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An application of unstable K-theory

By

Hiroaki Hamanaka and Akira Kono

Abstract

In [1] and [2], we introduced and investigated “unstable K-theory”
Un(X) = [X, U(n)] and showed the relation with the Adams e-invariant.
In this paper, we offer a theorem relating to Un(X) and show an appli-
cation in connection with stable splittings of G2.

1. Introduction

In this paper, we work in the pointed category, i.e., assume all spaces are
base-pointed and all homotopy sets are base-point preserving homotopy sets.

Let U(n) be the unitary group and X be a pointed finite CW-complex.
Then the homotopy set Un(X) = [X, U(n)] forms a group by the point-wise
multiplication. We call this group as the “unstable K-theory” of X, for the
reason that Un(X) is isomorphic to K̃1(X) for sufficiently large n. When
dimX ≤ 2n, this group Un(X) fits in the next exact sequence (1.1) where
Θ(X) maps α ∈ K̃0(X) to sn(α) = n!chnα (see [1] for detail).

(1.1) K̃0(X)
Θ(X)−→H2n (X; Z)

Φ(X)−→Un(X)
Π(X)−→ K̃1(X) → 0.

This group Un(X) is, even if dimX ≤ 2n, not commutative in general. But
we use the notations of abelian groups for this group, i.e., write its unit 0 and
denote its operation by +.

Now we consider a suspended map Σf : ΣY → ΣX where finite CW-
complexes ΣX and ΣY satisfy:

dimΣY = 2n − 1, dimΣX < 2n − 1.(1.2)

K̃1(Y ) = 0, K̃0(X) = 0.(1.3)

Also let k be an integer and we denote the k-fold map ΣX → ΣX by k. Then
we have a commutative diagram:

(1.4) ΣY
Σf ��

=

��

ΣX ��

k

��

C
ρ ��

π

��

Σ2Y

=

��
ΣY

k◦Σf
�� ΣX �� C ′

ρ′
�� Σ2Y
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where C and C ′ are mapping cones of Σf and k ◦Σf respectively and two rows
are usual cofibrations. Then our main result is the following.

Theorem 1.1. The induced map π∗ : Un(C ′) → Un(C) is surjective
and for any α ∈ Kerπ∗, kα = 0.

From this theorem, we deduce Corollary 2.1 which estimates the order of
a suspended map by means of unstable K-theory.

On the other hand, as an application, we consider the exceptional Lie
group G2. G2 has the cell decomposition like

(1.5) G2 � S3 ∪ e5 ∪ e6 ∪ e8 ∪ e9 ∪ e11 ∪ e14.

We denote the i-skeleton of G2 by G2
(i). In [3], S. Oka showed the next result.

Theorem 1.2. G
(6)
2 is not stable retract of G

(11)
2 .

In this paper we offer another simple proof of this result using the unstable
K-theory U6(ΣG

(11)
2 ).

In the following, we always use Z as the coefficient ring of cohomology and
we omit to write them. Also we do not distinguish maps and their homotopy
classes.

2. Main result

We consider the suspended map Σf : ΣY → ΣX under the assumption
(1.2), (1.3) and prove Theorem 1.1.

First we observe that from (1.3)

K̃1(C) = K̃1(C ′) = 0.

Also from (1.2),

ρ∗ : H2n
(
Σ2Y

) ∼=−→H2n (C), ρ′∗ : H2n
(
Σ2Y

) ∼=−→H2n (C ′)

are isomorphisms. Therefore π∗ = H2n(π) : H2n (C ′) → H2n (C) is an isomor-
phism as well.

Applying the short exact sequences obtained from (1.1) to C and C ′, we
have the following commutative diagram:

0 �� K̃0(C)/KerΘ(C)
Θ(C) �� H2n (C) �� Un(C) �� 0

0 �� K̃0(C ′)/KerΘ(C ′)
Θ(C′) ��

K0(π)

��

H2n (C ′) ��

H2n(π)

��

Un(C ′) ��

π∗

��

0,

where K0(π) is the induced map obtained from K0(π) : K̃0(C ′) → K̃0(C). This
diagram implies that π∗ is surjective. Moreover, since H2n(π) is isomorphic,
we see CokerK0(π) ∼= Kerπ∗ by the snake lemma.
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Now, applying K-theory to the diagram (1.4), we have

0 �� K̃0(Σ2Y ) �� K̃0(C) �� K̃0(ΣX) �� 0

0 �� K̃0(Σ2Y ) ��

=

��

K̃0(C ′) ��

K0(π)

��

K̃0(ΣX) ��

K0(k)=k

��

0

and, by the snake lemma again, we see CokerK0(π) ∼= Cokerk. This map k
is just the map multiplying k. Therefore, for any element α ∈ CokerK0(π),
kα = 0. Since CokerK0(π) is a factor group of CokerK0(π), the same is true
for the element of CokerK0(π) ∼= Kerπ∗.

Now we offer a corollary. As above, we consider a suspended map Σf :
ΣY → ΣX under the assumptions (1.2) and (1.3), and the cofibration sequence

ΣY
Σf−→ΣX → CΣf

ρ−→Σ2Y . Apply the exact sequence (1.1) to ΣX and we see
Un(ΣX) = 0 and ρ∗ : Un(Σ2Y ) → Un(CΣf ) is surjective.

Corollary 2.1. If Σf has its order k in [ΣY, ΣX], the order of any
element of Ker(ρ∗ : Un(Σ2Y ) → Un(CΣf )) is a factor of k.

Proof. Apply Theorem 1.1 to Σf and its order k. Then C ′ = CkΣf �
ΣX ∨Σ2Y and ρ′∗ : Un(Σ2Y ) → Un(C ′) is an isomorphism. Since π∗ρ′∗ = ρ∗ :
Un(Σ2Y ) → Un(CΣf ), the statement follows.

3. Application

In [3], some spaces were considered, whose K-groups are isomorphic to
those of spheres, but whose homology groups are not isomorphic to those of
spheres. Namely, for given element α in the stable homotopy group of spheres
πS

k−1(S
0) where k is even and the order of α is q, the following spaces are

introduced:

Xn
α = Sn ∪α en+k ∪q en+k+1,(3.1)

Y n
α = Sn−k−1 ∪q en−k ∪α en.(3.2)

And it was showed that

(3.3) K̃∗(Xn
α) ∼= K̃∗(Sn), K̃∗(Y n

α ) ∼= K̃∗(Sn)

as additive groups. Also these spaces are related to the exceptional Lie group
G2. Take the cellular decomposition (1.5) of G2. Then

(3.4) G2
(6) � X3

η , G2
(11)/G2

(6) � Y 11
η

where η is the generator of πS
1 (S0) ∼= Z/2Z (see [3]).

Now we shall prove Theorem1.2 using “unstable K-theory”.
Since H3 (G2) ∼= H11 (G2) ∼= Z, we take their generators x3, x11 respec-

tively. The K-theory of G2 and its Chern character are known as follows (see
[5]).
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Theorem 3.1.

K∗(G2) ∼=
∧

(α, β), α, β ∈ K̃1(G2),

ch(α) = 2x3 +
2
5!

x11, ch(β) = 10x3 − 50
5!

x11.(3.5)

Thus ch(αβ) = x11x3 is a generator of H14 (G2). Consider the cofibration
G

(11)
2 → G2 → S14 and the naturality of the Chern character implies that

K̃0(S14)
∼=−→K̃0(G2). Then we obtain the exact sequence

0 → K̃1(G2) → K̃1(G(11)
2 ) → K̃0(S14)

∼=−→K̃0(G2) → K̃0(G(11)
2 ) → 0,

i.e., K̃0(ΣG
(11)
2 ) ∼= K̃0(ΣG2) and K̃1(ΣG

(11)
2 ) = 0.

Theorem 3.2.

U6(ΣG
(11)
2 ) ∼= Z/12Z.

Proof. Apply above results to the exact sequence (1.1) and we obtain

U6

(
ΣG

(11)
2

) ∼= Coker
(
s6 : K̃0

(
ΣG

(11)
2

)
→ H12

(
ΣG

(11)
2

))
.

From the naturality of s6 and (3.5), the statement follows.

Proposition 3.1.

U6(Y 12
η ) ∼= Z/360Z.

Proof. By (1.1) and (3.3), we have

U6(Y 12
η ) ∼= Coker(s6 : K̃0(Y 12

η ) → H12
(
Y 12

η

)
).

Let π : Y 12
η → S12 be the map which smashes the 11-skeleton. The

generators γ′ ∈ K̃0(Y 12
η ) and γ ∈ K̃0(S12) are related as π∗(γ) = 2γ′ ([3,

Proposition 1.4]). Therefore, from the naturality of s6,

s6(γ′) =
6!
2

c′ = 360c′,

where c′ is the generator of H12
(
Y 12

η

)
.

K̃0(S12)
π∗

��

s6

��

K̃0(Y 12
η )

s6

��
H12

(
S12

) ∼= �� H12
(
Y 12

η

)
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From (3.4), we have the cofibration sequence:

X3
η ↪→ G

(11)
2 → Y 11

η
h−→X4

η ↪→ ΣG
(11)
2 .

Now we set that the order of f = Σ2ih in [Σ2iY 11
η , Σ2iX4

η ] is k and prove k 	= 1.
First we observe that the mapping cone Cf is homotopy equivalent to

Σ2i+1G
(11)
2 . Also,

dimΣ2iY 11
η = 2(6 + i) − 1, dimΣ2iX4

η < 2(6 + i) − 1,

K̃1(Σ2i−1Y 11
η ) = 0 and K̃0(Σ2i−1X4

η) = 0.

Therefore we can apply Corollary 2.1, i.e., there exists a surjective homomor-
phism

U6+i(Σ2iY 12
η ) → U6+i(Σ2i+1G

(11)
2 )

and any element α of its kernel satisfies kα = 0.
On the other hand, from Theorem 3.2 and Proposition 3.1, we have

U6+i(Σ2iY 12
η ) ∼= Z/

(
360 × (6 + i)!

6!

)
Z,

U6+i(Σ2i+1G
(11)
2 ) ∼= Z/

(
12 × (6 + i)!

6!

)
Z

(we used Corollary 4.1 of [1]). Therefore k must be a multiple of 30. Thus h is
not stably null-homotopic and X3

η is not stable retract of G
(11)
2 .
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