An application of unstable K-theory

By

Hiroaki HAMANAKA and Akira KONO

Abstract

In [1] and [2], we introduced and investigated "unstable K-theory" $U_n(X) = [X, U(n)]$ and showed the relation with the Adams *e*-invariant. In this paper, we offer a theorem relating to $U_n(X)$ and show an application in connection with stable splittings of G_2 .

1. Introduction

In this paper, we work in the pointed category, i.e., assume all spaces are base-pointed and all homotopy sets are base-point preserving homotopy sets.

Let U(n) be the unitary group and X be a pointed finite CW-complex. Then the homotopy set $U_n(X) = [X, U(n)]$ forms a group by the point-wise multiplication. We call this group as the "unstable K-theory" of X, for the reason that $U_n(X)$ is isomorphic to $\widetilde{K}^1(X)$ for sufficiently large n. When $\dim X \leq 2n$, this group $U_n(X)$ fits in the next exact sequence (1.1) where $\Theta(X)$ maps $\alpha \in \widetilde{K}^0(X)$ to $s_n(\alpha) = n!ch_n\alpha$ (see [1] for detail).

(1.1)
$$\widetilde{K}^{0}(X) \stackrel{\Theta(X)}{\longrightarrow} \operatorname{H}^{2n}(X; \mathbb{Z}) \stackrel{\Phi(X)}{\longrightarrow} U_{n}(X) \stackrel{\Pi(X)}{\longrightarrow} \widetilde{K}^{1}(X) \to 0.$$

This group $U_n(X)$ is, even if dim $X \leq 2n$, not commutative in general. But we use the notations of abelian groups for this group, i.e., write its unit 0 and denote its operation by +.

Now we consider a suspended map $\Sigma f : \Sigma Y \to \Sigma X$ where finite CW-complexes ΣX and ΣY satisfy:

(1.2)
$$\dim \Sigma Y = 2n - 1, \dim \Sigma X < 2n - 1.$$

(1.3)
$$K^1(Y) = 0, \ K^0(X) = 0.$$

Also let k be an integer and we denote the k-fold map $\Sigma X \to \Sigma X$ by k. Then we have a commutative diagram:

(1.4)
$$\Sigma Y \xrightarrow{\Sigma f} \Sigma X \longrightarrow C \xrightarrow{\rho} \Sigma^2 Y$$
$$\downarrow = \qquad \downarrow_k \qquad \downarrow_\pi \qquad \downarrow =$$
$$\Sigma Y \xrightarrow{k \circ \Sigma f} \Sigma X \longrightarrow C' \xrightarrow{\rho'} \Sigma^2 Y$$

Received February 13, 2004

where C and C' are mapping cones of Σf and $k \circ \Sigma f$ respectively and two rows are usual cofibrations. Then our main result is the following.

Theorem 1.1. The induced map $\pi^* : U_n(C') \to U_n(C)$ is surjective and for any $\alpha \in \text{Ker}\pi^*$, $k\alpha = 0$.

From this theorem, we deduce Corollary 2.1 which estimates the order of a suspended map by means of unstable K-theory.

On the other hand, as an application, we consider the exceptional Lie group G_2 . G_2 has the cell decomposition like

(1.5)
$$G_2 \simeq S^3 \cup e^5 \cup e^6 \cup e^8 \cup e^9 \cup e^{11} \cup e^{14}.$$

We denote the *i*-skeleton of G_2 by $G_2^{(i)}$. In [3], S. Oka showed the next result.

Theorem 1.2. $G_2^{(6)}$ is not stable retract of $G_2^{(11)}$.

In this paper we offer another simple proof of this result using the unstable K-theory $U_6(\Sigma G_2^{(11)})$.

In the following, we always use \mathbb{Z} as the coefficient ring of cohomology and we omit to write them. Also we do not distinguish maps and their homotopy classes.

2. Main result

We consider the suspended map $\Sigma f : \Sigma Y \to \Sigma X$ under the assumption (1.2), (1.3) and prove Theorem 1.1.

First we observe that from (1.3)

$$\widetilde{K}^1(C) = \widetilde{K}^1(C') = 0.$$

Also from (1.2),

$$\rho^*: \mathrm{H}^{2n}\left(\Sigma^2 Y\right) \xrightarrow{\cong} \mathrm{H}^{2n}\left(C\right), \, {\rho'}^*: \mathrm{H}^{2n}\left(\Sigma^2 Y\right) \xrightarrow{\cong} \mathrm{H}^{2n}\left(C'\right)$$

are isomorphisms. Therefore $\pi^* = H^{2n}(\pi) : \mathrm{H}^{2n}(C') \to \mathrm{H}^{2n}(C)$ is an isomorphism as well.

Applying the short exact sequences obtained from (1.1) to C and C', we have the following commutative diagram:

where $\overline{K^0(\pi)}$ is the induced map obtained from $K^0(\pi) : \widetilde{K}^0(C') \to \widetilde{K}^0(C)$. This diagram implies that π^* is surjective. Moreover, since $H^{2n}(\pi)$ is isomorphic, we see $\operatorname{Coker} \overline{K^0(\pi)} \cong \operatorname{Ker} \pi^*$ by the snake lemma.

Now, applying K-theory to the diagram (1.4), we have

and, by the snake lemma again, we see $\operatorname{Coker} K^0(\pi) \cong \operatorname{Coker} k$. This map k is just the map multiplying k. Therefore, for any element $\alpha \in \operatorname{Coker} K^0(\pi)$, $k\alpha = 0$. Since $\operatorname{Coker} \overline{K^0(\pi)}$ is a factor group of $\operatorname{Coker} K^0(\pi)$, the same is true for the element of $\operatorname{Coker} \overline{K^0(\pi)} \cong \operatorname{Ker} \pi^*$.

Now we offer a corollary. As above, we consider a suspended map Σf : $\Sigma Y \to \Sigma X$ under the assumptions (1.2) and (1.3), and the cofibration sequence $\Sigma Y \xrightarrow{\Sigma f} \Sigma X \to C_{\Sigma f} \xrightarrow{\rho} \Sigma^2 Y$. Apply the exact sequence (1.1) to ΣX and we see $U_n(\Sigma X) = 0$ and $\rho^* : U_n(\Sigma^2 Y) \to U_n(C_{\Sigma f})$ is surjective.

Corollary 2.1. If Σf has its order k in $[\Sigma Y, \Sigma X]$, the order of any element of $\operatorname{Ker}(\rho^* : U_n(\Sigma^2 Y) \to U_n(C_{\Sigma f}))$ is a factor of k.

Proof. Apply Theorem 1.1 to Σf and its order k. Then $C' = C_{k\Sigma f} \simeq \Sigma X \vee \Sigma^2 Y$ and $\rho'^* : U_n(\Sigma^2 Y) \to U_n(C')$ is an isomorphism. Since $\pi^* \rho'^* = \rho^* : U_n(\Sigma^2 Y) \to U_n(C_{\Sigma f})$, the statement follows.

3. Application

In [3], some spaces were considered, whose K-groups are isomorphic to those of spheres, but whose homology groups are not isomorphic to those of spheres. Namely, for given element α in the stable homotopy group of spheres $\pi_{k-1}^{S}(S^{0})$ where k is even and the order of α is q, the following spaces are introduced:

(3.1)
$$X_{\alpha}^{n} = S^{n} \cup_{\alpha} e^{n+k} \cup_{q} e^{n+k+1},$$

(3.2)
$$Y_{\alpha}^{n} = S^{n-k-1} \cup_{q} e^{n-k} \cup_{\alpha} e^{n}.$$

And it was showed that

(3.3)
$$\widetilde{K}^*(X^n_{\alpha}) \cong \widetilde{K}^*(S^n), \qquad \widetilde{K}^*(Y^n_{\alpha}) \cong \widetilde{K}^*(S^n)$$

as additive groups. Also these spaces are related to the exceptional Lie group G_2 . Take the cellular decomposition (1.5) of G_2 . Then

(3.4)
$$G_2^{(6)} \simeq X_\eta^3, \quad G_2^{(11)}/G_2^{(6)} \simeq Y_\eta^{11}$$

where η is the generator of $\pi_1^S(S^0) \cong \mathbb{Z}/2\mathbb{Z}$ (see [3]).

Now we shall prove Theorem1.2 using "unstable K-theory".

Since $\mathrm{H}^{3}(G_{2}) \cong \mathrm{H}^{11}(G_{2}) \cong \mathbb{Z}$, we take their generators x_{3} , x_{11} respectively. The K-theory of G_{2} and its Chern character are known as follows (see [5]).

Theorem 3.1.

(3.5)
$$K^*(G_2) \cong \bigwedge (\alpha, \beta), \quad \alpha, \beta \in \widetilde{K}^1(G_2),$$
$$ch(\alpha) = 2x_3 + \frac{2}{5!}x_{11}, \quad ch(\beta) = 10x_3 - \frac{50}{5!}x_{11}.$$

Thus $ch(\alpha\beta) = x_{11}x_3$ is a generator of $\mathrm{H}^{14}(G_2)$. Consider the cofibration $G_2^{(11)} \to G_2 \to S^{14}$ and the naturality of the Chern character implies that $\widetilde{K}^0(S^{14}) \xrightarrow{\cong} \widetilde{K}^0(G_2)$. Then we obtain the exact sequence

$$0 \to \widetilde{K}^1(G_2) \to \widetilde{K}^1(G_2^{(11)}) \to \widetilde{K}^0(S^{14}) \xrightarrow{\cong} \widetilde{K}^0(G_2) \to \widetilde{K}^0(G_2^{(11)}) \to 0,$$

i.e., $\widetilde{K}^0(\Sigma G_2^{(11)}) \cong \widetilde{K}^0(\Sigma G_2)$ and $\widetilde{K}^1(\Sigma G_2^{(11)}) = 0$.

Theorem 3.2.

$$U_6(\Sigma G_2^{(11)}) \cong \mathbb{Z}/12\mathbb{Z}.$$

Proof. Apply above results to the exact sequence (1.1) and we obtain

$$U_6\left(\Sigma G_2^{(11)}\right) \cong \operatorname{Coker}\left(s_6: \widetilde{K}^0\left(\Sigma G_2^{(11)}\right) \to \mathrm{H}^{12}\left(\Sigma G_2^{(11)}\right)\right)$$

From the naturality of s_6 and (3.5), the statement follows.

Proposition 3.1.

$$U_6(Y_\eta^{12}) \cong \mathbb{Z}/360\mathbb{Z}.$$

Proof. By (1.1) and (3.3), we have

$$U_6(Y_\eta^{12}) \cong \operatorname{Coker}(s_6 : \widetilde{K}^0(Y_\eta^{12}) \to \mathrm{H}^{12}\left(Y_\eta^{12}\right)).$$

Let $\pi : Y_{\eta}^{12} \to S^{12}$ be the map which smashes the 11-skeleton. The generators $\gamma' \in \tilde{K}^0(Y_{\eta}^{12})$ and $\gamma \in \tilde{K}^0(S^{12})$ are related as $\pi^*(\gamma) = 2\gamma'$ ([3, Proposition 1.4]). Therefore, from the naturality of s_6 ,

$$s_6(\gamma') = \frac{6!}{2}c' = 360c',$$

where c' is the generator of $\mathrm{H}^{12}\left(Y_{\eta}^{12}\right)$.

$$\begin{split} \widetilde{K}^{0}(S^{12}) & \xrightarrow{\pi^{*}} \widetilde{K}^{0}(Y^{12}_{\eta}) \\ & \downarrow^{s_{6}} & \downarrow^{s_{6}} \\ & H^{12}\left(S^{12}\right) \xrightarrow{\simeq} H^{12}\left(Y^{12}_{\eta}\right) \end{split}$$

454

From (3.4), we have the cofibration sequence:

$$X^3_\eta \hookrightarrow G^{(11)}_2 \to Y^{11}_\eta \xrightarrow{h} X^4_\eta \hookrightarrow \Sigma G^{(11)}_2.$$

Now we set that the order of $f = \Sigma^{2i} h$ in $[\Sigma^{2i} Y_{\eta}^{11}, \Sigma^{2i} X_{\eta}^{4}]$ is k and prove $k \neq 1$. First we observe that the mapping cone C_{f} is homotopy equivalent to $\Sigma^{2i+1} G_2^{(11)}.$ Also,

$$\begin{split} \dim \Sigma^{2i} Y^{11}_{\eta} &= 2(6+i) - 1, \quad \dim \Sigma^{2i} X^4_{\eta} < 2(6+i) - 1, \\ \widetilde{K}^1(\Sigma^{2i-1} Y^{11}_{\eta}) &= 0 \quad \text{and} \quad \widetilde{K}^0(\Sigma^{2i-1} X^4_{\eta}) = 0. \end{split}$$

Therefore we can apply Corollary 2.1, i.e., there exists a surjective homomorphism

$$U_{6+i}(\Sigma^{2i}Y_{\eta}^{12}) \to U_{6+i}(\Sigma^{2i+1}G_2^{(11)})$$

and any element α of its kernel satisfies $k\alpha = 0$.

On the other hand, from Theorem 3.2 and Proposition 3.1, we have

$$U_{6+i}(\Sigma^{2i}Y_{\eta}^{12}) \cong \mathbb{Z} / \left(360 \times \frac{(6+i)!}{6!} \right) \mathbb{Z},$$
$$U_{6+i}(\Sigma^{2i+1}G_{2}^{(11)}) \cong \mathbb{Z} / \left(12 \times \frac{(6+i)!}{6!} \right) \mathbb{Z}$$

(we used Corollary 4.1 of [1]). Therefore k must be a multiple of 30. Thus h is not stably null-homotopic and X_{η}^3 is not stable retract of $G_2^{(11)}$.

> DEPARTMENT OF NATURAL SCIENCE HYOGO UNIVERSITY OF TEACHER EDUCATION YASHIRO, HYOGO 673-1494, JAPAN e-mail: hammer@sci.hyogo-u.ac.jp

Department of Mathematics FACULTY OF SCIENCE Kyoto University Kyoto 606-8502, Japan e-mail: kono@math.kyoto-u.ac.jp

References

- [1] H. Hamanaka and A. Kono, On [X, U(n)], when dimX is 2n, J. Math. Kyoto Univ. **43**-2 (2003), 333–348.
- [2] H. Hamanaka, Adams e-invariant, Toda bracket and [X, U(n)], J. Math. Kyoto Univ. **43**-4 (2003), 815–827.
- [3] S. Oka, A Generalization of the Adams Invariant and Applications to Homotopy of Exceptional Lie Group G_2 , Homotopy theory and related topics (Kyoto, 1984), 195–230, Adv. Stud. Pure Math. 9, North-Holland, Amsterdam, 1987.

- [4] H. Toda, A Survey of homotopy theory, Advances in Math. 10 (1973), 417– 455.
- [5] T. Watanabe, Chern characters on compact Lie groups of low rank, Osaka J. Math. 22 (1985), 463–488.

456