
where

Fy =10 € Q=100 b7 (TR (L1 ,00) (0)) < =1}

and
fé’ = {U € QA(—oo,oo); h™ (Fo/((—oo,oo)(a)) < _l}-
Let
SWT ={W € SW(—L',00); h* (W) > 1, h= (W) > —1}
and let

SW™ = {W e SW(—00,0); L7 (W) < —[}.
Then, we have from (3.8), (3.9), (4.7) and (4.8) that
p T (F) <y oo (FINF) + 3 o) (F5)

= Z PI{(*L’,OO) (W) + Z P/{(foc,oo) (W)
Wesw+ WesSw-—

(4.9)

By a similar argument as in (3.21)—(3.32), we can estimate the first and second
terms in RHS of (4.9) from above, respectively, by

(4.10) c13 exp[—(8 — c14) K3 log L].

Set
G1={o € Q;h™(T'3(0)) < —L' +1/2}
and
Gt = {0 € Qn(coeaih™ (DS oo o (0)) < L' +1/2),

where we write ( = w_p» (see (1.15)). We define Ff\(_wzl)(-) in a similar way

as 'Y -) (see Section 3). Then, we have by FKG inequality that
A( , Y q y

00,00)
w,J J

(4'11) 127N 5(g1) < /i/g\(ioo)gl)(gi)'

Therefore, we can see by a similar argument as in (4.7)—(4.10) that

(4.12) 17 (Gy) < ers exp|—(8 — c16) K3 log L].
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Now, we are going to estimate 5 ((AR)°\(F1 UG1)). Let
SW={W e SW(-L',20);T(W)=T%(c) forsome o€ (AY)\(F1UG1)}.

We will introduce some definitions and notations. For each © C Z3, 00 will
indicate 0Q(©). For each © C A, we define Tg : Qp — Qp by

—o(x) if z€80,
To(o)(@) {a(x) otherwise.
For each T' € O(—L’,2l), there exists a unique finite /o,-connected O(T") C Z>
which satisfies the following conditions:
(i) {z € Oex\;23 > 0} C O(T) C (AU {x € Dex\; 2% > 0}),
(ii) (©(I"))¢ is leo-connected, and
(iii) T' = 00(T)\O(A U Dez A).
Let V C R3. For each i € N, we define shift(V,i) = V + (0,0,4). For each
r1 € R and each o € R, we define

eyl(V,ri,me) = {x € R n(x) € 9*7(V), r1 — (1/2) < 2 <1y — (1/2)},

where for V c H(—1/2), 8>V indicates the boundary of V under the induced 2-
dimensional topology of H(—1/2). Especially, cyl(Q(V'), r1, o) will be indicated
by cyl(V,r1,re) if V C Z3.

Let us fix W € SW and let I' = T'(W). We decompose I'\cyl(A,—L",0)
into connected components. We define F = F(I") = F(W) by

(4.13)
F is a connected component of T'\cyl(A, —L",0) and
F; there exists a unique [,.-connected ©® C A which satisfies that » ,
©° is l-connected and F & 90 C cyl(A,—L",0)
where © denotes the symmetric difference. The set © is uniquely determined
by each F' € IF, and hence is denoted by ©(F'). Let L € N be sufficiently large

(6 > 0 is small enough). By the definition of Js5 and (A.6), we can see that for
each F € T,

HY"(0) = HY " (To(ryo)
= 2H*(F) — 20H?*(0O(F) Ncyl(A, —L",0))
(4.14) 1

> 5H?(a@(F)) — 26H%(0O(F))

> SH0O(F).

where o € Q, satisfies that I'{(c) = I'. Therefore, we have by a part of
standard Peierls’ argument that for each F' € T,

g

(4.15) 1% (0% () contains F) < exp {37{2(5@@))} :
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Let K4 > 0 be a large constant to be specified later. We define

(4.16) W e SW;

SW/ there exist no elements F' € F(W)
B " such that H%(F) > K4log L '

Note that H?(F) < H?(0O(F)) for each F' € F. Then, we have by standard
Peierls’ counting argument, (4.15) and (4.16) that

(4.17) > PUW) < cirexp {— (g - 018> K,log L} .

WeSW\SW'

Due to Js, there can exist a standard wall having less energy than we
expect from the size of it. For this reason, we will estimate >y gy Pr(W) in
separate four cases. We define

(4.18) SWi = {W € SW'; (@o({W}))?/@1({W}) < 1 for all W € W},

which corresponds to the first case where the energy of each standard wall is
proportional to the size of it.

Let W e SW(—L',2l) and let z € Z. For each W € W, we will denote by
B(W, z) the collection of connected components of W N H(z) if it is not empty.
We define for each W € W,

_[HY(B\OA) .
(4.19)  p(W,z) = mf{W,B EB(WZ)} if W NH(z)#0,
o0 otherwise,
and define
(4.20) p(W,2) = inf p(W,z).

By the definition of Js, we can see that W € SWy if p(W, 2) > 1/5 for all z € Z
with —L” < z < 0. Hence, we will consider

SW' = {W € SW'; p(W, 2) < 1/5 for some z € Z with —L" < 2z < 0}.
o

Lemma 4.3.  For each W € SW(—L’,2l), we have the following prop-
erties:

(1) If p(W, z0) < 1/5 for some zy € Z, then there exists a unique standard
wall Wy € W such that p(Wy, z) < 1/5 whenever p(W, z) < 1/5.

(ii) For any W € W\{Wy}, (®o({W}))®/®1({W}) <1 holds.

Proof. We will first prove (i). Let W € W and let zp € Z be some integer
such that p(W, 29) < 1/5. Then, we can see by the definition of p and (A.11)
that

(421) H'WNH(z))>8L and  H'(WNH(z)NIA) > 6L.
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Hence, if there exist W7 € W, Wy € W, 2z, € Z and zo, € Z such that
p(W1,21) < 1/5 and p(Wa, z2) < 1/5, we can see from (4.21) that 7(W7) N
w(W3) # (. By this and the definition of (standard) walls, it holds that
Wy = Whs.
We will next prove (ii). Note that for each § > 0,
5({W}) = ¥ expl 201> (C({W})\eyl(A, ~L".0))
— 285K (T (W) N eyl(A, — L, 0))].
By the definition of p, (i) and (4.22), we have that for any W € W\{WWy}
(@o({W1))? < exp[-108H>((W\m(W))\cyl(A, —L",0))]
(4.23) < 3L exp[—28H2(T({W}))]
=& ({W}).

(4.22)

We define

SV, — {W € SW\SW there exist some W € W\{WO}} 7

with H?(W) > Kslog L

where Wy is the unique standard wall in (i) of Lemma 4.3 and K5 > 0 is a
large constant to be specified later. SWs corresponds to the second case. In
the same way as in (3.26)—(3.29), we can see that

(1.24) W (WA{Wo )| < (Kslog L)?
for * = + and — if W € SW"\(SW1 USW,). We define
(4.25) Zmin = Zmin(W) = min{z € Z; p(Woy, 2) < 1/5, 2 > —L"},
for each W € SW”. We define
SW3 = {W € SW'\(EW1 USWs); zmin(W) < —1/2}

and

SWy = {W € SW'\(SW1 USW3); zmin(W) > —1/2},

which corresponds to the third and fourth cases, respectively.
First, we claim that for any W € SW'\SWj,

(4.26) H' (Wo N H(z)) > 2L

holds for all negative integer z with z > zni,. To see this, assume that W €
SW'\SW; and H' (W N H(z)) < 2L for some negative integer zy with zg >
Zmin- Then, we will show that

» ({x R x € w for some face w € F({Wo})}> e

(4.27) " such that H (r(w)) =1

> 42,
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which together with the definitions of Wy and zp,;, implies that (®q({Wp}))?
/P1({Wo}) < 1 (see (4.22) and (4.23)). This together with (ii) of Lemma
4.3 shows that W € SW;, which contradicts W € SW"\SW;. Thus, we
obtained (4.26). We will show (4.27) assuming that W € SW’\SW; and
HY(Wo NH(z0)) < 2L for some negative integer 2o with zg > zmi,. Note that
there exists a unique By € B(Wy, zmin) such that H!(Bo\OA)/H (By) < 1/5.
From this and (A.12), we have that H? (7 (By)) > 3(4L?)/4. Therefore, we have
that

(4.28) H (7(Wo)) = S(4L3).

=] w

By the hypothesis that H(Wy N H(z)) < 2L and Lemma A.1, we have that
1
(4.29) H? (7(Wo N H(z0))) < ZLQ.

Therefore, we can see from (4.28) and (4.29) that

w (e cme x € w for sozne face w € T({Wy}) e
such that H*(7(w)) =1

x € w for some face w € Wy,
H? x € R3:
such that H?(m(w)) =1
3,2 1.,
- — L
2 (4(4L ) 5 >

4L~.

v
wl o

(4.30)

Y

Y
[\

In considering the four cases, we have to be aware that <I>;$r is not invariant
under the vertical shift due to Js. Hence, we will introduce the following lemma
before we proceed to the four cases.

Lemma 4.4.  Suppose that 3 > 0 and L € N are sufficiently large.
Let W € SW and let W € W. Let W = W\{W}. Suppose that W &
SW(-L',2l), h*(W') <31/2 and h= (W) > —L' +1/4. Then, we have that

(4.31) S 1pa(@)®5(C) = D 1pa(C)2F(C)| < creHA(W).
C.T(W) CiT(W)

Proof. Let B > 0 and L € N be sufficiently large. We will first prove
(4.31) for the special case where W = cyl(W, —h,0) for some h € N. We have
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by the definition of Js5 and (4.4) (see (3.15) and (3.23)) that

Z ]_L/ygl(C)q)(;T(C)* Z 1L’,2l(C)(I):5r(C)

C.T(W) CuT(W')

< 16L2¢) exp[—(8 — B)CzoL% (log L)?]

h
+can Z Z c) exp[—(B — B)caodisty (z, cyl(A, —i, —i + 1))]

i=1 ceD(—i;W)
h
+ c21 Z Z Cll exp[—(8 — B)
i=1 zeD(—i;W)
X coodisty (z, cyl(A, —L" — i, —L" — i+ 1))]
< (con + ca3)HA (W),

(4.32)

where D(—i; W) = {x € cyl(W N H(—4), —L',20 + 1);z + (1/2,1/2,0) € Z3}.
We will next prove (4.31) for a general case. By the same argument as in
(4.32), we have that

Z 1L/725(C)‘I)5T(C)— Z 1L’,2[(C)(I)}(C)

C.T'(W) CiT(W')

< co2 + co1 Z Z ¢ exp[—(B — B)eaodisty (z, cyl(A, i,i + 1))]
(4.33) i€Z x€D(i;W)

+ Ca1 Z Z cyexp[—(8 — B)

i€Z weD(i;W)
X Cgodistl(df, Cy](A, L'+ 1, L' +i+ 1))]
< (ca2 + ca3)YHA (W),

where D(i; W) = {z € cyl(W NnH(i),—L',2l + 1);z + (1/2,1/2,0) € Z3} if
W NH®) # 0 and D(i; W) = () otherwise. O

From now on, we will estimate

doORW), Y PAW), D PR(W) and ) PR(W).

WweSwi WeSW» WeSWs WeSWy

We assume that L € N is sufficiently large (6 > 0 is sufficiently small) through-
out this section.

Case 1.  We will consider the case where W € SW;. Recall that
SWi = {W € SW'; (2o({IW}))?/®1({W}) < 1 for all W € W}.

Note that ®5({W}) < exp[-BH?*(W)/5] for all W € W if W € SW; (see
(3.24)). Thus, by a similar argument as in (3.22)—(3.30) together with (4.31),
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we have that
(4.34) Z Pg(W) < o4 €Xp {— (g — 025> K5 log L} .
WeSW,
Case 2.  We will consider the case where W € SWs,. Recall that

SW, — {W € SW\SW: there exist some W € W\{WO}} ,

with H2(W) > K5 log L

where SW"' = {W € SW'; p(W, 2) < 1/5 for some z € Z with —L"” < z < 0}.
In this case, by a similar argument as in (3.22)—(3.30) together with (ii) of
Lemma 4.3 and (4.31), we also have that

(4.35) > PR(W) < cygexp {— (g - c27> K log L} .
WeSW,
Case 3.  We will consider the case where W € SW5. Recall that
SW3 = {W € SW'\(SW1 USWs); 2min(W) < —1/2}.
We define

(4.36)
SW° = {W € SW"\(SW1 USWy,); for any W € W\{Wy}, W N oA = 0}

and SW3 = SW3 NSW°. By a similar argument as in (3.22)—(3.30) together
with (ii) of Lemma 4.3 and (4.31), we have that

> BA(W)

WeSWs

< > Bw

WesWs

o~ (AL Rty o = (/5= cag) (n )
« Z( ’ ) S Yk ’

k=1 nlzl nkZI

(4.37)

< cpexplesoLlog L] Y PR(W).
WeSWS

Let us fix W e SW5. Let I' = T(W) and m = zpin(W). We decompose
Wo\cyl(A,m,0) into connected components. By F! = F}(W), we will denote
the collection of such components which belong to F(W) and are included in
Q(A(m +1,0)). Note that ' © 9O(F) C cyl(A,m + 1,0) for each F € F*. Let

(438) Fo = FQ(W) = Cyl(A, m, O) © (UFG]Fla@(F)).
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From (4.36) and (4.38), we can define the open contour IV (W) which satisfies

(4.39) H2(T (W) © (Fo(W) U shift(T'(W\{Wy}),m))) = 0,
and define

(4.40) W' =W'"(W) =W (W)).

Note that I'V(W) = T'(W’). We also define

(4.41)

T(W) = (CH{Wo)\(Urer O(F))) U (Uper: (OO(F) N eyl(A,m + 1,0))).
Let
(4.42) {F7}20 = {F2(W)}H2, = W(T(W))
and let
(4.43)

F} = the unique maximal standard wall such that H?(#(Fg)) > = (4L?).

»lk\w

Then, we can see from the definitions of SW3 (SW'), (standard) walls, and
{F2}¥2 that for any 1 <i < ko,

(4.44) #(F?) N {x €H (—%) ;disty (z,0A) < Kylog L} # 0.

We decompose Fg\cyl(A,m,0) into connected components We will de-
note by {F?} = {F}(W)} and {Ff}fil = {FA(W)}F | the collections of such
components belonging to F(W) and not belonging to F(W), respectively. Note
that 0 < ky < 8L. Let

{z;} = {r(z);z € 0; A and 3 = 0}.
We define {F?}12, = {F?(W)}}2 . inductively, by

(445) P113 = z,ﬂ(ﬁ})ﬁ{zl}¢®F1 ’
and
(4.46) F]3 = (Ui;w(ﬁf’)ﬁ{z]‘}¢®F13)\(Ui§j—1Fi3)'

Note that k3 < 8L.
We will show that the estimate

(4.47)
PR(W)/PR(W')
= (0s(W)/@5(W'))
exp | — Z 1[/21 C) /exp - Z 1L/,21(C)(I>5T(C)
C.T'(W) C.IN(W/)

SCgleXp [— (——ng) <ZH2 F2 +ZH2 F3 +ZH2 F4>
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holds, as follows.
We will first bound ®5(W)/®5(W’) from above. For j =1 or 2, let

St;={x € 0Ajz; =L+ (1/2)}.

Take i with —1 > ¢ > m. If for every B € B(Wy,1), there exist some j €
{£1, 42} such that BN S; = (), then we can see from (4.16) and (4.26) that

4 kp
1
> HNFPNHG)) > inf max {2L, (2L —nKylogL), n}
(4.48) p=2j-1 neNuLo}
2L
>
= 4+ Kylog L

From this together with
(4.49)
HE(Wo\OA) N H(i)) — H (F\OA) NH(i)) = H! ((Up_p U}, FP) N H(5)),
we have that
HE(Wo\OA) NH(3)) + SH((Wo N OA) N H(i))
— HY((Fo\OA) NH(i)) — 6H  ((Fo N OA) N H(i))

(4.50) Lyt U FPY AHG)) + —— 8oL
5 (Up=2 U2y FF) N (’))+4+K4logL i

1 kp .
> §H1((u;§:2 Uz, FP) N H(i).

If there exists a unique By € B(Wy,i) such that By N S; # (0 for all
j € {1, +£2}, then we can see that

v

H((US_y US™, FP) NH(G)) + HE(Wo N OA) N H(i))

2 Hl(BO\(UFe]FlF))

> H'(OANH(i)) — H! (Uper (9O(F) N IA)) N H(3))

H((Fo N OA) NH(5)).

From this and (4.49), we have that
(

(4.51)

LHS(4.50) > (1 — 6)H ((UA_, US?, FP) N H(i))

—~

(4.52)

> “HY((Uk—y U2y FP) N H(D)).

N =

From (3.24), (4.50), (4.52) and the definitions of zyin, {FQ}] 2 05 {F;’}?":l and
{F4}] 1, we have that

(4.53)

@5(W)/@5(W’)§exp[ (ZW +ZH2 +ZH2 )]
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In order to estimate the effect of entropy, we will next bound from above

D 1 a(@)PF(C) = Y 1pau(C)2F(0)).

C' (W) CuI'(W )

To do this, we have only to look at standard walls W € W\{W,} such that
(see (1.26))
b(W, W) # b(W, W’).

Note that
b(W,W') =m —1

for all W € {W' € W\{Wy}; W’ is a maximal standard wall}. Let v(W) =
b(W, W) — b(W,W’). We will first consider standard walls such that #(W) C
(H(=1/2)\7(Wy)). We define

W,, = {W € W;#(W) C (H (-%) \fT(WO)) } .

Note that v(W) = m < 0 for any W € W,,. We decompose #(Q(A))\7(Wp)
into connected components {Ry}}_,. For each k¥ < r and any —1 > ¢ > m,
there exist Dy (i) C H(—1/2) such that Ry C Dy(i) and

Dy (i) © 0*#(Q(A)) + (0,0,i + (1/2)) C F} nH(3)
for some j = j(k,4). By the definition of Wy, we can see that
(4.54) HY (0> Dy (i) < 2H'(F}! NH(5)).

It may happen that j(k1,7) = j(ke,i) even if ky # ko. In this case, Dy, (i) =
Dy, (7). From this and (4.54), we can see that

m k4

i H (U0 Dy(i) <2 ) Y HY(F) nH()
i=—1 i=—1j=1

(4.55) .
<2 H(E}).
j=1
We will next consider standard walls W such that v(W) # 0 and #(W) C
7 (Wp). We define
W, ={W e W\{Wy};v(W) <0 and #(W) C 7#(Wy)}

and

Wi ={W e W\{Wy};v(W) >0 and #(W) C #(Wy)}.
For each W € W, and any m — 1 > i > m + v(W), there exist Dy (i) C
H(—1/2) such that 7#(W) C Dw (i) and

(4.56) D (i) + (0,0,i 4 (1/2)) C (F7 U F) N H(3)
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for some j = j(W,i) and k = k(W, ). It may happen that j(W7,4) = j(Wa,1)
and k(W1,i) = k(Wa,i) even if Wi # Ws. In this case, Dy, (i) = Dw, (4).
From this and (4.56), we can see that for any i <m — 1,

kg k4
(4.57) H (Upy ey 0*Dw (i) < Y H'(FF NH(E) + Y H'(F} N H(D)).
j=1 j=1
Hence, we have from (4.57) that
kz k4
(4.58) Y H'Upew Dw(D) < Y H(E]) + Y H(F)).
i<m—1 Jj=1 Jj=1
Similarly, we have that
kz k4
(4.59) Y H'Upews Dw (D) < Y H(EF]) + Y H(F)).
i>m+1 j=1 j=1

Therefore, in a similar way as in the proof of Lemma 4.4, we can see from
(4.55), (4.58) and (4.59) that

Z ]_L/721(C)@5T(C)* Z 1L’,2l(0)@}‘(c)

CT (W) C.I'(W7)
ko k4 kg
(4.60) < a9 + 223 (Z HA(FP) + ) HQ(F;*)) + 2003y H(F})
i=1 i=1 i=1
kz k4
< ¢33 (1 + ZH2(F¢2) + ZHZ(F¢4)>
=1 =1

in this time Uy, ey~ Gy 02D (i) and Uj,_, 8% Dy (i) play the role of WNH(3).
Thus, (4.47) follows from (4.53) and (4.60).
We will next show that

(4.61) Z PR(W') < csq exp[— (B — ¢35) K2 L(log L),
T

where )y, stands for the summation over all families of the standard walls
such that W = W/ (W) for some W € SW5. Let us fix I' € O(—L’,2l) such
that for x = + and —

(4.62) b (1) < (K log L?,
and such that

(4.63) (W € W(D); W NOA £ 0} = 0.



A lower bound on the spectral gap of the 3-dimensional stochastic Ising models 781

For each i € Z such that shift(T',4) C Q(A), let T'; = shift(T',4). We have from
(4.63) that for any negative integer ¢ > —L”,

M‘XJE (FX(U) D) Fi) _ Z(Rli_i’ +,J5)Z(Ri, -, Js) ) Z(Rivwv“}k)

N‘X”% (FK(U) = F) Z(Ri“—v +’J5)Z(RI:’ ) J5) Z(Ri, 7“]}5) '

(4.64)

We can see by Jensen’s inequality that

(4.65)
Z(Rfivwwﬂﬁ) - s
i A R T I .

@E€Din Ry NOin A= L/ <a3<—1

By a similar argument as in (4.14) and (4.15), we can show that u;‘ﬂé [o(z)] <
r
—1/4. From this and (4.65), we have that

i

(4.66) Z(Rp,,w,J5)/Z(Rr,, —, Js5) < exp[—4B0L]i].
By the definition of Js, we can see that
(4.67) dF(C) = & (shift(C, 1))

if C NOA = 0 and shift(C,7) N OA = (). We can see from (4.4) (see (3.15) and
(3.23)), (4.62) and (4.67) that

Z 11 2(C)®; (C) — Z 1,2(C)®5 (C)

CeC;CNl; #0 C.T
(4.68) < 1612, exp[— (5 — B)ess L3 (log L)?]
+ e37H? (eyl(A, —(K5 log L)?, (K5 log L)?))
+ e37H? (eyl(A, —L" — (K5 log L)?, —L” + (K5 log L)?)),

which together with (3.13) implies that

Z(RY ,+,15)Z(Ry , —, Js)

< ¢35 explesg L(log L)?].
Z(RF,—I—,J(;)Z(R;,—,J(;) < cag exp[cag L(log L)7]

(4.69)

Therefore, we have from (4.64), (4.66) and (4.69) that

(4.70)
pY (T4 (0) D Ty) < esg exp[—4B5Li| + csoL(log L)?] u% (T4 (0) = T).

Recall that we only consider the case where ¢ < —[/2. Then, we can prove
(4.61) from (4.24), (4.39), (4.40), (4.62) and (4.70).

Let p=2or 4 and let 1 <i < k,. Note that F} is connected, and that we
can regard F? as the union of all faces w such that H?(w N FF) = 1. For each
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1 < i < ks, there exists a union of faces G; D F? such that G; is connected
and that

(4.71) H2(G;) < 2HA(FP).

We can see this, as follows. By the definition of {Fi?’}fil (see (4.45) and (4.46)),
we can connect all components of F? by using only faces in cyl(dA, —m,0).
Let G; be the smallest one among such connected sets containing F>. For each
ko > 0, each k3 > 1 and each k4 > 0, we can see from (4. 44) that the number
of the combinations of the starting points of {F?}¥2  {G;}¥ and {F!}F) is
bounded from above, by

2 2
(472) 8KiLlogL) (16L%\ (16L%)
kg k3 k4
Thus, we have from (4.37), (4.47), (4.61) and (4.72) that
(4.73)
> PR(W)
WesSWs

< capLexp[—(B — e35) K2 L(log L)* + c30Llog L]

8K4LlogL 8L

X Z Z Z Z Z <8K42210gL) (1(;?) <1(Zz)

kz 1 kg 1]64 17L1>1 nk2+k3+k421

x Mty trg gy e—(,3/3—632)(n1+"'+nk2+k3+k4)>

< cqy exp[—(B — ca2) Ko L(log L)?)].
Case 4.  We will consider the case where W € SW,. Recall that
SWy = {W € SW'\(EW1 USWs); 2min(W) > —1/2}.
We define T(W), { F2(W)}F2 {F3(W)}5 | and {FA(W)}F | for each W € SW,
in the same way as in (4.38)—(4.46). Consider the set (see (1.27))

f i > 1, H(F? > K log L
Sy = [ <o o ome 2 1, PE(FE) > Kot )

and b(FZ(W), T(W)) < zmin(W) —1/8

Then, by a similar argument as in Case 1 together with the definition of z;y,
we have that

(4.74) > PUW) < cagexp {— (? - c44> Kslog L} .
WeSWy,

Let W € SW4\SWy; and let I' = T'(W). We can see by the definition of
SWy (or SW) that O(T') > x for some z € A with 23 = —I. For such a point
x € A and each z € Z with —31/4 < z < —5[/8, we define

(4.75) O, x,2) ={y € ©,(');y is loo-connected to z in O,(T")} NH(z),
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where
(4.76) 0.(I) ={y e o)y’ <z}

We define O(T,x,2) = 0 for all z € Z with —3l/4 < z < —5[/8 if O(T') Z =.
For each « € A with 23 = —I, we define

_ C|O@(W),z,2)| > L3 for all z € Z
SWaa(w) = {W € SWNSWars Gy~ 31/4 < z < —51/8 '

For each W € SWya(z), we can see by the definition of SW 5 () that for p = 2
or 4, there exists some 1 <7 < kj, such that

(4.77) H2(FP(W)) > L51/8 > K, L(log L)?/8.

We define
SWaz = Ugenas=—1SWaa ()

and

SWys = SW4\(8W41 U SW42).
Then, by a similar argument as in Case 3, the definition of SWys and (4.77),
we have that for N = [KyL(log L)?/8] and N’ = [8K,L(log L)]

(4.78)
> PA(W)

WeSWa2
N’ 8L

(YL Y Y Y ¥ (Z) (1?:2) (1?5)

ko=1ks=1ks=1n1>Nn2>1 Mhgtkgthky > 1

W Mty kg kg o= (B/3=ca2) (Nt Anky trg kg )

1
< c45 €Xp {_ﬂ(ﬁ — c46) K2 L(log L)z] :

Finally, we will consider the case where W € SW,3. Let us fix W € SWy3
and let I' = I'(W). In this case, there exists some x € A with 2® = —[ such
that |O(T,x, 2)| < L?/3 for some z € Z with —31/4 < z < —51/8. Let us fix
such a point z € A and an integer z € Z. We define

and ©(I'Y(0),z,2) = O(T,, 2)
.Ai(@(F, x,2)) = {o € Qu; for some n € Qo 4.2), Nor.2,:)0 € AO(,,2))}

AO(T,z,2)) = {a c ,; VIR (@) € Wiz, O(K(0)) 3 x} |

and

AT(O(T,z,2) = {0 € A(O(,z,2));0(y) = +1 for all y € O(T, z, 2)}.
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Then, we have by the finite energy property that
(479) P (AO(T, 2, 2))) < expl126|0(T, z, 2)[| 3" (AT (O(T, 2, 2))).
By (A.6) and standard Peierls’ argument, we have that
P (AT (O(T, 2, 2))) < car expl—(8 — eas)l/2],
which together with (4.79) implies that

17 (AO(T, 2, 2))) < carexp [1251/% — (g - 049) K, L3 (log L)Q]
(4.80)

< e50 €xp { <§ - 051) Kng(log L)2] .

For each z € A with 22 = —[ and each collection ©(z) of l,-connected
components in H(z) N A, we define

W(I%(0)) € SWas, O(T%(0)) 5 x} |

A(z,0(z)) = {0 € Qy; and O(I%(0), 7, 2) = O(z)

We have from (4.80) that

(4.81)
S R <Y Y s (A 6(2)))
WeSWys Tz O(z)
(B _, 2 (1o )2 L ape
SC50€XP{ (2 51)K2L (lgL)]zz:zz:N_l(N>

< c59 €Xp { (g - 053) K2L§ (log L)Z] ,

where 37 and }°_ stand for -, oy s jand 30 5 5 4c. <58, Tespectively,
and Z@(Z) stands for the summation over all collections O(z) of l..-connected

components in H(z) N A such that |©(z)| < L?/3.

Let us fix e > 0. From (4.9), (4.10), (4.12), (4.17), (4.34), (4.35), (4.73),
(4.74), (4.78) and (4.81), we have that for some K3, K4, K5 and K, large
enough and for sufficiently large L € N,

KR ((AR)7) < el

and we finished the proof of Proposition 2.2.

Appendix

In this appendix, we will prove the claims which we used in Section 4. By
00, we will denote 9Q(0) if © C Z%. Let

(A1) C(L,d) = {'y' ~ = 00 for some [,.-connected © C Ad(L)} .

" which satisfies that ©°¢ is l.-connected
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The set © is uniquely determined by each v € C(L, d), and hence is denoted by
O(v). We define for each ¢ < d,

Ci(L,d) = {'y € C(L,d); if € ©(v) and y € L'(w) } 7

" with y* < 2%, then y € ©(y)
where Li(x) = {y € Ay(L);y? = 27 for any j # i}. We also define
S(L,d) =N Ci(L,d).
By dA4(L), we will denote
ONg(D)\{z € R%: 2% = L+ (1/2) or — L+ (1/2)}.

Lemma A.1. Suppose that d > 2. For each i < d, consider the map
i : C(L,d) 3 v+ () € C;(L,d) which satisfies that for any x € Ag(L)

(A2) ©(7) NLi(2)| = [O(wi(7)) N L (2)].
Then, for each i < d and any v € C(L,d)
(A3) H () > H i)

holds. Moreover, for each i < d and any v € C(L,d) with H* ' (\\dAq4(L))/
H M () <1/2

HTHN\OAG(L)) M (i(7)\0Aa(L))

(A4)

HA=1(y) — HIT i)
and
HITL(N\IA(L)) _ HE(pi(7)\OAa(L))
(A.5) H1() o HE (7))
hold.

See Section 3 of [S02] for the proof of (A.3) and (A.4). To obtain (A.5),
we have only to replace  with d in Section 3 of [S02].

Corollary A.2.  Suppose that d = 3 and v € C(L,3). Then, it holds
that

(A.6) HN\OMS(L)) > TH(3).

Proof. From (A.5), we have only to show (A.6) for all v € S(L,3). For
each v € S(L,3) and each i < 3, we set

Sii(y)=vn{z e R 2" =+L+(1/2)}.
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Let A > 0 be a constant to be specified later. Let us fix v € S(L,3). If
H2(S_3(v)) > AH2(7), then we have that

H2(7)
AT 1 ) S >
(A7) - 70 <2H (S_s(7)) +;[H (S—i(v) —H (S+i(7))]>
> 2\

Hence, we assume that H2(S_3(7)) < AH2(7). Since we can see by the
definition of S(L, 3) that for any i < 3,

2LH(S1a(7) < [O(7)] < 2LH*(S-5(7)),
we have that for any 7 < 3,
(A.8) H?(S4i(7)) < XH2(7).
We have from (A.8) that

H2(y\0As(L)) > 17) <H2(7) - XZ:HQ(SH(’Y)))

(A.9) H2(v) H2( 2
> (1—4N)/2.
Therefore, from (A.7), (A.9) and A = 1/8, we obtained (A.6). O

Corollary A.3.  Suppose that d =2 and v € C(L,2). If

1

(A.10) %@j@)) - i

holds, then we have that

(A.11) H'(y)>8L  and  H'(yNOAy(L)) > 6L,
and that

(A.12) ©(9)] = 3(4L?)/4.

Proof. Let us fix v € C(L,2). Let v/ = g 0 ¢1(7). Assume that H(y) <
8L. Then, we have from (A.3) that H!(7') < 8L. By this and the definition of
~', we can see that

(A.13) Si1(Y) =0 or  Sia(y) =0,
which implies that

(A.14) H (v \OAL (L) /M (') = 1/4.



A lower bound on the spectral gap of the 3-dimensional stochastic Ising models 787

From this and (A.4), we have that
(A.15) M (N\OA2(L))/H' (7) = 1/4,

which contradicts (A.10). Thus, we obtained the first inequality in (A.11).
Since

H' (Y\OA2 (L) /H (v) = 1 = H' (y N 9A2(L))/H' (7),

we can see that the second inequality in (A.11) is also true.

We will show (A.12). Assume that |©(v)| < 3(4L?)/4. Then, we can see
from (A.2) that |©(y')| < 3(4L?)/4, which implies that H'(y'\0A2(L)) > 2L.
By this and the definition of S(L,2), we have that

H(Y\OA2(L))/H' (v') = 2L /8L = 1/4,
which together with (A.4) contradicts (A.10). Thus, we obtained (A.12). O

Added in proof. Let d = 3. We define the surface tension in (0,0, 1)
direction 75 by (see [MMR92])
Z(A3(L), wo)
Z(A3(L), +)

. 1
(A.16) T3 = — Lh_)n;o BL) log

Here, wy is the boundary condition defined in (1.15).

Theorem A.4. Let d = 3. Consider a stochastic Ising model on the
square As(L) with the free boundary condition. Then, there exists By > 0 such
that for any 8 > By and any L € N

(A.17) gap(As(L), ¢) > Bexp(—4873L* — BCL3 (log L)?)
holds, where B = B(c¢m,cap) > 0 and C = C(8) > 0.

From the proof of Proposition 2.2, we can see under the same hypothesis
as in Proposition 2.2 that for any ¢ > 0 and any & > 0 there exists Kg =
Kg(8,¢e,k) > 0 such that for sufficiently large L € N and any «x € A(—L,—L +
M —31),

(A18) gy, ap(o(@) =+1) = pf2 o (0(x) = +1) <eL™.

From this and the same argument as in Section 4 and Appendix in [Ma94] (or
Appendix in [CGMS96]), we can obtain Theorem A.4.
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