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On the coefficient sheaf of equivariant elliptic
cohomology for finite groups I

By

Michimasa Tanabe

1. Introduction

In [3] J. Devoto constructed equivariant elliptic cohomology for any finite
group G of odd order from equivariant oriented cobordism whose coefficient
ring is closely related to G-elliptic systems.

On the other hand V. Ginzburg, M. Kapranov and E. Vasserot, motivated
by study of Yang-Baxter equation, proposed an axiomatic approach to equivari-
ant elliptic cohomology on finite G-CW-complexes for any compact Lie group
G in [4]. Their theory, based on an elliptic curve E over a scheme S, takes its
values in the category of coherent modules over the structure sheaf OM(E,G) of
the moduli scheme M(E,G) (denoted by χG in [4]) of certain semistable prin-
cipal GS-bundles over the elliptic curve E. Here GS = GZ ×SpecZ S and GZ is
the Z-group scheme associated with G. Some examples of such theories were
provided by Grojnowski’s construction of equivariant elliptic cohomology with
complex coefficient for compact connected Lie groups (see the end of Section 1
of [4]) which were used, with suitable modification, by M. Ando [1] and I. Rosu
[23].

The purpose of this note is to study relations between the coefficient sheaf
of the above axiomatic equivariant elliptic cohomology for a finite group G and
the Devoto’s coefficient ring. In this note we only consider the case that the
elliptic curve E is the Weierstrass family Euniv[1/|G|] defined by the equation
y2 = 4x3−g2x−g3 over the scheme S = M(1)[1/|G|] = Spec(Z[1/(6|G|)][g2, g3,
∆−1]) (∆ = g3

2 − 27g2
3). (In the subsequent paper [28] we will study the case

that G is a finite p-group and that S is a Z/pr-scheme for a prime p greater
than 3 and a positive integer r.) In this case we can construct the moduli
scheme M(Euniv[1/|G|], G) as an affine scheme explicitly in terms of (equivari-
ant) modular forms (Theorem 2.3). This construction of the moduli scheme
gives us our main result providing relations between global sections of the coef-
ficient sheaf of axiomatic equivariant elliptic cohomology based on Euniv[1/|G|]
for a finite group G and G-elliptic systems (Theorem 2.7). These results should
be known to many people and in fact we can find a suggestion of such results
in the Introduction of Devoto’s paper [3]. But, as far as I know, there is no

Received December 25, 2001



�

�

�

�

�

�

�

�

716 Michimasa Tanabe

detailed account of it and, hopefully, this paper would give a complement to
Section 3 of [3].

In Section 2 we recall some basic definitions related to equivariant elliptic
cohomology and state our results. In Section 3 we study moduli problem of
G-coverings of elliptic curves with naive level |G| structure by using theory
of etale fundamental groups and construct the moduli scheme M(Ẽuniv, G).
Here Ẽuniv = Euniv[1/|G|] ×M(1)[1/|G|] M(|G|) and M(|G|) is the prime ideal
spectrum of the graded ring R∗(Γ(|G|)naive) of Γ(|G|)naive-modular forms over
Z[1/(6|G|)]. In Section 4 we construct the moduli scheme M(Euniv[1/|G|], G)
as a quotient of M(Ẽuniv, G) by a canonical action of GL2(Z/|G|) obtained
from a canonical action of GL2(Z/|G|) on R∗(Γ(|G|)naive). We also describe
the latter action of GL2(Z/|G|) in terms of Γ(|G|)arith-modular forms over
Z[1/(6|G|), e2πi/|G|] and prove Theorem 2.7 by using a GAGA-type result. For
the convenience of the reader we add two appendices. In Appendix A we give
a brief account of Γ(n)naive and Γ(n)arith-modular forms over Z[1/6]-algebras,
while in Appendix B we compute the etale fundamental group of an elliptic
curve over an algebraically closed field.

I would like to thank Jack Morava for introducing me to the work of
Ginzburg, Kapranov and Vasserot [4] and useful conversations. I also would
like to thank Shin-ichiro Takayasu for helpful discussions.

2. Basic definitions and statement of results

Let G be a finite group. (From now on we fix a finite group G.) A finite
etale surjective morphism of locally noetherian schemes Y → X (In this note all
schemes are assumed to be locally noetherian in order to quote several results
from [17] and [19].) is said to be Galois with Galois group G (or a G-covering
of X) if G acts on Y (say, on the right) as X-morphisms and the map

GY −→ Y ×X Y ((y, g) �→ (y, yg) on points)

is an isomorphism. Here GY is the group scheme over Y given by Y × G =∐
g∈G Yg (Yg = Y (∀g ∈ G)) with obvious group scheme structure. We denote

by π1(X,G) the set of isomorphism classes of G-coverings of X.
Let S be a locally noetherian scheme. An S-scheme E is said to be an

elliptic curve over S if the morphism E → S is proper and smooth and its
geometric fibers are all connected curves of genus one equipped with a section
i : S → E. (In this note a geometric point means a morphism from the prime
ideal spectrum of an algebraically closed field.) Let ωE denote the invertible
sheaf i∗Ω1

E/S on S. Let (Sch/S) and (Sets) denote the category of locally
noetherian S-schemes and the one of sets respectively. Let

π1
E,G : (Sch/S) −→ (Sets)

be the functor defined by

π1
E,G(T ) = π1(ET , G) (∀T ∈ (Sch/S))

where ET = E ×S T .
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On the coefficient sheaf of equivariant elliptic cohomology for finite groups I 717

Definition 2.1. A locally noetherian S-scheme M together with a nat-
ural transformation φ(?) : π1

E,G(?) → hM (?) = (Sch/S)(?,M) is said to be a
coarse moduli scheme if

(1) For any locally noetherian S-scheme N together with a natural trans-
formation ψ : π1

E,G → hN there is a unique S-morphism χ : M → N such
that ψ = (χ◦)φ, where χ◦ denotes the natural transformation from hM to hN
induced by χ in the obvious way.

(2) φ(s̄) : π1
E,G(s̄) → hM (s̄) is bijective for every geometric point s̄ of S.

(I could not find a reference for the existence of a coarse moduli scheme
in the above sense for arbitrary elliptic curves and finite groups but we will
construct it in our case explicitly in Section 4.) We should remark that a
coarse moduli scheme M is unique up to canonical isomorphism, if it exists,
by the first property. Let M(E,G) denote the coarse moduli scheme in the
above sense (if it exists) and pE,G : M(E,G) → S be the S-scheme structure
on M(E,G). Let ωE,G denote the invertible sheaf p∗E,GωE on M(E,G). Then
the coefficient sheaf of an equivariant elliptic cohomology Ell∗G(?), based on an
elliptic curve E, on finite G-CW-complexes is defined by

EllkG(pt) =

{
ω
⊗− k

2
E,G (k even),

0 (k odd).

Remark 2.2. A counter example to Hopkins-Kuhn-Ravenel conjecture
given by I. Kriz [13] suggests that we should have non-trivial Ellodd

G (pt) in
general if S is not a Z[1/|G|]-scheme.

Let R∗(n) = R∗(Γ(n)naive) be the graded ring of Γ(n)naive-modular forms
over Z[1/6] [10, Chapter II] (see Appendix A) and M(n) = SpecR∗(n). In
particular we have R∗(1) = Z[1/6][g2, g3,∆−1] (∆ = g3

2 − 27g2
3). Let Euniv be

the elliptic curve over M(1) defined by the Weierstrass equation y2 = 4x3 −
g2x − g3 and Euniv[1/|G|] = Euniv ×M(1) M(1)[1/|G|], where M(1)[1/|G|] =
M(1) ×SpecZ[1/6] SpecZ[1/(6|G|)]. (We will often suppress [1/|G|] from our
notation.)

Let C2(G) denote the quotient set of Ĉ2(G) = Hom(Z/|G| × Z/|G|, G)
divided by the obvious conjugation action of G. Then we have a left action
of GL2(Z/|G|) on C2(G) by using a canonical right action of GL2(Z/|G|) on
Z/|G| × Z/|G|. (Here we regard every element of Z/|G| × Z/|G| as a row
vector.) Let R∗(Euniv[1/|G|], G) denote the graded ring of all GL2(Z/|G|)-
equivariant maps MapGL2(Z/|G|)(C2(G), R∗(|G|)) from C2(G) to R∗(|G|) with
obvious ring structure and grade. Here the left action ofGL2(Z/|G|) on R∗(|G|)
is a canonical one described in Section 4.

With the above notation we have

Theorem 2.3.

M
(
Euniv

[
1
|G|

]
, G

)
= SpecR∗

(
Euniv

[
1
|G|

]
, G

)
.
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718 Michimasa Tanabe

Now the invertible sheaf ωEuniv,G = p∗Euniv,G
i∗Ω1

Euniv/M(1) on M(Euniv[1/
|G|], G) is trivial via an isomorphism obtained by choosing a nowhere vanishing
invariant differential ω on Euniv[1/|G|], say ωuniv = dx/y. We denote the
trivialization obtained by choosing a nowhere vanishing invariant differential ω
by

ϕω : ωEuniv,G

∼=−→ OM(Euniv [ 1
|G| ],G),

where OM(Euniv [1/|G|],G) is the structure sheaf of M(Euniv[1/|G|], G).
For every integer k let Ell[1/|G|]2kG (pt) denote the group of all global sec-

tions of the invertible sheaf ω⊗−k
Euniv,G

on M(Euniv[1/|G|], G). Then we have

Corollary 2.4. For every integer k there is an isomorphism of
R∗(Euniv[1/|G|], G)-modules

Ell
[

1
|G|

]2k

G
(pt)

∼=−→ R∗
(
Euniv

[
1
|G|

]
, G

)
which is canonically determined by choosing a nowhere vanishing invariant dif-
ferential on Euniv[1/|G|].

Next consider a canonical action of R0(1)× on R∗(|G|) given by

(λ, f) �→ f(Ẽuniv, λ
−1ω̃univ, αuniv) (∀λ ∈ R0(1)×, ∀f ∈ R∗(|G|)).

Here Ẽuniv is the elliptic curve Euniv ×M(1) M(|G|) over M(|G|), ω̃univ is the
nowhere vanishing invariant differential on Ẽuniv obtained from ωuniv and αuniv

is a fixed naive level |G| structure on Ẽuniv. (Note that M(|G|) has a standard
M(1)-scheme structure (see the begining of Section 4).) This action induces an
action of R0(1)× on R(Euniv, G) in obvious way and hence we get a canonical
action of R0(1)× on M(Euniv, G). We also have an action of R0(1)× on ωEuniv,G

given as follows. For any λ ∈ R0(1)× we have an isomorphism

ϕλ : λ∗ωEuniv,G

∼=−→ ωEuniv,G

given by the composition

λ∗ωEuniv,G

ϕωuniv−−−−→ λ∗OM(Euniv,G)

∼=−−−−→ OM(Euniv,G)

ϕ−1
λωuniv−−−−−→ ωEuniv,G,

where the second isomorphism is the obvious one induced by R0(1)×-action
on M(Euniv, G). It is easy to see that these ϕλ make ωEuniv,G an R0(1)×-
equivariant invertible sheaf. Let Ell[1/|G|]2kG (pt)R

0(1)× denote the subgroup of
Ell[1/|G|]2kG (pt) consisting of all invariant sections with respect to this action
of R0(1)×. Then we can easily prove that

Corollary 2.5. The isomorphism in Corollary 2.4 obtained from ϕωuniv

induces an isomorphism

Ell
[

1
|G|

]2k

G
(pt)R

0(1)× ∼=−→ R−k
(
Euniv

[
1
|G|

]
, G

)
.
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Next we restate the above result in analytic terms. Let H = {τ ∈ C| Imτ >
0}. Then we have a standard left action of SL2(Z) on H given by

(A, τ ) �→ Aτ =
aτ + b

cτ + d

(
∀A =

(
a b
c d

)
∈ SL2(Z), ∀τ ∈ H

)
.

Let F (H, G) denote the C-algebra of all C-valued functions on Ĉ2(G)×H. For
every A =

(
a b
c d

) ∈ SL2(Z) and τ ∈ H let j(A, τ ) = cτ + d. Then for every
integer k we have a right action of SL2(Z) ×G on F (H, G)

F (H, G) × (SL2(Z) ×G) −→ F (H, G) ((f, (A, g)) �→ f |[A, g]k)
defined by

f |[A, g]k(θ, τ ) = j(A, τ )−kf(g(Aθ)g−1, Aτ ) (∀θ ∈ Ĉ2(G), ∀τ ∈ H).

Here the left action of SL2(Z) on Ĉ2(G) is induced by the standard right action
on Z/|G| × Z/|G|.

Definition 2.6. Let Rkan(Euniv[1/|G|], G) denote the subgroup of
F (H, G) consisting of all functions

f : Ĉ2(G) ×H −→ C

satisfying:
(1) f |[A, g]k = f (∀A ∈ SL2(Z), ∀g ∈ G).
(2) For every θ ∈ Ĉ2(G) the function

fθ : H −→ C (τ �→ f(θ, τ ))

is holomorphic on H and meromorphic at i∞ having Fourier expansion of the
form fθ(τ ) =

∑
j�−∞ fθ,jq

j with q = e2πiτ/|θ(1,0)|.
(3) In the above expansion, fθ,j ∈ Z[1/(6|G|), e2πi/|θ(1,0)|] (∀j) and fθσ,j =

σfθ,j (∀σ ∈ (Z/|G|)×, ∀j) where (Z/|G|)× (= Gal(Q(e2πi/|G|)/Q)) acts on
Ĉ2(G) via the multiplication on the first factor of Z/|G| × Z/|G| and on
Z[1/(6|G|), e2πi/|θ(1,0)|] by the standrd Galois action.

(This definition should be compared with the definition of Devoto’s coef-
ficient ring [3, Definition 3.2].) These functions could be viewed as a kind of
class functions in theory of G-elliptic systems (see [16] and [20]). They have
certain integrality and Galois invariance properties (Property 3 in the above
definition) which make them close to genuine G-elliptic systems to some extent
(cf. [3, Remark 3.4]). Now our main result is

Theorem 2.7. The isomorphism in Corollary 2.5 induces a canonical
isomorphism

Ell
[

1
|G|

]2k

G
(pt)R

0(1)× ∼=−→ R−k
an

(
Euniv

[
1
|G|

]
, G

)
.
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Remark 2.8. The above result might be viewed as an analogue for fi-
nite groups of Theorems 10.6 and 11.7 of Ando [1] in spite of lack of appropriate
objects corresponding to positive energy representations of loop groups of com-
pact connected Lie groups. It would be very important to find such objects for
finite groups with full generality. (Ideally, such objects should recover positive
energy representations of loop groups in some sense.)

3. Moduli of G-coverings of elliptic curves with naive level |G| struc-
ture

The purpose of this section is to prove the following key result. Let
R∗(Ẽuniv, G) = Map(C2(G), R∗(|G|)). Then we have

Theorem 3.1.

M(Ẽuniv, G) = SpecR∗(Ẽuniv, G).

To prove the above theorem we first recall some basic facts about etale
fundamental groups of schemes and their relations to Galois coverings. Let
X be a connected scheme and x̄ → X be a geometric point. (Recall that all
schemes are assumed to be locally noetherian in this note.) Let (FEt/X) denote
the category of X-schemes finite etale over X. Let (π1(X, x̄)-sets) denote the
category of finite sets on which π1(X, x̄) acts continuously on the left. Here
π1(X, x̄) is the etale fundamental group of X based on x̄ which is a profinite
group with usual inverse limit topology. Then we have

Theorem 3.2 ([19, 4.4.1] and [17, I 5.3]). (1) There is an equivalence
of categories

F : (FEt/X)
∼=−→ (π1(X, x̄)-sets)

given by F (Y ) = (Sch/X)(x̄, Y ) (∀Y ∈ (FEt/X)). We call this F a fundamen-
tal functor on (FEt/X) based on x̄.

(2) Let x̄′ → X be any other geometric point. Then there is a continuous
isomorphism

π1(X, x̄′)
∼=−→ π1(X, x̄)

which is canonically determined up to an inner automorphism of π1(X, x̄).

Let f : Y → X be a morphism of connected schemes. Let ȳ → Y be a
geometric point of Y and f(ȳ) denote the geometric point ȳ → Y → X of X.
Let FX (resp. FY ) be the fundamental functor on (FEt/X) (resp. (FEt/Y ))
based on f(ȳ) (resp. ȳ). Then we have

Lemma 3.3 ([19, 5.1]). (1) There is a unique continuous homomor-
phism

f∗ : π1(Y, ȳ) −→ π1(X, f(ȳ))
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such that the diagram:

(FEt/X) FX−−−−→ (π1(X, f(ȳ))-sets)� �
(FEt/Y ) −−−−→

FY

(π1(Y, ȳ)-sets)

is commutative where the left vertical arrow is given by Z �→ Z ×X Y (∀Z ∈
(FEt/X)) and the right vertical arrow is induced by the above homomorphism
in obvious way.

(2) Let ȳ′ → Y be any other geometric point. Then the diagram:

π1(Y, ȳ′)
f∗−−−−→ π1(X, f(ȳ′))

∼=
� �∼=

π1(Y, ȳ) −−−−→
f∗

π1(X, f(ȳ))

is commutative up to an inner automorphism of π1(X, f(ȳ)).

We also have

Theorem 3.4 ([19, 6.3.2.1]). Let f : Y → X be a proper separable mor-
phism of connected schemes such that OX

∼=−→ f∗OY . Then there is an exact
sequence of profinite groups

π1(Yf(ȳ), ȳ)
j∗−→ π1(Y, ȳ)

f∗−→ π1(X, f(ȳ)) −→ 1,

where ȳ → Y is a geometric point and j : Yf(ȳ) = Y ×X f(ȳ) → Y is the
geometric fiber of f on f(ȳ).

(In [19] this result is only stated in the case that f(ȳ) = Speck(x) → X
for some x ∈ X, but this restriction is unnecessary (see [19, 7.3.2]).)

Next we consider the relations between fundamental groups and Galois
coverings. Let Y → X be a G-covering of connected X. Then we have an
isomorphism

GY
∼=−→ Y ×X Y ((y, g) �→ (y, yg)).

Applying the fundamental functor F based on x̄ we have an isomorphism in
(π1(X, x̄)-sets)

F (Y ) ×G
∼=−→ F (Y ) × F (Y ) ((y, g) �→ (y, yg)).

Thus by choosing a base point y0 ∈ F (Y ) we have a continuous homomorphism

ρ(X, x̄, Y ) : π1(X, x̄) −→ G



�

�

�

�

�

�

�

�

722 Michimasa Tanabe

defined by σy0 = y0[ρ(X, x̄, Y )(σ)] (∀σ ∈ π1(X, x̄)).
Now replacing y0 by any other element we get another continuous homo-

morphism which differs from the previous one only by an inner automorphism
of G. Therefore the above ρ(X, x̄, Y ) gives a unique element ρ̄(X, x̄, Y ) of
Rep(π1(X, x̄), G) which is independent on the choice of a base point of F (Y ).
Here Rep(π1(X, x̄), G) denotes the quotient set of Homcont(π1(X, x̄), G) divided
by the obvious conjugation action of G. Thus, as an immediate consequence of
Theorem 3.2, we have

Lemma 3.5 (cf. [17, I 5.4]). (1) With the above notation there is a ca-
nonical bijection

ρ̄(X, x̄) : π1(X,G)
∼=−→ Rep(π1(X, x̄), G)

given by [Y ] �→ ρ̄(X, x̄, Y ) (∀[Y ] ∈ π1(X,G)).
(2) Let x̄′ → X be any other geometric point. Then the diagram:

π1(X,G)
ρ̄(X,x̄)−−−−→ Rep(π1(X, x̄), G)

=

� �∼=

π1(X,G) −−−−−→
ρ̄(X,x̄′)

Rep(π1(X, x̄′), G)

is commutative where the right vertical arrow is induced by any canonical iso-
morphism

π1(X, x̄′)
∼=−→ π1(X, x̄).

We also have the following result as a simple application of Lemma 3.3.

Lemma 3.6. Let f : Y → X be a morphism of connected schemes.
Then the diagram:

π1(X,G)
ρ̄(X,f(ȳ))−−−−−−→ Rep(π1(X, f(ȳ)), G)� �◦f∗

π1(Y,G) −−−−→
ρ̄(Y,ȳ)

Rep(π1(Y, ȳ), G)

is commutative where the left vertical arrow is given by [Z] �→ [Z×X Y ] (∀[Z] ∈
π1(X,G)) and the right vertical arrow is induced by the canonical homomor-
phism

f∗ : π1(Y, ȳ) −→ π1(X, f(ȳ)).

Now we will apply the above general theory to elliptic curves with naive
level |G| structure. Let n be the order of G and T be a connected Z[1/n]-
scheme. Let E be an elliptic curve over T with a naive level n structure

α : (Z/n× Z/n)T
∼=−→ E[n],
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where E[n] denotes the kernel of multiplication by n map [n] : E → E. Then
we have a standard Z/n×Z/n-covering of E, which plays a fundametal role in
the proof of Theorem 3.1, associated with α as follows. Let E(n) denote the
E-scheme [n] : E → E which is finite etale surjective morphism. There is a
canonical action of Z/n× Z/n on E(n) over E defined by the composition

E(n) ×T (Z/n× Z/n)T
1E(n)×α−−−−−→ E(n) ×T E[n] −−−−→ E(n),

where the second morphism is induced by the group scheme structure on E.
Then E(n) with this Z/n× Z/n-action is easily seen to be Galois with Galois
group Z/n × Z/n. We will denote the resulting Z/n × Z/n-covering of E by
E(α).

Next we will construct a canonical map

θ(E,α) : π1(E,G) −→ C2(G)

for the above E with α. Let t̄ → T be a geometric point. Then according to
Appendix B we have an exact sequence of abelian groups

0 −−−−→ C(n) −−−−→ π1(Et̄, i(t̄))
ρ(αt̄)−−−−→ Z/n× Z/n −−−−→ 0

such that the image of C(n) is contained in nπ1(Et̄, i(t̄)). Here j : Et̄ → E
is the geometric fiber on t̄ which is an elliptic curve over t̄ with section i and
naive level n structure αt̄ induced by those of E and ρ(αt̄) = ρ(Et̄, i(t̄), Et̄(αt̄)).
Hence we have a bijection

◦ρ(αt̄) : C2(G) = Rep(Z/n× Z/n,G)
∼=−→ Rep(π1(Et̄, i(t̄)), G).

Now we define

θ(E,α) : π1(E,G) −→ C2(G)

by the composition

π1(E,G)
ρ̄−−→ Rep(π1(E, i(t̄)), G)

◦j∗−−−→ Rep(π1(Et̄, i(t̄)), G) θ−−→ C2(G).

Here ρ̄ = ρ̄(E, i(t̄)) and θ = (◦ρ(αt̄))−1 = (◦(ρ(E, i(t̄), E(α))j∗))−1. (In the
defining equation of θ the second equality holds by Lemma 3.6.) We can show
that this θ(E,α) is independent on the choice of a geometric point t̄ by routine
diagram chasing with the aid of Lemmas 3.5 and 3.6 and Theorem 3.4. (We
should remark that we can apply Theorem 3.4 to any elliptic curve over con-
nected base (see [6, Corollary 1.9.12]).) By the above construction θ(E,α) is
bijective if T = SpecK with K algebraically closed field (of characteristic 0 or
prime to n) and natural with respect to arbitrary base change T ′ → T with T ′

connected. Summarizing, we have shown that

Proposition 3.7. Let T be a connected Z[1/|G|]-scheme and E be an
elliptic curve over T with naive level |G| structure α. Then there is a canonical
map

θ(E,α) : π1(E,G) −→ C2(G)

such that :
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724 Michimasa Tanabe

(1) It is bijective if T = SpecK with K algebraically closed field (of char-
acteristic 0 or prime to |G|).

(2) It is natural with respect to arbitrary base change T ′ → T with T ′

connected.

Now we will prove Theorem 3.1.

Proof of Theorem 3.1. Let M̃G = SpecR∗(Ẽuniv, G) with M(n)-scheme
structure obtained by regarding R∗(n) as a subring of R∗(Ẽuniv, G) consisting
of all constant maps from C2(G) to R∗(n). (Recall that n denotes the order of
G.) Let π̃1 (resp. h̃) denote the functor π1

Ẽuniv,G
(resp. (Sch/M(n))(?, M̃G)).

Then it is clear that there is a unique natural transformation on (Sch/M(n))

φ̃(?) : π̃1(?) −→ h̃(?)

such that, for any connected M(n)-scheme T , φ̃(T ) coincides with

π̃1(T ) = π1((Ẽuniv)T , G)
θ((Ẽuniv)T ,(αuniv)T )−−−−−−−−−−−−−→ C2(G) = h̃(T ).

This natural transformation clearly satifies the second proprty in Definition
2.1. To prove that this φ̃ satisfies the first property we first construct a right
inverse of φ̃. It is easy to see that there is a unique natural transformation

ι̃(?) : h̃(?) −→ π̃1(?)

such that ι̃(T ) coincides, for any connected M(n)-scheme T with any geometric
point t̄→ T , with the composition

h̃(T ) = C2(G) = Rep(Z/n× Z/n,G)
◦ρ((αuniv)T )−−−−−−−−→

Rep(π1((Ẽuniv)T , i(t̄)), G)
(ρ̄T )−1

−−−−→ π1((Ẽuniv)T , G) = π̃1(T ),

where ρ((αuniv)T ) = ρ((Ẽuniv)T , i(t̄), (Ẽuniv)T ((αuniv)T )) and ρ̄T = ρ̄((Ẽuniv)T ,
i(t̄)). It is clear that this ι̃ gives a right inverse of φ̃. Now consider any
M(n)-scheme N together with a natural transformation ψ̃ : π̃1 → h̃N =
(Sch/M(n))(?, N). Let

χ̃ : M̃G −→ N

be a unique M(n)-morphism such that

χ̃◦ = ψ̃ι̃ : h̃ −→ h̃N .

For any connected M(n)-scheme T and any [X] ∈ π̃1(T ) there is a finite etale
surjective M(n)-morphism f : T ′ → T such that

π̃1(f)([X]) = π̃1(f)((ι̃(T )φ̃(T ))([X]))
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by the proposition below. Thus we have

(ψ̃(T )([X]))f = (ψ̃(T ′)π̃1(f))([X])

= (ψ̃(T ′)π̃1(f)ι̃(T )φ̃(T ))([X])

= ((ψ̃(T )ι̃(T )φ̃(T ))([X]))f

= (((χ̃◦)(T )φ̃(T ))([X]))f.

Since

◦f : (Sch/M(n))(T,N) −→ (Sch/M(n))(T ′, N)

is injective (see [19, 3.4.2.1] and [17, I 2.17]) we have

ψ̃(T )([X]) = ((χ̃◦)(T )φ̃(T ))([X]).

Therefore ψ̃(T ) = (χ̃◦)(T )φ̃(T ) for every connected M(n)-scheme T and hence
ψ̃ = (χ̃◦)φ̃ on (Sch/M(n)). The uniqueness of such a χ̃ is trivial since we have
a right inverse ι̃ of φ̃. This completes the proof of Theorem 3.1 assuming the
following proposition.

Proposition 3.8. For any connected M(n)-scheme T and any [X] ∈
π̃1(T ) there is a finite etale (necessarily) surjective M(n)-morphism f : T ′ → T
with T ′ connected such that

π̃1(f)([X]) = π̃1(f)((ι̃(T )φ̃(T ))([X])).

Proof. By the argument preceding to Proposition 3.7 and the definition
of φ̃ we have

(◦j∗)(ρ̄T ([X])) = ((◦j∗)(◦ρ((αuniv)T )))(φ̃(T )([X])),

where j : (Ẽuniv)t̄ → (Ẽuniv)T is the geometric fiber on a fixed geometric point
t̄ of T .

On the other hand there is a finite etale (necessarily) surjective M(n)-
morphism f : T ′ → T with T ′ connected such that

(◦i∗f∗)(ρ̄T ([X])) = (◦i∗f∗)((◦ρ((αuniv)T ))(φ̃(T )([X]))) = the trivial class

since any two G-coverings of T can be simultaneously trivialized by some finite
etale surjective base change.

Now applying Theorem 3.4 to (Ẽuniv)T → T we can easily prove that

(◦f̃∗)(ρ̄T ([X])) = (◦f̃∗)((◦ρ((αuniv)T ))(φ̃(T )([X])))

by the above two equalities, where f̃ : (Ẽuniv)T ′ → (Ẽuniv)T is the canonical
projection. Therefore we have

π̃1(f)([X]) = π̃1(f)((ι̃(T )φ̃(T ))([X]))
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as desired.

4. GL(2)-action on Γ(|G|)naive-modular forms and the proof of
Theorems 2.3 and 2.7

In this section we will prove Theorems 2.3 and 2.7. First note that we have
a canonical left GL2(Z/n)-action on R∗(n) defined by

(A, f) �→ f(Ẽuniv, ω̃univ, A
−1αuniv) (∀A ∈ GL2(Z/n), ∀f ∈ R∗(n)),

where A−1αuniv is a naive level n structure on Ẽuniv given by the composition

(Z/n× Z/n)M(n)
A−1

−−−−→ (Z/n× Z/n)M(n)
αuniv−−−−→ Ẽuniv[n].

(Here n denotes the order of G as before.) This action induces a canonical right
action on M(n). We also have a canonical injection

R∗(1) −→ R∗(n) (f �→ f(Ẽuniv, ω̃univ)).

Hence we have a canonical morphism

M(n) −→M(1)

and we can prove that this morphism is Galois with Galois group GL2(Z/n)
acting on M(n) as defined above (cf. [12, 2.3.1 and 4.6] and [6, Section 2.6.2]).
Now we also get an induced action of GL2(Z/n) on M̃G = M(Ẽuniv, G) given,
on the coordinate ring, by

(A, f) �→ AfA−1 (∀f ∈ R∗(Ẽuniv, G)).

Let MG be a quotient of M̃G by this action; explicitly given by MG =
SpecR∗(Euniv, G). Then MG has a unique M(1)-scheme structure such that
the diagram:

M̃G −−−−→ MG� �
M(n) −−−−→ M(1)

is commutative.
Now we prove Theorem 2.3.

Proof of Theorem 2.3. Let π1 denote the functor

π1
Euniv,G : (Sch/M(1)) −→ (Sets).

For every M(1)-scheme T let T̃ = T ×M(1) M(n) which is the GL2(Z/n)-
covering of T obtained from M(n) → M(1) by the base change T → M(1).
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(To distinguish MG×M(1)M(n) from M̃G = M(Ẽuniv, G) we denote the former
by (MG)∼.) Then we have a natural map

×M(1)M(n) : π1(T ) −→ π1(T̃ ) = π̃1(T̃ ) ([X] �→ [X ×M(1) M(n)]),

where π̃1 is as in Section 3. Let

φ′(T ) : π1(T ) −→ h̃(T̃ )

be the composition

π1(T )
×M(1)M(n)−−−−−−−→ π1(T̃ ) = π̃1(T̃ )

φ̃(T̃ )−−−−→ h̃(T̃ ),

where φ̃ and h̃ are as in Section 3. To prove that every element of Imφ′(T )
is GL2(Z/n)-equivariant we need to describe the GL2(Z/n)-action on M̃G in
terms of G-coverings. For every M(n)-scheme T and every A ∈ GL2(Z/n) we
denote by TA the M(n)-scheme T −→M(n) A−→M(n). For every [X] ∈ π̃1(T )
let [X]A ∈ π̃1(TA) denote the isomorphism class of the same G-covering X →
(Ẽuniv)T regarded as one of (Ẽuniv)TA . (Note that (Ẽuniv)TA is the same as
(Ẽuniv)T when we disregard M(n)-scheme structure.) Then we have

Lemma 4.1. For every M(n)-scheme T and A ∈ GL2(Z/n) the dia-
gram:

π̃1(T )
φ̃(T )−−−−→ h̃(T )

[ ]A
� �A◦

π̃1(TA)
φ̃(TA)−−−−→ h̃(TA)

is commutative where the right vertical arrow is induced by the action of A on
M̃G.

Proof. Easy by the construction of φ̃, or θ(E,α) in Proposition 3.7, and
the fact that for every M(n)-scheme T and every A ∈ GL2(Z/n) the elliptic
curve (Ẽuniv)TA with naive level n structure (αuniv)TA is nothing but the elliptic
curve (Ẽuniv)T with naive level n structure (A−1αuniv)T when we disregard
M(n)-scheme structure.

Now it is easily seen that for any M(1)-scheme T every element of Imφ′(T )
is GL2(Z/n)-equivariant by using the above lemma and the fact that for every
[X] ∈ π1(T ) and A ∈ GL2(Z/n), [X ×M(1) M(n)]A ∈ π̃1(T̃A) is obtained from
[X ×M(1) M(n)] ∈ π̃1(T̃ ) by the base change 1T × A : T̃A → T̃ . Hence we can
consider φ′(T ) as a map

φ′(T ) : π1(T ) −→ h̃(T̃ )GL2(Z/n),

where h̃(T̃ )GL2(Z/n) denotes the subset of h̃(T̃ ) consisting of all GL2(Z/n)-
equivariant morphisms. Therefore we have a natural transformation on
(Sch/M(1))
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φ(?) : π1(?) −→ h(?) = (Sch/M(1))(?,MG)

defined by the composition

π1(T )
φ′(T )−−−−→ h̃(T̃ )GL2(Z/n) divide by GL2(Z/n)−−−−−−−−−−−−−→ h(T ),

where the second map sends every f̃ ∈ h̃(T̃ )GL2(Z/n) to a unique element
f ∈ h(T ) such that the diagram:

T̃
f̃−−−−→ M̃G� �

T −−−−→
f

MG

is commutative. It is easy to prove that this φ satisfies the second property in
Definition 2.1 since we can easily show that every geometric point x̄ → M(1)
can be factored into x̄→M(n) →M(1) and that the map

h̃(x̄) −→ h(x̄)

induced by M̃G → MG is bijective. To prove that φ also satisfies the first
property let N be any M(1)-scheme together with a natural transformation
ψ : π1 → hN = (Sch/M(1))(?, N). Then we have a natural transformation on
(Sch/M(n))

ψ̃(?) : π̃1(?) −→ h̃Ñ (?) = (Sch/M(n))(?, Ñ)

defined by the composition

ψ̃(T ) : π̃1(T ) = π1(T )
ψ(T )−−−−→ hN (T )

×M(1)M(n)−−−−−−−→ h̃Ñ (T̃ ) ◦eT−−−−→ h̃Ñ (T ).

Here the second map sends every f ∈ hN (T ) to f×1M(n) ∈ h̃Ñ (T̃ ) and the third
map is induced by a canonical section eT of T̃ → T obtained from the diagonal
morphism M(n) →M(n)×M(1)M(n). Thus we have a unique M(n)-morphism
χ̃ : M̃G → Ñ such that ψ̃(T ) = (χ̃◦)φ̃(T ) for every M(n)-scheme T . It is not
difficult to prove that for every A ∈ GL2(Z/n), Aχ̃A−1 also satisfies the above
equality by using Lemma 4.1 and the definition of ψ̃. Hence χ̃ is GL2(Z/n)-
equivariant by using the uniqueness of χ̃ satisfying the above equality. Thus,
passing to quotient, we get an M(1)-morphism χ : MG → N and the equality
ψ(T ) = (χ◦)φ(T ) for every M(1)-scheme T obtained from χ̃ and the equality

ψ̃(T̃ )(×M(1)M(n)) = (χ̃◦)φ̃(T̃ )(×M(1)M(n)) = (χ̃◦)φ′(T )

respectively. (Note that we have

ψ(T̃ )(×M(1)M(n)) = (pN◦)(×M(1)M(n))ψ(T ),
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where pN : Ñ → N is the canonical projection.)
Conversely from such χ we get χ̃ : M̃G → Ñ as the composition

M̃G −−−−→ (MG)∼
χ×1M(n)−−−−−−→ Ñ

which can easily be shown to satisfy ψ̃(T ) = (χ̃◦)φ̃(T ) for every M(n)-scheme
T . Here the first morphism is the canonical one obtained from M̃G →MG and
M̃G →M(n) by the universality of pull-back. Therefore the uniquness of such
a χ is guaranteed by the uniquness of χ̃. This completes the proof of Theorem
2.3.

Next we will prove Theorem 2.7.

Proof of Theorem 2.7. LetR∗
arith(n) = R∗(Γ(n)arith)[1/n, ζ] be the graded

ring of Γ(n)arith-modular forms over Z[1/6n, ζ] [10, Chapter II] (see Appendix
A). Here ζ denotes a primitive n-th root of unity e2πi/n. Let Ēuniv be the elliptic
curve Euniv×M(1)M(Γ(n)arith)[1/n, ζ] overM(Γ(n)arith)[1/n, ζ] = SpecR∗

arith(n)
with nowhere vanishing invariant differential ω̄univ obtained from ωuniv and
arithmetic level n structure βuniv. (Here the M(1)-scheme structure on
M(Γ(n)arith)[1/n, ζ] is a standard one (cf. the begining of this section).) Now
for any elliptic curve E over any Z[1/6n, ζ]-algebra B we may identify arith-
metic level n structures on E with naive level n structures on E of determinant
ζ · 1 ∈ µprim

n (B) [10, 2.0.8]. Hence we have a unique naive level n structure
ᾱuniv on Ēuniv corresponding to βuniv. We also have a unique arithmetic level
n structure β̃univ on Ẽuniv corresponding to αuniv since we can make R∗(n) into
a Z[1/6n, ζ]-algebra via the ring homomorphism

Z
[

1
6n
, ζ

]
−→ R∗(n) (ζ �→ detαuniv).

Therefore we have an isomorphism of graded Z[1/6n, ζ]-algebras

R∗(n)
∼=−→ R∗

arith(n) (f �→ farith)

defined by

farith = f(Ēuniv, ω̄univ, ᾱuniv)

whose inverse is

R∗
arith(n)

∼=−→ R∗(n) (f �→ fnaive)

defined by

fnaive = f(Ẽuniv, ω̃univ, β̃univ).

Next we investigate the behavior of the GL2(Z/n)-action on R∗(n) under
the above isomorphism. For every A ∈ SL2(Z/n) we denote by Aβuniv the
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arithmetic level n structure on Ēuniv corresponding to Aᾱuniv. Then we have
a canonical SL2(Z/n)-action on R∗

arith(n) given by

(A, f) �→ f(Ēuniv, ω̄univ, A
−1βuniv) (∀A ∈ SL2(Z/n), ∀f ∈ R∗

arith(n)).

For every Z[1/6n, ζ]-algebra B and σ ∈ (Z/n)× we denote by Bσ the Z[1/6n, ζ]-
algebra whose underlying Z[1/6n]-algebra is B and the action of Z[1/6n, ζ] on
it is given by

(ζ, b) �→ ζσ · b (∀b ∈ Bσ = B).

Then for any Γ(n)arith-test object (E,ω, β) over B we denote by (E,ω, β)σ the
same Γ(n)arith-test object regarded as one over Bσ. Then we have a canonical
(Z/n)×-action on R∗

arith(n) (acting as Z[1/6n]-algebra automorphisms) given
by

(σ, f) �→ f((Ēuniv, ω̄univ, βuniv)σ) (∀σ ∈ (Z/n)×, ∀f ∈ R∗
arith(n)).

Now we have

Lemma 4.2. For every A ∈ SL2(Z/n), σ ∈ (Z/n)× and f ∈ R∗(n) we
have

(Af)arith = A(farith)

and

(Aσf)arith = σ(farith),

where Aσ = ( σ 0
0 1 ) ∈ GL2(Z/n).

Proof. Clear by definitions.

We also have

Lemma 4.3. For every f ∈ R∗
arith(n) let f(q) =

∑
j�−∞ fjq

j denote
the q-expansion f(Tate(qn), ωcan, βcan) ∈ Z[1/6n, ζ]((q)) of f . Then we have

(σf)(q) =
∑

j�−∞
(σfj)qj ,

where σ ∈ (Z/n)× (= Gal(Q(ζ)/Q)) acts on Z[1/6n, ζ] by the standard Galois
action.

Proof. Clear by using the fact that the Γ(n)arith-test object (Tate(qn),
ωcan, βcan)σ is obtained from (Tate(qn), ωcan, βcan) by the extension of scalars
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Z
[

1
6n
, ζ

]
((q)) −→

(
Z

[
1
6n
, ζ

]
((q))

)σ ∑
j

gjq
j �→

∑
j

(σgj)qj

 .

Now by using a GAGA-type result and q-expansion principle [10, 2.4 and
2.2.8] (cf. [9, 1.6, A1.1 and A1.2] and [6, Sections 2.4 and 3.1.1]) with the aid
of Lemmas 4.2 and 4.3, it is not difficult to prove that the map

R∗(Euniv, G) −→ F (H, G) (f �→ fan)

defined by

fan(θ, τ ) = f([θop])arith(C/Z + Zτ, dz, βτ ) (∀θ ∈ Ĉ2(G), ∀τ ∈ H)

induces an isomorphism of graded rings

R∗(Euniv, G)
∼=−→ R∗

an(Euniv, G),

where

βτ : µn(C) × Z/n
∼=−→ 1

n
(Z + Zτ )/Z + Zτ

(
(ζl,m) �→ l +mτ

n

)
and [θop] ∈ C2(G) denotes the equivalence class of ( 0 1

1 0 ) θ ∈ Ĉ2(G). (Note
that GL2(Z/n) is generated by elements Aσ (σ ∈ (Z/n)×) and elements in
SL2(Z/n).) This completes the proof of Theorem 2.7.

Appendix A. Review of Γ(n)naive and Γ(n)arith-moduli problems over
Z[1/6]

In this appendix we will give a brief account of Γ(n)naive and Γ(n)arith-
modular forms in the sense of Katz [10, Chapter II]. Our main references are
[10, Chapter II], [12] and [6, Chapter I–III]; particularly Hida’s recent book [6]
contains most necessary information about scheme theory. For simplicity we
exclude characteristics 2 and 3 which does not matter in this note.

Let E be an elliptic curve over a (not necessarily locally noetherian) scheme
S. For a positive integer n let E[n] denote the kernel of multiplication by n
map on E:

[n] : E −→ E.

Then a naive level n structure (or Γ(n)naive-structure) on E is an isomorphism
of group schemes over S:

α : (Z/n× Z/n)S
∼=−→ E[n].

The existence of such an α implies that S is a Z[1/n]-scheme and conversely if S
is a Z[1/n]-scheme then such an α always exists after some finite etale surjective
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base change (see [12, 2.3] and [6, Section 2.6.1]). Similarly an arithmetic level
n structure (or Γ(n)arith-structure) on E is an isomorphism of group schemes
over S:

β : (µn × Z/n)S
∼=−→ E[n]

under which en-paring on E[n] (see [12, 2.8] and [6, Sections 2.6.3 and 2.6.4])
becomes the standard paring 〈 , 〉std on (µn × Z/n)S defined by the formula

〈(ζ1,m1), (ζ2,m2)〉std = ζm2
1 /ζm1

2 .

These two level structures on elliptic curves are closely related when the base
scheme is a Z[1/n]-scheme [10, 2.0.8].

For arbitrary scheme S a Γ(n)naive-test object over S is a triple (E,ω, α)
consisting of an elliptic curve E over S, a nowhere vanishing invariant differen-
tial ω on E and a Γ(n)naive-structure α on E; particularly a Γ(1)naive-test object
is simply a pair (E,ω) which we call a Γ(1)-test object. Let M(Γ(n)naive)S de-
note the functor from (Sch/S) to (Sets) defined by

M(Γ(n)naive)S(T ) = the set of isomorphism classes of

Γ(n)naive-test objects over T .

We will denote M(Γ(1)naive)S simply by M(1)S . Similarly we define the functor
M(Γ(n)arith)S for Γ(n)arith. Then we have

Theorem A.1 ([10, 2.5]). The functors M(Γ(n)naive)Z[1/6n] and
M(Γ(n)arith)Z[1/6] are both representable by an affine Z[1/6n]-scheme
M(Γ(n)naive) and an affine Z[1/6]-scheme M(Γ(n)arith) respectively.

It is clear that for any Z[1/6n]-scheme S, the scheme M(Γ(n)naive)S =
M(Γ(n)naive) ×SpecZ[1/6n] S represents the functor M(Γ(n)naive)S . Similarly
for Γ(n)arith.

Now we will give a proof of this result assuming the following result of
representabilty for n = 1:

Theorem A.2 ([12, 2.2.6], [6, Theorem 2.2.3]). The functor M(1)Z[1/6]

is representable by an affine scheme M(1) = SpecZ[1/6][g2, g3,∆−1] (∆ =
g3
2 − 27g2

3), with universal Γ(1)-test object (Euniv, ωuniv) = (y2 = 4x3 − g2x −
g3, dx/y).

First we prove the following lemma on isomorphisms of locally free group
schemes. Let G and G′ be locally free group schemes of rank m over S and we
define the functor

IsomS-grp(G,G′)(?) : (Sch/S) −→ (Sets)

by

IsomS-grp(G,G′)(T ) = the set of isomorphisms of T -group schemes:

GT
∼=→ G′

T .
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Lemma A.3. The functor IsomS-grp(G,G′) is representable by a (pos-
sibly empty) S-scheme affine over S.

Proof. The functor IsomS-grp(G,G′) is clearly local, i.e., determined by
local data in Zariski topology, and hence we may assume that S = SpecR,
G = SpecA and G′ = SpecA′ where A and A′ are commutative R-Hopf algebras
whose underlying R-modules are free of rank m. Then it is sufficient to prove
that the functor

IsomR-Hopf(A′, A)(?) : (R-alg) −→ (Sets),

defined by

IsomR-Hopf(A′, A)(B) = the set of isomorphisms of B-Hopf algebras:

A′ ⊗R B
∼=→ A⊗R B,

is (co)representable by some R-algebra. By choosing R-module basis of A
and A′ we can identify IsomR-Hopf(A′, A) with a subfunctor of GLm,R(?) =
HomR-alg(R[xi,j , det(xi,j)−1|1 ≤ i, j ≤ m], ?) defined by zeros of suitable poly-
nomials of xi,j ’s over R. Therefore IsomR(A′, A) is (co)representable by the
quotient of R[xi,j , det(xi,j)−1|1 ≤ i, j ≤ m] by the ideal generated by those
polynomials.

Proof of Theorem A.1. Since (Z/n×Z/n)M(1)[1/n] and (Euniv[1/n])[n] are
both locally free of rank n2 overM(1)[1/n] the functor Γ(n)naive-StrEuniv [1/n](?),
defined by

Γ(n)naive-StrEuniv[ 1
n ](T ) = the set of Γ(n)naive-structures on

(
Euniv

[
1
n

])
T

for any M(1)[1/n]-scheme T , is representable by an affine M(1)[1/n]-scheme by
the lemma above. Then it is clear that M(Γ(n)naive)Z[1/6n] is represented by the
same scheme regarded as a Z[1/6n]-scheme. Similarly for M(Γ(n)arith)Z[1/6] be-
cause when we identify the functor Γ(n)arith-StrEuniv (?) locally with a subfunc-
tor ofGLn2,M(1), the condition on the en-paring can be expressed by polynomial
equations and thus this functor is representable by an affine M(1)-scheme.

Now we have a canonical action of multiplicative group Gm,Z[1/6n] on
M(Γ(n)naive) given by

(λ, (E,ω, α)) �→ (E, λ−1ω, α).

This action yields a coaction

ψ : R(Γ(n)naive) −→ Z
[

1
6n

]
[t, t−1] ⊗R(Γ(n)naive)
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of the Hopf algebra associated with the affine group scheme Gm,Z[1/6n] on
the coordinate ring R(Γ(n)naive) of M(Γ(n)naive) and hence we get a grade on
R(Γ(n)naive) defined by

Rk(Γ(n)naive) = {f ∈ R(Γ(n)naive)| ψ(f) = t−k ⊗ f}.
For any Z[1/6n]-algebra R, let R∗(Γ(n)naive)R = R∗(Γ(n)naive)⊗R which

is, by definition, the graded ring of Γ(n)naive-modular forms over R. Then
for any Γ(n)naive-test object (E,ω, α) over any R-algebra B we have a unique
R-algebra homomorphism

R∗(Γ(n)naive)R −→ B

classifying (E,ω, α) and we denote the image of an element f of R∗(Γ(n)naive)R
under this homomorphism, the value of f on (E,ω, α), by f(E,ω, α). An
element f ∈ R∗(Γ(n)naive)R has degree, or weight, k if and only if for any
Γ(n)naive-test object (E,ω, α) over any R-algebra B we have

f(E, λ−1ω, α) = λkf(E,ω, α) (∀λ ∈ B×).

Similarly we define the graded ring R∗(Γ(n)arith)R of Γ(n)arith-modular forms
over any Z[1/6]-algebra R. In particular the ring of Γ(1)-modular forms over
Z[1/6] is given by R∗(1) = Z[1/6][g2, g3,∆−1] (∆ = g3

2 − 27g2
3) with degg2 = 4

and degg3 = 6.

Remark A.4. Over any Z[1/n]-scheme, Γ(n)naive-structure on an el-
liptic curve is the same as Drinfeld style Γ(n)-structure but over general base
scheme Γ(n)arith-structure is slightly different. For example, over Fp, all super-
singular elliptic curves are automatically excluded in Γ(p)arith-moduli problem
(cf. [6, Section 2.9]).

Appendix B. Etale fundamental groups of elliptic curves over alge-
braically closed fields

The purpose of this appendix is to make a well known computation of the
etale fundamental group of an elliptic curve over an algebraically closed field
(cf. [5, IV Exercise 4.8]). Let E be an elliptic curve over an algebraically closed
field K. Let Π denote the profinite group limnE[n](K) where the inverse limit
is taken over all positive integers with respect to the map

[m] : E[mn](K) −→ E[n](K).

Then we will show that this Π gives the etale fundamental group of E.
Let

f : E′ −→ E

be a finite etale morphism of K-schemes with E′ connected. Then E′ is a
smooth proper curve over K whose genus is 1 by Hurwitz’s theorem [5, IV 2.4]
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and hence we may assume that f is a homomorphism of elliptic curves over
K by choosing a suitable section SpecK → E′ of E′ → SpecK. Now by the
pull-back square:

Kerf −−−−→ E′� �f
SpecK −−−−−→

0-section
E,

Kerf is finite etale over K and thus the constant group scheme (Kerf)(K)K
defined by the K-valued points. Let f t : E → E′ be the dual homomorphism
of f . Then f t induces a surjection of group schemes over K

f t : E[deg f ] = Ker(ff t) � Kerf.

Therefore we have a continuous action of Π on F (E′) = (Sch/E)(0E, E′) =
(Kerf)(K) via this surjection in obvious way, where 0E denotes a geometric
point of E given by the 0-section.

Conversely let E[n] � C be a surjection of group schemes over K with C
constant for some positive integer n. Then by self-duality of E[n] (see [12, 2.8]
and [6, Sections 2.6.3 and 2.6.4]) we get an inclusion

C∗ ↪→ E[n]

where C∗ denotes the Cartier dual of C. Let E′ be the quotient of E by the
finite subgroup scheme given by C∗ via this inclusion and

f : E′ −→ E

be the dual of the projection E → E′. Then by Cartier-Nishi duality (see [loc.
cit.]) Kerf is canonically isomorphic to (C∗)∗ = C and in particular etale over
K. Therefore f is finite etale over K since f : E′ → E is Kerf -torsor. By these
observations it is easy to see that the functor

F : (FEt/E) −→ (Sets) (E′ �→ (Sch/E)(0E, E′))

yields an equivalence of categories

F : (FEt/E)
∼=−→ (Π-sets).

Now it is well known that for any prime p and any positive integer n = paq
with (p, q) = 1,

E[n](K) =


Z/n× Z/n if charK = 0,
Z/pa × Z/q × Z/q if charK = p and E is ordinary,
Z/q × Z/q if charK = p and E is supersingular.

(See [25, III 6.4 and V 3.1].) Hence we have shown that
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Theorem B.1.

π1(E, 0E) =


Ẑ × Ẑ if charK = 0,
Zp ×

∏
l 	=p(Zl × Zl) if charK = p and E is ordinary,∏

l 	=p(Zl × Zl) if charK = p and E is supersingular.
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Kyoto University
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