On the inclusion of some Lorentz spaces

By

A. Turan Gürkanlı

Abstract

Let (X, Σ, μ) be a measure space. It is well known that $l^p(X) \subseteq l^q(X)$ whenever $0 . Subramanian [12] characterized all positive measures <math>\mu$ on (X, Σ) for which $L^p(\mu) \subseteq L^q(\mu)$ whenever $0 and Romero [10] completed and improved some results of Subramanian [12]. Miamee [6] considered the more general inclusion <math>L^p(\mu) \subseteq L^q(\nu)$ where μ and ν are two measures on (X, Σ) .

Let $L(p_1,q_1)(X,\mu)$ and $L(p_2,q_2)(X,\nu)$ be two Lorentz spaces,where $0 < p_1, p_2 < \infty$ and $0 < q_1, q_2 \leq \infty$. In this work we generalized these results to the Lorentz spaces and investigated that under what conditions $L(p_1,q_1)(X,\mu) \subseteq L(p_2,q_2)(X,\nu)$ for two different measures μ and ν on (X,Σ) .

1. Introduction

Let (X, Σ, μ) be a measure space and let f be a measurable function on X. For each y > 0 let

(1)
$$\lambda_f(y) = \mu\{x \in X : f(x) > y\}.$$

The function λ_f is called the distribution function of f. The rearrangement of f is defined by

$$f^*(t) = \inf\{y > 0 : \lambda_f(y) \le t\} = \sup\{y > 0 : \lambda_f(y) > t\}, \quad t > 0,$$

where inf $\phi = +\infty$. Also the average function of f is defined by

(2)
$$f^{**}(t) = \frac{1}{t} \int_{0}^{t} f^{*}(s)ds, t > 0.$$

Note that $\lambda_f(\cdot), f^*(\cdot)$ and $f^{**}(\cdot)$ are non-increasing and right continuous on $(0, \infty)$, [2]. For $p, q \in (0, \infty)$ we define

(3)
$$||f||_{p,q}^* = ||f||_{p,q,\mu}^* = \left(\frac{q}{p} \int_0^\infty \left[f^*(t)\right]^q t^{\frac{q}{p}-1} dt\right)^{\frac{1}{q}} dt$$

$$||f||_{p,q} = ||f||_{p,q,\mu} = \left(\frac{q}{p} \int_0^\infty \left[f^{**}(t)\right]^q t^{\frac{q}{p}-1} dt\right)^{\frac{1}{q}}.$$

If $0 < p, q = \infty$ we also define

(4)
$$||f||_{p,\infty}^* = \sup_{t>0} t^{\frac{1}{p}} f^*(t) \text{ and } ||f||_{p,\infty} = \sup_{t>0} t^{\frac{1}{p}} f^{**}(t).$$

For $0 and <math>0 < q \le \infty$, the Lorentz space denoted by $L(p,q)(X,\mu)$ (or shortly L(p,q)) is defined to be the vector space of all (equivalence classes of) measurable functions f on X such that $||f||_{p,q}^* < \infty$. We know that $||f||_p = ||f||_{p,p}^*$ and so $L^p(\mu) = L(p,p)(X,\mu)$ where $L^p(\mu)$ is the Lebesgue space. Also $L(p,q_1) \subset L(p,q_2)$ for $q_1 \le q_2$. In particular

$$L(p,q_1) \subset L^p(\mu) \subset L(p,q_2) \subset L(p,\infty)$$

for $0 < q_1 \le p \le q_2 \le \infty$ ([2]). It is also known that if $1 and <math>1 \le q \le \infty$ then

(5)
$$||f||_{p,q}^* \le ||f||_{p,q} \le \frac{p}{p-1} ||f||_{p,q}^*$$

for each $f \in L(p,q)(X,\mu)$ ([11]). Moreover $||f||_{p,q}$ is a complete norm on $L(p,q)(X,\mu)$.

2. Main results

In this section we will accept that (X, Σ) is a measurable space and all measures are defined on the σ -algebra Σ . Also if two measures μ and ν are absolutely continuous with respect to each other (i.e $\mu << \nu$ and $\nu << \mu$) then we denote it by the symbol $\mu \approx \nu$.

Lemma 2.1. Let $0 < p_1, p_2 < \infty$ and $0 < q_1, q_2 \le \infty$. Then the inclusion $L(p_1, q_1)(X, \mu) \subseteq L(p_2, q_2)(X, \nu)$ holds in the sense of equivalence classes if and only if $\mu \approx \nu$ and $L(p_1, q_1)(X, \mu) \subseteq L(p_2, q_2)(X, \nu)$ in the sense of individual functions.

Proof. Assume that $L(p_1,q_1)(X,\mu) \subseteq L(p_2,q_2)(X,\nu)$ holds in the sense of equivalent classes. Let $f \in L(p_1,q_1)(X,\mu)$ be any individual function. This implies $f \in L(p_1,q_1)(X,\mu)$ in the sense of equivalent classes thus $f \in L(p_2,q_2)(X,\nu)$ in the sense of equivalent classes by the assumption. Hence we have $f \in L(p_2,q_2)(X,\nu)$ in the sense of individual functions. This shows that

$$L(p_1, q_1)(X, \mu) \subseteq L(p_2, q_2)(X, \nu)$$

in the sense of individual functions. Now take any $E \in \Sigma$ with $\mu(E) = 0$. If χ_E is the characteristic function of E then $\chi_E = 0$ μ -almost everywhere. Also the rearrangement of χ_E is

(6)
$$\chi_E^*(t) = \begin{cases} 1, & 0 < t < \mu(E), \\ 0, & t \ge \mu(E). \end{cases}$$

If $p_1, q_1 \in (0, \infty)$ we obtain

(7)

$$\begin{split} \|\chi_E\|_{p_1,q_1}^* &= \left(\frac{q_1}{p_1}\int\limits_0^\infty \left[t^{\frac{1}{p_1}}.\chi_E^*(t)\right]^{q_1}.\frac{dt}{t}\right)^{\frac{1}{q_1}} \\ &= \left(\frac{q_1}{p_1}\int\limits_0^{\mu(E)} \left[t^{\frac{1}{p_1}}.\chi_E^*(t)\right]^{q_1}.\frac{dt}{t}\right)^{\frac{1}{q_1}} + \left(\frac{q_1}{p_1}\int\limits_{\mu(E)}^\infty \left[t^{\frac{1}{p_1}}.\chi_E^*(t)\right]^{q_1}.\frac{dt}{t}\right)^{\frac{1}{q_1}} \\ &= \left(\frac{q_1}{p_1}\int\limits_0^{\mu(E)} \left[t^{\frac{1}{p_1}}.\right]^{q_1}.\frac{dt}{t}\right)^{\frac{1}{q_1}} = \left(\frac{q_1}{p_1}\int\limits_0^{\mu(E)} t^{\frac{q_1}{p_1}-1}.dt\right)^{\frac{1}{q_1}} \\ &= \left(\mu(E)^{\frac{q_1}{p_1}}\right)^{\frac{1}{q_1}} = \mu(E)^{\frac{1}{p_1}} = 0. \end{split}$$

Also for the case $0 < p_1 < \infty$ and $q_1 = \infty$ we have

(8)
$$\|\chi_E\|_{p_1,\infty}^* = \sup_{t>0} t^{\frac{1}{p_1}} \cdot \chi_E^*(t) = \mu(E) = 0.$$

Then we have $\chi_E \in L(p_1,q_1)(X,\mu)$ for $0 < p_1 < \infty$ and $0 < q_1 \le \infty$. Thus χ_E is in the equivalent classes of $0 \in L(p_1,q_1)(X,\mu)$. Since the equivalence classes of 0 (with respect to μ) is also an element of $L(p_2,q_2)(X,\nu)$ by the hypothesis, then χ_E is in the equivalent classes of $0 \in L(p_2,q_2)(X,\nu)$ with respect to ν . That means $\nu(E) = 0$. Thus $\nu << \mu$. Similarly one can prove that $\mu << \nu$.

The proof of the other side is clear.

Theorem 2.2. Let $0 < p_1, p_2 < \infty$ and $0 < q_1, q_2 \le \infty$. Then the inclusion

$$L(p_1, q_1)(X, \mu) \subset L(p_2, q_2)(X, \nu)$$

holds in the sense of equivalence classes if and only if $\mu \approx \nu$ and there exists C>0 such that

$$||f||_{p_2q_{2,\nu}}^* \le C||f||_{p_1q_{1,\mu}}^*$$

for all $f \in L(p_1, q_1)(X, \mu)$.

Proof. Assume that $L(p_1,q_1)(X,\mu) \subseteq L(p_2,q_2)(X,\nu)$ holds in the sense of equivalent classes. Define the unit operator I(f) = f from $L(p_1,q_1)(X,\mu)$ into $L(p_2,q_2)(X,\nu)$. We shall show that I is closed. Let (f_n) be a sequence such that $f_n \to f$ in $L(p_1,q_1)(X,\mu)$ and $I(f_n) = f_n \to g$ in $L(p_2,q_2)(X,\nu)$. It is known that

(9)
$$||f||_{p_1,\infty}^* \le ||f||_{p_1,q_1}^*$$

and

(10)
$$||f||_{p_1\infty}^* = \sup_{t>0} t^{\frac{1}{p_1}} \cdot f^*(t) = \sup_{y>0} y \left(\lambda_f(y)\right)^{\frac{1}{p_1}}.$$

Let $\varepsilon > 0$ be given. Since $f_n \to f$ in $L(p_1, q_1)(X, \mu)$, there exists $n_0 \in N$ such that

(11)
$$y(\lambda_{f_n-f})^{\frac{1}{p_1}} \le ||f_n - f||_{p_1, q_1}^* < \varepsilon^{\frac{1}{p_1}} y$$

for all $n \geq n_0$. This implies $(\lambda_{f_n-f}) < \varepsilon$ for all $n \geq n_0$. Then (f_n) converges to f in measure (with respect to μ). Hence there is a subsequence $(f_{n_i}) \subset (f_n)$ such that (f_{n_i}) pointwise converges to f, μ - almost everywhere (a.e). Also since (f_n) converges to g in $L(p_2, q_2)(X, \nu)$ then it is easy to prove that (f_{n_i}) converges to g in $L(p_2, q_2)(X, \nu)$. Then (f_{n_i}) converges to g in measure (with respect to ν). Therefore one can find a subsequence $(f_{n_{i_k}}) \subset (f_{n_i})$ such that $(f_{n_{i_k}})$ converges to g pointwise $\nu - a.e$. Let M be the set of the points such that $(f_{n_{i_k}})$ doesn't converge to g pointwise. Hence $\nu(M) = 0$. Since by the assumption $L(p_1, q_1)(G, \mu) \subseteq L(p_2, q_2)(G, \nu)$ in the sense of equivalent classes then $\mu \approx \nu$ by Lemma 2.1. Thus $\nu(M) = \mu(M) = 0$. Hence $(f_{n_{i_k}})$ converges to the function g pointwise μ -a.e. Finally using the inequality

$$(12) |f(x) - g(x)| \le |f(x) - f_{n_{i_k}}(x)| + |f_{n_{i_k}}(x) - g(x)|$$

one can prove that f=g μ -a.e. Also it is clear that f=g ν -a.e. That means the unit function I is closed. Hence by the closed graph theorem there exists C>0 such that

$$||f||_{p_2,q_2,\nu}^* \le C.||f||_{p_1,q_1,\mu}^*$$

for all $f \in L(p_1, q_1)(G, \mu)$.

The proof of the other direction is easy.

If $0 < p_1, p_2 < \infty$ and $q_1 = q_2 = \infty$ then the proof is clear from (10). \square

Lemma 2.3. Let $0 , <math>0 \le q \le \infty$ and $f \in L(p,q)(X,\mu)$ be a real valued measurable function. If there exists M > 0 such that $\nu(E) \le M\mu(E)$ for all $E \in \Sigma$ then we have the inequality

$$||f||_{p,q,\nu}^* \le M^{\frac{1}{p}} ||f||_{p,q,\mu}^*.$$

Proof. Since $f \in L(p,q)(X,\mu)$ is a measurable real valued function then

(13)
$$E_y = \{x \in X : f(x) > y\} \in \Sigma$$

for all real number y. If we set $k=M\mu$, it easy to see that k is a measure. Denote by $\nu\left(E_y\right)=\lambda_f^{\nu}\left(y\right)$ and $k\left(E_y\right)=\lambda_f^k\left(y\right)$. We also denote the rearrangements of f with respect to the measures k and ν by $f^{*,k}$ and $f^{*,\nu}$ respectively. Let A and B be such that

(14)
$$A = \left\{ y > 0 : \lambda_f^{\nu}(y) \le t \right\},$$
$$B = \left\{ y > 0 : \lambda_f^{\nu}(y) \le t \right\}.$$

Since $\nu(E_y) \leq M\mu(E_y) = k(E_y)$ we have $\lambda_f^{\nu}(y) \leq \lambda_f^{k}(y)$. Thus we obtain $B \subseteq A$ and

(15)
$$f^{*,k}(t) = \inf_{y} B \ge \inf_{y} A = f^{*,\nu}(t).$$

This implies

(16)
$$\left(\frac{q}{p} \int_0^\infty t^{\frac{q}{p}-1} [f^{*,\nu}(t)]^q dt\right)^{\frac{1}{q}} \le \left(\frac{q}{p} \int_0^\infty t^{\frac{q}{p}-1} [f^{*,k}(t)]^q dt\right)^{\frac{1}{q}}$$

and

$$||f||_{p,q,\nu}^* \le ||f||_{p,q,k}^*$$

Also we write

(17)
$$\{y > 0 : \lambda_f^k(y) \le t\} = \{y > 0 : k(E_y) \le t\}$$

= $\{y > 0 : M\mu(E_y) \le t\} = \{y > 0 : \mu(E_y) \le \frac{t}{M}\}$

and

(18)
$$f^{*,k}\left(t\right) = f^{*,\mu}\left(\frac{t}{M}\right).$$

Combining (15) and (18) we find

$$f^{*,k}\left(t\right) = f^{*,\mu}\left(\frac{t}{M}\right) > f^{*,\nu}\left(t\right).$$

This implies

(19)
$$||f||_{p,q,k}^* = \left(\frac{q}{p} \int_0^\infty \left[f^{*,k}(t)\right]^q . t^{\frac{q}{p}-1} dt\right)^{\frac{1}{q}}$$

$$= \left(\frac{q}{p} \int_0^\infty \left[f^{*,\mu}\left(\frac{t}{M}\right)\right]^q . t^{\frac{q}{p}-1} dt\right)^{\frac{1}{q}} = M^{\frac{1}{p}} ||f||_{p,q,\mu}^*$$

for all $f \in L(p,q)(X,\mu)$, where $k = M\mu$. Consequently we have

(20)
$$||f||_{p,q,\nu}^* \le ||f||_{p,1,k}^* = M^{\frac{1}{p}} ||f||_{p,q,\mu}^*.$$

Proposition 2.4. Let $0 and <math>0 \le q \le \infty$. The following statements are equivalent:

- (1) $L(p,q)(X,\mu) \subseteq L(p,q)(X,\nu)$.
- (2) $\mu \approx \nu$ and there exists M > 0 such that $\nu(E) \leq M\mu(E)$ for all $E \in \Sigma$.
- (3) $L^{1}(\mu) \subseteq L^{1}(\nu)$.

Proof. (1) \Rightarrow (2). By Theorem 2.2, there exists C > 0 such that

$$||f||_{p,q,v}^* \le C||f||_{p,q,u}^*$$

for all $f \in L(p,q)(X,\mu)$. It follows from (7) in Lemma 2.1, and from (21) that

$$(\nu(E))^{\frac{1}{p}} \leq C. (\mu(E))^{\frac{1}{p}},$$

and hence

(22)
$$\nu(E) \le M(\mu(E)),$$

where $M = C^p$.

 $(2) \Rightarrow (1)$. It is known that the set S of simple functions are dense in $L(p,q)(X,\mu)$ ([3]). Define the unit function I from S into $L(p,q)(X,\nu)$. By Lemma 2.3, we have the inequality

(23)
$$||f||_{p,q,\nu}^* \le C||f||_{p,q,\mu}^*$$

for all $f \in S$. Thus I is continuous from S into $L(p,q)(X,\nu)$. Then I is continuously extended to the space $(L(p,q)(X,\mu))$. Thus we have

$$||f||_{p,q,\nu}^* \le C||f||_{p,q,\mu}^*$$

for all $f \in (L(p,q)(X,\mu))$. That means $L(p,q)(X,\mu) \subseteq L(p,q)(X,\nu)$. (2) \Rightarrow (3). It is known that $L^{1}(\mu) = L(1,1)(X,\mu)$ and $L(1,1)(X,\nu) =$ $L^1(\nu)$. Take any simple function $h(x) = \sum_{k=1}^N a_k \cdot \chi_{E_k}(x)$ in $L^1(\mu)$ with E_i and E_j disjoint if $i \neq j$. Using (22) we have

(24)
$$||h||_{1,1,\nu}^* = ||h||_{L^1(\nu)} = \sum_{k=1}^N |a_k| \, \nu(E_k) \le M \sum_{k=1}^N |a_k| \, \mu(E_k)$$

$$= M. \, ||h||_{L^1(\mu)} = M \, ||h||_{1,1,\mu}^* < \infty.$$

Hence h is a simple function in $L^1(\nu)$. Now let any $f \in L^1(\mu)$ be given. Since the set of simple functions is dense in $L^1(\mu)$ then there exists a sequence $(f_n) \subset L^1(\mu)$ of simple functions such that $f_n \to f$ in $L^1(\mu)$. Since (f_n) is a Cauchy sequence in $L^1(\mu)$ then (f_n) is also a Cauchy sequence in $L^1(\nu)$ from (24) and converges to a function g in $L^1(\nu)$. Using the subsequence argument similar as in the proof of Theorem 2.2. one can show that f = g. Thus $f \in L^1(\nu)$ and we have $L^1(\mu) \subseteq L^1(\nu)$.

The proof of $(3) \Rightarrow (2)$ is easy from Theorem 2.2.

(3) \Rightarrow (1). Let $f \in L(p,q)(X,\mu)$ be given. Since $\chi_{(0,\infty)}.t^{\frac{q}{p}-1}.[f^*(t)]^q \in$ $L^1(\mu)$ and $L^1(\mu) \subseteq L^1(\nu)$ we have $\chi_{(0,\infty)}.t^{\frac{q}{p}-1}.[f^*(t)]^q \in L^1(\nu)$. This implies $f \in L(p,q)(X,\nu)$ and we have $L(p,q)(X,\mu) \subseteq L(p,q)(X,\nu)$.

This completes the proof.

Proposition 2.5. Let p_1, p_2, q_1, q_2 be real numbers with $0 < q_1 \le p_1 < p_2 \le q_2 < \infty$. The following statements are equivalent:

- (1) $L(p_1, q_1)(X, \mu) \subseteq L(p_2, q_2)(X, \mu)$.
- (2) There exists a constant m > 0 such that $\mu(E) \ge m$ for every μ -non-null set $E \in \Sigma$.

Proof. (1) \Rightarrow (2). By Theorem 2.2, there exists C > 0 such that $||f||_{p_2,q_2} \le C||f||_{p_1,q_1}$ for all $f \in L(p_1,q_1)(X,\mu)$. Let $E \in \Sigma$ be a μ -non-null set and $\mu(E) < \infty$. It follows from (7) as in the proof of Lemma 2.2, that

(25)
$$(\mu(E))^{\frac{1}{p_2}} \le C.(\mu(E))^{\frac{1}{p_1}}.$$

Since $p_1 < p_2$ then $\frac{1}{p_1} - \frac{1}{p_2} > 0$. Thus we have

(26)
$$\frac{1}{C} \le (\mu(E))^{\frac{1}{p_1} - \frac{1}{p_2}} = \mu(E)^{\frac{p_2 - p_1}{p_1 \cdot p_2}}.$$

If we set $m = C^{\frac{p_1..p_2}{p_1-p_2}}$, we obtain $\mu(E) \ge m$.

 $(2) \Rightarrow (1)$. Let $f \in L(p_1, q_1)(X, \mu)$. For every $n \in N$ we define

(27)
$$E_n = \{ x \in X : |f(x)| > n \}.$$

Since $q_1 \leq p_1$ one writes $L(p_1, q_1)(X, \mu) \subseteq L(p_1, p_1)(X, \mu) = L^{p_1}(\mu)$ and there exists K > 0 such that

$$||f||_{p_1} \le K.||f||_{p_1,q_1}$$

for all $f \in L(p_1, q_1)(X, \mu)$. It follows from (27) that

(29)
$$n^{p_1}.\mu(E_n) \le \int_{E_n} |f|^{p_1} d\mu \le \int_X |f|^{p_1} d\mu \le \left(K \|f\|_{p_1,q_1}\right)^{p_1} < \infty$$

for all $n \in N$. By the hypothesis either $\mu(E_n) = 0$ or $\mu(E_n) \geq m$. Since the sequence (E_n) is a non-increasing and $\bigcap_{n=1}^{\infty} E_n = \phi$, thus $\mu(E_n) \to 0$. Therefore there exists $n_0 \in N$ such that $|f(x)| \leq n_0$, μ -a.e. for all $x \in X$. From formula (28) and the inequality

(30)
$$\int_{Y} |f|^{p_2} d\mu = \int_{Y} |f|^{p_1} |f|^{p_2 - p_1} . d\mu \le n_0^{p_2 - p_1} . \int_{Y} |f|^{p_1} d\mu$$

we have $f \in L(p_2, p_2)(X, \mu)$. This implies $L(p_1, q_1)(X) \subseteq L(p_2, p_2)(X, \mu)$. Finally by the assumption $0 < q_1 \le p_1 < p_2 \le q_2 < \infty$ we obtain

$$L(p_1, q_1)(X, \mu) \subset L(p_1, p_1)(X) \subset L(p_2, p_2)(X, \mu) \subset L(p_2, q_2)(X, \mu).$$

Proposition 2.6. Let assume that $0 < q_1 \le q_2 \le \infty$.

- (1) If $\mu(X) < \infty$ then $L(p_1, q_1)$ $(X, \mu) \subset L(p_2, q_2)(X, \mu)$ whenever $0 < p_1 < p_2 < \infty$ if and only if any collection of disjoint measurable sets of positive measure is finite.
- (2) If $\mu(X) = \infty$ then $L(p_1, q_1)$ $(X, \mu) \subset L(p_2, q_2)(X, \mu)$ whenever $0 < q_1 \le p_1 < p_2 \le q_2 < \infty$ if and only if for any sequence (E_n) disjoint measurable sets of positive measure, the sequence $(\mu(E_n))$ is bounded away from zero.
- *Proof.* (1) Let $\mu(X) < \infty$ and $0 < p_1 < p_2 < \infty$. It is known that [3], $L(p_1, q_1)$ $(X, \mu) \subset L(p_2, q_2)(X, \mu)$. If we get

(31)
$$r_1 = \min\{p_1, q_1\}, r_2 = \max\{p_2, q_2\},$$

we obtain $r_1 \leq p_1 < p_2 \leq r_2$ and $r_1 \leq q_1 < q_2 \leq r_2$. Hence we have

(32)
$$L(r_1, r_1)(X, \mu) \subset L(p_1, q_1)(X, \mu) \subset L(p_2, q_2)(X, \mu) \subset L(r_2, r_2)(X, \mu).$$

Then for given any sequence (E_n) disjoint measurable sets of positive measure is finite by Proposition in [12]

The proof of the converse is clear again by Proposition in [12].

(2) Suppose $\mu(X) = \infty$. If a sequence (E_n) of disjoint measurable sets such that $\mu(E_n) > 0$ and the sequence (μE_n) is bounded away from zero then $L^{p_1}(\mu) \subseteq L^{p_2}(\mu)$ by Proposition in [12]. Thus

(33)
$$L^{p_1}(\mu) = L(p_1, p_1)(X, \mu) \subset L(p_2, p_2)(X, \mu) = L^{p_2}(\mu) \subset L(p_2, q_2)(X, \mu).$$

Since $q_1 \leq p_1 < p_2 \leq q_2$ then we have

(34)
$$L(p_1, q_1)(X, \mu) \subset L(p_1, p_1)(X, \mu) = L^{p_1}(\mu) \subset L(p_2, p_2)(X, \mu)$$

= $L^{p_2}(X, \mu) \subset L(p_2, q_2)(X, \mu)$.

Conversely assume that $L(p_1, q_1)(X, \mu) \subset L(p_2, q_2)(X, \mu)$ and (E_n) is collection of disjoint measurable sets of positive measure. If one applies the proof technic in (i) of this Proposition shows that the sequence $(\mu(E_n))$ is bounded away from zero by Proposition in [12].

Proposition 2.7. Let X be a metrisable locally compact abelian group with Haar measure μ and $\mu(X) = \infty$. If $0 \le q_1 \le p_1 < p_2 \le q_2 < \infty$ then the inclusion

(35)
$$L(p_1, q_1)(X, \mu) \subseteq L(p_2, q_2)(X, \mu)$$

is not satisfied.

Proof. Let d be a metric on X and $(x_n)_{n\in\mathbb{N}}$ be a sequence in X such that $d(x_i,x_j)\geq 2r$ for $i\neq j$, where 0< r<1. Get the open balls $A_n=x_n+B(0,r^n), n\in\mathbb{N}$. It is easy to see that $(A_n)_{n\in\mathbb{N}}$ is a disjoint sequence. Since X is locally compact group then there exists compact subsets $E_n\subset\mathbb{N}$

 A_n with $\mu(E_n) < \infty$ for all $n \in N$. Thus the sequence $(E_n)_{n \in N}$ is disjoint. Since $\lim_{n \to \infty} \mu(A_n) = 0$ and $\mu(E_n) \le \mu(A_n)$ for all $n \in N$, then we obtain $\lim_{n \to \infty} \mu(E_n) = 0$. Hence the inclusion $L(p_1, q_1)(X, \mu) \subseteq L(p_2, q_2)(X, \mu)$ does not satisfy by Proposition 2.6.

Example: It is known that the Lebesgue measure of the set of real numbers $\mu(R) = \infty$. Define

$$A_n = n + \left(-\frac{1}{2^n}, \frac{1}{2^n}\right)$$

for all $n \in \mathbb{N}$. The sequence of measurable sets $(A_n)_{n \in \mathbb{N}}$ is disjoint and $\mu(A_n) = \frac{1}{2^{n-1}} > 0$ for all $n \in \mathbb{N}$. But

$$\lim_{n \to \infty} \mu\left(A_n\right) = \lim_{n \to \infty} \frac{1}{2^{n-1}} = 0.$$

Hence if we take X = R with the absolute value metric in the Proposition 2.7 we see that the inclusion (35) is not true.

Ondokuz Mayis University Faculty of Art and Sciences Department of Mathematics 55139, K urupelit, Samsun Turkey e-mail: gurkanli@omu.edu.tr

References

- [1] A. P. Blozinski, On a convolution for L(p,q) spaces, Trans. Amer. Math. Soc. **164** (1972), 255–264.
- [2] _____, Convolution of L(p,q) functions, Proceedings of the Amer. Math. Soc. **32**-1 (1972), 237–240.
- [3] R. A. Hunt, On L(p,q) spaces, L'enseignement Mathematique T.XII, 4 (1966), 249–276.
- [4] H. G. Feichtinger and A. T. Gürkanlı, On a family of weighted convolution algebras, Internat. J. Math. Math. Sci. 13 (1990), 517–526.
- [5] H. G. Feichtinger and W. Schachermayer, Local nonfactorization of functions on locally compact groups, Arch. Math. 49 (1987), 72–78.
- [6] A. G. Miammee, The inclusion $L^p(\mu) \subseteq L^q(\nu)$, Amer. Math. Monthly 98 (1991), 342–345.
- [7] T. S. Quek and L. Y. H. Yap, A Test for membership in Lorentz spaces and some applications, Hokkaido Math. J. 17 (1988), 279–288.

- [8] R. O'Neil, Convolution operators and L(p,q) spaces, Duke Math. J. **30** (1963), 129–142.
- [9] H. Reiter and Jan D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, 2nd ed., Oxford Clarendon Press, 2000.
- [10] J. L. Romero, When $L^p(\mu)$ contained in $L^q(\nu)$, Amer. Math. Monthly **90** (1983), 203–206.
- [11] S. Saeki and E. L. Thome, Lorentz spaces as L_1 -modules and multipliers, Hokkaido Math. J. **23** (1994), 55–92.
- [12] B. Subramian, On the inclusion $L^p(\mu) \subseteq L^q(\nu)$, Amer. Math. Monthly **85** (1978), 479–481.
- [13] L. H. Y. Yap, On the impossibility of representing certain functions by convolutions, Math. Scand. **26** (1970), 132–140.