
�

�

�

�

�

�

�

�

J. Math. Kyoto Univ. (JMKYAZ)
44-2 (2004), 381–439

On the minimal solution for
quasilinear degenerate elliptic equation
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Abstract

In this article we shall investigate the minimal and the extremal
solutions of quasilinear elliptic equation with a positive nonlinear term
in the right hand side. More precisely we shall study the boundary value
problem (

Lp(u) = λf(u), in Ω,

u = 0, on ∂Ω,

where λ is a nonnegative parameter, Ω is a domain of RN and Lp(·)(p >
1) is the p-Laplace operator defined by Lp(·) = −div(|∇ · |p−2∇·)).
We assume that f(t) is increasing on [0,∞) and strictly convex with
f(0) > 0. Under some additional conditions, we first establish the ex-
istence of the minimal solution uλ and the extremal solution u∗ to this
equation and study their behaviors in connection with the linearized

operator given by L′
p(u)(·) = −div

“
|∇u|p−2(∇ · +(p − 2) (∇u,∇·)

|∇u|2 ∇u)
”
.

The minimal solution uλ ∈ C1,σ(Ω) is defined as the smallest solution
among all possible classical solutions, and the extremal solution is defined
as an increasing limit of uλ in W 1,p

0 (Ω) as λ → λ∗ (the extremal value).
Though L′

p(uλ)(·) is, roughly speaking, a degenerate elliptic operator,
it is shown that L′

p(uλ)(·) has a compact inverse from L2(Ω) to itself if
uλ is minimal. Moreover the self-adjoint operator L′

p(uλ)(·) − λf ′(uλ)
on L2(Ω) has a positive first eigenvalue if λ is sufficiently small and a
nonnegative first eigenvalue for any λ ∈ (0, λ∗). Finally in Section 10 we
give the characterizations of the extremal solution which are essentially
depend upon the value of p and the topology of Ω (see Theorem 10.1
and subsequent Propositions). When Ω is a ball, we investigate these
problems rather precisely using the weighted Hardy type inequality with
a sharp missing term.
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1. Introduction

Let N be a positive integer and let Ω be a bounded open set of R
N whose

boundary ∂Ω is of class C2. In connection with combustion theory and other
applications, we are interested in the study of positive solutions of the quasi-
linear elliptic boundary value problem

(1.1)

{
Lp(u) = λf(u) in Ω,
u = 0 on ∂Ω,

where Lp(·) is the p-Laplace operator defined by Lp(·) = − div(|∇ · |p−2∇·)).
Here p > 1, λ is a nonnegative parameter and the nonlinearity f is, roughly
speaking, continuously differentiable, positive, increasing and strictly convex
on [0,+∞) (see also the condition (2.2)). Typical examples are f(t) = et and
(1 + t)q for q > p − 1. When p = 2, it is known that there is a finite number
λ∗ such that (1.1) has a classical positive solution u ∈ C2(Ω) if 0 < λ < λ∗.
On the other hand no solution exists, even in the weak sense, for λ > λ∗. This
value λ∗ is often called the extremal value and solutions for this extremal value
are called extremal solutions. It has been a very interesting problem to find
and study the properties of these extremal solutions.

In this paper we shall study similar problems for the quasilinear operator
Lp(u) (p > 1). In Section 2 we explain our general setting and prepare results
concerned with p-Laplace operator, which are basic in the present paper. The
minimal solution uλ ∈ C1,σ(Ω) (0 < σ < 1) is defined by Definition 2.3 as the
smallest solution among all possible classical solutions, and then the extremal
solution is introduced as an increasing limit of uλ as λ→ λ∗ ( the extremal value
). For the precise definition, see Definition 1.1 below (see also Definition 1.2).
Under some additional conditions, we first establish the existence of the minimal
solutions to (1.1) and study their behaviors in connection with the linearized
operator defined by

(1.2) L′
p(u)(·) = − div

(
|∇u|p−2

(
∇ · +(p− 2)

(∇u,∇·)
|∇u|2 ∇u

))
.

Since Lp(u) is not always differentiable at any point u ∈ W 1,p
0 (Ω) in the sense

of Frechet, we shall employ the directional derivatives at the minimal solution
uλ. More precisely we introduce in Section 3 a Hilbert space Vλ,p(Ω) and an
admissible class of directions Ṽλ,p(Ω) ⊂ Vλ,p(Ω) which depend essentially upon
uλ. Then the operator Lp(·) becomes differentiable at uλ in the direction to
Ṽλ,p(Ω) (see Proposition 3.1).

Although L′
p(uλ)(·) is, roughly speaking, a degenerate elliptic operator, it

will be shown in Section 4 that L′
p(uλ)(·) has a compact inverse from L2(Ω)

to itself. This crucial property is based on the compactness of the imbedding;
Vλ,p(Ω) −→ L2(Ω) for λ ∈ (0, λ∗) (see Proposition 4.2). It is also shown that
L′
p(uλ) − λf ′(uλ) is extended as a self-adjoint operator on L2(Ω) by virtue of

a coercive quadratic form on Vλ,p(Ω)× Vλ,p(Ω) defined in Section 3. Then the
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positivity of the first eigenvalue of L′
p(uλ)−λf ′(uλ) will be proved in case that

λ is sufficiently small. From this fact we will study the behaviors of uλ and
its left derivative vλ near λ = 0 in Scetions 6 and 7. We shall also prove in
Sections 8 and 9 the nonnegativity of the first eigenvalue of L′

p(uλ) − λf ′(uλ)
under the assumption (AC) below on the first eigenfunction.

In order to describe the main results of this paper, here we prepare the
precise definition of the extremal value λ∗.

Definition 1.1 (Extremal value λ∗). The extremal value λ∗ is defined
as the supremum of µ such that:

(a) For any λ ∈ (0, µ] there exists the minimal solution uλ of (1.1).
(b) The following Hardy type inequality is valid:

(1.3)
∫

Ω

|∇uλ|p−2

(
|∇ϕ|2 + (p− 2)

(∇uλ,∇ϕ)2

|∇uλ|2
)
dx ≥ λ

∫
Ω

f ′(uλ)ϕ2 dx

for any ϕ ∈ Vλ,p(Ω). Here Vλ,p(Ω) is defined by

(1.4) Vλ,p(Ω) = {ϕ ∈M(Ω) : ||ϕ||Vλ,p
< +∞, ϕ = 0 on ∂Ω},

where

(1.5) ||ϕ||Vλ,p
=
(∫

Ω

|∇uλ(x)|p−2|∇ϕ|2 dx
) 1

2

and by M(Ω) we denote the set of all measurable functions on Ω.

Remark 1.1. (1) For the definition of the minimal solution, see Defi-
nition 2.3.

(2) The validity of the Hardy type inequality (1.3) is equivalent to the
nonnegativity of the first eigenvalue of L′

p(uλ) − λf ′(uλ) for λ ∈ (0, λ∗) as
usual (see Theorem 5.1 in Section 5 and Theorem 8.1 in Section 8).

(3) In the definition of Vλ,p(Ω), the condition ϕ = 0 on ∂Ω is taken in a
sense of trace. Since ∇uλ does not vanish near the boundary, ϕ ∈ Vλ,p(Ω) is dif-
ferentiable there in a weak sense. We will see Vλ,p(Ω) ⊂ L2(Ω) as Corollary 4.3
in Section 4.

We also define

Definition 1.2 (Extremal solution). The solution for the extremal value
λ∗ is called the extremal solution.

Combining all results among these sections, we first obtain

Theorem 1.1. Assume that 1 < p < +∞ and f satisfies the conditions
(2.1) and (2.2). Then we have the followings :

(1) The extremal value λ∗ is positive. Moreover the first eigenvalue of
L′
p(uλ) − λf ′(uλ) is positive provided that λ is suficiently small.
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(2) Let uλ ∈ C1(Ω) be the minimal solution of (1.1) for λ ∈ (0, λ∗). We
have as λ→ λ∗ a finite limit a.e.

(1.6) u∗(x) = lim
λ→λ∗

uλ(x).

Moreover u∗ ∈W 1,p
0 (Ω) and u∗ is a weak energy solution of (1.1) with λ = λ∗.

Remark 1.2. (1) As for the definition of the weak energy solution, see
Definition 2.1.

(2) This result will be proved in two theorems in Sections 2 and 5 (See
also Section 8). More precisely the assertion (1) will be proved as Theorem 5.1
in Section 5 using the results in Section 4. The assertion (2) will be proved in
Section 2 as Theorems 2.1 admitting the assertion (1).

As for the smooth dependency of uλ on λ we shall show in Sections 6 and
7 the following:

Theorem 1.2. Assume that p ∈ [2,∞) and λ ∈ (0, λ∗). Then the
following statements are equivalent:

(1) The self-adjoint operator L′
p(uλ)−λf ′(uλ) on L2(Ω) has a positive first

eigenvalue.
(2) uλ is left differentiable at λ in Vλ,p(Ω). Moreover the left derivative

vλ ∈ Vλ,p(Ω) satisfies the boundary value problem

(1.7)

{
L′
p(uλ)vλ − λf ′(uλ)vλ = f(uλ) in Ω,

vλ = 0 on ∂Ω.

Remark 1.3. If the minimal solution uλ is continuous on λ for each
x ∈ Ω and weakly continuous as a W 1,p

0 (Ω)-valued function, then uλ becomes
differentiable and the derivative of uλ satisfies (1.7) under the condition (1).
Later we shall give an example in which these assumptions are satisfied. See
Proposition 12.1 in Section 12.

Since L′
p(uλ) − λf ′(uλ) has a discrete spectrum, we can define the first

eigenfunction as follows.

Definition 1.3 (First eigenfunction ϕ̂λ). Let uλ be the minimal solu-
tion of (1.1) for λ ∈ (0, λ∗). By ϕ̂λ we denote the first eigenfunction of the
self-adjoint operator L′

p(uλ) − λf ′(uλ) on L2(Ω), which is nonnegative and
unique up to a multiplication by constants.

We also define

Definition 1.4 (Accessibility Condition). The first eigenfunction ϕ̂λ is
said to satisfy the accessibility condition (AC) if for any ε > 0 there exists a
nonnegative ϕ ∈ Ṽλ,p(Ω) such that

(1.8) L′
p(uλ)(ϕ− ϕ̂λ) + |ϕ− ϕ̂λ| ≤ εmax(ϕ̂λ, dist(x, ∂Ω)) in Ω.

Here Ṽλ,p(Ω) is given by Definition (3.6) in Section 3.
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In the next we establish the nonnegativity of the first eigenvalue of L′
p(uλ)−

λf ′(uλ) for any minimal solution uλ.

Theorem 1.3. Assume that 1 < p < +∞ and f satisfies the conditions
(2.1) and (2.2). Let uλ ∈ C1(Ω) be the minimal solution of (1.1) for some
λ > 0. In addition we assume that the first eigenfunction ϕ̂λ satisfies the
accessiblity condition (AC ). Then the first eigenvalue of L′

p(uλ) − λf ′(uλ) is
nonnegative.

Remark 1.4. (1) This will be established as Theorem 8.1 through a
chain of Propositions and the proof will be finished in Section 9.

(2) If Ω is radially symmetric, then the minimal solution becomes radial.
In this case the accessiblity condition (AC) on the first eigenfunction ϕ̂λ is
satisfied (see Proposition 12.2 in Section 12). In fact, assuming that Ω is a unit
ball, ϕ can be constructed by truncating the eigenfunction ϕ̂λ smoothly in a
small neighborhood of the origin. Then, near the origin L′

p(uλ)ϕ vanishes but
L′
p(uλ)ϕ̂

λ is nonnegative by virture of the positivity of the first eigenvalue of
L′
p(uλ). Therefore it is not difficult to check (1.8).

In Section 10 we shall give characterizations of the extremal solutions which
are essentially depending upon the value of p and the topology of Ω. To this
end we introduce a singular energy solution.

Definition 1.5 (Singular energy solution). If a weak energy solution u
is not bounded, u is said to be singular.

First we prove a non-existence of weak energy solutions for any λ > λ∗.

Theorem 1.4. Let u∗ = uλ∗ be a singular extremal solution. Assume
that f(t) satisfies the growth condition (GC ) in addition to (2.2). Then there
is no weak energy solution to (1.1) provided that λ > λ∗. Here the growth
condition (GC ) is defined by Definition 10.1 in Section 10.

Remark 1.5. In Section 12 we give two examples of singular energy
solutions assuming that Ω ≡ B = {x ∈ R

N : |x| < 1} (a unit ball). See
Lemma 12.2.

Then we shall give characterizations for the extremal solutions according
to the range of p in terms of propositions. Roughly speaking, if p ≥ 2, then
it is necessary to satisfy the Hardy type inequality (1.3) with λ = λ∗ for u∗ ∈
W 1,p

0 (Ω) to be the extremal. More precisely we have

Proposition 1.1. Assume that p ≥ 2. Let u∗ be the extremal solution.
Then we have

(1.9)
∫

Ω

|∇u∗|p−2

(
|∇ϕ|2 + (p− 2)

(∇u∗,∇ϕ)2

|∇u∗|2
)
dx ≥ λ∗

∫
Ω

f ′(u∗)ϕ2 dx

for any ϕ ∈ Vλ∗,p(Ω).



�

�

�

�

�

�

�

�

386 Toshio Horiuchi and Peter Kumlin

Remark 1.6. If 1 < p < 2, then (1.9) is also necessary under additional
conditions (10.20). See Proposition 10.2.

Conversely assume that u ∈W 1,p
0 (Ω) is singular (unbounded) and satisfies

the Hardy type inequality (1.3) for some λ > 0 with u in place of uλ. If
1 < p ≤ 2, then we can show λ = λ∗ and u = u∗ under additional conditions.
Namely we have

Proposition 1.2. Assume that 1 < p ≤ 2 and the nonlinearlity f(t)
satisfies the growth condition (GC ) in addition to (2.2). For λ > 0, let uλ be
the minimal solution or possibly the extremal solution. Let u ∈ W 1,p

0 (Ω) be a
singular weak energy solution of (1.1) such that

(1.10)
∫

Ω

|∇u|p−2

(
|∇ϕ|2 + (p− 2)

(∇u,∇ϕ)2

|∇u|2
)
dx ≥ λ

∫
Ω

f ′(u)ϕ2 dx

for any ϕ ∈ Vλ,p(Ω). Moreover, if 1 < p < 2, then we assume that

(1.11) |∇u| ≥ |∇uλ| a.e. in Ω.

Then we have λ = λ∗ and u = uλ = u∗

Remark 1.7. If p > 2, we have somewhat weaker result. See Proposi-
tion 10.4.

When Ω is a ball, in Section 12 we investigate these problems rather pre-
cisely by using the weighted Hardy type inequality with a sharp missing
term established in Section 11. The extremal solutions are determined in most
cases and the continuity of the minimal solution uλ on λ is also shown in the
case that 1 < p ≤ 2. For the precise organization of this paper, see the table of
contents below.

Contents

1. Introduction
2. Preliminaries
3. Differentiability of Lp(uλ)
4. The linearized operator L′

p(uλ)
5. Positivity of L′

p(uλ) − λf ′(uλ) for a small λ
6. Differentiability of the minimal solution on λ
7. Behaviors of uλ and vλ near λ = 0
8. Nonnegativity of L′

p(uλ) − λf ′(uλ)
9. Proof of Proposition 8.3
10. The extremal solution and its characterization
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11. Weighted Hardy’s inequality in a ball
12. Examples in a unit ball of R

N

2. Preliminaries

Let Ω be a bounded domain of R
N having C2 class boundary. Let p satisfy

1 < p < +∞. Let f(t) satisfy the following conditions throughout this paper:

(2.1)

{
f(t) ∈ C1([0,+∞)),
f(t) is increasing and strictly convex with f(0) > 0.

Moreover, f(t) satisfies

(2.2) lim inf
t→∞

f ′(t)t
f(t)

> p− 1.

Now we consider the boundary value problem:

(2.3)

{
Lp(u) = λf(u) in Ω,
u = 0 on ∂Ω,

where Lp(·) is the p-Laplace operator defined by Lp(·) = − div(|∇ · |p−2∇·)).
First we define a weak energy solution and a classical solution of the prob-

lem (2.3). To do so we need more notations. Let l be an arbitrary nonnegative
integer. By W l,p(Ω) we denote the space of all functions on Ω, whose general-
ized derivatives ∂γu of order ≤ l satisfy

(2.4) ||u||W l,p(Ω) =
∑
|γ|≤l

(∫
Ω

|∂γu(x)|p dx
)1/p

< +∞.

By W l,p
0 (Ω) we denote the completion of C∞

0 (Ω) with respect to the norm
defined by (2.4). Conventionally we set Lp(Ω) = W 0,p(Ω).

Definition 2.1 (Weak energy solution of (2.3) in W 1,p
0 (Ω)). By δ(x) =

dist(x, ∂Ω) we denote the distance to the boundary from x. A function u ∈
W 1,p

0 (Ω) is called a weak energy solution of (2.3) if f(u) satisfies

(2.5) dist(x, ∂Ω) · f(u) ∈ L1(Ω)

and u satisfies (2.3) in the following weak sense:

(2.6)
∫

Ω

(|∇u|p−2∇u · ∇ϕ− λf(u)ϕ) dx = 0

for all ϕ ∈ C1(Ω) with ϕ = 0 on ∂Ω.
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Definition 2.2 (Classical solution of (2.3) in C1(Ω)). A weak energy
solution u of (2.3) is called a classical solution if it belongs to C1(Ω).

From the standard elliptic regularity theory it follows that bounded weak
energy solutions for this problem belong to Hölder space C1,σ(Ω) for some
σ ∈ (0, 1). Therefore a bounded weak energy solution of (2.3) becomes a
classical solution. More precisely we have

Lemma 2.1. Let g be a continuous function on R. Let u ∈ W 1,p
0 (Ω) ∩

L∞(Ω) be a weak solution of

(2.7) Lp(u) = g(u).

Then there exist C > 0 and σ ∈ (0, 1) such that

(2.8)

{
|∇u(x)| ≤ C for any x ∈ Ω,
|∇u(x) −∇u(y)| ≤ C|x− y|σ for any (x, y) ∈ Ω × Ω.

For the proof see [10; Theorems 1,2] and [14; Theorem 5.1] for example.
See also [5] and [12].

We also recall the following elementary lemmas 2.2 and 2.3 for the sake of
self-containedness.

Lemma 2.2 (Weak comparison principle). Let p′ = p
p−1 . Assume that

f, g ∈ Lp
′
(Ω) satisfy 0 ≤ f ≤ g a.e.. Moreover assume that u, v ∈ W 1,p

0 (Ω)
satisfy

(2.9)

{
Lp(u) = f in Ω,
Lp(v) = g in Ω.

Then u ≤ v a.e. in Ω.

Proof. We may assume that u and v are smooth. Then it suffices to set
in Definition 2.1 of weak energy solution ϕ = max(0, u− v) and f(u) ≡ 0. In
fact we see ϕ = 0 from the monotonicity of the p-Laplace operator.

Lemma 2.3. For any p ∈ (1,+∞) we have

(2.10) (|X|p−2X − |Y |p−2Y ) · (X − Y ) ≥ Cp|X − Y |2(|X| + |Y |)p−2.

In particular if p ≥ 2

(2.11) (|X|p−2X − |Y |p−2Y ) · (X − Y ) ≥ Cp|X − Y |p,
where X and Y are arbitrary points in R

N and Cp is a positive number inde-
pendent of each (X,Y ).

The proof is omitted (see [4] for example). The next is known as strong
maximum principle. For the proof see [13; J. L. Vazquez].
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Lemma 2.4 (Strong maximum principle). Let u ∈ C1(Ω) be such that
Lp(u) ∈ L2

loc(Ω), u ≥ 0, a.e. in Ω, −Lp(u) ≤ β(u) a.e. in Ω with β : [0,∞) →
R continuous, nondecreasing, β(0) = 0 and either β(s) = 0 for some s > 0 or
β(s) > 0 for all s > 0 but

∫ 1

0
(β(s)s)−

1
p ds = ∞.

Then if u does not vanish identically on Ω, it is positive everywhere in Ω.
Moreover, if u ∈ C1(Ω ∪ {x0}) for an x0 ∈ ∂Ω that satisfies an interior

sphere condition and u(x0) = 0, then

(2.12)
∂u

∂ν
> 0,

where ν is an interior normal at x0.

We can show that there exists a classical solution to (2.3) for sufficiently
small λ > 0. In fact we can construct so-called supersolution and subsolu-
tion. Then from the standard method of nonlinear iteration, we can show the
existence of a classical solution for a small λ > 0. In this way we have

Lemma 2.5. Under these assumptions, there exist a supersolution and
a subsolution for a sufficiently small λ > 0. Moreover there exists at least one
classical solution u of (2.3) if λ is sufficiently small.

Proof. Since 0 is a subsolution, it suffices to construct a supersolution for
a sufficiently small λ > 0. To this end we consider the Dirichlet boundary value
problem given by Lp(v) = 1 in Ω ; v = 0 on ∂Ω. From the theory of monotone
operator and elliptic regularity, we see that there is a unique classical solution
v. Since v is nonnegative by the maximum principle, Lp(v) ≥ λf(v) holds for
a sufficiently small λ > 0. This proves the assertion.

By virtue of this, we are able to define the so-called minimal solution uλ.

Definition 2.3 (Minimal solution). The minimal solution uλ ∈ C1(Ω)
is defined as the smallest solution among all possible classical solutions.

The existence of the minimal solution follows from a standard argument
of monotone iteration (for the sake of self-containedness we give a short proof).

Lemma 2.6. For a sufficiently small λ ≥ 0, there exists the minimal
solution uλ ∈ C1(Ω) uniquely.

Proof. From the previous lemma we have at least one classical solution
u for a small λ > 0. If we have another classical solution v for the same λ,
we set w = min(u, v) and let ũ ∈W 1,p

0 (Ω) be a solution of the boundary value
problem below.

(2.13)

{
Lp(ũ) = λf(w) in Ω,
ũ = 0 on ∂Ω.

Since f(w) ∈ L∞, we see ũ ∈ C1,σ(Ω) for some σ ∈ (0, 1). We claim that ũ ≤ w
in Ω. Since Lp(u) = λf(u) ≥ λf(w) in Ω in the sense of distribution, it follows
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from the weak comparison principle Lemma 2.2 that ũ ≤ u. In a similar way
we have ũ ≤ v and this proves the claim. Then we have

(2.14)

{
Lp(ũ) = λf(w) ≥ λf(ũ) in Ω,
ũ = 0 on ∂Ω.

This implies that ũ is a supersolution of the equation Lp(u) = λf(u) with
Dirichlet boundary condition. Hence from a standard monotone iteration ar-
gument we see the existence of classical solution w̃ such that 0 < w̃ ≤ ũ ≤
min(u, v) in Ω. Therefore as a decreasing limit, using an argument of weak
compactness in W 1,p

0 (Ω), there is a unique minimal solution.

More precisely we have the following.

Lemma 2.7. For a sufficiently small λ0 > 0 there exists the minimal
solutions uλ for any λ ∈ [0, λ0] such that :

(1) uλ ∈ C1,σ(Ω) for some σ ∈ (0, 1).
(2) For λ > 0, uλ > 0 in Ω and uλ = 0 on ∂Ω. If λ = 0, then u0 ≡ 0.
(3) uλ is a strongly increasing and left continuous function on λ for each

x ∈ Ω.
(4) The mapping : [0, λ0] � λ −→ uλ ∈ W 1,p

0 (B) is weakly left continuous.

Proof. The existence of the minimal solution uλ for a small λ > 0 follows
from Lemma 2.6. Therefore the assertions (1) and (2) follow from Lemma 2.1
and the classical maximum principle respectively. Let u = uλ ∈ C1,σ(Ω) be the
minimal solution. For any positive number m we set v = mu. Then

Lp(v) = mp−1λf(v/m).

If 0 < m < 1, then Lp(v) ≥ mp−1λf(v). Hence v is a supersolution (on the
other hand, if m > 1, v becomes a subsolution). From the comparison principle
we see uλ ≥ 1

muλmp−1 provided 0 < m < 1. Now we put m = (1 − ε)
1

p−1 for
ε ∈ (0, 1). Then we see for sufficiently small ε > 0

uλ ≥ (1 − ε)
−1

p−1uλ(1−ε) > uλ(1−ε).

This clearly implies the strict monotonicity of uλ w.r.t. λ. Let uλ0 be the
minimal solution for λ = λ0. Since uλ is increasing, the limit limλ<λ0,λ→λ0 uλ =
uλ0−0 ≤ uλ0 exists. Moreover we can show uλ also converges weakly to some
element in W 1,p

0 (Ω). Hence uλ0−0 becomes a weak solution of (2.3). Then
it follows from the minimality that uλ0−0 = uλ0 in C1,σ(Ω) ∩W 1,p

0 (Ω). This
proves the left continuity of uλ at λ0.

Remark 2.1. (1) When 1 < p ≤ 2 and Ω is a ball in R
N , then under

some additional conditions, the family of minimal solutions are right continuous
as well. See Proposition12.1. Later in Section 6 we shall give a result on the
(left) differentiability of uλ w.r.t. λ.

(2) uλ is smooth on on open set where |∇uλ| does not vanish. Because uλ
satisfies uniformly elliptic equation of the second order. See (9.1).
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In the rest of this subsection we shall establish the assertion (2). in Theo-
rem 1.1 admitting the assertion (1), namely

Theorem 2.1. Assume that λ∗ > 0 and f satisfies the conditions (2.1)
and (2.2). Let uλ ∈ C1(Ω) be the minimal solution of (1.1) for λ ∈ (0, λ∗).

Then we have as λ→ λ∗ a finite limit a.e.

(2.15) u∗(x) = lim
λ→λ∗

uλ(x).

Moreover u∗ ∈W 1,p
0 (Ω) and u∗ is a weak energy solution of (2.3) with λ = λ∗.

Remark 2.2. (1) The positivity of λ∗ will be proved as Theorem 5.1 in
Section 5 using the results in Section 4.

(2) As we defined in Definition 1.2 in Section 1, u∗ is called the extremal
solution for the extremal value λ∗. The extremal solution u∗ can be classical
or singular.

Proof of Theorem 2.1. From the definition of Vλ,p(Ω), we see uλ ∈ Vλ,p(Ω).
By the assumption we have

(2.16) (p− 1)
∫

Ω

|∇uλ|p dx ≥ λ

∫
Ω

f ′(uλ)u2
λ dx.

Since uλ is a minimal solution of (2.3), we have

(2.17)
∫

Ω

|∇uλ|p dx =
∫

Ω

f(uλ)uλ dx.

From the condition (2.2), for any ε > 0 there is a positive number Cε > 0 such
that

(2.18) (p− 1 + ε)f(t)t ≤ f ′(t)t2 + Cε.

Hence

(2.19)
∫

Ω

f ′(uλ)u2
λ dx ≤ p− 1

p− 1 + ε

∫
Ω

f ′(uλ)u2
λ dx+ C ′

ε.

Here C ′
ε is a positive number independent of each λ < λ∗. Then, for some

positive number C

(2.20)
∫

Ω

|∇uλ|p dx = λ

∫
Ω

f(uλ)uλ dx ≤ C and
∫

Ω

f ′(uλ)u2
λ dx ≤ C,

and so uλ is uniformly bounded inW 1,p
0 (Ω) for λ < λ∗. Therefore {uλ} contains

a weakly convergent subsequence in W 1,p
0 (Ω). Since uλ is increasing in λ, the

limit u∗ = limλ→λ∗ uλ uniquely exists a.e. and clearly u∗ ∈ W 1,p
0 (Ω) becomes

a weak energy solution of (2.3).

3. Differentiability of Lp(uλ)

In this section we shall study differentiability of Lp(u) at u = uλ assuming
λ∗ > 0 and λ ∈ (0, λ∗). First we introduce a linearized operator of Lp(·).
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Definition 3.1. For u ∈ C1(Ω) and ϕ ∈ C∞
0 (Ω) set

L′
p(u)ϕ = − div

(
|∇u|p−2

(
∇ϕ+ (p− 2)

(∇u,∇ϕ)
|∇u|2 ∇u

))
.

If p > 2, this is a degenerate elliptic operator, and if 1 < p < 2, this is
elliptic but coefficients are unbounded in general. We introduce a dual form as
usual:

Definition 3.2. Let p ≥ 2. We set for any test functions ϕ, ψ ∈ C∞
0 (Ω),

〈L′
p(u)ϕ, ψ〉[C∞

0 ]′×C∞
0

(3.1)

≡
∫

Ω

|∇u|p−2

(
(∇ϕ,∇ψ) + (p− 2)

(∇u,∇ϕ)
|∇u|2 (∇u,∇ψ)

)
dx.

By this dual form L′
p(u)ϕ ( u ∈ C1(Ω)) is clearly defined as a distribution

on C∞
0 (Ω) provided p ≥ 2. In order to define the linearized operator L′

p(u) for
every p > 1, we prepare admissible function spaces as follows. Assume that uλ
is the minimal solution of (2.3) for λ ∈ (0, λ∗). Then uλ ∈ W 1,p

0 (Ω) is positive
and differentiable in Ω. Moreover ∇uλ does not vanish near the boundary.

Definition 3.3. Set

(3.2)



||ϕ||Vλ,p

=
(∫

Ω

|∇uλ(x)|p−2|∇ϕ|2 dx
) 1

2

,

(ϕ, ψ)Vλ,p×Vλ,p
=
∫

Ω

|∇uλ(x)|p−2(∇ϕ,∇ψ) dx,

and

(3.3) Vλ,p(Ω) = {ϕ ∈M(Ω) : ||ϕ||Vλ,p
< +∞, ϕ = 0 on ∂Ω}.

Here by M(Ω) we denote the set of all measurable functions on Ω.

Remark 3.1. Vλ,p(Ω) becomes a Hilbert space for all λ ∈ (0, λ∗) and
p ∈ (1,+∞) with the inner-product (·, ·)Vλ,p×Vλ,p

. See also the remark just
after Definition 1.1 in Section 1.

Now we define L′
p(uλ)ϕ for ϕ ∈ Vλ,p(Ω) as an element in the dual space

[Vλ,p(Ω)]′.

Definition 3.4. For ϕ, ψ ∈ Vλ,p,

〈L′
p(uλ)ϕ, ψ〉V ′

λ,p×Vλ,p
≡(3.4) ∫

Ω

(
|∇uλ(x)|p−2

(
(∇ϕ,∇ψ) + (p− 2)

(∇uλ,∇ϕ)(∇uλ,∇ψ)
|∇uλ(x)|2

))
dx.

Putting ϕ = ψ we also have From the definition we easily see
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Lemma 3.1. For any ϕ, ψ ∈ Vλ,p(Ω), it holds that

|〈L′
p(uλ)ϕ, ψ〉V ′

λ,p×Vλ,p
| ≤ C1

∫
Ω

|∇uλ|p−2|∇ϕ||∇ψ| dx(3.5)

≤ C1||ϕ||Vλ,p
||ψ||Vλ,p

,

|〈L′
p(uλ)ϕ,ϕ〉V ′

λ,p×Vλ,p
| ≥ C2

∫
Ω

|∇uλ(x)|p−2|∇ϕ|2 dx(3.6)

= C2||ϕ||2Vλ,p
.

Here C1 = max(p− 1, 3 − p) and C2 = min(1, p− 1).

From (3.6) we see the coercivity of the operator L′
p(uλ) on Vλ,p(Ω). In

addition we see

Lemma 3.2. Let uλ be the minimal solution of (2.3). Then the lin-
earized operator L′

p(uλ) maps Vλ,p(Ω) continuously into [Vλ,p(Ω)]′.

Remark 3.2. Later we see that L′
p(uλ) is surjective. When p ≥ 2,

C∞
0 (Ω) is densely contained in Vλ,p(Ω). Hence L′

p(uλ)ϕ for ϕ ∈ Vλ,p(Ω)
coincides with a distribution as usual. But in case that 1 < p < 2, C∞

0 (Ω)
is not generally dense in Vλ,p(Ω), because |∇uλ|p−2 does not belong to L1

loc(Ω)
in general.

By Fλ,p we denote the closed set of all points on which |∇uλ(x)| vanishes.

Definition 3.5.

(3.7) Fλ,p = {x ∈ Ω : |∇uλ(x)| = 0}.

Later we see that Fλ,p is a discrete set. Namely

Lemma 3.3. For any λ ∈ (0, λ∗) and p ∈ (1,+∞) Fλ,p is discrete.

Definition 3.6. By Ṽλ,p(Ω) we donete a set of all functions ψ such that:

(3.8)



ψ ∈ C∞(Ω) ∩ C2(Ω),
ψ = 0 on ∂Ω,
|∇ψ| ≡ 0 on some neighborhood of Fλ,p,

and by Wλ,p(Ω) we denote the completion of Ṽλ,p(Ω) with respect to the norm
|| · ||Vλ,p

, namely,

(3.9) Wλ,p(Ω) = the completion w.r.t || · ||Vλ,p
of Ṽλ,p(Ω).

Most of the followings are direct consequences from the definition:
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Lemma 3.4. Assume that 0 < λ < λ∗. Then the followings are valid:
If p ≥ 2, then

(3.10) Ṽλ,p(Ω) ⊂W 1,p
0 (Ω) ⊂ Vλ,p(Ω).

If 1 < p < 2, then

(3.11) Ṽλ,p(Ω) ⊂ Vλ,p(Ω) ⊂W 1,p
0 (Ω).

Moreover for any p ∈ (1,+∞),

(3.12) Ṽλ,p(Ω) ⊂Wλ,p(Ω) ⊂ Vλ,p(Ω).

Proof. First we assume that p ≥ 2. It suffices to show the inclusion
W 1,p

0 (Ω) ⊂ Vλ,p(Ω). For ϕ ∈W 1,p
0 (Ω) we have

(3.13) ||ϕ||2Vλ,p
=
∫

Ω

|∇uλ(x)|p−2|∇ϕ|2 dx ≤ ||uλ||p−2

W 1,p
0

||ϕ||2
W 1,p

0
.

This proves the assertion.
We proceed to the case that 1 < p < 2. It suffices to show the last inclusion,

and this follows from the usual imbedding inequality. Since there is a positive
number C(λ) such that |∇uλ| ≤ C(λ), we immediately get

(3.14) |∇uλ|p−2 ≥ C(λ)p−2.

Hence we have

(3.15) ||ϕ||W 1,p
0

≤ C||ϕ||W 1,2
0

≤ C ′||ϕ||Vλ,p
,

and this implies the desired inclusion.

Remark 3.3. Since uλ is finite if λ < λ∗, it follows from Lemma 4.1 in
Section 4 that ∫

Ω

λf ′(uλ)ϕ2 dx ≤ C

∫
Ω

|∇uλ(x)|p−2|∇ϕ|2,

where C is a positive number independent of each ϕ ∈ Vλ,p(Ω).

Corollary 3.1. Assume that 0 < λ < λ∗. If p ≥ 2, then

(3.16) [Vλ,p(Ω)]′ ⊂ [W 1,p
0 (Ω)]′ ⊂ [C∞

0 (Ω)]′.

If 1 < p < 2, then

(3.17) [W 1,p
0 (Ω)]′ ⊂ [Vλ,p(Ω)]′ ⊂ [Wλ,p(Ω)]′.

Here by X ′ we denote the dual space of X.
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Now we define the differentiability of the non-linear operator Lp(·). We
have to note that Lp(·) and L′

p(uλ) are defined on W 1,p
0 (Ω) and Vλ,p(Ω) respec-

tively. If the operator Lp(·) is differentiable at the point uλ, then the derivative
coincides with the linearized operator L′

p(uλ) as usual.

Definition 3.7 (Differentiability in Vλ,p(Ω)). Let p ∈ (1,+∞) and let
uλ be the minimal solution for λ ∈ (0, λ∗). Let S be a subset of Vλ,p(Ω). Then
Lp(·) is said to be differentiable at uλ in the direction to S in Vλ,p(Ω), if for
any ϕ ∈ S it holds that as t→ 0

(3.18)
1
t
(Lp(uλ + tϕ) − Lp(uλ) − tL′

p(uλ)ϕ) = o(1) in [Vλ,p(Ω)]′.

In addition if S is dense in Vλ,p(Ω) (if S = Vλ,p(Ω)), then Lp(·) is said to be
differentiable at uλ in Vλ,p(Ω)a.e. (in Vλ,p(Ω)) respectively.

Remark 3.4. The condition (3.18) means that for any ϕ ∈ S ⊂ Vλ,p(Ω)
and ψ ∈ Vλ,p(Ω)

lim
t→0

∣∣∣∣∣
〈

1
t
(Lp(uλ + tϕ) − Lp(uλ) − tL′

p(uλ)ϕ), ψ
〉
V ′

λ,p×Vλ,p

∣∣∣∣∣ = 0.

Lemma 3.5. Let uλ be the minimal solution for λ ∈ (0, λ∗) and let ϕ
be any element of Ṽλ,p(Ω). Then it holds that Lp(uλ + tϕ) ∈ [Vλ,p(Ω)]′ for a
sufficiently small t ≥ 0.

Proof. First we recall that uλ ∈ W 1,p
0 (Ω) for any λ ∈ (0, λ∗). Take a

ψ ∈ Vλ,p(Ω). By Definition 3.4, it suffices to show

(3.19)
∣∣∣∣
∫

Ω

|∇(uλ + tϕ)|p−2(∇(uλ + tϕ),∇ψ) dx
∣∣∣∣ < +∞.

Let us set Fη = {x ∈ Ω : dist(x, Fλ,p) ≤ η}. For a small η > 0 we can assume
∇ϕ ≡ 0 in Fη. Then we have for some constant C > 0 depending on η

(3.20) C−1 ≤ |∇uλ| ≤ C in F cη ; (the complement of Fη).

Therefore |∇(uλ+tϕ)| does not vanish in F cη provided that t is small. Since ∇ϕ
vanishes in Fη, there is a positive number C ′ such that we have for a sufficiently
small t

|〈Lp(uλ + tϕ), ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω)| ≤ C ′
∫

Ω

|∇uλ|p−2|(∇uλ,∇ψ)| dx(3.21)

≤ C ′||uλ||Vλ,p(Ω)||ψ||Vλ,p(Ω) = C ′||uλ||
p
2

W 1,p
0 (Ω)

||ψ||Vλ,p(Ω).

Hence Lp(uλ + tϕ) can be extended to be a continuous linear functional on
Vλ,p(Ω).

After all we can show a basic result on the differentiability of Lp(·).
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Proposition 3.1. Let uλ be the minimal solution for λ ∈ (0, λ∗). For
p ∈ (1,+∞), Lp(·) is differentiable at uλ in the direction to Ṽλ,p(Ω).

Proof. For any ϕ ∈ Ṽλ,p(Ω) and ψ ∈ Vλ,p(Ω), we have

1
t
〈Lp(uλ + tϕ)) − Lp(uλ) − tL′

p(uλ)ϕ, ψ〉V ′
λ,p×Vλ,p

(3.22)

=
1
t

∫ t

0

〈(L′
p(uλ + sϕ) − L′

p(uλ))ϕ, ψ〉V ′
λ,p×Vλ,p

ds

=
∫ 1

0

〈(L′
p(uλ + tρϕ) − L′

p(uλ))ϕ, ψ〉V ′
λ,p×Vλ,p

dρ.

Since supp|∇ϕ| ∩ Fλ,p = φ, we are able to assume that for some η > 0

supp|∇ϕ| ⊂ (Fλ,p)cη ≡ {x ∈ Ω : dist(x, Fλ,p) ≥ η}.
Then we have for a sufficiently small t

|〈L′
p(uλ + tϕ)ϕ, ψ〉V ′

λ,p×Vλ,p
|(3.23)

≤ C

∫
(Fλ,p)c

η

|∇(uλ + tϕ)|p−2|∇ϕ||∇ψ| dx

≤ C ′||ϕ||Vλ,p(Ω)||ψ||Vλ,p(Ω).

Therefore the assertion follows from Lebesgue’s convergence theorem.

Remark 3.5. From this Lp(·) is differentiable at least in the direction
to Ṽλ,p(Ω). But in certain cases Ṽλ,p(Ω) becomes dense in Vλ,p(Ω). For example,
if Fλ,p consists of finitely many points, then clearly Ṽλ,p(Ω) becomes dense in
Vλ,p(Ω). In fact, ϕ ∈ Vλ,p(Ω) can be approximated by a sequence of regularlized
step functions of Ṽλ,p(Ω).

In order to give a nontrivial example in which Ṽλ,p(Ω) becomes dense in
Vλ,p(Ω), we introduce a modified relative 2 capacity as follows:

Definition 3.8. Let p ∈ (1,+∞) and let uλ be the minimal solution of
(2.3). Let us set for any compact set F in Ω

Cap(F, |∇uλ|p−2)(3.24)

= inf
[∫

Ω

|∇uλ|p−2|∇ϕ|2 dx : ϕ ∈ C∞
0 (Ω), ϕ ≥ 1 on F

]
.

Then we can show

Proposition 3.2. If Cap(Fλ,p, |∇uλ|p−2) = 0, then Wλ,p(Ω) = Vλ,p(Ω)
holds.

From this we have
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Corollary 3.2. If Cap(Fλ,p, |∇uλ|p−2) = 0, then Lp(·) is differentiable
at uλ in Vλ,p(Ω) a.e..

Proof. Assume that Wλ,p(Ω); the completion of Ṽλ,p(Ω) does not coincide
with Vλ,p(Ω), that is, Wλ,p(Ω) ⊂ Vλ,p(Ω). Then we have a ϕ ∈ Vλ,p(Ω) such
that ϕ is not identically zero and∫

Ω

|∇uλ|p−2(∇ϕ,∇ψ) dx = 0 for any ψ ∈Wλ,p(Ω).

Moreover for some ball B such as B ∩ Fλ,p = φ we have∫
B

|∇uλ|p−2|∇ϕ|2 dx > 0.

Since L∞(Ω) is dense in Vλ,p(Ω), we may assume that ϕ ∈ L∞(Ω). Now put
ψ = ϕf2 with f ∈ C∞(Ω) vanishing on Fλ,p. Since ψ ∈Wλ,p(Ω), we have

(3.25)
∫

Ω

|∇uλ|p−2(∇ϕ,∇(ϕf2)) dx = 0.

Note that

(3.26) |∇(ϕf)|2 − (∇ϕ,∇(ϕf2)) = ϕ2|∇f |2.

Then

(3.27)
∫

Ω

|∇uλ|p−2|∇(ϕf)|2 dx =
∫

Ω

|∇uλ|p−2|∇f |2ϕ2 dx.

Since Cap(Fλ,p, |∇uλ|p−2) = 0, for any ε > 0 there is some g ∈ C∞
0 (Ω) such

that g ≥ 1 on a neighborhood of Fλ,p and
∫
Ω
|∇uλ|p−2|∇g|2 dx < ε. Putting

f = 1 − g we have

(3.28)
∫

Ω

|∇uλ|p−2|∇(ϕf)|2 dx < ε sup
x∈Ω

|ϕ|2.

Since we can assume f = 1 on B,∫
B

|∇uλ|p−2|∇ϕ|2 dx = 0.

Therefore ϕ = 0 in Vλ,p(Ω), and this is a contradiction.

In the case that p ≥ 2, we have W 1,p
0 (Ω) ⊂ Vλ,p(Ω). But we can not take

W 1,p
0 (Ω) as S in Definition 3.7. Because Lp(uλ + tϕ) with ϕ ∈ W 1,p

0 (Ω) does
not belong to [Vλ,p(Ω)]′ but to [W 1,p

0 (Ω)]′ in general. But L′
p(uλ) is continuous

from W 1,p
0 (Ω) to its dual [W 1,p

0 (Ω)]′, hence we can give an alternative definition
of differentiability of Lp(·) in [W 1,p

0 (Ω)]′ as follows.
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Definition 3.9 (Differentiability in W 1,p
0 (Ω)). Assume p ∈ [2,+∞).

Let uλ be the minimal solution for λ ∈ (0, λ∗). Lp(·) is said to be differen-
tiable at uλ in W 1,p

0 (Ω), if for any ϕ ∈W 1,p
0 (Ω) it holds that as t→ 0

(3.29)
1
t
(Lp(uλ + tϕ) − Lp(uλ) − tL′

p(uλ)ϕ) = o(1), in [W 1,p
0 (Ω)]′.

Remark 3.6. The condition (3.29) means that for any ψ ∈W 1,p
0 (Ω)

lim
t→0

∣∣∣∣∣
〈

1
t
(Lp(uλ + tϕ) − Lp(uλ) − tL′

p(uλ)ϕ), ψ
〉

[W 1,p
0 ]′×W 1,p

0

∣∣∣∣∣ = 0.

Then we have

Proposition 3.3. Let uλ be the minimal solution for λ ∈ (0, λ∗). If
p ∈ [2,+∞), then Lp(·) is differentiable at uλ in the direction to W 1,p

0 (Ω).

Proof. For any ϕ ∈ W 1,p
0 (Ω) and ψ ∈ W 1,p

0 (Ω) we have in a similar way
as before

1
t
〈Lp(uλ + tϕ)) − Lp(uλ) − tL′

p(uλ)ϕ, ψ〉[W 1,p
0 ]′×W 1,p

0
(3.30)

=
∫ 1

0

〈(L′
p(uλ + tρϕ) − L′

p(uλ))ϕ, ψ〉[W 1,p
0 ]′×W 1,p

0
dρ.

It is easy to see that∣∣∣〈L′
p(uλ + tϕ)ϕ, ψ

〉
[W 1,p

0 ]′×W 1,p
0

∣∣∣(3.31)

≤ C

∫
Ω

|∇(uλ + tϕ)|p−2|∇ϕ||∇ψ| dx

≤ C||uλ + tϕ||p−2

W 1,p
0 (Ω)

||ϕ||W 1,p
0 (Ω)||ψ||W 1,p

0 (Ω).

Hence it follows from Lebesgue’s convergence theorem that

lim
t→0

∣∣∣∣∣
〈

1
t
(Lp(uλ + tϕ) − Lp(uλ) − L′

p(uλ)ϕ), ψ
〉

[W 1,p
0 ]′×W 1,p

0

∣∣∣∣∣ = 0.

4. The linearized operator L′
p(uλ)

In this section we shall collect fundamental results concerned with the
linearized operator L′

p(uλ), which are rather basic in the present paper.
Let uλ be the minimal solution of (2.3). Then uλ ∈ C1,σ(Ω) for some

σ ∈ (0, 1) satisfies in the distribution sense that

(4.1)

{
Lp(uλ) ≡ − div(|∇uλ|p−2∇uλ) = λf(uλ) in Ω,
uλ = 0 on ∂Ω,
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and also

(4.2)
∫

Ω

|∇uλ|p = λ

∫
Ω

f(uλ)uλ dx.

Then we can show

Lemma 4.1. Let ε be any number in (0, λ∗). Then for any λ ∈ (0, λ∗−
ε) and p ∈ (1,∞), the following inequalities are valid for any ϕ ∈ C1

0 (Ω):∫
Ω

|∇uλ|p−1|∇ϕ| dx ≥ Cελ

∫
Ω

|ϕ| dx,(4.3) ∫
Ω

|∇uλ|2(p−1)|∇ϕ|2 dx ≥ Cελ
2

∫
Ω

ϕ2 dx,(4.4) ∫
Ω

|∇uλ|p−2|∇ϕ|2 ≥ Cελ
2

∫
Ω

ϕ2 dx.(4.5)

Here Cε is a positive number independent of each ϕ and λ.

Proof. From (4.1) we have for any ϕ ∈ C∞
0 (Ω)

(4.6)
∫

Ω

|∇uλ|p−2(∇uλ,∇ϕ) dx = λ

∫
Ω

f(uλ)ϕdx.

Noting that f(uλ) > 0 and ϕ can be expressed as ϕ = ϕ+ − ϕ− for ϕ+ =
max(ϕ, 0), we have

(4.7)
∫

Ω

|∇uλ|p−1|∇ϕ| dx ≥ λ

∫
Ω

f(uλ)|ϕ| dx.

Since uλ is a classical solution and C∞
0 (Ω) is dense in C1

0 (Ω), the assertion
follows. The second inequality can be obtained from the first one by replacing
ϕ for ϕ2 and by using Schwartz inequality. Now we note that for some positive
number C,

∫
Ω
|∇uλ|p|ϕ|2 dx ≤ C

∫
Ω
|ϕ|2 dx. Then the last one is also obtained

by Schwartz inequality and the equality (4.3) with replacing ϕ by ϕ2.

Let us recall Fλ,p = {x ∈ Ω : |∇uλ| = 0}. Then we see

Corollary 4.1. Fλ,p is a discrete set in Ω (i.e., Fλ,p has no interior
point.)

Proof. Assume that Fλ,p contains an open ball B.Then for any ϕ ∈ C1
0 (B)

we get
∫
B
f(uλ)ϕdx = 0, but this contradicts to the positivity of f(uλ).

Corollary 4.2. Let uλ be the minimal solution for λ ∈ (0, λ∗]. Then
L′
p(uλ) is a continuous, one to one mapping from Vλ,p onto the dual space

[Vλ,p]′. Hence L′
p(uλ) is invertible.
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Proof. It follows from Lemma 3.1 and (4.5) that L′
p(uλ) is one to

one. In fact, if L′
p(uλ)ϕ = 0 for some ϕ ∈ Vλ,p(Ω), then C

∫
Ω
ϕ2 dx ≤∫

Ω
|∇uλ|p−2|∇ϕ|2 dx = 0 for some C > 0. Hence ϕ ≡ 0. Since L′

p(uλ) is
symmetric in Vλ,p(Ω), we see the surjectivity. Therefore it is invertible.

Since L2(Ω) ⊂ [Vλ,p]′, from this we immediately have the following:

Corollary 4.3. Vλ,p(Ω) is dense in L2(Ω).

Definition 4.1. ϕ ∈ L2(Ω) is said to belong to D(L′
p(uλ)) if and only

if ϕ ∈ Vλ,p(Ω) and we have for some f ∈ L2(Ω)

(4.8) 〈L′
p(uλ)ϕ, ψ〉V ′

λ,p×Vλ,p
=
∫

Ω

fψ dx (∀ψ ∈ Vλ,p(Ω)).

Here we note that since L′
p(uλ) is invertible in Vλ,p(Ω), f is uniquely deter-

mined.

By virtue of the nondegenerate quadratic form 〈L′
p(uλ)ϕ, ψ〉V ′

λ,p×Vλ,p
, the

operator L′
p(uλ) is naturally extended to an operator on L2(Ω) with its domain

being D(L′
p(uλ)), which is still denoted by L′

p(uλ) for the sake of simplicity.
Namely,

Definition 4.2. For ϕ ∈ D(L′
p(uλ)) we define L′

p(uλ)ϕ by

L′
p(uλ)ϕ = f.

Then we can show

Proposition 4.1. The extended operator L′
p(uλ) : D(L′

p(uλ)) −→ L2(Ω)
is one to one and surjective. Moreover D(L′

p(uλ)) is dense in Vλ,p(Ω) and
L′
p(uλ) is a self-adjoint operator on L2(Ω).

Proof. Assume that L′
p(uλ)ϕ = 0 for some ϕ ∈ Vλ,p(Ω). Then

〈L′
p(uλ)ϕ,ϕ〉V ′

λ,p×Vλ,p
= 0. Hence ϕ = 0. We show the suejectivity in the

next. For f ∈ L2(Ω) we consider a functional F (ϕ) =
∫
Ω
fϕ dx on Vλ,p(Ω).

From (4.5) F (ϕ) is continuous on Vλ,p(Ω). Therefore by Riesz’s representa-
tion theorem there is a ψ ∈ Vλ,p(Ω) such that F (ϕ) = 〈L′

p(uλ)ϕ, ψ〉V ′
λ,p×Vλ,p

.
SinceL′

p(uλ) is symmetric, L′
p(uλ)ψ = f holds. From the surjectivity of L′

p(uλ),
we see that D(L′

p(uλ)) is densely contained in Vλ,p(Ω). Since the rest of proof
is rather standard, we omit the detail.

Definition 4.3. By IV→L2 we denote the imbedding operator from
Vλ,p(Ω)into L2(Ω) defined by

(4.9) IV→L2 : ϕ ∈ Vλ,p(Ω) −→ ϕ ∈ L2(Ω).

Then we can show
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Proposition 4.2. IV→L2 is compact, namely, the space Vλ,p(Ω) is com-
pactly imbedded into L2(Ω).

Since L2(Ω) ⊂ [Vλ,p(Ω)]′, one can restrict the operator (L′
p(uλ))

−1 on
L2(Ω) to obtain a continuous operator (L′

p(uλ))
−1|L2 : L2(Ω) → Vλ,p(Ω). Then

it holds that

Corollary 4.4. The operator Mλ,p ≡ IV→L2 ◦(L′
p(uλ))−1|L2 is compact

from L2(Ω) into L2(Ω).

When p ∈ (1, 2], we have |∇uλ|p−2 ≥ C > 0 for some constant C. There-
fore in this case, the imbedding operator IV→L2 is clearly compact. Because
Vλ,p(Ω) is imbedded into W 1,2

0 (Ω) and W 1,2
0 (Ω) is compact in L2(Ω) by virtue

of Sobolev imbedding theorem. Therefore we assume p > 2 from now on.
Auxilially we define

Definition 4.4.

(4.10) L2(Ω; |∇uλ|p−2) =
{
ϕ ∈M(Ω) :

∫
Ω

|∇uλ|p−2ϕ2 dx < +∞
}

Then we see

Lemma 4.2. Vλ,p(Ω) is compactly imbedded into L2(Ω; |∇uλ|p−2).

Proof. Let us set δ(x) = |∇uλ| and F = {x ∈ Ω : δ(x) = 0} for simplicity.
By Fη we denote a tubular neighborhood of F given by

(4.11) Fη = {x ∈ Ω : dist(x, F ) < η} for any η > 0.

For any η > 0 and ϕ ∈ Vλ,p(Ω),

(4.12)
∫
Fη

ϕ2|∇uλ|p−2 dx ≤ sup
x∈Fη

δp−2

∫
Fη

ϕ2 dx ≤ C sup
x∈Fη

δp−2||ϕ||2Vλ,p(Ω).

Since the imbedding Vλ,p(F cη ) → L2(F cη ) is clearly compact, where F cη is the
complement of Fη, the assertion follows from this inequality.

Proof of Proposition 4.2. We make use of a uniformly locally finite open
cover of F by balls {Bj} and a partition of unity {ϕj} such that

Fη ⊂
∞⋃
j=1

Bj , diam(Bj) = η, 0 ≤ ϕj ∈ C∞
0 (Bj),

suppϕ ⊂ F2η, |∇ϕ| ≤ Cη−1,
∞∑
j

ϕj = 1 on Fη.
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Then we have

∫
Fη

ϕ2 dx =
∫
Fη


∑

j

ϕjϕ




2

dx(4.13)

≤ C
∑
j

∫
Fη

(ϕjϕ)2 dx ≤ C
∑
j

∫
Fη

δ2(p−1)|∇(ϕjϕ)|2 dx

≤ C
∑
j

(∫
F2η

δ2(p−1)|∇ϕ|2ϕ2
j dx+

∫
F2η

δ2(p−1)|∇ϕj |2ϕ2 dx

)

≤ C sup
F2η

δp
(∫

Ω

δp−2|∇ϕ|2 dx+ η−2

∫
Ω

δp−2ϕ2 dx

)
.

Here C is a positive number independent of η > 0. Then for any ε > 0 there
are some η > 0 and Cε > 0 such that∫

Fη

ϕ2 dx ≤ ε

∫
Ω

δp−2|∇ϕ|2 dx+ Cε

∫
Ω

δp−2ϕ2 dx

≤ ε||ϕ||2Vλ,p(Ω) + Cε||ϕ||2L2(Ω;δp−2).

Since the second norm in the right hand side is compact with respect to the
first one, the assertion follows.

In the subsequent we give an isoperimetric inequality which may be of
independent interest. Though it is rather standard, we give a short proof for
the sake of self-containedness.

Lemma 4.3. For any open subset M ⊂ Ω of C1,1 class we have

(4.14)
∫
∂M

|∇uλ|p−1 dHN−1(x) ≥ Cmeas[M ].

Here HN−1(x) is th N − 1-dimensional Hausdorff measure.

Proof. Let M be an open subset in Ω with a C1,1 boundary such that
the closure of M is contained in Ω. We construct approximative characteristic
function ϕε’s of M for sufficiently small ε > 0 as follows. Let us set Mε = {x ∈
M ; dist(x, ∂M) < ε} and

(4.15) ϕε(x) =




1, x ∈M \Mε,

dist(x, ∂M)/ε, x ∈Mε,

0, x ∈M c = Ω \M.

Since ϕ’s belong to the space C1,1
0 (Ω), we have

(4.16)
∫

Ω

|∇uλ|p−1|∇ϕε| dx ≥ C

∫
Ω

|ϕε| dx.
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Then we have, letting ε→ 0, limε→0

∫
Ω
|ϕε| dx = meas[M ]. Since ∂Mε is C1,1

manifolds for sufficiently small ε > 0, we also have

lim sup
ε→0

∫
Ω

|∇uλ|p−1|∇ϕε| dx(4.17)

= lim sup
ε→0

1
ε

∫ ε

0

dt

∫
∂Mt

|∇uλ|p−1 dHN−1(x)

=
∫
∂M

|∇uλ|p−1 dHN−1(x).

Here HN−1(x) is th N − 1-dimensional Hausdorff measure. Then we have
the desired inequality for any smooth open subset M ⊂ Ω. Since Fλ,p is
approximated by a sequence of Mj of class C1,1, the assertion holds.

Then we immediately have

Corollary 4.5. If Fλ,p is smooth, then meas[Fλ,p] = 0 .

Proof. If Fλ,p is of class C1,1, then the assertion follows from the previous
inequality.

5. Positivity of L′
p(uλ) − λf ′(uλ) for a small λ

Since L′
p(uλ) has a compact inverse from L2(Ω) to itself, the operator

L′
p(uλ) − λf ′(uλ) has discrete spectrums. In particular, there exist the first

eigenvalue and the corresponding first eigenfunction ϕ̂λ (recall Definition 1.3).
In case that p = 2 this operator has a positive first eigenvalue as long as a
bounded minimal solution exists. In this section we shall establish somewhat
weaker result that the operator L′

p(uλ)−λf ′(uλ) has a positive first eigenvalue
provided that λ is sufficiently small. This fact is closely connected with the
validity of the Hardy type inequalities. By virtue of the Hermite form on
Vλ,p(Ω)×Vλ,p(Ω) given by Definition 3.4 and by the imbedding theorem, there
exists a unique self-adjoint operator on L2(Ω) with its domain beingD(L′

p(uλ)),
which we again denote by L′

p(uλ) − λf ′(uλ) for simplicity.

Theorem 5.1. If λ is sufficiently small, then the self-adjoint operator
L′
p(uλ) − λf ′(uλ) on L2(Ω) has a positive first eigenvalue.

In other words, there is a positive number µ > 0 such that we have∫
Ω

|∇uλ|p−2

(
|∇ϕ|2 + (p− 2)

(∇uλ,∇ϕ)2

|∇uλ|2
)
dx

≥ λ

∫
Ω

f ′(uλ)ϕ2 dx+ µ

∫
Ω

ϕ2 dx

(5.1)

for any ϕ ∈ Vλ,p(Ω).

Remark 5.1. In the Hardy type inequality (5.1), we can replace the
last term by µ′ ∫

Ω
f ′(uλ)ϕ2 dx, where µ′ > 0. Because uλ is bounded if λ is

small.
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Proof of Theorem 5.1. We choose and fix a small ε0 > 0. Let us set

(5.2) uλ = λ
1

p−1wλ.

Then wλ ∈ C1,σ(Ω) satisfies

(5.3)

{
Lp(wλ) = f(uλ) in Ω,
wλ = 0 on ∂Ω.

Hence for any λ ∈ [0, ε0] there is a positive number C such that

(5.4) ||wλ||L∞(Ω) + ||∇wλ||L∞(Ω) ≤ C < +∞.

Therefore there is a subsequence, which is denoted by {wλ} again, such that
limλ→+0 wλ = w0 ∈W 1,p

0 (Ω) exists (a.e.) and w0 becomes a unique solution of
limiting equation:

(5.5)

{
Lp(w0) = f(0) in Ω,
w0 = 0 on ∂Ω.

Definition 5.1. Let us set

(5.6) ||ϕ||Zλ,p(Ω) =
(∫

Ω

|∇wλ(x)|p−2|∇ϕ|2 dx
) 1

2

,

and

(5.7) Zλ,p(Ω) = {ϕ ∈M(Ω) : ||ϕ||Zλ,p
< +∞, ϕ = 0 on ∂Ω}.

Here by M(Ω) we denote the set of all measurable functions on Ω.

Then Zλ,p(Ω) becomes a Hilbert space as before. It follows from the
same argument as in Corollary 4.2 in Section 4 that the linearized operators
L′
p(wλ) (0 ≤ λ < λ∗) : Zλ,p(Ω) → [Zλ,p(Ω)]′ are invertible. Moreover the

imbedding operators ϕ ∈ Zλ,p(Ω) → ϕ ∈ L2(Ω) are compact (see Proposi-
tion 4.2). Hence the first eigenvalues of the self-adjoint operators L′

p(wλ) on
L2(Ω) are positive. Namely λ ∈ [0, λ∗) we see

(5.8) 〈L′
p(wλ)ϕ,ϕ〉[Zλ,p(Ω)]′×Zλ,p(Ω) ≥ Cλ

∫
Ω

ϕ2 dx for all ϕ ∈ Zλ,p(Ω),

where Cλ is a positive number independent of each ϕ.
Now we assume that there is a sequence λj such that λj → 0 as (j → ∞)

and for each λj there is a non-trivial ψj ∈ Vλj ,p(Ω) satisfying

(5.9)

{
(L′

p(uλj
) − λjf

′(uλj
))ψj = 0,

||ψj ||Vλj,p(Ω) = 1 (j = 1, 2, 3, . . .).
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Put

(5.10) ψj = ϕjλ
− p−2

2(p−1)
j ,

then we have

(5.11)

{
(L′

p(wλj
) − λ

1
p−1
j f ′(uλj

))ϕj = 0,
||ϕj ||Zλj,p(Ω) = 1 (j = 1, 2, 3, . . .).

Then

(5.12) 〈L′
p(wλj

)ϕj , ϕj〉[Zλj,p(Ω)]′×Zλj,p(Ω) = λ
1

p−1
j

∫
Ω

f ′(uλj
)ϕ2
j dx.

For some positive numbers C1 and C2 we have

(5.13)



C1||ϕj ||2Zλj ,p(Ω) ≤ 〈L′

p(wλj
)ϕj , ϕj〉[Zλj,p(Ω)]′×Zλj,p(Ω),

C2

∫
Ω
f ′(uλj

)ϕ2
j dx ≤ ||ϕj ||2Zλj ,p(Ω).

Therefore we see

(5.14) lim
j→+∞

〈L′
p(wλj

)ϕj , ϕj〉[Zλj,p(Ω)]′×Zλj,p(Ω) = 0.

Since ||ϕj ||Zλ,p(Ω) = 1(j = 1, 2, 3, . . .) holds, this is a contradiction.

6. Differentiability of the minimal solution on λ

When uλ is left differentiable with respect to λ, by vλ we denote the left
derivative of uλ, namely

Definition 6.1 (A left derivative of uλ). Let us set

(6.1) vλ = lim
µ→λ,µ<λ

uλ − uµ
λ− µ

.

We shall establish the following:

Theorem 6.1. Assume that p ∈ [2,∞) and assume that Ṽλ,p(Ω) is
dense in Vλ,p(Ω) for a fixed λ ∈ (0, λ∗). Then the followings are equivalent :

(1) The self-adjoint operator L′
p(uλ)−λf ′(uλ) on L2(Ω) has a positive first

eigenvalue.
(2) uλ is left differentiable at λ in Vλ,p(Ω). Moreover the left derivative

vλ ∈ Vλ,p(Ω) satisfies the boundary value problem

(6.2)

{
L′
p(uλ)vλ − λf ′(uλ)vλ = f(uλ) in Ω,

vλ = 0 on ∂Ω.



�

�

�

�

�

�

�

�

406 Toshio Horiuchi and Peter Kumlin

Remark 6.1. (1) If the minimal solution uλ is weakly continuous on λ
as a W 1,p

0 (Ω)-valued function, then uλ becomes differentiable and the derivative
of uλ satisfies (6.2) under the condition (1).

(2) It follows from Theorem 5.1 that the boundary value problem (6.2) has
a unique solution in Vλ,p(Ω) for a sufficiently small λ > 0.

Proof of Theorem 6.1. Assume that 0 < µ < λ < λ∗. Then we see

Lp(uλ) − Lp(uµ) = λf(uλ) − µf(uµ)
= (λ− µ)f(uλ) + µ(f(uλ) − f(uµ))
= (λ− µ)f(uλ) + µf ′(ξ)(uλ − uµ),

where ξ is a quantity satisfying uµ < ξ < uλ. We set

(6.3) vµ,λ =
uλ − uµ
λ− µ

> 0.

Proof of the implication (1) → (2).

First step. Assume that ||vµ,λ||Vλ,p(Ω) ≤ C < +∞ for some positive
number C. It follows from the compactness of the imbedding operator IV→L2 :
Vλ,p(Ω) → L2(Ω) that there are some vλ ∈ Vλ,p(Ω) and a subsequence of {vµ,λ},
which is again denoted by {vµ,λ} for simplicity, such that as µ→ λ (µ < λ)

(6.4)

{
vµ,λ → vλ weakly in Vλ,p(Ω),
vµ,λ → vλ strongly in L2(Ω).

Note that

Lp(uλ) − Lp(uµ) =
∫ 0

−1

d

dt
(Lp(uλ + t(uλ − uµ))) dt(6.5)

=
∫ 0

−1

L′
p(X(t))(uλ − uµ) dt,

where X(t) = uλ + t(uλ − uµ). Thus we get for any ψ ∈ Ṽλ,p(Ω)〈∫ 0

−1

L′
p(X(t))vµ,λ dt, ψ

〉
[Vλ,p(Ω)]′×Vλ,p(Ω)

(6.6)

= 〈f(uλ) + µf ′(ξ)vµ,λ, ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω),

where ξ is a quantity satisfying uµ < ξ < uλ. We can show

Lemma 6.1. Assume the same assumptions in Theorem 6.1 and (6.4).
Then vλ ∈ Vλ,p(Ω) satisfies

(6.7)

{
L′
p(uλ)vλ − λf ′(uλ)vλ = f(uλ) in Ω,

vλ = 0 on ∂Ω.
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Proof. In (6.6), it is easy to see that

lim
µ→λ

〈f(uλ) + µf ′(ξ)vµ,λ, ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω),(6.8)

= 〈f(uλ) + λf ′(uλ)vλ, ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω),

lim
µ→λ

〈L′
p(uλ)vµ,λ, ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω) = 〈L′

p(uλ)vλ, ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω).(6.9)

We also note that〈∫ 0

−1

L′
p(X(t))vµ,λ dt, ψ

〉
[Vλ,p(Ω)]′×Vλ,p(Ω)

(6.10)

=
∫ 0

−1

∫
Ω

|∇X(t)|p−2(∇vµ,λ,∇ψ) dx dt

+ (p− 2)
∫ 0

−1

∫
Ω

|∇X(t)|p−4(∇X(t),∇vµ,λ)(∇X(t),∇ψ) dx dt.

Therefore if p = 2 then the assertion is clear. Hence we assume that p > 2
from now on. Here we employ the following elementary inequalities: For any
ε > 0 there is a positive number Cε such that for any ζ, η, a, b ∈ R

N and any
t ∈ [0, 1]

||ζ(t)|p−4(ζ(t), a)(ζ(t), b)− |ζ|p−4(ζ, a)(ζ, b)|(6.11)

≤ (ε|ζ|p−2 + Cε|ζ − η|p−2)|a||b|,
where ζ(t) = ζ + t(ζ − η). Thus it suffices to control error terms of the next
type;

(6.12) I =
∫

Ω

|∇(uµ − uλ)|p−2|∇vµ,λ||∇ψ| dx.

Noting that ψ ∈ Ṽλ,p(Ω) ⊂W 1,p
0 (Ω) we have

|I| =
1

λ− µ

∫
Ω

|∇(uλ − uµ)|p−1|∇ψ| dx(6.13)

≤ 1
λ− µ

(∫
Ω

|∇ψ|p dx
) 1

p
(∫

Ω

|∇(uλ − uµ)|p dx
)1− 1

p

≤ C

λ− µ
||ψ||W 1,p

0 (Ω)||uλ − uµ||p−1

W 1,p
0 (Ω)

.

Here

||uλ − uµ||pW 1,p
0 (Ω)

(6.14)

≤ C

∫
Ω

(|∇uλ|p−2∇uλ − |∇uµ|p−2∇uµ,∇(uλ − uµ)) dx

= C

∫
Ω

(λf(uλ) − µf(uµ))(uλ − uµ) dx

= C(λ− µ)
∫

Ω

f(uλ)(uλ − uµ) dx+ Cµ

∫
Ω

(uλ − uµ)2f ′(uλ) dx.
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Hence we get

|I| ≤ C

λ− µ
||ψ||W 1,p

0 (Ω)||uλ − uµ||p−1

W 1,p
0 (Ω)

(6.15)

≤ C(λ− µ)1−
2
p ||ψ||W 1,p

0 (Ω)

(∫
Ω

vµ,λf(uλ) dx+ λ

∫
Ω

v2
µ,λf

′(uλ) dx
)1− 1

p

≤ C ′(λ− µ)1−
2
p ||ψ||W 1,p

0 (Ω)(||vµ,λ||
2− 2

p

L2(Ω) + ||vµ,λ||1−
1
p

L1(Ω))

= O((λ− µ)1−
2
p ).

Since Ṽλ,p(Ω) is densely contained inW 1,p
0 (Ω) ⊂ Vλ,p(Ω), vλ satisfies the desired

equation in the weak sense. This proves the lemma.

Second step. Assume that {vµ,λ} is unbounded in Vλ,p(Ω). Then there
are sequences {µj} and {vµj ,λ} such that µj → λ and ||vµj ,λ||Vλ,p(Ω) → +∞ as
j → +∞. In other words

(6.16)
λ− µj

||uλ − uµj
||Vλ,p(Ω)

→ 0 as j → +∞.

Now we set

(6.17) δj,λ =
uλ − uµj

||uλ − uµj
||Vλ,p(Ω)

(||δj,λ||Vλ,p(Ω) = 1).

Since {δj,λ} is bounded in Vλ,p(Ω), we are able to assume that for some δλ ∈
Vλ,p(Ω)

(6.18)

{
δj,λ → δλ weakly in Vλ,p(Ω)
δj,λ → δλ strongly in L2(Ω)

as j → +∞.

As before we see that δj,λ satisfies for any ψ ∈ Ṽλ,p(Ω)〈∫ 0

−1

L′
p(Xj(t))δj,λ dt, ψ

〉
[Vλ,p(Ω)]′×Vλ,p(Ω)

(6.19)

=
〈
f(uλ)

λ− µj
||uλ − uµj

||Vλ,p(Ω)
+ µjf

′(ξ)δj,λ, ψ
〉

[Vλ,p(Ω)]′×Vλ,p(Ω)

,

where Xj(t) = uµj
+ t(uλ − uµj

) and ξ is a quantity satisfying uµj
< ξ < uλ.

Then we can show

Lemma 6.2. Assume the same assumptions in Theorem 6.1 and (6.18).
Then δλ ∈ Vλ,p(Ω) does not vanish identically and satisfies

(6.20)

{
L′
p(uλ)δλ − λf ′(uλ)δλ = 0 in Ω,

δλ = 0 on ∂Ω.
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Admitting this for the moment we finish the proof of the implication (1)
→(2). From this δλ becomes a non trivial first eigenfunction corresponding to
the eigenvalue 0. But this contradicts to (1).

Proof of Lemma 6.2. As before we immediately see that

lim
µ→λ

〈
f(uλ)

λ− µj
||uλ − uµj

||Vλ,p(Ω)
+ µjf

′(ξ)δj,λ, ψ
〉

[Vλ,p(Ω)]′×Vλ,p(Ω)

(6.21)

= 〈λf ′(uλ)δλ, ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω)

and

lim
µ→λ

〈L′
p(uλ)δj,λ, ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω) = 〈L′

p(uλ)δλ, ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω).

Therefore it suffices to show that

(6.22) lim
j→+∞

∫
Ω

|∇(uλ − uµj
)|p−2|∇δj,λ||∇ψ| dx = 0,

and this follows from the inequality (6.14). In fact, from the definition of δj,λ

J =
∫

Ω

|∇(uλ − uµj
)|p−2|∇δj,λ||∇ψ| dx(6.23)

≤ 1
||uλ − uµj

||Vλ,p(Ω)
||ψ||W 1,p

0 (Ω)||uλ − uµj
||p−1

W 1,p
0 (Ω)

and from the inequality (6.14)

||uλ − uµj
||p
W 1,p

0 (Ω)
||uλ − uµj

||−2
Vλ,p(Ω)(6.24)

≤ (λ− µj)
||uλ − uµj

||Vλ,p(Ω)

∫
Ω

f(uλ)δj,λ dx+ Cµj

∫
Ω

δ2j,λf
′(uλ) dx

≤ C < +∞.

Here we used the strong convergence of {δj,λ} in L2(Ω). Then there is a constant
C > 0 such that

(6.25) J ≤ C||uλ − uµj
||1−

2
p

Vλ,p(Ω).

Since

(6.26) ||uλ−uµj
||2Vλ,p(Ω) ≤ ||uλ||p−2

W 1,p
0 (Ω)

||uλ−uµj
||2
W 1,p

0 (Ω)
→ 0 as j → +∞,

the assertion (6.22) is proved.
Now δλ becomes a nonnegative weak solution of (6.20), so it is sufficient

to show that δλ is not trivial. But we have for some number C > 0
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|〈Lp(uλ) − Lp(uµj
), uλ − uµj

〉|(6.27)

≥ C

∫
Ω

(|∇uµj
| + |∇uλ|)p−2|∇(uλ − uµj

)|2 dx

≥ C||uλ − uµj
||2Vλ,p(Ω).

Hence

(6.28) |〈Lp(uλ) − Lp(uµj
), δj,λ〉| ≥ C ′||uλ − uµj

||Vλ,p(Ω).

On the other hand from (6.14)
we get

|〈Lp(uλ) − Lp(uµj
), δj,λ〉|(6.29)

≤
(
o(1)
∫

Ω

f(uλ)|δj,λ| dx+ Cλ

∫
Ω

δ2j,λf
′(uλ) dx

)
||uλ − uµj

||Vλ,p(Ω).

Since f is strictly convex and increasing, we get

(6.30) 0 < C ≤
∫

Ω

δ2λ dx.

This clearly implies the assertion.

The proof of implication (2) → (1). Let vλ ∈ Vλ,p(Ω) be a unique solution
of the boundary value problem

(6.31)

{
L′
p(uλ)vλ − λf ′(uλ)vλ = f(uλ) in Ω,

vλ = 0 on ∂Ω.

Assume that L′
p(uλ) − λf ′(uλ) has zero eigenvalue and let ϕ ∈ Vλ,p(Ω) be a

corresponding eigenfunction. We can assume ϕ > 0 in Ω. Then

〈f(uλ), ϕ〉 = 〈L′
p(uλ)vλ − λf ′(uλ)vλ, ϕ〉(6.32)

= 〈vλ, L′
p(uλ)ϕ− λf ′(uλ)ϕ〉

= 0.

Since f(uλ) is positive, we reach to a contradiction.

From this we can show a somewhat weak result in the case that 1 < p < 2:

Corollary 6.1. Assume that the same assumptions as in the previous
theorem 6.1. Moreover assume that 1 < p < 2 and there is a positive number
η0 < min(λ, λ∗ − λ) such that for any µ ∈ (λ− η0, λ+ η0) we have

(6.33) |∇uλ(x) −∇uµ(x)| ≤ 1
2
|∇uλ(x)| in Ω.

Then the same conclusion holds.
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Remark 6.2. The assumption on ∇uλ means not only the invariance
of the set Fµ,p with respect to µ ∈ (λ − η0, λ + η0) but also that of the van-
ishing order of |∇uµ| on Fµ,p. Later we shall give an example in which these
assumptions are satisfied. See Lemma 12.1 in Section 12.

Proof of Corollary 6.1. Again we put ζ = ∇uλ, η = ∇uµ and ζ(t) =
∇uλ+t∇(uµ−uλ) with t ∈ [−1, 0]. Then we prepare the elementary inequality.

Lemma 6.3. Assume the same assumptions as in the corollary. Then
for any a, b ∈ R

N

||ζ(t)|p−4(ζ(t), a)(ζ(t), b)−|ζ|p−4(ζ, a)(ζ, b)|(6.34)

≤(2 − p)23−p|ζ|p−3|t||ζ − η||a||b|
Proof. For t ∈ [−1.0]

(6.35) |∇uλ + t(∇uλ −∇uµ)| ≥ |∇uλ| − |∇uλ −∇uµ| ≥ 1
2
|∇uλ|.

Hence we see 1
2 |ζ| ≤ |ζ(t)| ≤ 3

2 |ζ|. The required inequality easily follows from
the integral representation of the left-hand side.

End of the proof of Corollary 6.1. We put

(6.36) J =
∫

Ω

|∇uλ|p−3|∇(uλ − uµ)||∇vµ,λ||∇ψ| dx, ψ ∈ Ṽλ,p(Ω).

From Lemma 6.3 it suffices to show

(6.37) lim
µ→λ,µ<λ

J = 0.

Since vµ,λ is bounded in Ṽλ,p(Ω), for some positive number C

(6.38) J2 ≤ C

∫
Ω

|∇uλ|p−2|∇vµ,λ|2 dx ·
∫

Ω

|∇uλ|p−3|∇(uλ − uµ)||∇ψ| dx.

Noting that ∇ψ vanishes in a neighborhood of Fλ,p, we can apply Lebesgue’s
convergence theorem to obtain (6.37) and

(6.39) 〈L′
p(uλ)vλ, ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω) = 〈f(uλ)+λf ′(uλ)vλ, ψ〉[Vλ,p(Ω)]′×Vλ,p(Ω)

for any ψ ∈ Ṽλ,p(Ω). So we see that vλ is a weak solution. The rest of the proof
will be done in the same line as before.

Remark 6.3. In Section 2 we showed uλ ≥ 1
muλmp−1 provided 0 <

m < 1. From this we see λ
1

p−1uµ ≤ µ
1

p−1uλ provided 0 < µ ≤ λ < λ∗. Then
we immediately have

(6.40)
1

p− 1
uλ ≤ λvλ, if vλ exists.

Hence if u∗ = uλ∗ is singular, then vλ∗ = limλ→λ∗ vλ is also singular. Later we
shall give an example of a singular vλ in a ball. See Lemma 12.4 in Section 12.
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7. Behaviors of uλ and vλ near λ = 0

In this subsection we shall discuss about the behaviors of uλ and vλ near
λ = 0. Here by vλ we denote the unique solution in Vλ,p(Ω) of

(7.1)

{
L′
p(uλ)vλ − λf ′(uλ)vλ = f(uλ) in Ω,

vλ = 0 on ∂Ω

for a sufficiently small λ > 0. As we proved in the previous section, this vλ
coincides with the left derivative of uλ under certain conditions. Let w0 be the
unique solution of

(7.2) Lp(w0) = f(0) in Ω ; w0 = 0 on ∂Ω.

From the maximum principle we see w0 > 0 in Ω, and its normal derivative
dw0
dn �= 0 on ∂Ω. Then we can show

Lemma 7.1. Let uλ ∈ C1,σ(Ω) be the minimal solution for λ ∈ [0, λ∗).
Then for any ε0 ∈ (0, λ∗) there is a positive number C shct that for any λ ∈
[0, ε0]:

(1)
∫
Ω
|∇uλ|q dx ≤ Cλ

q
p−1 for any q ≥ 0.

(2) |∇uλ| ≤ Cλ
1

p−1 .
(3) λ

1
p−1w0 ≤ uλ ≤ Cλ

1
p−1 .

Here C is independent of each x ∈ Ω.

Proof. Let wλ be the same function as in the proof of Theorem 5.1, that is,
wλ = λ−

1
p−1uλ. We recall that ||wλ||L∞(Ω) + ||∇wλ||L∞(Ω) < +∞ (0 ≤ λ ≤ ε0).

Then we see

(7.3) ||uλ||L∞(Ω) ≤ Cλ
1

p−1 , ||∇uλ||L∞(Ω) ≤ Cλ
1

p−1 .

This proves the assertion (1) and (2). Since Lp(wλ) = f(uλ) ≥ f(0) > 0, w0

becomes subsolution of the same equation. Therefore we see for some number
C > 0

(7.4) λ
1

p−1w0 ≤ uλ ≤ Cλ
1

p−1 .

Thus we see the assertion (3).

In order to describe the behavior of vλ, we consider the next boundary
value problem:

(7.5)

{
L′
p(wλ)ψλ = f(0) in Ω,

ψλ = 0 on ∂Ω.

Then we see ψλ ∈ Vλ,p(Ω) and dψλ

dn �= 0 near the boundary. From the definition
of vλ and wλ, we have

(7.6) λ
p−2
p−1L′

p(wλ)vλ = λvλf
′(uλ) + f(uλ) ≥ f(0) > 0.
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Hence

(7.7) L′
p(wλ)vλ ≥ f(0)λ−

p−2
p−1 .

Therefore λ−
p−2
p−1ψλ becomes a subsolution of (7.1), and so we see

(7.8) vλ ≥ λ−
p−2
p−1ψλ (near the boundary).

More precisely we have

Lemma 7.2. Let vλ ∈ Vλ,p(Ω) satisfy (7.1) for λ ∈ [0, λ∗). Then for
any ε0 ∈ (0, λ∗) there is a positive number C such that we have:
If p ≥ 2, then for any λ ∈ [0, ε0],

(1)
∫
Ω
vλ dx ≥ Cλ−

p−2
p−1 .

(2)
∫
Ω
|∇vλ| dx ≥ Cλ−

p−2
p−1 .

If 1 < p < 2, then for any λ ∈ [0, ε0],
(3)
∫
Ω
vλ dx ≤ Cλ

2−p
p−1 .

(4)
∫
Ω
|∇vλ|2 dx ≤ Cλ2 2−p

p−1 .
Here C is independent of each x ∈ Ω.

Proof. First we assume that p > 2. The assertion (1) follows from (7.8).
Using uλ as a test function we have∫

Ω

(f(uλ) + λvλf
′(uλ))uλ = 〈L′

p(uλ)vλ, uλ〉[Vλ,p(Ω)]′×Vλ,p(Ω)(7.9)

≤ C

∫
Ω

|∇uλ|p−1|∇vλ| dx ≤ C ′λ
∫

Ω

|∇vλ| dx

and ∫
Ω

(f(uλ) + λvλf
′(uλ))uλ dx ≥ f(0)

∫
Ω

uλ dx ≥ Cλ
1

p−1 .(7.10)

Then we see

(7.11)
∫

Ω

|∇vλ| dx ≥ Cλ−
p−2
p−1 .

This proves the assertion(2). Now we assume that 1 < p < 2. Using vλ as a
test function, we have∫

Ω

(f(uλ) + λvλf
′(uλ))vλ = 〈L′

p(uλ)vλ, vλ〉[Vλ,p(Ω)]′×Vλ,p(Ω)(7.12)

≥ C

∫
Ω

|∇uλ|p−2|∇vλ|2 dx ≥ C ′λ
p−2
p−1

∫
Ω

|∇vλ|2 dx.

On the other hand we see by the Poincaré inequality∫
Ω

(f(uλ) + λvλf
′(uλ))vλ dx ≤ C

∫
Ω

(λvλ + 1)vλ dx(7.13)

≤ C ′λ
∫

Ω

|∇vλ|2 dx+ C

∫
Ω

vλ dx.
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Hence, we can choose ε0 so that for all λ ∈ [0, ε0] we have

(7.14) λ
p−2
p−1

∫
Ω

|∇vλ|2 dx ≤ C

∫
Ω

vλ dx.

Here we note the following elementary inequalities:

(7.15)
(∫

Ω

|∇vλ|2 dx
) 1

2
(∫

Ω

|vλ| 2N
N−2 dx

)N−2
2N

≤ C

∫
Ω

|∇vλ|2 dx,

(7.16)
∫

Ω

vλ dx ≤ C

(∫
Ω

|vλ| 2N
N−2 dx

)N−2
2N

.

Then we get the assersion (4)

(7.17)
(∫

Ω

|∇vλ|2 dx
) 1

2

≤ Cλ
2−p
p−1 .

Combining this with (7.15) and (7.16) the assertion (3) is proved.

8. Nonnegativity of L′
p(uλ) − λf ′(uλ)

In Section 5 we have showed the positivity of the first eigenvalue of L′
p(uλ)−

λf ′(uλ) for a sufficiently small λ > 0. In this section we shall prove that the
operator L′

p(uλ) − λf ′(uλ) has a nonnegative first eigenvalue for any λ > 0
under the accessibility condition (AC). This fact is equivalent to the validity of
the Hardy type inequalities. We recall the definition of the first eigenfunction
ϕ̂λ in Definition 1.3.

Theorem 8.1. Let uλ be the minimal solution for λ ∈ (0, λ∗) and let
ϕ̂λ be the first eigenfunction of the self-adjoint operator L′

p(uλ) − λf ′(uλ) on
L2(Ω). Assume that ϕ̂λ satisfies the accessibility condition (AC) defined by
Definition 1.4.

Then the first eigenvalue of L′
p(uλ) − λf ′(uλ) is nonnegative. In other

words, we have

(8.1)
∫

Ω

|∇uλ|p−2

(
|∇ϕ|2 + (p− 2)

(∇uλ,∇ϕ)2

|∇uλ|2
)
dx ≥ λ

∫
Ω

f ′(uλ)ϕ2 dx

for any ϕ ∈ Vλ,p(Ω).

Remark 8.1. (1) The proof of this will be done in a chain of Proposi-
tions and will be finished in Section 9 finally.

(2) In case that Ω is radially symmetric, the minimal solution becomes
radial by the minimality. Then Fλ,p consists of a single point, and so Ṽλ,p(Ω) is
dense in Vλ,p(Ω). See Remark 3.5 in Section 3. Moreover the first eigenfunction
ϕ̂λ also becomes radial from the uniqueness up to a multiplication by constants,
hence the accessibility condition (AC) is easily verified in such a case. See
Proposition 12.2 in Section 12.
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We start with defining auxiliary function spaces.

Definition 8.1. By C0([0, T ], Ṽλ,p(Ω)) for T > 0 we denote a space of
all functions ψt(x) such that ψt(x) ∈ Ṽλ,p(Ω) for each t ∈ [0, T ] and continuous
in t as Ṽλ,p(Ω) -valued functions, where the norm is given by

(8.2) ||ψt||C0([0,T ],Ṽλ,p(Ω)) = sup
t∈(0,T )

||ψt(·)||Ṽλ,p(Ω).

We also define C0([0, T ], Vλ,p(Ω)), C0([0, T ],Wλ,p(Ω)) and C0([0, T ],W 1,p
0 (Ω))

in a similar way.

For ψt ∈ C0([0, T ], Ṽλ,p(Ω)), let us set

(8.3) gt(x;ψt) = −1
t
(Lp(uλ − tψt) − Lp(uλ)).

Then it follows from Lemma 3.5 that gt(x;ψt) ∈ [Vλ,p(Ω)]′, if t is sufficiently
small. We consider the equation for each t > 0

(8.4)

{
L′
p(uλ)ϕt(x) = gt(x;ψt) x ∈ Ω,

ϕt = 0 on ∂Ω.

From Corollary 4.2 we have a unique solution ϕt ∈ Vλ,p(Ω) for each small
t > 0. Moreover we have

Proposition 8.1. Assume ψt ∈ C0([0, T ], Ṽλ,p(Ω)). Then for a suffi-
ciently small number T0 > 0 there exists a unique ϕt ∈ C0([0, T0], Ṽλ,p(Ω)) such
that

(8.5)

{
L′
p(uλ)ϕt(x) = gt(x;ψt) in Ω × [0, T0],

ϕ0 = ψ0 in Ω.

Moreover there is a positive number C such that

||ϕt − ϕ0||Vλ,p(Ω) ≤ C||ψt − ψ0||Vλ,p(Ω) + o(1)||ψ0||Vλ,p(Ω),(8.6)

||ψt − ψ0||Vλ,p(Ω) ≤ C||ϕt − ϕ0||Vλ,p(Ω) + o(1)||ϕ0||Vλ,p(Ω),(8.7)

where o(1) denotes a quantity which goes to 0 as t→ 0.

Proof. Since L′
p(uλ) is invertible, we have

(8.8) ϕt(x) = [L′
p(uλ)]

−1gt(x;ψt) ∈ C0([0, T ], Ṽλ,p(Ω)).

In fact gt(·;ψt) vanishes on some neighborhood D of Fλ,p, hence 〈gt, ξ〉V ′
λ,p×Vλ,p

= 0 for any ξ ∈ Vλ,p(D). From the coercivity of L′
p(uλ) we see ∇ϕt = 0 in D.

Moreover ϕt is smooth as a solution of uniformly elliptic equation. Therefore we
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see ϕt ∈ Ṽλ,p(Ω). In the next we prove that ϕ0 = ψ0. From the differentiability
of Lp(uλ) at uλ in Ṽλ,p(Ω), we claim that

(8.9) gt(x;ψt) → L′
p(uλ)ψ0 in [Vλ,p(Ω)]′ as t→ 0.

If ψt is independent of t, this holds by definition. For a general ψt, the assertion
follows from the estimate below: For any ξ ∈ Vλ,p(Ω)

|〈Lp(uλ − tψt) − Lp(uλ − tψ0), ξ〉[Vλ,p(Ω)]′×Vλ,p(Ω)|
≤ t

∫
Ω

|∇ξ|(|∇(uλ − tψt)|p−2 + |∇(uλ − tψ0)|p−2)|∇(ψt − ψ0)| dx
≤ t||ψt − ψ0||Vλ,p(Ω)||ξ||Vλ,p(Ω) as t→ +0.

Here we used the fact ∇ψt vanishes near Fλ,p uniformly in t ∈ [0, T ]. Then,

||Lp(uλ − tψt) − Lp(uλ − tψ0)||[Vλ,p(Ω)]′ ≤ t||ψt − ψ0||Vλ,p(Ω).

Hence

||gt(x;ψt) − L′
p(uλ)ψ0||[Vλ,p(Ω)]′

(8.10)

≤ 1
t
||Lp(uλ − tψt) − Lp(uλ − tψ0)||[Vλ,p(Ω)]′ + ||gt(x;ψ0) − L′

p(uλ)ψ0||[Vλ,p(Ω)]′

≤ ||ψt − ψ0||Vλ,p(Ω) + o(1)||ψ0||Vλ,p(Ω).

This proves the claim (8.9). Noting that

(8.11) ϕt − ψ0 = (L′
p(uλ))

−1(gt − L′
p(uλ)ψ0) in Vλ,p(Ω),

we have

(8.12) lim
t→0

||ϕt − ψ0||Vλ,p(Ω) = 0.

Hence we see ϕ0 = ψ0. The inequality (8.6) immediately follows from (8.9),
(8.10) and (8.11). From (8.11) we also have

(8.13) ||gt(x;ψt) − L′
p(uλ)ψ0||[Vλ,p(Ω)]′ ≤ C||ϕt − ϕ0||Vλ,p(Ω)

and then, for a sufficiently small t > 0

||ψt − ψ0||2Vλ,p(Ω)

≤ C

∫
Ω

(|∇(uλ − tψt)|p−2 + |∇(uλ − tψ0)|p−2)|∇(ψt − ψ0)|2 dx

≤ Ct−1|〈Lp(uλ − tψt) − Lp(uλ − tψ0), ψt − ψ0〉[Vλ,p(Ω)]′×Vλ,p(Ω)|
= C|〈gt(x;ψt) − gt(x;ψ0), ψt − ψ0〉[Vλ,p(Ω)]′×Vλ,p(Ω)|
≤ C(||ϕt − ϕ0||Vλ,p(Ω) + o(1)||ϕ0||Vλ,p(Ω))||ψt − ψ0||Vλ,p(Ω),
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where C is a positive number. Thus we have the desired inequality (8.7).

Conversely we consider the following boundary value problem.

(8.14)

{
Lp(ηt(x)) = Lp(uλ) − tL′

p(uλ)ϕ in Ω,
ηt = 0 on ∂Ω,

where ϕ ∈ Ṽλ,p(Ω) is given and t is a small nonnegative parameter.

From the theory of monotone operator we see that there is a unique solution
ηt ∈ W 1,p

0 (Ω) for each t ≥ 0. Here we note that Lp(uλ) ∈ [W 1,p
0 (Ω)]′ and

L′
p(uλ)ϕ is smooth. Since η0 = uλ for t = 0, we can put ηt(x) = uλ − tψt(x)

formally. From Lemma 2.1 we see ηt and ψt ∈ C1,σ(Ω) for some σ ∈ (0, 1].
Then we can show the following:

Proposition 8.2. Let ϕ ∈ Ṽλ,p(Ω) satisfy |∇ϕ| = 0 on Fε = {x ∈ Ω :
dist(x, Fλ,p) < ε} for some ε > 0. Then there is a unique solution ηt of (8.14)
for a small T > 0 such that ηt = uλ − tψt for ψt ∈ C0([0, T ], Ṽλ,p(Ω)) and

(8.15)

{
|∇ψt| = 0 on Fε,

limt→0 ||ψt − ϕ||Vλ,p(Ω) = 0.

Proof. Without the loss of generality we assume that Fε is smooth. Since
ϕ ∈ C∞(Ω) and ϕ is a constant on Fε, we see ∂αϕ = 0 on ∂Fε for any multi-
index α �= 0. First we claim that ∇ψt = 0 on Fε. We consider the boundary
value problem

(8.16)

{
Lp(η1

t ) = Lp(uλ) in Fε,

η1
t = uλ on ∂Fε.

This clearly has the unique solution η1
t = uλ. In the complement of Fε, the

problem

(8.17)

{
Lp(η2

t ) = Lp(uλ) − tL′
p(uλ)ϕ in (Fε)c,

η2
t = uλ on ∂Fε.

has a unique solution in W 1,p
0 (Ω) as well. Note that both uλ and η2

t become
smooth in a small neighborhood of ∂Fε, and the right hand side also equals
a smooth function Lp(uλ) there. Hence it is easy to see that these solutions
satisfy the compatibility conditions on ∂Fε, that is,

(8.18) η1
t = η2

t , |∇η1
t |p−2 dη

1
t

dn
= |∇η2

t |p−2 dη
2
t

dn
,

where n is a unit outer normal to ∂Fε. Then the function ηt defined by

(8.19) ηt =

{
η1
t in Fε,
η2
t in (Fε)c
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becomes a weak solution of (8.14) in W 1,p
0 (Ω). From the uniqueness of the

solution of boundary value problem in W 1,p
0 (Ω) it follows that ∇ψt vanishes

on Fε. This proves the claim. In the next we claim that ψt ∈ Ṽλ,p(Ω). This
follows from the next estimate:

||ψt||2Vλ,p(Ω) =
∫

Ω

|∇uλ|p−2|∇ψt|2 dx

≤ C

∫
Ω

(|∇(uλ − tψt)| + |∇uλ|)p−2|∇ψt|2 dx

≤ C
1
t
|〈Lp(uλ − tψt) − Lp(uλ), ψt〉|

≤ C|〈L′
p(uλ)ϕ, ψt〉| = C||ϕ||Vλ,p(Ω)||ψt||Vλ,p(Ω).

So that we have

(8.20) ||ψt||Vλ,p(Ω) ≤ C||ϕ||Vλ,p(Ω).

The last statement also follows from (8.7) in Proposition 8.1 by putting ϕt ≡
ϕ.

Since the right hand side of (8.14) is positive for a sufficiently small t ≥
0, it follows from Lemma 2.4 that ∇ηt = ∇(uλ − tψt) does not vanish near
the boundary ∂Ω. Note that ηt satisfies the elliptic equation with smooth
coefficients:

(8.21) −
(

∆ηt + (p− 2)
∂jηt∂kηt
|∇ηt|2 ∂2

i,jηt

)
=
Lp(uλ) − tL′

p(uλ)ϕ
|∇ηt|p−2

in Ωρ.

Here ρ is a small positive number and Ωρ = {x ∈ Ω : dist(x, ∂Ω) < ρ}.
Therefore ηt and ψt are smooth as well as uλ near the boundary ∂Ω for a
sufficiently small t > 0. Moreover we can show the following strong convergence.

Proposition 8.3. Assume that ϕ ∈ Ṽλ,p(Ω). Let ηt be a unique solution
(8.14) for a small T > 0 such that ηt = uλ − tψt for ψt ∈ C0([0, T ], Vλ,p(Ω)).
Then there is a small number ρ > 0 such that

(8.22) lim
t→0

||ψt − ϕ||C1(Ωρ)=0.

Here || · ||C1(Ωρ) is defined by

(8.23) ||u||C1(Ωρ) = sup
x∈Ωρ

(|u(x)| + |∇u(x)|).

This will be proved in the next section. Admitting this for the present we
establish Theorem 8.1 in the rest of this section.

Proof of Theorem 8.1. Assume that the self-adjoint operator L′
p(uλ) −

λf ′(uλ) on L2(Ω) has a negative first eigenvalue µ and a corresponding first
eigenfunction ϕ̂λ ∈ Vλ,p(Ω) which is positive except on Fλ,p. Namely

(8.24) L′
p(uλ)ϕ̂

λ − λf ′(uλ)ϕ̂λ = µϕ̂λ (µ < 0, ϕ̂λ ∈ Vλ,p(Ω)).

From the accessibility condition (AC) we claim that
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Lemma 8.1. There exist positive numbers ρ and C0, a negative number
ν, a positive ϕ ∈ Ṽλ,p(Ω) and a nonnegative ξ ∈ Ṽλ,p(Ω) ∩ C∞

0 (Ω)such that

(8.25)

{
L′
p(uλ)ϕ− λf ′(uλ)ϕ ≤ ν(ϕ+ ξ) in Ω,

|∇ϕ| ≥ C0 in Ωρ = {x ∈ Ω : dist(x, ∂Ω) < ρ}.
Proof. It follows from the accessiblity condition (AC) that a nonnegative

ϕ̂λ ∈ D(L′
p(uλ)) is approximated by elements in Ṽλ,p(Ω) in the following way:

For any ε > 0 there exists a nonnegative ϕ ∈ Ṽλ,p(Ω) such that

(8.26) L′
p(uλ)(ϕ− ϕ̂λ) + |ϕ− ϕ̂λ| ≤ εmax(ϕ̂λ, dist(x, ∂Ω)) in Ω.

Note that Ṽλ,p(Ω) ⊂ D(L′
p(uλ)) ⊂ Vλ,p(Ω) ⊂ L2(Ω). ( See also Corollary 4.3 in

Section 4.) Note that uλ is of class C2 in the complement of any neighborhood of
Fλ,p as a solution of uniformly elliptic equation. Moreover |∇uλ| does not vanish
near ∂Ω. Therefore |∇ϕ̂λ| > 0 near ∂Ω, and so we have C0 · dist(x, ∂Ω)) ≤ ϕ̂λ

near ∂Ω for some constant C0 > 0. Now we show that |∇ϕ| does not vanish
in Ωρ if ε and ρ are sufficiently small. In fact we immediately see from (8.26)
ϕ̂λ = ϕ̂λ − ϕ+ ϕ ≤ εC−1

0 ϕ̂λ + ϕ, hence (1 − εC−1
0 )ϕ̂λ ≤ ϕ. Then we have

(8.27) 0 < (1 − εC−1
0 )

dϕ̂λ

dn
≤ dϕ

dn
near the boundary ∂Ω,

where 0 < ε < C0 and n is an interior normal to ∂Ω.
Temporally we assume ϕ̂λ > 0 in Ω. Then we have C1 · dist(x, ∂Ω)) ≤ ϕ̂λ

in the whole Ω for some constant C1 > 0. From (8.24) and (8.26) we see

L′
p(uλ)ϕ− λf ′(uλ)ϕ(8.28)

= (L′
p(uλ) − λf ′(uλ))(ϕ− ϕ̂λ) + µϕλ

≤ εmax(ϕ̂λ, dist(x, ∂Ω)) + µϕλ

≤ (µ+ εmax(1, C−1
1 ))ϕλ.

Therefore the claim is clear for a small ε > 0.
In the next we remove the assumption of positivity on ϕ̂λ. Choose and fix

a nonnegative ξ ∈ Ṽλ,p(Ω) ∩ C∞
0 (Ω) which will be specified later. Then

(L′
p(uλ)−λf ′(uλ))(ϕ̂λ + ξ)(8.29)

= µϕ̂λ + (L′
p(uλ) − λf ′(uλ))ξ

< µϕ̂λ − λf ′(0)ξ + L′
p(uλ)ξ

< −Λ(ϕ̂λ + ξ) + L′
p(uλ)ξ,

where Λ = min(−µ, λf ′(0)) > 0. Note that for any ξ ∈ Ṽλ,p(Ω), L′
p(uλ)ξ is

smooth in Ω and vanishes on some neighborhood of Fλ,p. For any ε ∈ (0,Λ)
we choose a nonnegative ξ ∈ Ṽλ,p(Ω)∩C∞

0 (Ω) so that we have L′
p(uλ)ξ ≤ εϕ̂λ.

Since |∇ϕ̂λ| > 0 near the boundary, this is possible. After all we have

(8.30)

{
(L′

p(uλ) − λf ′(uλ))(ϕ̂λ + ξ) < (ε− Λ)(ϕ̂λ + ξ),
ϕ̂λ + ξ > 0 in Ω.

.
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Hence by replacing ϕ̂λ by ϕ̂λ+ ξ if necessary, the same conclusion (8.25) holds.

Proposition 8.4. Assume that ϕ ∈ Ṽλ,p(Ω) is positive in Ω and satis-
fies (8.25) with a negative number ν. Then there are a small T > 0 and an
ηt = uλ − tψt for ψt ∈ C0([0, T ], Ṽλ,p(Ω)) such that :

(1) ηt satisfies (8.14) for any t ∈ [0, T ], that is{
Lp(ηt(x)) = Lp(uλ) − tL′

p(uλ)ϕ in Ω,
ηt = 0 on ∂Ω.

(2) ψt ∈ C1,σ(Ω) for some σ ∈ (0, 1] satisfies

(8.31)

{
limt→0 ||ψt − ϕ||Vλ,p(Ω) = 0,
limt→0 ||ψt − ϕ||C1(Ωρ)=0 for some ρ > 0.

(3) ηt ≤ uλ holds in Ω for any t ∈ [0, T ]. Moreover there exists a set
having positive measure on which ηt < uλ holds.

(4) For each t ∈ [0, T ] there are some point xt ∈ Ω and a positive number
rt such that Lp(ηt) ≤ λf(ηt) in Brt

(xt) in the distribution sense, that is,

(8.32) 〈Lp(ηt), ξ〉[C∞]′×C∞ ≤ λ

∫
Ω

f(ηt)ξ dx

for any ξ ∈ C∞
0 (Brt

(xt)) satisfying ξ ≥ 0.

Proof. The assertions (1) and (2) follow from Propositions 8.2 and 8.3
respectively. If T is sufficiently small, then ψt is nonnegative for any t ∈ [0, T ].
Hence the assertion (3) holds. We proceed to the proof of (4). Assume that for
some t ∈ [0, T ], Lp(ηt) > λf(ηt) in Ω. Then ηt becomes a supersolution. Since
0 is a subsolution, it follows from the standard argument of monotone iteration
that we get at least one solution w satisfying 0 < w < ηt ≤ uλ in Ω. But this
contradicts to the minimality of uλ.

End of proof of Theorem 8.1. From Lemma 8.1 and (4) in Proposition 8.4,
for each t ∈ [0, T ] there exist some point xt ∈ Ω and a positive number rt such
that we have

(8.33)

{
L′
p(uλ)ϕ− λf ′(uλ)ϕ ≤ ν(ϕ̂λ + ξ) in Ω,

Lp(uλ) − tL′
p(uλ)ϕ ≤ λf(uλ − tψt) in Brt

(xt).

We note that for any t ∈ [0, T ]

(8.34) f(uλ − tψt) − f(uλ) + tf ′(uλ)ψt = o(t)|ψt|.
Hence we have

(8.35) 0 ≤ λf ′(uλ)(ϕ− ψt) + ν(ϕ̂λ + ξ) + o(1)|ψt| in Brt
(xt).
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Here we remark that (8.33) and this inequality have to be valid in the sence of
pointwise, since each term is continuous. Since Ω is bounded, we can assume
that limt→+0 xt = x0 ∈ Ω by choosing subsequence. Letting t → +0, we get
the inequality 0 ≤ ν(ϕ̂λ + ξ)(x0). If x0 ∈ Ω, then (ϕ̂λ + ξ)(x0) > 0, hence
this immediately leads us to a contradiction. So we proceed to the case that
x0 ∈ ∂Ω. Let us prepare the following:

Lemma 8.2. Assume that xt ∈ Ω → x0 ∈ ∂Ω as t→ +0. Then

(8.36) lim
t→+0

ϕ(xt) − ψt(xt)
ϕ(xt)

= 0.

If we admit this, dividing the both side of (8.35) and letting t→ +0 we have
0 ≤ ν, and again we reach to a contradiction. This proves Theorem 8.1.

Proof of Lemma 8.2. Since ∂Ω is of class C2, we see that ϕ and ψt are of
class C2(∂Ω)∩C∞(Ωρ). Using a suitable diffeomorphism, we can suppose that
x0 = 0, and Ω is a half space R

N
+ = {x = (x′, xN ) ∈ R

N : x′ ∈ R
N−1, xN > 0}.

Since ϕ vanishes on a plane {x = (x′, xN ) ∈ R
N : x′ ∈ R

N−1, xN = 0}, we have
for xN < ρ

(8.37) ϕ(x′, xN ) =
∫ xN

0

∂sϕ(x′, s) ds = xN

∫ 1

0

∂sϕ(x′, txN ) dt.

In a similar way

(8.38) ψt(x) = xN

∫ 1

0

∂sϕ(x′, txN ) dt.

Hence

(8.39)
ϕ(xt) − ψt(xt)

ϕ(xt)
=

∫ 1

0

(∂sϕ− ∂sψt)(x′, t(xt)N ) dt∫ 1

0

∂sϕ(x′, t(xt)N ) dt
.

There is a positive number C such that |∂sϕ| ≥ C for any x ∈ Ωρ. Since ψt
converges ϕ in C1(Ω), the right hand side of (8.39) goes to 0 as t→ 0.

9. Proof of Proposition 8.3

In this section we establish Proposition 8.3 which was stated in Section 8.

Proof of Proposition 8.3. First note that

(9.1) Lp(u) = −|∇u|p−2

(
∆u+ (p− 2)

∂ju∂ku

|∇u|2 ∂2
i,ju

)
.
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As was already seen just after the proof of Proposition 8.2, we can choose T > 0
and ρ > 0 so small that ∇ηt = ∇uλ − t∇ψt, ∇uλ and ∇ψt do not vanish in
Ωρ = {x ∈ Ω : dist(x, ∂Ω) < ρ} for any t ∈ [0, T ]. Then ηt and uλ are smooth
in Ωρ as solutions of uniformly elliptic equations with regular coefficients, and
so ψt also can be assumed to be smooth in Ωρ for any t ∈ [0, T ]. Let us set

(9.2) −
∑
j,k

Ajk(x, t)∂2
jkηt =

Lp(ηt)
|∇ηt|p−2

.

Here

(9.3) Aj,k(x, t) = δj,k + (p− 2)
∂jηt∂kηt
|∇ηt|2 .

By the definition of ηt we have

(9.4) −
∑
j,k

Ajk(x, t)∂2
jkηt =

Lp(uλ) − tL′
p(uλ)ϕ

|∇ηt|p−2
∈ C∞(Ωρ) ∩ C2(Ωρ).

Then ψt satisfies

(9.5) t
∑
j,k

Aj,k(x, t)∂2
j,kψt = Gλ,t(x) ∈ C∞(Ωρ) ∩ C2(Ωρ),

where

(9.6) Gλ,t(x) =
∑
j,k

Aj,k(x, t)∂2
j,kuλ +

Lp(uλ) − tL′
p(uλ)ϕ

|∇ηt|p−2
.

In a similar way we have

(9.7) t
∑
j,k

Bj,k(x, t)∂2
j,kϕ = G̃λ,t(x) ∈ C∞(Ωρ) ∩ C2(Ωρ),

where

(9.8)



G̃λ,t(x) =

∑
j,k Bj,k(x, t)∂

2
j,kuλ +

Lp(uλ − tϕ)
|∇(uλ − tϕ)|p−2

,

Bj,k(x, t) = δj,k + (p− 2)
∂j(uλ − tϕ)∂k(uλ − tϕ)

|∇(uλ − tϕ)|2 .

From a mean value theorem for smooth functions and the differentiability of
Lp(·) at uλ in the direction to ϕ, there is a positive number C such that for
any t ∈ [0, T ] and any x ∈ Ωρ

(9.9) |Gλ,t(x) − G̃λ,t(x)| ≤ Ct|∇(ψt − ϕ)| + o(t).

Here by o(t) we denote a quantity satisfying o(t)
t → 0 as t→ 0. Set

(9.10) Wt = ψt − ϕ.
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Then Wt satisfies

(9.11)
∑
j,k

Aj,k∂
2
j,kWt = H(x),

where

(9.12) H(x) =
∑
j,k

(Bj,k −Aj,k)∂2
j,kϕ+

Gλ,t(x) − G̃λ,t(x)
t

.

It is easy to see that H(x) ∈ C∞(Ωρ) satisfies the estimate

(9.13) |H(x)| ≤ C1(|∇ψt −∇ϕ| + o(1)) = C1(|∇Wt| + o(1)),

where C1 is a positive number depending on |∇ϕ|, |∇ψt| and |∇2ϕ|.
From (9.13) and L2 energy estimate for uniformly elliptic equation (9.11)

we get for 0 < ρ′ < ρ

||Wt||W 2,2(Ωρ′ ) ≤ C(||H(x)||L2(Ωρ) + ||Wt||W 1,2(Ωρ)(9.14)

≤ C[||Wt||Vλ,p(Ω) + o(1)].

Here we used

(9.15)

{
||H(x)||L2(Ωρ) ≤ C(||Wt||W 1,2(Ωρ) + o(1)),
||Wt||W 1,2(Ωρ) ≤ C ′||Wt||Vλ,p(Ω)

for some constants C and C ′ > 0 (note that ∇uλ does not vanish near ∂Ω).
Hence we have from (8.31)

(9.16) lim
t→0

||Wt||W 2,2(Ωρ′ ) = 0.

Now we differentiate the both side of (9.11) with respect to xm to obtain

(9.17)
∑
j,k

Aj,k∂
2
j,k∂mWt = ∂mH(x) −

∑
j,k

∂mAj,k∂
2
j,kWt.

Then ∂mH(x) and ∂mAj,k satisfy

(9.18)

{
||∂mH(x)||L2(Ωρ′ ) ≤ C(||Wt||W 2,2(Ωρ′ ) + o(1)),
||∑j,k ∂mAj,k∂

2
j,kWt||L2(Ωρ′ ) ≤ C||Wt||W 2,2(Ωρ′ ),

where C is a positive number depending on |∇αϕ|, |∇αψt| for 0 ≤ α ≤ 3, and
|∇αϕ| = (

∑
|γ|=α |∂γϕ|2)

1
2 . Since m is any number, we have for 0 < ρ′′ < ρ′

||Wt||W 3,2(Ωρ′′) ≤ C(||∇H(x)||L2(Ω′
ρ) + ||Wt||W 2,2(Ωρ′ )(9.19)

≤ C[||Wt||Vλ,p(Ω) + o(1)] → 0 as t→ +0.
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Here the positive number C depends on ρ′ and ρ′′. Therefore we can show
inductively that for any positive integer n and any ρ′ ∈ (0, ρ),

(9.20) ||Wt||Wn,2(Ωρ′ ) ≤ C(n, ρ, ρ′)||Wt||Vλ,p(Ω) + o(1)] → 0 as t→ +0.

Here C(n, ρ, ρ′) is a positive number depending only on n, ρ and ρ′. After all,
by Sobolev imbedding theorem we have

(9.21) lim
t→0

||ψt − ϕ||C1(Ωρ)=0.

This proves the assertion.

10. The extremal solution and its characterization

In this section we shall study the behaviors of uλ and the operator L′
p(uλ)

near λ = λ∗. As was seen before in Theorem 2.1 in Section 2, the extremal
solution u∗ ∈ W 1,p

0 (Ω) always exists in our framework as a monotonically in-
creasing limit of a sequence of classical solutions. Namely, u∗ = limλ→λ∗ uλ
satisfies

(10.1)

{
Lp(u∗) = λ∗f(u∗) in Ω,
u∗ = 0 on ∂Ω.

But u∗ can be classical or singular (that is to say, unbounded). In case that
p = 2, it is known that there is no solution even in the weak sense for any
λ > λ∗. We start to prove the counterpart to this fact.

Definition 10.1 (Growth Condition). For p > 1, a function f(t) ∈
C1([0,∞)) is said to satisfy the growth condition (GC) if f is increasing, strictly
convex with f(0) > 0 and

(10.2)
f ′(t)

f(t)
p−2
p−1

is nondecreasing on [0,∞).

Remark 10.1. (1) If 1 < p ≤ 2, (10.2) is automatically satisfied for
increasing convex functions with f(0) > 0.

(2) For example, et and (1 + t)q; q ≥ p− 1 satisfy (GC).
(3) If f is C2 function, (10.2) follows from;

(10.3)
d

dt

(
f ′(t)

f(t)
p−2
p−1

)
≥ 0 for all t ∈ [0,∞),

or

(10.4) f ′′(t)f(t) ≥ p− 2
p− 1

f ′(t)2 for all t ∈ [0,∞).

If u∗λ is singular, we can show the following. The idea of the proof is
essentially due to [1: H. Brezis, Th. Cazenave, Y. Martel and A. Ramiandrisoa],
see also [2].
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Theorem 10.1. Let u∗ be the singular extremal solution. Assume that
the nonlinearlity f(t) satisfies the growth condition (GC ) in addition to (2.2).
Then there is no weak energy solution to (2.3) provided that λ > λ∗.

We prepare two lemmas.

Lemma 10.1. Let u ∈ W 1,p
0 (Ω) be the weak energy solution of (2.3).

Let Ψ ∈ C2(R) be concave, with Ψ′ bounded and Ψ(0) = 0. Then v = Ψ(u)
satisfies

(10.5) Lp(v) ≥ λ|Ψ′(u)|p−2Ψ′(u)f(u)

in the sense that

(10.6) 〈Lp(v), ϕ〉[W 1,p
0 (Ω)]′×W 1,p

0 (Ω) ≥ λ

∫
Ω

|Ψ′(u)|p−2Ψ′(u)f(u)ϕdx

for any ϕ ∈ C1
0 (Ω).

Proof. By a direct calculation we see

Lp(v) = |Ψ′(u)|p−2Ψ′(u)Lp(u) − (p− 1)|Ψ′(u)|p−2Ψ′′(u)|∇u|p(10.7)

≥ |Ψ′(u)|p−2Ψ′(u)Lp(u)

= λf(u)|Ψ′(u)|p−2Ψ′(u).

This proves the assertion.

For a given ε ∈ (0, 1) we set

(10.8) f̃ = (1 − ε)f.

Set for all u ≥ 0

(10.9) h(u) =
∫ u

0

ds

f(s)
1

p−1
and h̃(u) =

∫ u

0

ds

f̃(s)
1

p−1
,

then h̃(u) = (1 − ε)−
1

p−1h(u).

Lemma 10.2. Assume that f satisfies (GC ). Let us set for all u ≥ 0

(10.10) Ψ(u) = h̃−1(h(u)).

Then
(1) Ψ(0) = 0 and 0 ≤ Ψ(u) ≤ u for all u ≥ 0.
(2) If h(+∞) < +∞ and f̃ �= f , then Ψ(+∞) < +∞.
(3) Ψ is increasing, concave, and Ψ′ ≤ 1 for all u ≥ 0.
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Proof. The assertions (1) and (2) are clear. We have

(10.11) Ψ′(u) =

(
f̃(Ψ(u))
f(u)

) 1
p−1

and

(10.12) Ψ′′(u) =
1

p− 1

(
f̃(Ψ(u))
f(u)

) 1
p−1
(
f̃ ′(Ψ(u))
f̃(Ψ(u))

Ψ′(u) − f ′(u)
f(u)

)
.

Set Φ(u) = f̃ ′(Ψ(u))

f̃(Ψ(u))
Ψ′(u) − f ′(u)

f(u) . Then it suffices to show Φ ≤ 0, and this is
equivalent to the inequality:

(10.13) (1 − ε)
1

p−1
f ′(Ψ(u))

f(Ψ(u))
p−2
p−1

≤ f ′(u)

f(u)
p−2
p−1

for all u ≥ 0.

But this holds from the fact Ψ(u) ≤ u.

Proof of Theorem 10.1. Assume that there is a weak energy solution u of
(2.3) for some λ > λ∗. We set v = Ψ(u) = h̃−1(h(u)) for ε ∈ (0,min(1, λ−λ∗)).
Since f satisfies the condition (2.2), we see that h is bounded. Hence v is also
bounded and satisfies

(10.14)

{
Lp(v) ≥ λ(1 − ε)f(v) in Ω,
v = 0 on ∂Ω.

Then v is a bounded supersolution. Since 0 is a subsolution, by a standard
monotone iteration argument, we see the existence of a classical solution for
any µ < λ. In particular for µ = λ∗ there exists a classical solution. But this
clearly contradicts to the minimality of u∗, which is singular .

If p ≥ 2, we can show the necessity of the Hardy type inequality for the
extremal u∗.

Proposition 10.1. Assume that p ≥ 2. Let u∗ be the extremal solution.
Then we have

(10.15)
∫

Ω

|∇u∗|p−2

(
|∇ϕ|2 + (p− 2)

(∇u∗,∇ϕ)2

|∇u∗|2
)
dx ≥ λ∗

∫
Ω

f ′(u∗)ϕ2 dx

for any ϕ ∈ Vλ∗,p(Ω).

Proof. For any µ < λ < λ∗ it follows from Lemma 2.3 that

||uλ − uµ||pW 1,p
0 (Ω)

≤ C

∫
Ω

(|∇uλ|p−2∇uλ − |∇uµ|p−2∇uµ,∇(uλ − uµ)) dx

= C

∫
Ω

(λf(uλ) − µf(uµ))(uλ − uµ) dx.
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Here C is a positive number independent of µ and λ. Then it follows from
(2.20) in the proof of Theorem 2.1 that for almost all x ∈ Ω

|(λf(uλ) − µf(uµ))(uλ − uµ)| ≤ 4λ∗f(u∗)u∗ and f(u∗)u∗ ∈ L1(Ω).

Since uλ converges u∗ as λ → λ∗ monotonically, by Lebesgue’s convergence
theorem we have

(10.16) lim
λ→λ∗

uλ = u∗ in W 1,p
0 (Ω).

In particular we get

(10.17) lim
λ→λ∗

|∇uλ|p−2 = |∇u∗|p−2 in L1(Ω).

Hence we immediately have for any ϕ ∈ C∞
0 (Ω)

(10.18) lim
λ→λ∗

〈L′
p(uλ)ϕ,ϕ〉[Vλ,p]′×Vλ,p

= 〈L′
p(u

∗)ϕ,ϕ〉[Vλ∗,p]′×Vλ∗,p
.

Since uλ is (strictly) increasing, by Fatou’s lemma we have

λ∗
∫

Ω

f ′(u∗)ϕ2 dx ≤ lim
λ→λ∗−0

λ

∫
Ω

f ′(uλ)ϕ2 dx

(10.19)

≤ lim
λ→λ∗

〈L′
p(uλ)ϕ,ϕ〉[Vλ,p]′×Vλ,p

= 〈L′
p(u

∗)ϕ,ϕ〉[Vλ∗,p]′×Vλ∗,p
.

Noting that C∞
0 (Ω) is densely contained in Vλ∗,p(Ω), the desired Hardy type

inequality follows.

Remark 10.2. When 1 < p < 2, we can not show the strong conver-
gence of |∇uλ|p−2 in L1(Ω) because of the negativity of exponent. But |∇uλ|
(λ ∈ (0, λ∗]) vanishes only on each discrete set Fλ,p (λ ∈ (0, λ∗]). Hence if |∇uλ|
with λ being sufficiently close to λ∗ is positive except for an arbitrary small
neighborhood of Fλ∗,p, then |∇uλ|p−2 converges |∇u∗|p−2 in L1

loc(Ω \Fλ∗,p) as
λ→ λ∗. Therefore we can show the following result in a similar way.

Proposition 10.2. Assume that 1 < p < 2. Let u∗ be the extremal
solution. Assume that there is a positive number ε0 such that Ṽλ,p(Ω) is dense
in Vλ,p(Ω) for any λ ∈ (λ∗ − ε0, λ

∗).
Moreover assume that for any κ > 0 there is a positive number δ such that

for any λ ∈ (λ∗ − δ, λ∗]

(10.20) Fλ,p ⊂ (Fλ∗,p)κ = {x ∈ Ω : dist(x, Fλ∗,p) < κ}.
Then we have

(10.21)
∫

Ω

|∇u∗|p−2

(
|∇ϕ|2 + (p− 2)

(∇u∗,∇ϕ)2

|∇u∗|2
)
dx ≥ λ∗

∫
Ω

f ′(u∗)ϕ2 dx

for any ϕ ∈ Vλ∗,p(Ω).
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Proof. From the remark just before this, we see

(10.22) lim
λ→λ∗−0

|∇uλ|p−2 = |∇u∗|p−2 in L1
loc(Ω \ Fλ∗,p).

Therefore for any ϕ ∈ Ṽλ,p(Ω) the Hardy type inequality (10.21) holds by the
same argument as before. Since Ṽλ,p(Ω) is dense in Vλ,p(Ω), by an approximat-
ing argument this is valid for any ϕ ∈ Vλ∗,p(Ω).

Remark 10.3. (1) If u∗ is classical, the Hardy type inequality (10.21)
holds under the assumption that the first eigenfunction of L′

p(u∗) − λf ′(u∗)
satisfies the accessibility condition (AC). The proof is same as that of Theo-
rem 8.1.

(2) If Ω is a ball, then one can show Fλ,p = {0} for all λ > 0. Hence the
Hardy type inequality (10.21) holds in this case. See the example in Section
12.

Conversely we have

Proposition 10.3. Assume that 1 < p ≤ 2 and the nonlinearlity f(t)
satisfies the growth condition (GC ) in addition to (2.2). For λ > 0, let uλ be
the minimal solution or possibly the extremal solution. Let u ∈ W 1,p

0 (Ω) be a
singular (unbounded) weak energy solution of (2.3) such that

(10.23)
∫

Ω

|∇u|p−2

(
|∇ϕ|2 + (p− 2)

(∇u,∇ϕ)2

|∇u|2
)
dx ≥ λ

∫
Ω

f ′(u)ϕ2 dx

for any ϕ ∈ Vλ,p(Ω). Moreover, if 1 < p < 2, then we assume that

(10.24) |∇u| ≥ |∇uλ| a.e. in Ω.

Then we have λ = λ∗ and u = u∗.

Proof. By Theorem 10.1, in order to see λ = λ∗ it suffices to show λ ≥ λ∗.
Assume that λ < λ∗. Then it follows from the strict convexity of f that∫

Ω

(|∇u|p−2∇u− |∇uλ|p−2∇uλ,∇(u− uλ)) dx(10.25)

<

∫
Ω

|∇u|p−2

(
|∇(u− uλ)|2 + (p− 2)

(∇u,∇(u− uλ))2

|∇u|2
)
dx.

Note that the right hand side is finite from a Hölder inequality. Set ∇u = rω1

and ∇uλ = ρω2 for ω1, ω2 ∈ SN−1 and set A = ρ
r . From the assumption we

see A ∈ [0, 1] if 1 < p < 2. Now we claim on the contrary that

(ω1 −Ap−1ω2,ω1 −Aω2)(10.26)

≥ |ω1 −Aω2|2 + (p− 2)(ω1, ω1 −Aω2)2
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for any ω1, ω2 ∈ SN−1 and A ∈ [0, 1]. Then we have, for β = (ω1, ω2)

(10.27) A(A− β)(Ap−2 − 1) + (2 − p)(Aβ − 1)2 ≥ 0.

Since |β| ≤ 1 and 1 < p ≤ 2, it suffices to show

(10.28) A(A− 1)(Ap−2 − 1) + (2 − p)(A− 1)2 ≥ 0.

Now we can assume that 1 < p < 2. Since 0 ≤ A ≤ 1, this follows from the
inequality below.

(10.29) Ap−1 −A+ (2 − p)(A− 1) ≤ 0.

Therefore the claim is proved and we see λ = λ∗. The uniqueness of energy
solutions satisfying the Hardy inequality (10.23) is also clear from the same
argument.

Remark 10.4. When the domain Ω is a ball B, then the condition
(10.24) is satisfied. See Lemma12.1 in §12. Therefore if Ω = B, the Hardy type
in equality 10.23 does not hold for a non-minimal classical solution of (2.3) with
0 < λ < λ∗ for any 1 < p ≤ 2. From this fact one can show that the minimal
solution uλ is also right continuous on λ provided that 1 < p ≤ 2 and Ω is a
ball. For the detailed see Proposition 12.1 in Section 12.

If p > 2, we can show the following instead, which seems rather weak but
will be useful in Section 12 to determine the extremal in the case that Ω is a
ball.

Proposition 10.4. Assume that p > 2 and the nonlinearlity f(t) sat-
isfies the growth condition (GC ) in addition to (2.2). For λ > 0, let uλ be the
minimal solution, or possibly the extremal solution. Let u ∈ W 1,p

0 (Ω) be a sin-
gular (unbounded) weak energy solution of (2.3) such that for any ϕ ∈ C∞

0 (Ω)
(10.30)∫

Ω

|∇u|p−2

(
|∇ϕ|2 + (p− 2)

(∇u,∇ϕ)2

|∇u|2
)
dx ≥ λ(p− 1)

∫
Ω

f ′(u)ϕ2 dx.

Moreover we assume one of the followings:

(10.31)

{
1. ∇u = α∇uλ for some α > 0 a.e. in Ω,
2. |∇uλ|2 ≤ (∇u,∇uλ) a.e. in Ω.

Then we have λ = λ∗ and u = u∗.

Proof. The proof is done in the same line of the previous one. Assume
that λ < λ∗. Then we have

(p− 1)
∫

Ω

(|∇u|p−2∇u− |∇uλ|p−2∇uλ,∇(u− uλ)) dx(10.32)

<

∫
Ω

|∇u|p−2

(
|∇(u− uλ)|2 + (p− 2)

(∇u,∇(u− uλ))2

|∇u|2
)
dx.
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Note that the right hand side is finite from a Hölder inequality. Set ∇u = rω1

and ∇uλ = ρω2 for ω1, ω2 ∈ SN−1 and set A = ρ
r . Now we claim on the

contrary that

(p− 1)(ω1−Ap−1ω2, ω1 −Aω2)(10.33)

≥ |ω1 −Aω2|2 + (p− 2)(ω1, ω1 −Aω2)2

for ω1, ω2 ∈ SN−1 and A ∈ [0,+∞). This is equivalent to

(10.34) (p− 1)(1 −Ap−2)((ω1, ω2) −A) ≥ (p− 2)A((ω1, ω2)2 − 1).

Therefore the claim is proved and we see λ = λ∗. The uniqueness of the energy
solution satisfying the Hardy inequality (10.31) is also clear from the same
argument.

Remark 10.5. When the domain Ω is a ball B, then the condition
(10.31) is satisfied. See Lemma 12.1 in Section 12.

If p = 2 we encounter the result in [2] due to H. Brezis and J.L. Vazquez,
namely

Corollary 10.1. Assume that p = 2 and that v is a singular energy
solution of (2.3) for some λ > 0. Then the following two statements are equiv-
alent with each other.

(1) λ = λ∗ and v = u∗.
(2) It holds that

(10.35)
∫

Ω

|∇ϕ|2 dx ≥ λ

∫
Ω

f ′(uλ)ϕ2 dx

for any ϕ ∈ Vλ,2(Ω) = W 1,2
0 (Ω).

11. Weighted Hardy’s inequality in a ball

In the next we state the results concerned with the weighted Hardy in-
equalities.

Theorem 11.1. Suppose that a positive integer N and a real number α
satisfy N + α > 2.Then it holds that for any u ∈ H1

0 (Ω)∫
Ω

|∇u|2|x|α dx ≥ H(N,∇, α)
∫

Ω

|u|2|x|α−2 dx(11.1)

+ λ1

(
ωN
|Ω|
) 2

N
∫

Ω

|u|2|x|α dx.

Here

(11.2) H(N,∇, α) =
(
N − 2 + α

2

)2

,
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ωN is a volume of N-dimensional unit ball, and λ1 is the first eigenvalue of the
Dirichlet problem given by :

(11.3) λ1 = inf

[∫
B2

1

|∇2v|2 dx : v ∈W 1,2
0 (B2

1),
∫
B2

1

v2 dx = 1

]
,

where by B2
1 and ∇2 we denote the two dimensional unit ball and the gradient.

Remark 11.1. When α = 0, this result was initially established in [2;H.
Brezis and J.L. Vazquez]. They also investigated in [2] fundamental properties
of blow-up solutions of some nonlinear elliptic problems.

First we prepare an elementary lemma.

Lemma 11.1. Let Ω be a domain of R
N . Assume that u ∈ C∞

0 (Ω) and
f ∈ C2(Ω). Then it holds that

(11.4)
∫

Ω

|∇(uf)|2 dx =
∫

Ω

|∇u|2f dx− 1
2

∫
Ω

u2(∆(f2) − 2|∇f |2) dx.

Proof. Integration by parts leads us to obtain (11.4).

Using these formula we can easily show the assertion.

Proof of Theorem 11.1. From this the proof of Theorem 11.1 is reduced
to the case α = 0, which was established in [2]. In fact, for f = |x|α

2 , we have

∫
Ω

|∇u|2|x|α dx(11.5)

=
α(α+ 2N − 4)

4

∫
Ω

|u|2|x|α−2 dx+
∫

Ω

|∇(u|x|α
2 )|2 dx.

Here we note that the proof of Lemma 11.1 still works for this weight f , since
N +α > 2. Then we can apply the inequality (11.1) with a parameter α being
0, and we obtain

∫
Ω

|∇(u|x|α
2 )|2 dx(11.6)

≥ (N − 2)2

4

∫
Ω

|u|2|x|α−2 dx+ λ1

(
ωN
|Ω|
) 2

N
∫

Ω

|u|2|x|α dx.

The desired inequality follows from this and (11.5).
For the sake of the self-containedness, we give a proof of Theorem 11.1

in the case α = 0. By the spherically symmetric decreasing rearragement, it
suffices to show the inequality in the case that Ω = B; a unit ball in R

N and



�

�

�

�

�

�

�

�

432 Toshio Horiuchi and Peter Kumlin

u ∈ C1
0 (B) is radiall symmetric. Set u = r−βv for u ∈ C1

0 (B) and β = N−2
2 .

∫
B

|∇u|2 dx−H(N,∇, 0)
∫
B

u2

|x|2 dx

= NωN

(∫ 1

0

|u′|2rN−1 dr −H(N,∇, 0)
∫ 1

0

u2rN−3 dr

)

= NωN

(∫ 1

0

|v′|2r dr
)

≥ λ1NωN

∫ 1

0

v2r dr

= λ1

∫
B

u2 dx

This proves the assertion.

12. Examples in a unit ball of R
N

In this subsection we shall apply our results to some examples. By B we
denote a unit ball in R

N . Let uλ ∈ W 1,p
0 (B) ∩ C1,σ

0 (B) for some σ ∈ (0, 1)
be the minimal solution. Since B and the operator Lp(·) itself are radially
symmetric, we see uλ is also radial by the minimality. Then uλ satisfies in a
weak sense

(12.1)

{
Lp(u) = −r1−N∂r(rN−1|∂ruλ|p−2∂ruλ) = λf(uλ), r ∈ (0, 1),
uλ(1) = 0.

From the symmetricity it also holds that

(12.2) ∂ruλ(0) = 0.

By integrating (12.1) from 0 to r we get

(12.3) −λ
∫ r

0

f(uλ(r))rN−1 dr = rN−1|∂ruλ|p−2∂ruλ.

Noting that ∂ruλ < 0 (r > 0) we get

(12.4) |∂ruλ|p−1 = λr

∫ 1

0

f(uλ(rt))tN−1 dt.

From this formula we have

Lemma 12.1. Let uλ ∈ W 1,p
0 (B) ∩ C1,σ

0 (B) and u∗ ∈ W 1,p
0 (B) be the

minimal solution and the extremal solution respectively. Then Fλ,p = Fλ∗,p =
{0} and |∂ruλ| is increasing w.r.t. λ ∈ [0, λ∗]. In particular we have for any
λ ∈ [0, λ∗]

(12.5) |∂ruλ| ≤ |∂ru∗| (0 < r ≤ 1).
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Proof. Since f(·) is convex and uλ is monotone increasing w.r.t.λ, we see
|∂ruλ| is also increasing w.r.t. λ. The rest of assertions are also clear.

Proposition 12.1. Assume that 1 < p ≤ 2. Then, uλ is strictly in-
creasing and continuous on λ ∈ [0, λ∗) for each x ∈ B. Moreover the mapping ;
λ −→ uλ ∈ W 1,p

0 (B) is weakly continuous.

Proof. Since uλ is left continuous for each x ∈ B and weakly left continu-
ous as a W 1,p

0 (B)-valued function, it suffices to show the right continuity. Note
that uλ0+0 = limλ→λ0+0 uλ uniquely exists inW 1,p

0 (B) as a decreasing limit and
becomes a weak energy solution of (2.3) by a similar argument as in the proof
of Lemma 2.6. We claim uλ0+0 = uλ0 in W 1,p

0 (B). Since Fλ,p ≡ {0}, Ṽλ,p(B)
is dense in Vλ,p(B). Hence by the same argument in the proof of Proposition
10.2, the Hardy type inequality∫

Ω

|∇uλ0+0|p−2

(
|∇ϕ|2 + (p− 2)

(∇uλ0+0,∇ϕ)2

|∇uλ0+0|2
)
dx ≥ λ0

∫
Ω

f ′(uλ0+0)ϕ2 dx

holds for any ϕ ∈ Vλ0,p(B.)(since |∂ruλ0 | ≤ |∂ruλ0+0| holds, the left hand side
is finite for any ϕ ∈ Vλ0,p(B)). Then by the same argument in Proposition 10.3
we see uλ0+0 = uλ0 in W 1,p

0 (B). This proves the claim.

In the next we consider the linearized operator at uλ. Since uλ is radial,
we get for any ϕ ∈ Vλ,p(B)

L′
p(uλ)ϕ = − div

(
|∂ruλ|p−2

(
∇ϕ+ (p− 2)

x

r

d

dr
ϕ

))
,

(12.6)

〈L′
p(uλ)ϕ,ϕ〉[Vλ,p]′×Vλ,p

=
∫
B

(
|∂ruλ|p−2

(
|∇ϕ|2 + (p− 2)

∣∣∣∣ ddrϕ
∣∣∣∣
2
))

dx.

(12.7)

In particular if ϕ ∈ Vλ,p(B) is also radial, then

L′
p(uλ)ϕ = −(p− 1)r1−N∂r(rN−1|∂ruλ|p−2∂rϕ),(12.8)

〈L′
p(uλ)ϕ,ϕ〉[Vλ,p]′×Vλ,p

= (p− 1)
∫
B

|∂ruλ|p−2|∂rϕ|2 dx.(12.9)

Proposition 12.2. Let ϕ̂λ ∈ Vλ,p(B) be the first eigenfunction of the
self-adjoint operator L′

p(uλ) − λf ′(uλ). Then ϕ̂λ is radial and satisfies the
accessibility condition (AC ).

Proof. Since the first eigenfunction ϕ̂λ ∈ Vλ,p(B) is unique up to a mul-
tiplication by constants, ϕ̂λ becomes radial as well as uλ. From (12.4) we have
|∂ruλ(r)| = O(r

1
p−1 ). Here by O(r) we denote the quantity such that O(r)

r
remains bounded as r → +0. Since ϕ̂λ ∈ Vλ,p(B), we see

(12.10)
∫
B

|x| p−2
p−1 |∇ϕ̂λ|2 dx < +∞.
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From now we assume that N ≥ 2, because ϕ̂λ(r) becomes continuous by Hölder
inequality provided that N = 1. Then it follows from the imbedding theorem
for weighted Sobolev spaces that for some positive number C(N, p)

(12.11)
(∫

B

|ϕ̂λ|q(p) dx
) 1

q(p)

≤ C(N, p)
(∫

B

|x| p−2
p−1 |∇ϕ̂λ|2 dx

) 1
2

,

where q(p) > 2 is given by the relation

(12.12) q(p) =




2N(p− 1)
N(p− 1) − p

, N > 2, p ≥ 2,

2N
N − 2

, N > 2, 1 < p < 2,

q ( any positive number ), N = 2.

For the proof of this, see [6; Thoerem 1]. Since ϕ̂λ satisfies L′
p(uλ)ϕ̂λ =

(λf ′(uλ) + µ)ϕ̂λ for some constant µ, it follows from a Moser’s iteration argu-
ment that ϕ̂λ is bounded in B. Then by integrating this from 0 to r we get
∂rϕ̂

λ = O(r
1

p−1 ). Hence L′(uλ)ϕ̂λ(r) is continuous in [0, 1] and

(12.13) ϕ̂λ(r) = O(r1+
1

p−1 ) + ϕ̂λ(0) as r → +0.

Since λf ′(uλ(0)) + µ ≥ λf ′(uλ) + µ, λf ′(uλ(0)) + µ has to be positive
from the positivity of L′

p(uλ). Hence L′(uλ)ϕ̂λ(r) becomes nonnegative near
the origin.

Then for any positive number ε it is possible to truncate ϕ̂λ smoothly in a
neighborhood of the origin so that we obtain ϕ ∈ Ṽλ,p(B) satisfying |ϕ− ϕ̂λ| ≤
εmax(ϕ̂λ, dist(x, ∂B)) and L′

p(uλ)ϕ ≤ L′
p(uλ)ϕ̂

λ + εmax(ϕ̂λ, dist(x, ∂B)).

In the rest of this section we adopt as the nonlinearity f(u) the following
fq and fe;

(12.14)

{
fq(u) = (1 + u)q (q > p− 1),
fe(u) = eu.

Set

(12.15)



λN (p, q) =

(
p

q − p+ 1

)p−1(
N − pq

q − p+ 1

)
, q > p− 1,

λN (p) = pp−1(N − p).

We define the function Up,q as follows:

(12.16)



Up,q(r) = r−Q − 1, Q =

p

q − p+ 1
,

Up(r) = −p log r.

Under these notations, we have the following.
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Lemma 12.2. Under these notations, Up ∈ W 1,p
0 (B) if N > p and

Up,q ∈ W 1,p
0 (B) if N > p(1 +Q). Moreover they become singular energy solu-

tions to the boundary value problems below respectively :{
Lp(Up) = λN (p)eUp in B

Up = 0 on ∂B,
(12.17)

{
Lp(Up,q) = λN (p, q)(Up,q + 1)q in B

Up,q = 0 on ∂B.
(12.18)

As q → +∞ one can check that

(12.19) (fq(Up,q(r)), qp−1λN (p, q), qUp,q(r)) −→ (fe(Up(r)), λN(p), Up(r))

for any r ∈ (0, 1). Therefore the boundary value problem (12.17) is considered
as a formal limit of (12.18).

For these singular solutions, we can show the validity of weighed Hardy’s
inequalities introduced in the previous section.

Lemma 12.3. (1) If N ≥ p p+3
p−1 holds, then for any radial ϕ ∈ C∞

0 (B)

(12.20) 〈L′
p(Up)ϕ,ϕ〉[C∞

0 (B)]′×C∞
0 (B) ≥ λN (p)

∫
B

eUpϕ2 dx,

or equivalently we have

(12.21)
∫
B

|∂rϕ|2r2−p dx ≥ p(N − p)
p− 1

∫
B

ϕ2r−p dx.

(2) Assume that

(12.22)
qQ

p− 1
(N − qQ) ≤ 1

4
(N −Q(q − 1))2.

Then, for any radial ϕ ∈ C∞
0 (B)

(12.23) 〈L′
p(Up,q)ϕ,ϕ〉[C∞

0 (B)]′×C∞
0 (B) ≥ qλN (p, q)

∫
B

(1 + Up,q)q−1ϕ2 dx,

or equivalently we have

(12.24)
∫
B

|∂rϕ|2r−(p−2)(Q+1) dx ≥ qQ

p− 1
(N − qQ)

∫
B

ϕ2r−(p−2)(Q+1)−2 dx.

Here Q = p
q−p+1 and r = |x|.

Proof. The condition N ≥ p p+3
p−1 is equivalent to p(N−p)

p−1 ≤
(
N−p

2

)2

; the
best constant of weighted Hardy’s inequality for α = 2−p. Hence the assertion
(1) holds. In a similar way we see that qQ

p−1 (N − qQ) ≤ 1
4 (N − Q(q − 1))2

is equivalent to qQ
p−1 (N − qQ) ≤

(
N−2

2 − (p−2)(Q+1)
2

)2

; the best constant of
Hardy’s inequality for α = (2 − p)(Q+ 1). This proves the assertion.
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Remark 12.1. (1) In the assertion (2), Up,q is an energy solution if and
only if N−p > pQ holds. If N−p > pQ, then N > qQ clearly holds. Therefore
there is a range of q such that Up,q /∈W 1,p

0 (B) but weighted Hardy’s inequality
holds.

(2) The both inequality (12.21) and (12.24) are valid for any ϕ ∈ C∞
0 (B)

replacing |∂rϕ| by |∇ϕ|. In fact if 1 < p ≤ 2, then it suffices to note |∂rϕ| ≤
|∇ϕ|. When p > 2, this follows from the one dimensional Hardy inequality as
well.

Assume that Up is the singular extremal solution of (12.1) for f = fe. Since
Fλ,p = {0} holds, Ṽλ,p(Ω) is densely contained in Vλ,p(Ω) for any λ ∈ (0, λ∗).
To see this fact it suffices to approximate an element in Vλ,p(Ω) by a step
function near the origin. Then it follows from Propositions 10.1 and 10.2 that
the inequality of Hardy type has to be valid. Therefore the condition N ≥ p p+3

p−1
is necessary for Up to be the singular extremal. If we restrict ourselves to the
case that 1 < p ≤ 2, then we can show the converse.

Proposition 12.3 (Exponential case I). Assume that 1 < p ≤ 2. Then
Up is the singular extremal solution of (12.1) with f = fe, if and only if N ≥
p p+3
p−1 .

Proof. This follows from Proposition 10.3, Lemmas 12.1 and 12.3.

In a similar way we have

Proposition 12.4 (Exponential case II). Assume that p > 2. Then Up
is the singular extremal solution of (12.1) with f = fe, if N ≥ 5p.

Proof. By the weighted Hardy inequality with the best constant, we see

(12.25)
∫
B

|∇ϕ|2r2−p dx ≥ (N − p)2

4

∫
B

ϕ2r−p dx

for any ϕ ∈ C1
0 (B). Since 5p ≤ N , we see (N−p)2

4 ≥ p(N − p). Then we have

(12.26)
∫
B

|∇Up|p−2|∇ϕ|2 dx ≥ λN (p)
∫
B

eUpϕ2 dx.

Therefore the assumption (10.30) in Proposition 10.4 is satisfied for u = Up
and for a radial ϕ. There is the minimal (or possibly the extremal ) solution uλ
which is radial and 0 < uλ ≤ Up in B. From the integral representation (12.3),
we also see ∂ruλ < 0, and ∂rUp < 0 as well. Hence from Proposition 10.4 we
see λ∗ = λN (p) and Up = uλ.

Proposition 12.5 (Polynomial case I). Assume that 1 < p ≤ 2. Then
Up,q is the singular extremal solution of (12.1) with f = fp, if and only if

(12.27) N ≥ p(1 + qQ) + 2
√
pqQ

p− 1
.
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Proof. It suffices to note that

qQ

p− 1
(N − qQ) ≤ 1

4
(N −Q(q − 1))2 and N − p > pQ

simply imply

N ≥ p(1 + qQ) + 2
√
pqQ

p− 1
.

Also note that as q → +∞ this condition becomes N ≥ p p+3
p−1 .

In a similar way we have

Proposition 12.6 (Polynomial case II). Assume that p > 2. Then Up,q
is the singular extremal solution of (12.1) with f = fp, if N ≥ Q(3q − 1 +
2
√
q(q − 1)).

Proof. By the weighted Hardy inequality with the best constant, we have

(12.28)
∫
B

|∂rϕ|2r−(p−2)(Q+1) dx ≥ (N −Q(q − 1))2

4

∫
B

ϕ2r−(p−2)(Q+1)−2 dx

for any ϕ ∈ C1
0 (B). Here Q = p

q−p+1 and r = |x|. From the assumption we see
(N−Q(q−1))2

4 ≥ qQ(N − qQ). Then we have

(12.29)
∫
B

|∇Up,q |p−2|∇ϕ|2 dx ≥ qλN (p)
∫
B

(Up,q + 1)q−1ϕ2 dx.

Therefore the assumption (10.30) in Proposition 10.4 is satisfied for u = Up,q
and for a radial ϕ. The rest of thr proof is completely same as that in Expo-
nential case. Also note that N > p(Q + 1) is satisfied and as q → +∞ the
condition becomes N ≥ 5p.

Remark 12.2. (1) In case that p > 2, it is unknown if Up; 5p > N ≥
p p+3
p−1

(
Up,q; Q(3q − 1 + 2

√
q(q − 1)) > N ≥ p(1+qQ)+2

√
pqQ

p−1

)
becomes the ex-

tremal or not.
(2) Assume that 1 < p ≤ 2. If N > p p+3

p−1 , then the linealized operator

L′
p(Up) − λN (p)eUp(12.30)

= −pp−2

(
div
(
r2−p∇ · +(p− 2)

x

r

d

dr
·
)
− p(N − p)r−p

)

has a positive first eigenvalue µ(λN (p)).
If N = p p+3

p−1 , then the linearized operator does not have a first eigen-
function in W 1,p

0 (B). However, the weighted Hardy inequality in the previous
section gives a positive value for µ(λN (p)) defined as

µ(λN(p)) = lim
λ→λN(p)

µ(λ) = λ1p
p−2(p− 1),
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where λ1 is defined by (11.3) and µ(λ) is the first eigenvalue for L′
p(uλ)−λeuλ .

From Theorem 11.1 we see µ(λN(p)) ≤ λ1p
p−2(p − 1). Since uλ ≤ Up and

|∂ruλ|p−2 is decreasing w.r.t. λ,∫
B

|∂ruλ|p−2|∇ϕ|2 dx− λ

∫
B

euλϕ2 dx

is decreasing w.r.t. λ, and so the reverse inequality also holds.
(3) When 1 < p ≤ 2 and N ≥ p(1+qQ)+2

√
pqQ

p−1 , one can show similar results
for the linearized operator of Lp(·) at Up,q .

Lastly we study the behavior of vλ as λ → λ∗ assuming that 1 < p ≤ 2.
For the sake of simplicity we treat the exponential case only. We recall that vλ
satisfies for λ < λN (p) = λ∗

(12.31)

{
−(p− 1)∂r(|∂ruλ|p−2rN−1∂rvλ) = rN−1(λvλ + 1)euλ , r ∈ (0, 1),
vλ(1) = 0.

Assuming N > p p+3
p−1 and replacing (uλ, λ) by the extremal pair (Up, λN (p)),

we study the equation

(12.32)

{
−pp−2(p− 1)(∂2

r ṽ + N−p+1
r ∂r ṽ) = r−2(λN (p)ṽ + 1), r ∈ (0, 1),

ṽ(1) = 0.

By setting µ = λN (p)
pp−2(p−1) = p(N−p)

p−1 , this has a unique solution in VλN (p),p(B)
given by

(12.33) ṽ =
1

λN (p)
(1 − r−

N−p
2 + 1

2

√
(N−p)2−4µ).

Here we note that (N − p)2 − 4µ = (N − p)
(
N − p p+3

p−1

)
> 0.

Therefore we have the following:

Lemma 12.4. Assume that 1 < p ≤ 2 and N > p p+3
p−1 . Then

(12.34) lim
λ→λ∗

vλ = ṽ in VλN (p),p(B).
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