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Global in time behavior of viscous surface
waves: horizontally periodic motion

By

Takaaki N1SHIDA, Yoshiaki TERAMOTO and Hideaki YOSHIHARA

1. Introduction

This paper is concerned with the equations of motion of a viscous incom-
pressible fluid bounded above by an atmosphere of constant pressure and below
by a fixed plane extending horizontally. The flow is governed by the Navier-
Stokes equations with appropriate boundary conditions (see [17]). The gravity
is the only external force. This problem is treated in [3]. There, by including
the effect of surface tension on the upper free surface, Beale showed that there
exists a unique global solution to the problem for a sufficiently small initial
data with certain compatibility conditions. In the report [4] Beale and Nishida
announced that the above solution in [3] decays in time with an algebraic decay
rate. Tani showed in [15] the local in time existence result for arbitrary initial
data. For the compressible case Tani and Tanaka showed the global in time
existence result for small initial data in [14]. For other results see [9], [15], [14]
and their references.

In this paper we assume that the motion of fluid is horizontally periodic and
that spatial mean of the motion of unknown free surface over the space period
is equal to zero. Under these assumptions we show that global in time solution
to this problem with sufficiently small initial data decays exponentially. This
problem is treated by Padula and Solonnikov in [10]. They showed the decay in
time of the L? norm of the solutions to the problem under the assumptions that
the global in time solutions exist and are bounded in time for certain norms.

To formulate our problem we take the mean depth b > 0 as the unit
of length. We take Uy = /gb and Ty = b/Up as units of velocity and time
respectively. Here g is the acceleration of gravity. We denote the velocity field
by u(x,y,t) and the scalar pressure by p(x,y,t). Then the equations of motion
of fluid is now written as follows:

0

Ou+ (u, VYu —vAu+Vp=| 0 |,
-1
divu=0 in Q(¢), t >0,
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where Q(t) = {(2/,y); 2’ € T?, -1 < y < n(2/,t)}. Here T? = R?/277Z>.
The coefficient v is the reciprocal of the Reynolds number. The unknown free
surface is denoted by y = n(z',t), 2’ € T2, t > 0. On the free surface we impose
the kinematic boundary condition

om = uz — (O1n)uy — (don)uy ony =n(z',t), ' € T2, t > 0.

The balance of stress tensor at the free surface is the following

1
pn; — v (Ojur + Opuj)ng +oVp <<1 +|Vg 77|2) ’ Vg 77> nj = PatmMj-

_1
Here n = (ny,nz2,n3) = (1 + |VF77|2) ’ (=01m, —0am, 1) is the outward unit
normal to the free surface and o is the nondimensionalized coefficient of sur-
face tension. See [17] for this condition. It is understood to take a sum over
repeated indeces. pguin is the atmospheric pressure assumed to be constant.
Vi = (01, 02) denotes the horizontal gradient. The condition on the bottom is

u=0 ony=-—1.

If we assume u(z’,y,t) =0 and n = 0, then the equations and the boundary
conditions are satisfied by setting p = patm — y. To consider perturbations from
this equilibrium state we write the pressure as

ﬁ(xlv Y, t) = Patm — Y + p(xlv Y, t)'
The equations of motion become

Ou+ (u, V)u —vAu+ Vp = 0,
divu=0 in Q(t), t >0,

and the balance of stress tensor at the free surface becomes
(=n(z',t) + p)n; — v(Ojux + Opu;)nk
1
+0oVp <<1 + |VF77|2) ’ VF77> nj =0 on y=n(a,t).
A solution is uniquely determined by specifying the initial data
n(z',0) = no(a’), =’ € T? and u(a’,y,0) = uo(z',y), —1 <y < no(a’)

subject to certain compatibility conditions and smallness assumption.

As in [3], to show existence and decay of global in time solutions, we
transform the problem to the one on the equilibrium domain Q = {(2/, z3); 2’ €
T2, —1 < 23 < 0} using the unknown free surface n(z’,t). For each ¢ > 0 we
define © : Q — Q(¢) by

O(w1, 9,23 1 t) = (w1, 22, (N + D)z +7), —1<x3<0.
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Here 7 is an extension of 7 to T? x (—o0,0) defined by

(1.1) f(x', w3, t) = Z

77(5') o
) exp(z§ Y )a
£€22\{(0,0)}

1+ (|¢']s)?

where 77(5,) is the coefficient of the Fourier series expansion. The velocity u on
1
Q(¢) is given by u, = jQQBUg in terms of v defined on Q. (0,3) is the Jacobian

matrix of © and J is the Jacobian det(6,3). It is easily seen that u satisfies
the solenoidal condition in (t) if and only if v satisfies the same condition in
0. We set q(z,t) = p(©(x,t)). From these definitions of v and ¢ we derive the
equations for 7, v and ¢:

(1.2) Omn—v3=0 onSp={(2,00€Q; 2’ €T?}, t >0,
(1.3) ov—vAv+Vg=Fy+QVq, divv=0 in 0, t>0.

The a-th component (a=1,2,3) of the right hand side of (1.3) is written as
follows:

(1.4)
Foo = %03((% + 1)) va — %73%((903 + 1))k + %((933 + 1)7t) 93va
— (s + DGR (s + D)) + 52 (s + 100k (w3 + Vi)
+v {—%80((1 + x3)7)030.v0 + %86((1 + 23)N)0:((1 4+ xg)ﬁ)agva
Ccegde

2=0.05((1 + 23)7)0qva + 2€a3CceCae0cOk((1 + x3)177)Ogquy
gmc(} (U2 ) st + G0 (50,00 +2000))

X SO+ ) + CasCer0uacDadl(1+ 23)i) o

+ G (= J00u0(1 - 22)0) Dok + 3,0:00((1+ )7

N 2Cq
< (1 + ) ) —

0405((1 + x3)7) 00k ((1 + 3)17))

- 1 1
+ Ca?)acadak((l + IB)U))W] - _U'ya'yva - 'UcUdCaeac (_96d> s

J J
(1.5)
(qu)a = (5ae - JCacCec)aeq

— (_33((1 + 23)7)6ae + 6030 ((1 + 23)7)

+@%M+%WRM%&m+mm&m+%mﬁ@%

J
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where () is the inverse of the Jacobian matrix d® = (6,%). Since (1.2) must
hold, the terms 9 in (1.4) are replaced by the restriction of vz to Sp.
The boundary condition on the bottom is

(1.6) v=0 on Sp={(2/,-1)€Q; ' €T?}, t>0.

The conditions on the upper boundary Sp = {(2/,0) € Q ; 2’ € T?} are written
as follows

(1.7) OqV3 +O3vy = F,, a=1,2,
(1.8) q—2v03v3 —n+oApn=F; onSp, t>0,
where

1 - -
F = (5k1534733((1 + 23)7) + Op3030— 31((1 +x3)7)

J2

= 501+ a2)i) + Bia 04 (1 + e+ ) ) e

+O5((1 4 5)i) oy g + 2
— Cr1 <_%6k63((1 + 23)77) (03¢ + 0o (1 + 23)7)) + %akaf((l + 963)77)> Vg

+ 2017 (Cklak ( 912’02) Cr30k < 932%))
+ 02m (Cklak ( 92@%) + Cu20k <391m>)
+ (O1n)? (Cklak (T%evz) + CraOk (%9141)@))

+ (01m)(02m) <§k23k <%935W> + (3O (%%m)) ,

O3v1 + 8k83((1 —+ l‘g)ﬁ)’ul

(1.9)

1 5 1 5
Fy, = (5k253283 (14 z3)7) + 5k3532ﬁ82((1 +23)7)

J
~ Do H (1 4 2)7) + g Ba((L+ )DL + 23)7 >) Divy

Cks

1+ J
+ 83((1 + $3)77)7283U2 +

J
— Ck2 ( —50k03((1 + 23)7) (03¢ + Oe((1 + x3)77)) + %%8@((1 + 303)77)> Ve

1
+ 201 (CkZak ( 92zvz> — Cr30k (793505)>
1
+ 01 (Cmak (jezzvz) + Cr20Ok (791zw>)

3k83((1 + ZEg)ﬁ)’Ug
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+ (9am)? (CkQak (%93202) + Cr3Ok <%922W>)

+ (01n)(02n) <Ck13k <§93eve> + Cu30k (19uvz)>

J
and
(1.10)
2v 2
S S
14 |VF17\2 F

+ (—5,@353@%53((1 + 7)) — Biabor 7305((1 + )7

+ 2001+ 7)) — ks 101+ 7)1 + xg)ﬁ)> Dpve

+ (k3 (—%6&;((1 + 23)7) (03¢ + Or (1 + x3)7)) + %6}49@((1 + azg)ﬁ)> vg
+ (011)* 1 Ok Gelm> + (921)? 20 Gegm)

+ (01m)(92m) (Cmak (%%zvz) + Cro0k (%9151)@))

1 1
— 0o <Ck13k <3932W> + CraOk (;&m))
1 1 1
— 0an <Ck23k <J932W> + CraOk (J922’Uz)>} -0 {2 — 1}
1+ |VF ul

g
X Apn+ Ve {(81m)?0Fn + 2(01m) (92m) D102 + (82m)*03n} .
(1 + Ve ul )

In deriving the nonlinear terms above we have used the explicit forms of the
Jacobian matrix and its inverse

. 03a .
Oap = 0ap + 03005((1 +23)7), Cap = 0ap — %5‘6((1 + 3)7).

We now state our results in this paper.

7
Theorem 1.1.  Suppose 3 < { < 3 There exists a § > 0 such that, if
the initial data 1y, vo satisfy

(1.11) /T2 no(z")dx’ = 0,

vl fre-1(q) + \770|H£_%(T2) <4,
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and the compatibility conditions

(1.12) vg=0 on Sp, diveg=0 1in Q,
(113) 804110,3 + 63’[)(),(1 = Fa(no,’l}o) on SF,OZ =1,2,

then there is a unique solution n,v,q to the problem (1.2), (1.3), (1.6)—(1.8)
with v(0) = v, N(0) = ng. Moreover, they satisfy

neKe? (T2 x (0,00))
ve KYQ x (0,00)),
Vg e K'72(Q x (0,00)), qlg, € K2 (T2 x (0,00)).

We give in the next section the definition of function spaces used in this paper.
To prove this theorem we follow [3], but, to obtain the regularity of n we use
different method that will be discussed in Section 3. We also have the higher
regularity for the above solution similarly as in [3].

Theorem 1.2. Take Ty > 0 and an integer k > 0 arbitraridy. Then
there exists dg > 0 such that, if the initial data ng, vy satisfy the assumptions
in Theorem 1.1 and, further,

[volmre-1(0) + |770|H§_%(T2) < b,

then it holds that

1
ne Ky (T2 x (Th,00)) , v € KITF(Q x (T), 00)),

Vg e K720 x (T1,00)), g, € K42 (T? x (11, 00)) .

As in [3] the full nonlinear problem can be written in the form Lz = F(z),
where z = (n,v,q) , F = (0, Fo, F1, F», F3) and L is a linear operator consisting
of the left hand sides of (1.2), (1.3), (1.7) and (1.8). The proof of existence
result is given by the usual fixed point argument z = L™'F(z). So we have
to solve the linearized problem with given right hand sides and to obtain the
global in time estimate for the solution of the linearized problem.

In Section 2 we introduce the function spaces and the notations used in this
paper and state preliminary lemmas and proposition. In Section 3 we study the
auxiliary linear problems in the half space Q. = T? x (0, 00) with the several
boundary conditions following the method in [13]. In Section 4 we consider
the model problem in the half space including the unknown free surface. The
solvability of the linear nonstationary problem is shown in Section 5. There
we construct the resolvent operator and obtain its uniform estimate, which is
crucial for the solvability of the full nonlinear problem. In Section 6, deriving
the energy inequality, we show

Theorem 1.3.  Letn,v,q be the global in time solution obtained in The-
orem 1.2. Then there exist the constants C' > 0 and v > 0 such that

()] 20y + M) a2y < Cexp(—t), > 0.
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Our results described above are concerned with the problem transformed
to the equilibrium domain € by use of the unknown free surface 1. As noted in
page 310 in [3], n obtained in Theorem 1.1 belongs to ct (T2) for each t > 0,
so that we can convert the solution of Theorem 1.1 into the one in the domain
Q(t) depending on 7.

2. Notations and preliminaries

Let T? = R?/27Z? be the two-dimensional torus and set Q = T? x (—1,0).
Let ¢ > 0. We denote by H* () the Sobolev space of functions that are periodic
in 2’ = (21, x2) with period 27 and whose derivatives in the sense of distribution
to order £ are in L? if £ is a nonnegative integer. Otherwise we adopt the usual
generalization. See, for example, [7]. H* (']I‘Q) denotes the Sobolev space of the
order ¢ consisting of 27 periodic functions. Identifying Sp = 0Q N {z3 = 0}
with T2, we regard H* (Sr) as H* (T2). We introduce the space

K'Y x (0,T)) = H (0,T; H(Q)) N H? (0,T; H°(2)) .

The spaces on the right hand side are Sobolev spaces of H* () valued and
H° (Q) valued functions on an interval (0,7). We write (0,00) as R*. We use
the same notations for the spaces of C valued and C3 valued functions. From
the context it should be clear which valued function spaces we refer to.

To treat (1.2) we need the following function space

KSF2 (T2 % (0,7)) = H° (0 T, H (TI‘Q)) NS (0, HY (T?))
where £ > 1. We set, for s > 0,
(1) = {o e (e [ otatrar’ o}
To avoid the complicated case for the compatibility at ¢ = 0 we assume that

¢ is not a half integer throughout this paper. As a norm of K*(Q x (0,7)) we
can adopt the one given by

T L 2 21 412
a[z]f(t) olzly
e ={ [ 10+ | = ,
0 ot otls] s
where )
o'z ]f(tl) ]f(tz)
oLzl / / otl5] 6t2]
O dtqdts.
8t[ ¢ i to— ‘1+2(7 £)

We define the norm of K* (T? x (0, T)) similarly. See [7] for other norms equiv-
alent to these.
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We review some properties of these function spaces.
If ue K'(Qx (0,7)), then 9F 8%u € K*~2k~1el(Q x (0,T)) for |a| + 2k < £,
where 07 = 0705205 and |o| = o1 + ag + a3. For convenience we sometimes
use y to denote x3 and set 9, = 93. For 0 < 2k < £ — 1, we have traces 9fu(-,0)
€ H*=%=1(Q) and K* (Q x (0,T)) C C* (0, T; H*"?*71 (Q)). See Chapter 4 in
[7].
We denote by K(Zo) (2 x (0,T)) the subspace of functions u € K* (2 x (0,T))

with OFu(-,0) = 0 for 2k < £ — 1. th()%) (T? x (0,T)) is defined similarly.

Lemma 2.1. If f € K*(Q x (0,T)) with { > 5 and g € K*(Q x (0,T))
with £ > s >0, then fg € K*(2x (0,T)) and |fg|xs < C|flxe |9l

We can prove this lemma in just the same way as in Lemma 5.1 in [3] using
the Fourier series expansion instead of the Fourier transform. In order to show
the exponential decay in time of solutions we need

Lemma 2.2. i) Suppose { > % and £>s>0. If f€ H*(Q) and g €
H*(Q), then fg € H*(Q) and |fglp. < C|f|pe |9lg--
ii) Suppose £ >1 and £ >s5>0. If f € H(T?) and g € H*(T?), then fg¢c
HS(TZ) and [fglgs < Cflge |9l g

See Lemma 2.5 in [3] or [11] for the proof of this lemma.

Later we formulate our problem in the form of an evolution equation in
some function spaces by applying to the equations of motion the projection
orthogonal to the space of gradients as in [16]. Since the boundary conditions
on Sg is different from the adherence condition, we introduce the projection
orthogonal to the space

G°={Ve; ¢ € H(Q), ¢=00n Sp}.

Define the orthogonal projection by P° from L?(€) to (go)l. We briefly review
the properties of PY. See Lemma 3.1 in [2].

Lemma 2.3. Let £ > 0. P° is a bounded operator on H*(Q) and
K (Qx (0,T)). If € HT1(Q), then P° (V¢) = Vb, where 1 satisfies

(2.1) Ap=0 inQ, ¢v=¢ onSp, =0 on Sg.

Proof. Suppose v € H*(R2), s > 1. Then (I — P°)v = Vw, where w is a
weak solution of

(2.2) Aw=divy in, w=0 onSp, Opw=v-n ondSpg.
By the regularity theory of the elliptic boundary value problem, it holds that
|| et < C {|div V| gamr + V- n|HS_% } .

By interpolation we see the boundedness of P° on H*(Q) and K* (Q x (0,T)),
£>0. (2.1) follows by setting v = V¢ and ¢ = ¢ — w. |
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In the study of the Navier-Stokes equations in the fixed domain we need
the projection P : L*(Q) — G*, where G = {V¢; ¢ € H'(Q)}. Since G+

- (QO)L, PPY = P and there is the complement in P°L? (Q2) orthogonal to
G*. In fact,

Lemma 2.4. P°L?(Q) =G* @G, where
G={V¢; Ap=0 inQ, 9,0=0 on Sg}.

Proof. Suppose V¢ € G orthogonal to G°. Then
0:/V¢-V1/1dx for any Vi) € G°
Q

It is easily seen that the orthogonal decomposition follows from this. d

To discuss the linear problem with inhomogeneous right hand sides and
homogeneous boundary conditions, we begin with the following integral iden-
tity: Suppose v,u € H?(Q), ¢ € H* (Q) and divv = 0. Then integration by
parts gives

(2.3) /Q (—vAv+ Vq)u" dz = (v,u) +/

anjk(v,q)UZde/ qdivu*dr,
a0 Q

where

(v,u) = gz / (Okv; + O;uk) (Oku; + Ojug)*dx
ik T

and S;i(v,q) = ¢d;5 — v (Oxv; + Oju). Here and hereafter {-}* denotes the
complex conjugate of {-}. For the solvability of the linear problem with homo-
geneous boundary conditions we use the lemma below.
Lemma 2.5. Foru € H'(Q) with u =0 on Sp, we have
2
|ulpr () < Clu, u)

with C' > 0 independent of u.

See Lemma 2.7 in [2] and [5] for the proof of this lemma.
We next formulate the problem linearized at the equilibrium state

(2.4) o —v3 =0 on Sp,
(2.5) ow —vAv+ Vg = fy in Q,
(2.6) dive =0 in Q,
(2.7 v=0 on Sg,
(2.8) O3v; + 0jus = fj, ji=12 on Sp,
(2.9) q—2v03v3 — (1 —cdApr)n=f3 on Sp.
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Here fy is given in K‘72(Q x RT) and f; in K*73/2(T? x R*), j = 1,2,3 for
some ¢ > 2. Applying P° to (2.5) we have

oy —vP°Av + P°Vq = P°f,.
Using Lemma 2.3 and the boundary condition (2.9), we write this as
O —vPYAv + V¢ + Vo + Vgs = P fo,
where

Ag;=0 in{, 03¢; =0 onSp,j=1,2,3,
q1 = 2v03v3, 2 = (1—0Ap)n, g3 =f3 on Sr.
As noted in page 315 in [3] and [4], each Vg; can written as
Vg = R*(2v03v3), Vg = R'(1-0Ap)ny, Va =R"fs,

where R* is the formal adjoint with respect to the L? inner product of the
restriction

(2.10) R:v— vslg ve PYLA(Q).

We now introduce the operator A defined by

(2.11) Av = —vP°Av + Vg = —vP°Av + R*(2vd3v3).
The equations for n and v can be written as follows

(2.12) o — Rv =0, on Sp
(2.13) O+ Av+ R*(1 — 0 Ap)n = P°fy — R* f, in Q.

We first consider the case of zero initial data
v=0,7=0 at t=0

and f = P°fy — R* f3 is assumed to belong to K(ZO_)z(Q x RT). Let us extend f

to be zero for ¢ < 0. By the Laplace transform we derive the problem for
0= / e Mo(t)dt, 7= / e Mn(t)dt.

Transforming (2.12), (2.13) in ¢, we have the linear stationary problem with a
parameter \ € C,

(2.14) A — Ro =0, on Sp
(2.15) Mo+ Ab+ R*(1 — 0 Ap)i) = f, in Q.
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This problem is closely related to the equation of the resolvent for 7 and v

(216) 2(1)-e (1) =(%)

for go and f given in suitable function spaces (we omit the hat "). G is the
matrix of operators given by

o ()= Caalonn 24) (1)

In the rest of this section we reduce the second equation of (2.16) to the
one with homogeneous right hand side. To do this we need the solution to the
the following boundary value problem with the homogeneous boundary data
and inhomogeneous right hand sides.

(2.17) MO —pAp® 4 ¢ = in Q,
(2.18) divo® =0 in Q,
(2.19) v =0 on Sg,
(2.20) 030 + ;0 =0, j=1,2, on Sp,
(2.21) @ — 21/8311:(30) =0 on Sp,

where f is given in P°H*~2 (Q). By the integral identity (2.3) it holds
(2.22) A (v(o),v> L 0O0) = (£,0)0

for any v € H'(Q) satisfying diveo = 0 in 2 and v = 0 on S. By Lemma 2.5
we see that the real part of the left hand side of (2.22) with v replaced by vy is
positive definite for any Re A > 0. By the Lax—Milgram’s lemma we first obtain
a unique weak solution to the above problem. Since the boundary conditions
(2.19) and (2.20), (2.21) satisfy the complementary condition of [1], we obtain
the higher regularity of the weak solution. Thus we have

Proposition 2.1.  Suppose £ > 2 and A € C with Re XA > 0. For a given
f € PYH*"2(Q) there is a unique solution v® ¢ of (2.17)~(2.21), which
satisfies

‘M] S+ A5

(0) 2
v ‘Hom)SC('f‘Hf-%mHM ? |f\H°<m)’

vq(m‘

HY(Q
(0) + A=
H=2(Q)

—3/2

+ ATz

‘Vq + ‘q(o)\sp

HO(Q)

-2
<C (|f|He—2(Q) + Al |f|H0(Q)) :

H=3/2(T2)

095,

HO(T?)

For the details of Proposition 2.1, see Lemma 3.3 of [3]. To see how to
recover ¢(°) we refer to Section 3 of [2] and [12]. Since v(®) and ¢(®) obtained in
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Proposition 2.1 satisfy (2.21), we can derive Av(® + Av®) = f by applying P°
to (2.17). Setting o = v + v(® in (2.14) and (2.15), we obtain the equations
for v(Y) and n

2.23 Ay — RoM) = Ro(©) on Spg,
(2.23) n
(2.24) MW 4+ 4D + R*(1— 0 Ap)p =0 in Q.

After preparing the results of the auxiliary problems in the next section, we
discuss the solvability of the problem above in Section 4.

3. The auxiliary linear problems

We are concerned in this section with the linear stationary problem with
a parameter A

(3.1) A —vAu+Vp=0, divu=0

in the half space Q. = T? x (0, 00). The equations are supplemented with the
one of the boundary conditions:

(32) I) ajU3 + 83uj = ay, j = ]., 2,
—p+2v03uz = as,
(33) II) U; = bj, j = 1, 2, Uz = 0

on the boundary Q4 = {(2',0);2" € T?}. We identify this boundary with T2.
The boundary data a; and b; are given arbitrarily in oz (Tz) and H? (']Tg),
respectively.

These boundary value problems have been discussed by several authors in
the various context (see, for example [13], [8]). For our later use we need the
results in the following form.

Proposition 3.1.  Let vy be an arbitrarily fized positive constant. Let a;

1
be given in H%(TQ), j=1,2 and a3 in H (T?). Then, for Re X > v there is a
unique solution u,p to (3.1), (3.2) satisfying

(3.4) [ul 2 () + Al [ulmo@) + \VP|H0(QOO)
3
1
=
/ pda’dy = 0.
Q

oo

The constant C' is bounded for A with Re A > .

Proposition 3.2.  Let A be as above. Let b; be given in H%(']TQ), j=
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1,2. Then there is a unique solution u,p to (3.1), (3.3) satisfying
(3.5) lulmz(0.) + [Al[ulro@.) + VDl o)

2
3
< O3 (03l ) + N Bsliogrs) )
j=1

/ pdx’dy = 0.
Q

oo

We first construct and estimate the solutions to the problem (3.1), (3.2).
We expand u(z’,y) and p(z’,y) in the Fourier series in 2’ € T?:

oy) =Y et paly) =D p(y)e
5/622 5/622

For each mode ¢’ = (£1,&;) € Z? we obtain the system of ordinary differential
equations

(36) ) —w ((d;,) — ¢ >u§»§)+ifjp(5/) =0, j=1,2,

/ d dp(&"
. G ) ) _
3.7) o ((dy) )l 2 <o,
, , G
(3.8) ieg ) + i ul) + W o iy >0

dy

We follow the arguments in [13], Section 2. For a while we assume &’ # (0, 0).
The solution to (3.6)—(3.8) which decays as y tends to oo can be written as

D, i&
u€)(y) = ) sy eVt | ity | e IE,
- (i&1®1 + &2 Do) —1¢'|
(39) P (y) = —Age” Y,

A
where [¢'| =/ + &3, r=1/=+[¢']?, |argr| < % Substituting (3.9) into
v
the boundary condition (3.2), we derive the linear algebraic system for ®;, @2, ¢.
Using the results by Solonnikov in [13], Sections 2 and 3, we have the explicit
form of u(gl), p(gl)

) o8
(3.10) u§“<y>=— (1= ;3)e0(y)

7o €)@ Vo) i_ 193
R P Tivay T+|€/ Z ka’k +‘§I Z kak y J ) 4y

’ )\ . . ’ et
P =5 <2r (161 +itaa) = L (2 +1'7) ol >) eI,
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where aggl) is the Fourier coefficient of a;, (j = 1,2,3). U9 ik and ij are

components of the matrices
GroleDie  Grolehias iare—lh
W= | Grolghiae  Grolhig it —1g)y |
iar(r €D iG-S €t €]
vg vae e 0t eleR)
Vo = —%Arglgg —%Argg —ifg%(’/‘Q—FKIP) ,
—1512|§l|)\r 4522‘5/% Lﬂ‘(ﬁﬂg’\?)

’
e~ TY_e— €Y

and eo(y) = e ", ex(y) = “—=fg7—> Do = (r? +|¢'|?)? — 4r|¢’]3. The next
lemma was proved in Lemma 2.5 of [13].
Lemma 3.1. IfRe) >, & € Z2, then

2 2 Nk
Dol > L. Dol = ZAIEP. 2|Do|z\
12 14 14

For the fundamental solutions eq(y), e1(y) we have the estimates

Lemma 3.2.  For any £’ € Z?\ {(0,0)}, Re XA > v, we have

/O WPy < e |2|€,|

|,r|2] 1_|_|£/|2] 1
|2

dei(y) |
- <
I dy < C

0 | 7i 2 1 :
[ s S =0
0 dy’ \/_

For these estimates, see Lemma 3.1 in [13]. To obtain the desired estimate we
start with the inequality derived from (3.10)

7j:17273""7

r

2

o ) 00

’ 2 a

By [l s st || [ el d
2

A iUk [ ot ay
Ir(r+ 1€D)Dol” = 0

L al€) /°° 2

e dy,

TRRRTEIPERE [ ety

]:1,2,3.
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Using Lemma 3.2, we estimate the right hand side of (3) term by term. We see
that, for j,k=1,2

o0 1 ) 2 9 1
o) dy s [0l <
0 I (r+ &) Do 17 F f\D E

> 1 )2
it/ |e1<y>|2dy—\V%a< f< 2
0 (r+[¢/) Do> 17*F Do
1
1 z /
e (]— +If’> a2

= iDoP
PYENPYE
2 4 4
?) 2+ ) |§'|>|r||a§f’|2

e,

] & Il |al) 2

_ 4 (i
Do \\I¥
and, for j =1,2, k=3

oo 1 , 2
4 2 o (&)
r e d —‘V a ’
Ir] / lex(y)|” dy -+ e Do |3

r2 1| Irllal 2

4 (€2
€]+ \ ‘él)lrllag |
Dl(
__ 4 M2 A LA g (€2
—m((; ) ‘; +‘; 1§ | rllag 7|7

We can estimate other terms in (3) in a similar way. By Lemma 3.1 we see
that the right hand side of (3) is bounded by

IDI
A2

v

Clr| (a7 + a2 +1af2)

where the constant C'is independent of A and ¢’. The quantity |¢/|2[p(¢") (y)?
can be estimated in a same way as above where e~"Y is replaced by e~ 1¢'1¥. For
the constant mode (0,0) we obtain

(3.12) P ( ) (0.0) j=1,2,

00)
(3.13) PG ( u"? + =0,
20
(3.14) “d?’—y =0 in y>0.
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The boundary conditions become

(3.15) du,” 0)=a;, j=1,2
. dy — Uj J=1,4
(3.16) —p®0) 1 P s (0) = 0.
dy
The solution for the constant mode which is bounded in y > 0 is

ug" (y) = 0, p*% () = 0.

The fact that fQ p dx’dy = 0 follows from this. Since Re A > 0, it holds that

(©, 0), 7 =1,2 as follows:

0 0.0), 1|2 Al 00

u; (y)‘ dy < —= ‘ ‘
/0 g 7
Collecting these estimates and taking sum in &’ € Z2, we can prove Proposition
3.1.

We next give a brief outline of the proof of Proposition 3.2.
In the same way as the proof of Proposition 3.1 we decompose the unknowns
into the Fourier mode. For ¢’ € Z2\ {(0,0)} we derive the same system (3.6),
(3.7) and (3.8) supplemented with the boundary condition

Re \/7 > =51/, - Using this, we can estimate u;

/\2

v

W0 =6, j=12, «0)=0 ony=o.

Here bgg/) is the Fourier coefficient of the boundary data. The explicit form of
the solution which decays as y tends to oo is the following

i€
/ b(&) / / _E
(318)  u) = [ ) | o) + (i€ + it | e | eaty).
€
’ 1
(3.19) PO) = =g (160 i) -+ 1€ Pe .

Using Lemma 3.2, we estimate each term in (3.18) and (3.19)

o0 ’ 2
it [ (6 eatw)|dy < ool ]
Mk V2
o ’ ’ ’ 2 ’
|7'|4/ ‘(i&bg& )t igab )) el(y)‘ dy < |r|® <‘b§§ )‘ + ‘ 2
0

oo 9 "2 2
8 [ an <z (O 4 )
0

) j:1727

)
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For the constant mode &’ = (0,0) we obtain the bounded solution

_ A .
(3.20) uy) =MV VE =12,
u"? (y) = 0, p°O(y) =0,

which can be estimated as above. Collecting these estimates and taking sum
in £ € Z2, we can prove Proposition 3.2.
By using two previous propositions above we show

1
Proposition 3.3.  Let a; € Hz(T?), j = 1,2, a3 € HZ(T?), b; €
H3 (']I‘Z), 7 = 1,2 be given arbitrarily. Then there is a positive constant 7
such that, if Re A > 7, then there is a unique solution u,p to the problem

(3.21) —vAu+Vp=0, divu=0 in
(3.22) 8jU3 + 83uj =aj, j=1,2, —p+ 2vdzuz = az on Sg,
(3.23) uj =b;, j=1,2, u3=0 on Sp,

/pdx:(),
Q

[ulm2(0) + [Al|ulmo@) + VPl go(q)

which satisfies

3

1
< O D (lagl g + AT las] o
(3.24) : 1( H2(T?) ( ))

J:
3
3 (il gy + N g0y

Jj=1

Here the constant C' does not depend on the boundary data and is bounded for
Re X > 7.

By Proposition 3.2 we can construct u® and p° such that

Ml —vAu® +Vp? =0, dive® =0 in T? x {y > —1},

(3.25) uw)=b;, j=12 u§=0 ony=-—L

Since estimate (3.5) holds and
divu® =0, / pdx’dy =0,
T2 x{y>—1}

it follows that, on Sg

1
dud +05ul € H2(T?), j=1,2, —p°+2005u € Hy (T?).
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Hence we can reduce the boundary value problem (3.22) to the case b; = 0,
ji=12.

To construct a solution in Proposition 3.3 we first take u/, p’ which is the
solution to the problem

(3.26) M —vAuf +vpf =0, divef =0 in Q_o =T? x {y <0},
(3.27) 0ju§ + 83’[14‘{ =aj, j=1,2, —pf + 21/(’?314’3c =az ony=0.

By Proposition 3.1 it is possible to construct such u/, pf. Then set u' = C(y)uf
and p' = ¢(y)p’. Here ((y) is a smooth cut off function such that

1

=1 for y2-3, =0 for y<-3.

To adjust the solenoidal condition we need

Lemma 3.3.  For f € H=2(Q), b e H'"3(T?), £ > 2, there is a unique
solution ¢ to the problem

Ap=f inQe=0 onSp, Oyp=>b onSp
and it holds that
eliecay < C (1Flme-20) + bl s o) -

For the proof of this lemma see Lemma 2.8 in [2]. By this lemma we can
take ¢? satisfying

(3.28) Ap? = —C’(y)ug inQ, $>=0 on S, d,¢> =0 on Sg.
Set u? = V¢? and take u3, p? which solve

M —vAud +Vp? =0, dive®=0 in T? x {y > —1},
(3.29) uP=—-Ve¢? on y=—1.

Note that u2 = 8y¢2 = 0 on Sp. Hence we can apply Proposition 3.2 to
construct such u?,p?. Let @ = u' +u? + u? and p = p' + p3. We see that

4=0 onSg, diva=0 in Q.

In terms of u2, u?, p® we define the operator
1 2 1 1 2 1
Mo : (Hi (’}r?)) x HZ(T?) — (HE(TQ)) x HZ (T?)

by
a1 (O1uj + 05ud) | + (Orud + Bsuf) |

Mo | a2 (Oau3 + Du3) ‘sp + (Oruf + Osu3) |sF

as v 83u§’SF + (—p® + 2v05u3)

|SF
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in order to express the equalities for 4, p on Sg

81113 + 831]1 aj
(330) O3 + O3l = (I + Mo) as
—p + 2vd31s3 as

We next give an estimate of the operator norm of M. Let j,k = 1,2,3. By
the usual estimate for trace operator

2 2
‘Bjuk’sF (2 <C ‘8juk|H1(Q) :
Since u? = V¢? where ¢? is the solution to (3.28) the right hand side of the

inequality above can be estimated as follows:

2 2 f
(3.31) C 0,019 |H1(Q) <Cilo |H3(Q) <G ’u3 ’Hl(Q_oc) ’

By the convexity of Sobolev norm and by estimate (3.4) we see that

1 1
3.32 c‘f’ <c‘f2 ‘fQ
(3:32) 21" i) = 2 i) B0 )
1< )
< ng Z (‘am‘H%(Tz) + (Al |a’m|H0(’H‘2)> :
m=1
Hence
1 3
2 - _
(3.33) ‘ajuk|SF e S O o mZ::l [l 3z » IR =1,2,3,

We next estimate the traces of d;u3 and p* on Sp. Since we use Proposition
3.2 to construct u?, p3, we only have to replace y by y + 1 in (3.18) and (3.19).
Let 7 = 1,2. The explicit form of ayu? is written as

it o (o

EIEZZ
& (&) | ¢ o)y —Te "+ [€]e ]
+ = - (&0 4+ &b ,
IR T
where b; = —0;¢%,j = 1,2 on Sp. We regard the second term as 0 for ¢’ = (0, 0)
in the above sum. From this we have
30 [0l ]y < S 21 WP ] e
. vUjls, HE(T2) — % 77195 e

;12
2 |~rer 4 |¢/le ]
2
Ir — 1€l

+ ‘ﬁlbgg ) +€2b§£ )
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Note that |r| < v2Rer since ReA > 0. From this fact we have |e™"|? =
e 2Rer < e~ V2, Using this inequality and the equality

v [A o ,
from (3.34) we easily derive

2 "2 2
(€
<
H%(W)_C;(‘bl ‘ + )

2 2 2
=C (‘31¢2|H0(SB>‘ + ’82¢2‘H0<SB)‘ ) = CIVe -

b
r—|¢|

|03,

Since ¢? is the solution to (3.28), this can be estimated by ‘ug ‘HO(Q . Taking

—oo

into account the estimate for u/ obtained in Proposition 3.1, we obtain

3 .
(3.35) ‘ayuj|SF . \AI R
In a similar way we can obtain
3 T
330 oy, |y ) < I/\I e J=LE

The explicit form of p3’ Sp is as follows

R T S (_m (6 + ieabs") (T+§/|)) ol
&€z \{(00)}

From this we have

2
3 (..
330 [P 0lg, [,
2 _
DS |§|§|2|s|2(\b“\ 8O Y e
£€22\{(0,0)}

< > B (Bleiruer) e (B[ +

§'€Z2\{(0,0)}
2 2
<C(1+A]) (‘81¢2’H0(S’B)‘ + ‘82¢2|H°(SB) ) ’

)

By the same reasoning as above we obtain the estimate

(3.38) ’p?’ («/,0)],

H%(W) |/\| H?(T2 '
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Collecting (3.33), (3.35), (3.36) and (3.38), we see that one can take a positive
constant vy > 0 with the following property: if Re A > g, then the operator

1 _
norm of My satisfies |[Mp| < 3 hence the bounded inverse (I +Mgy)™" ex-
ists. Therefore, for such a A we can construct @ , p for ay,as,as replaced by
(I 4+ Mo)~ " (a1, az,a3)”. This (@,7p) obviously satisfies the boundary condi-
tion on Sg and the homogeneous boundary condition on Sp . The equations
satisfied by (@, p) in Q are the followings:

(3.39) N — vAl+ Vp

== (2(’(y)8yuf + Cu(y)uf) +prC(y) + \u? — VAuQ,
(3.40) diva = 0.

Here (I + My) " (a1,as,a3)” determines the right hand side of (3.39). By
Proposition 2.1 we have the solution (v°, ¢°) to the problem (2.17)—(2.21) with
f in (2.17) replaced by the right hand side of (3.39). Here we note that the
third component uJ*? (y) and pf(©9 vanish, where u/9 (y) and p/(©0) are
the constant mode in the Fourier expansion of v/ and p/ respectively. From
this we easily see that ug,(o,o) also vanishes by its construction. Hence the
third component of the constant mode in the Fourier expansion of the right
hand side of (3.39) is equal to 0. From this fact, the solenoidal condition and
the boundary conditions (2.19), (2.21) it follows that

dq®(00)

i =0 on —1<y<0, ¢"O90)=o.

0
/qodx :/ / ¢dx'dy = 0.
Q —1J12

By setting u = % — v°, p = p — ¢°, we obtain the solution (u, p) which satisfies
all the requirements in Proposition 3.3.

Thus we see that

4. The model problems

In this section we are first concerned with construction and estimation of
the solutions to the equations with a parameter A

(4.1) Au—vAu+ Vp =0,
(4.2) divu =0,

in the half space Qs = {(2/,y);2’ € T?,y > 0} supplemented with the condi-
tions

(4.3) An — ug = by,
(4.4) 3]‘U3 + 83’u]‘ =0, 7=12,
(4.5) —p+2v03uz + 0 Apn = bs
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on the boundary Q. = T? x {y = 0}. Here n(z’) is the unknown function on
the boundary. The first result in this section is

_1
Proposition 4.1.  Let ¢ > 2. Let by, b3 be given in Hg 2(T?) and

_3
Hg 2(T?), respectively. Fiz v > 0 arbitrarily. For A € C with Re X > v, there
exists a unique solution n,u,p to (4.1)~(4.4) and (4.5) satisfying

/ p dz’'dy = 0, / ndx’ =0,
Qoo T2

¢ s
(4.6) [ul ey + A2 [ulgoa) + |VP|H472(QOO) + A2 |VP|H0(QOO)

+ [nl

041/2
H‘+%(T2)+|/\| 2 ‘77|H0(T2)
0—3/2
2 |b| o(T2)

< O (1bsl e g oy + A

0—1/2
s I )
Further, n satisfies
(4.7) 11178 (g2 < G (|b3|H%ar2> + |b°|H%<T2>) ’
(4.8) Al 15 gy < Cr (|b3|H%mr2) * |b0|H%(T2>) '

The constant C, remains bounded for Re X > ~.

We divide the proof of this proposition into several steps. As in the previous
section we follow [13]. After expanding the unknowns into the Fourier series
in 2’ € T2, we obtain the system of ordinary differential equations (3.6), (3.7)
and (3.8) supplemented with the boundary conditions on y =0

(4.9) )\77(5') _ ugﬁ') _ bé&’)7
. o duls)
(4.10) iauls) + = 0, a=1,2,
, PG , ,
(4.11) 2= ol = b,

where & = (£,&) € Z2, €| = /€ +& and b¢)(a=0,3) denotes the
corresponding Fourier coefficient of the boundary data. For a while we assume
¢ # (0,0). From (4.9) and (4.11) we can eliminate the unknown 7€) and
replace (4.11) by

’

’ du(g ) o 2 El ’ o 2 ’
(12) 2 T = o+ T

We use (3.9) again to obtain the solution. Substituting (3.9) into (4.10) and
(4.12), we derive the linear algebraic system for @1, ®s, .
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By virtue of the results in 113], Sections 2 and 3, we get the explicit form of
the solution u(€), p&), nE&)

(413) w0\ y) = <+(|£)>5 1€y (0 + 7 1€ 85)
e1(y)

T 1ens
@) 0 = e 5 (b“”+§|§’ﬁbéf’>)

e(y) 2 162 (3E) 1 T e )
F I (P ) (7 + S 1),

¥ i) 25 (1) (o) + S 1P a=1.2

/ 1A e
(415) p(f )(Avy) — 77; (T’2 + |€/|2> (b(f ) + = |€ | b(f )) e 1€ \y7
y_ 1 alEPN @) |€| )
(4.16) =1 (1 — 35 )00 by
where

2 o
D= (r+I¢'P)" —are'P + I
To obtain crucial estimates we need
Lemma 4.1.  Let v > 0 be arbitrarily fized. For A € C with Re X\ > =y it
holds that

2

2
4.17 D> Dl > ZIA|I€)?
(4.17) D peR ILVIHSI,

7T 0 o [v
418 05’3§u2<+\/>)2>, A2§(3y2+\f>1>.
(4.18) €] 5 t9y5)Ph W 2y~ ) P!

This lemma was proved in [13], Lemma 2.5. We first note that

(4.19) 2 (W + |5> <l < \/W + Il

We proceed to estimate u€) term by term as in proving Proposition 3.1. The

(€9

first and second terms of uy ’, @ = 1,2 can be estimated as follows:

(420) |T"2Z AOO |60(y)| y|l ga‘ ‘7' (7" - ‘€/|)‘ A b(é ) + O'|£ ‘ b(f)

2

r(r+1&NDP” v
AP €2 o? |¢]° 0|2
<2 |72 3‘ E)‘ + r |25—1’b(()£)’ :
v pP? vt |DJ?
(4.21) m”/ lex () dy |—i€al” |r* + €17 2bs>+ \ﬁl b(g)
0 (r+1epDP ¥

A2 [€]|r]? 2@—3‘ @2, IEP | a1 ]2
<4 b ‘ p 2 IS, ’b ] .
<V4 |,D|2 | 3 4 |D|2 | 0
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Here we have used Lemma 3.2 and the fact that
2 1212
e+
’ |€ | 2| S 2‘T‘|2
Ir+ 1€
In the same manner we can derive the similar inequalities for the first and
(€
3

second term of u$ ). For p&") we have

2
dy

@z Pt e
0

2 |¢/ 3 12 2 /15 ,
. 4<|A_ S s 0 S IEL e e

2
V2 ‘D|2 2 ‘D|2 > '
As a consequence of these estimates, by Lemma 4.1 we have
3 g o0 , 2 Z o0 , 2
@) S [y [ ]
a=1 0 0
"2 NG
< C <|r|22—1 ‘béf )‘ + |,,,‘2£—3 ‘bgf )‘ ) .

By Lemma 3.2 the derivatives with respect to y up to the ¢-th order can be
bounded by the right hand side of (4.23) if £ is a positive integer. For £’ = (0,0)
the solution becomes trivial, because béo’o) = bgo’o) =0. It also follows from
(4.9) that 700 = 0. Collecting these and summing over & € Z?, we obtain
the estimates for v and p in Proposition 4.1 for a positive integer £ > 2. For
non integer ¢ we obtain the desired estimates by interpolation.

We now start to estimate 7€), Note that we can rewrite (4.16) as follows

3 /72 112 /13 U

/ 1+ 31 — 1€ ey 1€
4.24 € =T ASREL WACDIFS AN
(4.24) N v(r + [€))D 0 2p3 o + I3

Lemma 4.2. Let ReA >y (>0) and £ > 2. Then
(4.25) €] < 0 (1ol + 1 )
S 4 3 4 3 ’ 1 ’

(26)  JEEWE+ NEEE] < 0 (113 o] + i1 o))

The constant C is uniformly bounded for Re A >~ (> 0).
Proof. From (4.24) and Lemma 4.1, we have

3 L] =

et I 1€l 2 31elr — e %
vir + €[NP

3
C |)\| /—1
< — 2
< VD|< . +|£|> I

b

B¢ ‘

< Clrft3
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It is easily seen from Lemma 4.1 that the constant C' is uniformly bounded for
ReA >~ (> 0). In the same way we obtain

7“3 |1 < O[3

b))

Combining these two inequalities, we can show (4.25). The first term of the
left hand side of (4.26) can be estimated in the same manner as above. For the
second term in (4.26) we use expression (4.16).

JIS ®

A
<5>‘+\ ||§|| Tt

From this inequality and Lemma 4.1 the second estimate follows. |

3
IALIE®

€' [o

5’)‘3’1 ).

This lemma completes the proof of Proposition 4.1.
From Proposition 4.1 it follows

1

Corollary 4.1.  Let 2 < ¢ < 4. Let by be given in Hé 2 (TQ). Then
we can take y1 > 0 so that , for A € C with Re X > 71, there exists a unique
solution n,u,p to (4.1)=(4.4) and

(4.27) —p+2v03u3 + (—1+0Ap)n=0

/ p dz’'dy = 0, / ndx’ =0,
Qoo T2

£
[ul e + A2 [ulmoa,) + |VP|H@—2 Q) T |/\| |VP|H0

which satisfies

+ ‘77|HH%(’JI‘2 + |)\| |77|H0(’]I‘2)
Cy, (\bo\Hp%(TQ) | o (12) ) .
Further, this solution satisfies
(4.28) [ulmz(0.) + [Al[ulro@.) + VDl o) < C’Yl|b0|H%(T2)?
(4.29) 115 ey + 15 oy < Conlbol, 3 -

The constant C, remains bounded for Re A > 1.

3
Proof. Let 1 be given in HZ (T?). By Proposition 4.1 we have the solution
7, u, p to the problem (4.1)—(4.4) and

—p + 2V83U3 + O'AF’I7 =1.

Then we can define the mapping

HE (T2) 57— 7 € HE (T?)
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3
for fixed by. For given n;, j = 1,2 in H§ (T?), estimate (4.8) yields
|)\||771 772|H2(']I‘2) —C |771 TZQ‘HZ(TQ) —C ‘771 772|H%(T2)'

We can choose ;1 > 0 so that, if Re A > =7, then
GG G 1

Al “ReX — 7 — 2
Hence, for A with Re A > ~; we have the unique fixed point 1 = 7}, which solves
(4.1)—(4.4) and (4.27) together with the corresponding v and p. For this n, by
estimates (4.7), (4.8), it holds that
(4.30)

+ Ml g Coulbol ;3

<C
|n‘H%(T2 H2('JI‘2 - H2 (T2)"

The constant C., remains bounded for Re A > ;. To obtain estimate (4.28),
we set £ = 2 in (4.20) and (4.21) with b3 replaced by 1 = 7. To estimate the
first and second terms of ugfl) ,a=1,2, we have

> li & |r (r — €' € Ulél
@3 it [ lea)Pdy i
0 r(r+1€)DF V2
<\/§ i|£l||r| |>\|2|£/‘ 77 +Oj|§,|3‘7"|3|5,|3‘b(§’)‘2
B vt |pf )
[e’e] . 2 2
|—i€al? |r2 + 1€ alg) (&)
4.32 r4/ er(y)* d = By
(432) " | len)ldy |(T+|§,|)D|2 3 2
L a® |rlE” s
<4 .
< (,,| . + S e

By Lemma 4.1 we see that the right hand sides of both inequalities above can

be bounded by
12 "2
C’( / n({)’ +§/|3‘béﬁ)‘)

where the constant C is independent of A\ and &’. We can estimate ug in the
same manner. Since we already have (4.30), taking sums in & € Z2, we can
show

|u|H2(Q‘x’) + |A||U‘HO(QOC) S C’Yl‘bO‘H%('ﬂa)'

For p we set ¢ = 2 in (4.22) with b3 replaced by 7

Ir|* a?rMEP s (e |2
/0 |§ |2‘p(§ ‘ dy <4< |D\ ’ 2 \D|2 |5/‘ ’bo ’

and proceed as above. Combining the estimates for u and 7, we obtain (4.28).
|

We next prove
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3
Proposition 4.2.  Let by be given in H; (']Tz). There is a v2 > 0 such
that, for A\ € C with Re A > 2, the problem

(4.33) A —ug = by on Sp,
(4.34) Au—vAu+Vp=0 in Q,
(4.35) divu =0 in Q,
(4.36) u=0 on Spg,
(4.37) Oqusz + O3uq =0, a=1,2, on Sp,
(4.38) —p+2vduz+ (1 —cAp)n=0 on Sp,

/pdx’dy:(), / ndx’ = 0.
Q T2

has a unique solution n,u,p which satisfies

(4.39) [ultrz(o) + [Allulmo@) + VDl o) < Clbolmz 12y
(4.40) 1l 15 zoy + 1A 3 o) < Clbol g oy

The proof of this proposition starts with the solution 7, uf, p’ to the prob-
lem in the half space

(4.41) My —ud = b on 90 o =T2 x {y =0},
(4.42) M —vAu +Vp =0 in Q_,

(4.43)  divu! =0 in Q_.,

(4.44)  Oqul +05ul =0, a=1,2, on 90,

(4.45) —pl + 2y83u§ +(1—-0Ap)n=0 on IN_.

Corollary 4.1 implies the existence of such a solution. Indeed, let v’ p’, ' be the
solution to the problem (4.1)—(4.4) and (4.27) in Q. for —by given in Corollary
4.1. Then for (2/,y) € Q_

(446) uf ('Ilv y) = (ull (*T’lr _y)v ul2 (*T’lr _y)v —Ué (J?/, _y))’ pf (13/, y) = p/('rlv _y)

and n(z') = —n'(2’) satisfy (4.41)—(4.45). Using the cut off function ((y)
used in Section 3, we set u' = ((y)uf, p* = ¢(y)p’. To adjust the solenoidal
condition, we put u? = V¢?, where ¢? is the solution to the problem

(4.47) A¢® = (' (y)uf nQ,
(4.48) ¢*=0 on Sg, 9,6°=0 on Sg,
guaranteed by Lemma 3.3. Here we notice that the constant mode ¢ (0 of

¢? is equal to zero since ug,(o,o) is zero. To adjust the boundary conditions on
Sr and Sp, we use Proposition 3.3, noting that u3 = 0 on Sp. Let u?,p® be
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the solution to the problem

(4.49) M —vAB +Vpd =0, dive® =0 in Q,

(4.50) Dot + O3ud = — (0aui + 03ul) ,a = 1,2, on Sp,
(4.51) —p? + 2005us = —2v03u3 on Sp,
(4.52) u? = —Ve? on Sp.

Proposition 2.1 implies the existence of the solution u?, p* to the homogeneous
boundary value problem

(4.53) Mt —v Aut+Vp* = v (2¢'03uf + ("ul ) —p! V(M +v Au?,
divut =0 in

(4.54) Dot + 831@ =0, a=1,2, on Sp,

(4.55) —p* 4+ 2003u3 =0 on Sp,

(4.56) ut =0 on Sg.

Here we set @ = u' + u? + v + u*, p = p' + p3 + p*. Then we see that

(4.57) M —vAGL+ Vp =0 in Q,
(4.58) diva=0 in Q,
(4.59) Ouiiz + Dslig = 0, a=1,2, on Sp,
(4.60) —p+2w03U3+ (1 —cAp)n =10 on Sp,
(4.61) =0 on S,
and that

(462) )\T] — ﬂg = b() + Mbo on SF

Here M is the linear operator defined by

Mby = —R(uQ +u? +u4) = - (u% +u§ +“§)|SF :

By virtue of the estimates of solutions in Corollary 4.1, Lemma 3.3, Proposition
3
3.3 and Proposition 2.1, we see that M is the bounded operator in H (T2). If

3

there exists a bounded inverse (I + M)~! in Hg (T?), the proof of Proposition
4.2 is completed by solving problem (4.33)—(4.38) with by replaced by (I +
M)~'bo. For this we begin by estimating each Ru’, j = 2,3,4 in Mby in
terms of the norm |b0|H%(T2). It is clear that |RUJ’H%('JI‘2) < ’uJ’HQ(Q)' By

Proposition 2.1 the norm ’1‘4’1{2(9) can be estimated in terms of the L? norm
of the right hand sides (4.53), which is bounded as follows:

(4.63) |u (2(’63uf + C"uf) — prC —u? + VAU2’HO(Q)

<C (|uf|H1(Q_oc) + ’pf|H0(Q_oc) + ’)‘u2|H0(Q) + |u2|H2(Q)) :
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Since u? = V¢? and ¢? is the solution to problem (4.47), (4.48), it holds that,
for any ¢ € H' (Q) vanishing on Sg,

(N?, V) o ) = (FAAVIEWUT), 0) 1) = (AU, V) 1o g -
From this fact it follows that
‘)‘“2’110(9) < ‘)\uf’HO(Q_OO)’

whose right hand side can be estimated when we recall (4.46) and expressions
(4.13), (4.14) with b3 replaced by 1. In fact, for the first and second terms of
ué’(gl),a =12

wsy b [l il =1E)P

2
@), o€ @)
"+ b

Ir(r +1¢') DI v2
\/§< Rk / 2 [P s (e
<2 AP [ 4 o2 BT e ]
vt \ Ir||Df* Ir| [DJ?
2
> —igal® [P +IEPE A ) ol e
4.65 )\2/ ei(y)” d Ay L TIE T e
(465) AP [ eyl dy |<r+|£'|>D|2 o el

A A
<|D||2| ey i || ||s| e (&)’)

(cf. (4.20), (4.21) with £ = 0 ). We can estimate ug in the same manner.
Summing in ¢’ € Z? and using Lemma 4.1 and (4.29), we obtain
< CIA7H [bo|

|)\u2‘H0(Q) < |/\uf|H0(Q_x) H3(12) "

The last term of (4.63) can be estimated by (4.28) as follows:

(4.66) |Au?|,, <Cluf|,,

@ <19l (@)

1 1 _5
<C |uf|12{0(97w) |uf|12{2(97x) < COIN "5 ‘bO|H%(’H‘2) )

Here we used the convexity of Sobolev norm. To estimate |pf| we use (4.15)
with b3 replaced by 1 and proceed as above

4T4 Az ’ 2 "2

v2 [DI* \ [¢']
By Lemma 4.1 the quantity

AP
D
is bounded from above. Hence, summing in £’ and using estimate (4.29), we
obtain

|b0|

‘pf’HO(Q |)\‘ H%(’]I?)'
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We next estimate By (3.24) in Proposition 3.3 it holds that

9% 0 -
(4.67)  |v’] ;2 < C(’V¢2\H%<T2> + V6

3
-+ Z (|8au§ + 83u,21’H%(T2) + |>\|% ’@ﬂé + a3ui‘H0(’[[‘2)>> .

a=1

Since u? = V¢?, (4.66) yields

2 2 2 2
]8Qu3+83ua\H%(T2) 20,050 |H2 (2) = <Clo |H3(Q)
f _—
< Clu ‘Hl(n_oa = AR ol 2
1
‘)\|4 |8au§ +83ua]HD(T2 < |>\| |b0|H2 (12) a=1,2,3,

and

C

‘V¢2|H%(T2) < C|¢2‘H3(m < E |bo|Hg(T2).

We need to estimate the second term in (4.67) more carefully because of the
factor |A|3. Noting that
Vo? = (814°,024°,0) on S,
we see that the norm |V¢2| HO(T2) is equivalent to the square root of
, 2
S RO
€€22\{(0,0)}

where

Sy = Y Oy e (2y) e Q=T x (-1,0).
§'€Z2\{(0,0)}

From equation (4.47) it follows that, for each ¢’ € Z%\ {(0,0)},

2
(4.68) —(d%) S () + 1€ 26> (y) = (Wl ) on (=1,0).

We take the scalar product of (4.68) with [¢/[2¢%(€)(y) on the interval (—1,0).
Then, integrating by parts and using the boundary conditions (4.48), we obtain

/.

d no P 0 N
dy5’|¢2’<f><y>‘ dy+ [ Jere )] ay
-1

(/.

1

cwd©wf ) ([ Jere©wf w)




Global in time behavior of viscous surface waves: horizontally periodic motion 301
by the Schwarz inequality. From this we can derive
0 2 0
1
@Sf/
[1 2 —1
This inequality together with the equality

0
’ d ’
€16 (1) = [ a3 (€167 w)) dy

’ 2
)i )| dy.

A2,
@EW (v)

yields

er O < ([ |2 (e160w)|a)
< [|&ewew|wstf

Summing in ¢ and using estimate (4.28) we obtain

’ 2
() ()| dy.

3 3 _1
|)“4 |v¢2’H0(']1‘2) < CV|>‘|4 ‘uf‘HO(Q_oo) < C|)‘| 4 ‘bO‘H%(Tz)'

Collecting the estimates obtained above, we can show

C

|Mb0|H%(’]I‘2) < B |bo|Hg(T2),

where the constant C' is independent of A. Therefore we can conclude the
assertion of Proposition 4.2.

5. Linear nonstationary problem

In this section we solve globally in time the linear nonstationary problem

(5.1) om—wv3=0 on Sp,
(5.2) v —vAv+Vq = f in
(5.3) dive =0 in Q,
(5.4) v=0 on Sg,
(5.5) Osvj + Ojvs =0, j=1,2, on Sp,
(5.6) q—2vdsvs — (1 —cAp)n=0 on Sp,
(5.7) v=0,17=0 t=0

for arbitrarily given fy € K(ZO_)2 (QxRT) with3 < £ < ; As seen in Section 2,

we obtain the linear stationary problem (2.14), (2.15) with a parameter A € C
by transforming in ¢. By applying the orthogonal projection P° introduced in
Section 2, this stationary problem was reduced to (2.16):

(5.8) A—G) (Z) = (QJ?)
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3
with go € Hy (']I‘Q) and f € P°H’(Q). G is the matrix of operators

¢= (—R*(lo— oAp) —RA)

3
introduced in Section 2. From now on we set X = H¢ (T?) x P°H?(Q) and
5
Y = H§ (T?) x P°H?(Q).
Proposition 5.1.  Let vo > 0 be the constant in Proposition 4.2. Let

(g0, f) be arbitrarily given in X. If X satisfies Re A > 7, then there is a unique
solution (n,v) to problem (5.8) such that

(5.9) 0;jvs + 83’()]‘ =0 onSp, j=1,2,
(5.10) v=0 on Sp,
(5.11) vl m2(9) + [Al[v] o)+ ‘77|H%(']1‘2) + \/\||77|Hg(T2)

<C <|f\H0(Q) + |90|H%(1r2)) :
The constant C' > 0 remains bounded for Re A > 5.

Proof. As noticed in the end of Section 2, we first take the solution
v ¢ to problem (2.17)-(2.21) obtained in Proposition 2.1. Note that Rv(®)

3
belongs to H¢ (T?). We next take the solution n,v"), ¢(*) to the problem

(5.12) An — vél) = Rv® 4+ g, on Sp,
(5.13) M — A v =0 in Q,
(5.14) divo =0 in Q,
(5.15) oM =0 on Sg,
(5.16) Aol + 050 =0, a=1,2, on S,
(5.17) —qW 4+ 21/831):(31) +(1—-0Ap)n=0 on Sp,

by using Proposition 4.2 . We apply P° to (2.17) and to (5.13). Using Lemma
2.3 and boundary conditions (2.21), (5.17), we have

WO 4 Ap© =
(5.18) MO+ Ao 4 R* 1 —0Ap)p=0 in Q.

Setting v = v(© + v we obtain the solution (1,v) to (5.8). Estimate (5.11)
comes from the estimates in Propositions 2.1, 4.2. O

By this proposition we can regard G as a densely defined closed operator
in X, whose domain of definition is given by

(5.19) D(G) = {(n,v) € X ;neHe(T?), ve PPHQ),

8j1}3+837]j20 on Sp, j=1,2, v=0 on SB}
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Proposition 4.2 above states that A € C with Re A > 75 belongs to the resolvent
set p(@) and that the resolvent operator satisfies

(5.20) (A=G) 7y < K
(5.21) (A=&), <C,

for Re A > 75. As a consequence of (5.20) and (5.21) we have

Corollary 5.1.  We can take 6 € (5,7) so that, if larg(A —2)| < 6,

then A € p(G) and estimate (5.21) holds with a different constant C.

For the proof see, e.g., [6], Chapter 1, Section 3. Another important feature
following from (5.11) is that (A — G)~! is a compact operator by the Rellich
theorem. Hence the spectrum o (G) consists of eigenvalues, and if A € C is not
an eigenvalue of G, A belongs to p(G). Keeping this in mind, we have

Lemma 5.1. IfRe\ > 0, then X\ belongs to p(GQ).

Proof. Let X\ be as such. Suppose that
—oy (M) = (9
a-a (1) =)

An—Rv=20 on Sp,
MW+ Av+ R (1—-0cAp)n=0 in Q.

or equivalently

Taking account of the definition of P® and R*, we can recover a scalar ¢ so that

(5.22) An—v3 =0 on Sp,
(5.23) w—vAv+Vgqg=0 in Q,
(5.24) dive =0 in Q,
(5.25) v=0 on Sg,
(5.26) Ojvs+03v; =0, j=1,2, on Sp,
(5.27) —q+2vd3v3+ (1 —cAp)n=0 on Sp.

We take the scalar product of (5.23) with v. Employing integral identity (2.3)
and using the boundary conditions (5.25)—(5.27), we have

Av,v)r2 + (v,v) —l—/ (1 —o0Ap)nuide’ =0.
T2

Substituting v3 = An into the boundary integral and integrating by parts, we
have

Ao o)+ 0,0} + A [ (0 |V nl*)do’ =0,
T2
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Taking the real part of this identity, we see that v = 0 by Lemma 2.5 and = 0.
Hence, if Re A > 0, A belongs to p(G). O

Since the resolvent set p(G) is open in C, we can extend p(G) beyond the
imaginary axis by this lemma. Combining this fact and Corollary 5.1, we can
obtain

Proposition 5.2.  We can take vo > 0 and 0y € (g,w) so that , if
larg(A + v0)| < 0o, then X belongs to p(G) and it holds that

c
-1

0= = 5y
(5.28) (A =&)Y, <C

We state the regularity property of the solution to (5.8).

Proposition 5.3.  Let £ > 2. Assume that \ satisfies the same condi-

1
tion in Proposition 5.2. Suppose f € PH'"%(Q),go € Hg 2(T2). Then the
solution

(5.29) <Z) =A-G) (%?)

satisfies

£ £ 1
(5.30)  |v|me(a) + (A2 [v]Ho(q) + 0] y A2 0] o2y

H*3 (T2

£ _ £_ 1
<C <|f‘H2*2(Q) + A2 7 flao) + |90|Hz7%(,ﬂ,2) + Az \QO\HO(W)) .

Proof. As in the proof of the previous lemma, we treat the following
problem by recovering g:

(5.31) An—v =g on Spg,
(5.32) Aw—vAv+Vg=f in Q,
(5.33) dive =0 in 9,
(5.34) v=0 on Sg,
(5.35) Ojvs +03v; =0, j=1,2, on Sp,
(5.36) —q+2v03v3+ (1 —cAp)n=0 on Sp.

We begin the proof by differentiating n,v,q in the horizontal coordinates z’
formally and estimating these derivatives. To do this we define the operator
Af—2 by

A572¢ _ Z |£/‘E72¢(£')eix'f' for ¢ = Z qs(f')eim'f'.

&/ EZQ &/ €Z2
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Applying A*~2 to (5.31)-(5.36), we see that
A£—2,,7 _ AZ—QQO
(5.37) (hel) =0 (hedh):
From Proposition 5.2 it follows that A*~2v € H?(f2), hence AZ’QU|SF € H2(T?).

1
This implies that Rv € Hg 2(T2?) . We regard v,q as the solution to the
boundary value problem for the Stokes system

(5.38) —vAv+Vg=f—v, dive=0 in Q,
(5.39) Ojvs+03v; =0, j=1,2, on Sp,
(5.40) vz = Rv on Sp,

(5.41) v=0 on Sp.

Note that the set of the boundary conditions (5.39), (5.40) satisfies the com-
plementary condition. Therefore we obtain the estimate

[0l e) < C <|RU|HZ—%(T2) + [ Al[v]gre-2(0) + ‘f|H‘-’*2(Q))
<C (\Aé_2v|H2(Q) + Mol gre—2 () + |f|H4*2(Q)) .
See Lemma 3.3 in [3] for this estimate. By Proposition 5.2 we have
(-2 =2 -2
‘A U|H2(Q) SC(|A f|H0(Q)+ |A gO‘H%(T2))
<C (|f|H@—2(Q) + |90‘H2—%(T2)) :

By the interpolation inequality of Sobolev norms we can bound the term
IM|v] pre-2(q) as follows:

1—2 2 £
[Allvlrre-2(0) < AVl ge(oy vl oy < €lvlae) + CelAl2[v]moq)-
Choosing € > 0 suitably, we obtain
£
olsrece) < C (1N loloy + g0l ey gy + 120 ) -
The first term in the right hand side can be estimated as follows

£ £ _
(5:42) 1Mooy < CINE (If Loty + 190l )

L L ey 2=
< 0 (I ooy + N E ol ool

L L1
<C (Wz Hf lrog) + 1900 o3 ooy HIAIZTE |go|H0(T2)) ~
By Proposition 5.2 we obtain

|A£—2n|H%(T2) <0 (’A£_2f|H°<fz) T |A€_290‘H%(T2)) ’
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hence
|n‘H"'+%(T2) <C (|f|He—2(Q) + ‘gO‘H""%(W)) .

We next estimate |A|2+% 7| mo(T2). Since we already show the boundedness of
the resolvent operator in Proposition 5.2, we can assume |A| > 1. Using (5.31),
we have . .

S lrroa2y < CINTH (IRv] o) + lgol o)) -

We can bound |Rv|go(r2y by |[v]p1(q) so that Proposition 5.2 yields,
1 1
|RU|H0(']I‘2) < C’|'U|H1(Q) < C|U|12{0(Q)|U|]2{2(Q)
_1
< O (1 1m0c@) + 190l 1)) -
Hence, as in (5.42) we obtain
L41 L5 L_3
|A|27 || go(r2y < C <|/\|2 T (|f\H0(Q) + |90|Hg(T2)) + A2 4|go|HO(1r2))
[ L1
< C (INZ* 1oy + 1901 ey o) + IS~ Hlgolroce) )
Combining these estimates we get (5.30). |
We now consider the problem (5.1)—(5.7).

Theorem 5.1.  Let £ > 2 be not a half integer. Suppose that the inho-
mogeneous term fo in (5.2) is given in Kﬁ#(Q x R1). Then there is a unique
solution (n,v,q) to problem (5.1)—(5.7), with

1
n € Ky (T* x RY), v e K (Q x RY),
_ -3
(5.43) Vg e K2 (2 xRY), qlg, € K (T? xRY).

This solution satisfies

(5.44) |n|

. 0]kt @xrn) + VAl gtz ey + |q|SF‘Kf(j)%(qr2xR+)

el
K, & (T2 xR+
< C|f0|K([‘;)2(Q><]R+)'

Proof. We give the outline of the proof since the argument is almost in
the same line as in [3], Section 3. Extending fy to be zero for ¢ < 0, and
transforming this extension in ¢, we have

fo(r) = /000 e~ fo(t)dt for T€R.

By setting A = i7, we see that this fo(—i)\) has an analytic extension to the
half-plane Re A > 0. By Proposition 5.3 we can find 7(—iA) and 9(—i\) such
that

(5.45) (ZEK%) (-G ( o fo(z—z' A)) .
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From the estimate (5.30) it follows that

(5.46)
N . LN . N . L1 . .
[8(=iM) ey + INEI(=i0) 00 + (=N s oy + IMEHE (=) rroce

< C (1fo(=iN)me-20) + INF fo(=iN) o) ) -

Since the right hand side of (5.45) is analytic in A in the half-plane Re A >
0, 7(—iN\) and ©(—iA) are also analytic there. We see that ©(—i)\) on the
line ReA = k with a fixed & > 0 is the transform of e~ *v(t) which, by
(5.46), is in K¢ (Q x RT). Then Paley-Wiener theorem implies that e “**v(t) €
Kfo) (Q x RT). As we see in Proposition 5.2, the imaginary axis Re A = 0 be-
longs to the resolvent set p(G). Hence we can convert the path of the inverse
transform from ReA = k to Re A = 0, so that v(t) € (0) (2 x RT). By the
43

same argument we have 1(t) € K, (T? x RT). We can recover ¢ from the
definition of P°, whose estimate follows from (5.1) and (5.6). O

As a corollary of this theorem we can show

Corollary 5.2.  Let ¢ > 2 be not a half mteger Suppose that fo and
fi (3 = 1,2) are given in K (Q x RT) and K( 0) 2 (T? x RT), respectively.
Then there is a unique solutwn (n,v,q) to problem (5.1)~(5.7) where (5.5) is
replaced by

83’Uj +6j113:fj, j=1,2 on Sg.

This solution satisfies

(547) ‘77|Kf+>%(1,2 + | |K" (QxR+) + |VQ|K" 2(Q><]R+) + ’CI‘SF|
0

xR+)

<C<fO|Kz 2(QxXRT) +‘f1| e**(Tz |f2‘ fo)z(TZXR+)>

2
o (T2xRt)

with the indicated norms.

The outline of the proof of Corollary. We again follow the proof of The-
orem 2 in [3]. By Theorem 4.2.3 of [7] we can choose z € K(ZJ)I (2 xR*) so
that

z=0, Oyz =0, 852 = (f2,—f1,0) on Sg

and z vanishes near Sg. Setting v(!) = V x z and v = v 49| we can reduce
the problem to the one for (n, v@), q) in the previous theorem. O

6. Decay estimates for full nonlinear problem

In this section we give the proof of Theorem 1.3. As noted in Theorem
1.2, after a finite instant 77 > 0, the solution 7, v, ¢ to the problem (1.2), (1.3),
(1.6)—(1.8) and
n(0) =no, v(0) =wo
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belongs to the more regular class:
ne K425 ((Th,00) x T?), we K2 ((Th,00) x Q)
Vg e K ((T1,00) x Q),  qlg, € K% ((T1,00) x T?).

7
Since 3 < £ < 3 implies
GRS ((Ty,00) x T2) C c* ((Tl, o) L i1+ —2k (TQ))
1
for €+1+§—2k>0and

K2 ((T1,00) x Q) € C% (T, 00); HT1725(Q)) for £+1—-2k>0
with continuous imbedding, it holds that

(61) |’U(t)|H2+1(Q) + |7](t) < 050 for t> Tl,

| ev3
Hy' 2 (T2)

where C' is independent of the solution and dg > 0 is given in Theorem 1.2.
Employing these facts, we derive the energy inequality in the following.

Since we are interested in the real-valued initial data, we can assume that
any scalar or vector functions in the sequel are real valued.

Step 1. We take the L%(Q) scalar product of the first equation of (1.3)
with v to get by integrating by parts

1d
62 gl )+ [ nSuouds’ = (Fioa+ (@Va o
From the first equation of (1.3) we have
(I —Q)Vq= -0+ vAv+ Fy.

Since I — Q = J ((jcCjx) is symmetric positive definite if ({;;) is nonsingular,
we can replace Vg in the right hand side of (6.2) by

(6.3) Vg=(I-Q) ' (-0 +vAv+ Fy),

so that

(6.4)  (QVg,v)a=(QU - Q)" (0w +vAv+ Fy),v),
1d 1

_ 1 -
=55 (QU=Q)v0)g+ 5 (8 (QU - Q)T v,0)
+(QU - Q)" (wAv + Fy),v) -

On the boundary 09 = SpUSg (1.6)—(1.8) hold, hence the boundary terms in
(6.2) can be written as follows:

(6.5) / 1Sk (v, Qurde’ = —v (F1,v1)pe — v (F, v2) e
89

+ (1 = 0Ap)n,v3)p2 + (F3,03)p2 -
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Here we identify S with T?. From (1.2) it follows that
(6.6) (1=0Ap)n,vs)p = (1 —0Ap)n, 0in)r
1d
= odr {|77\%10(1r2) +0|Vp 77|§10(T2)}~

Collecting these, we obtain

1d 1d
67) e + @0+ 52 { o) + 01Vl |
1d .
+§E(Q(1_Q) va)Q

= v (F1,v1)p2 + v (Fa,v2)p — (F3,03) 2
+ (Fo, oo+ 5 (00 (QU — Q) ) v, 0)g
+(QU-Q) (vAv+ Fy) ,v),,

Step 2. Differentiate the first equation of (1.3) with respect to z, (a =
1, 2) and take the inner product with d,v. In the same manner as in Step 1
we get

OV + (Dqv, Oqv) + / 1 — 0 Ap)0an0svsdx’
2dt| Ho(q) + ¢ )+ Tz( F) 3

=V (8(1F1; aocvl)'p +v (aaF2a ao/UQ)']]‘Z - (aozF(?n 8&”3)’]{‘2
+ (8aF0, 30/0)9 + (ancv% 8ozU)Q + (304QV(1’ aoﬂ})fb

We use (1.2) again to get
(6.8) (1 = 0Ap)dan, Oavs)r2 = (1 — 0AF) dan), 0:0am) 2

= 52 {10ty + 01V 0 Outyen -
Replacing Vg by (6.3), we have

(6.9)
(Q0aVq, Dnv) (Q@a ( (o + vAv + FO)) 19) v)Q
=(Q(I - 8t8av + VAo + 06 Fy) , 0av)
+ (Qﬁa( Q) (=0 + vAv + Fy) , 0av),

= —%% (Q(I Q)” 1aav,aau)9
+ %( ( QU = Q)™") Bav, dav),,
—|—(Q VA(?v—l—(?Fo)av)
+(Q2 T (=010av + VADL + 0a Fy) , 0av)
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Collecting these, we obtain

(6.10)

&|Q‘

{|8a77|H0(T2) +0o|Vp 80”7‘}10('[2 }

l\DI»—A

2dt|8 U‘HO(Q)+<8 v, 0, ’U>
1d

- _ 1
+2dt(Q(I Q)™ 0av,0av)
(3 Fi,0 Ul)'ﬂ? +v (6aF2a 30/()2)11‘2 - (aaFi’n 80/”3)']1*2

\_/

+ (0 Fp, Ou v)Q + = ( A (Q(I - Q)_l) 8av,8av)9
+(QU yA@ v+ 0aFp) , 0av),,

+(Q (=0 +rvAv+ Fy), &11})9

+ (Oa Q (I - Q Y (=0 + vAv + Fy) , 0av)

Step 3. We next derive the similar equality for 92 LU and 0? opTs B =
1,2. To do this we apply 975 to the first equation of (1.3) and take the inner
product with 8251). In a similar way as above we obtain

1d
(611) §E|a§5’l}|%o(g) + <6§ﬁ’0,8§[6’0>
+ 5% {‘804ﬁ77|H0 (T2) +o ’v 80‘ﬁ77|H0(']I‘2)}
1d _
Sdr (Q(I - Q) 182,6”782,6“)9
= v (OapF1, 00501 ) ga + v (905F2: 0a5v2) gz — (9053, D503 1o

3§5F0,52gv)9 + (  (QUI — Q)fl) 825%325”)9
QU-Q)™! (VAE)2 50+ DpFo) , 025v),,

+

Step 4. We next derive the similar equality for d,v and 0;7. Differentiate
the first equation of (1.3) in ¢ and take the inner product with dyv. Similarly
we have

1d 1d
(612) 9 dt|8tU|H0(Q) + <3tU (9,5’U> 5% {‘31577@[0(11‘2) +o ‘VF 8t77|i10(1r2)}
1d _
+ 5 dt (Q(I -Q) latvvatv)ﬂ

= v (0, F1, 0¢v1) 12 + v (04 Fy, Opv2) e — (OrF5, 0103 )2

+ (0eFo, Op0) + = ( (Q(I Q) )8157};81&11)9
+ (Q(I - Q)_ (VAatU + O, Fp) ,81511)9
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+ (QO(I — Q)" (=0 + vAv + Fy), &gv)ﬂ
+ (8tQ(I — Q) (0w +vAv + Fy), 8751))9 )

We now set

2 2
E(t) = v(t) [Foy + Z |00 (8)[Fro 02y + Z 10250() 300

a=1 a,f=1

+ |8tv(t)ﬁ{0(9)a

2 2
:F(t) = <’U,’U> + Z<6a'l),a ’U + Z 5261),[“)&,311
a=1 a,f=1
+ <8t’l1,(9t1)>,
2
H(t) = |77|§10(1r2) +o ‘VF 77‘?{0(110) + Z (|8oz77‘%{0(1~2) +o |VF 30477@10(1,2))

2
2
+ Z (|3ig77|?10(1r2) +0|Vp 3§5U|H0(T2))
a,B=1
+ |8t’l7ﬁ_]0(']1~2) +0'|v 31‘,17‘?—[0(’[2 )

Qt) = (QU -Q)~ +Z )71 0av, 0av)
+ Z Q)12 4v, 24v), + (QU — Q) ', Byv)
a,B=1

NB(t) = V(Fla'Ul)']ﬂ + V(F27'U2)T2 - (F37U3)T2

Z (9 F1,8 vl)’]r2 +V(8 FQ;a U2) (aaF378aU3)T2)

_2

+ ( as1:0, 5”1)Tz+’/(3§5F2’3§BU2)T2*(aiﬁFS’aiﬁ’US)w)
a,B=1
v (0cF1, Opv1) g2 + v (01 Fa, Opva) g2 — (O1F3, 003 )2

and

Na(t) = (Fo,v)a + % (0 (QU — Q)™ w,0),
(Q(I - Q)7 (vAv + Fy) ),
+Z{3Fo,8 Ve + 5 ( (QU = Q)™") dav, dav),,

a=1

+(QU — Q)" (vAov + 9u Fo) , Dav)
+ (Q@a(l — Q)—l (=0 4+ vAv + Fyp) ,&ﬂ))Q
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—1
((‘3 QU - Q) (=0 +vAv + Fy),040) , }

b3 (@0 i+ 00U - Q) .3,
a,f=1
+(QU = Q)7 (AT 50+ 05F0) D)
+ (9a ( (I—Q)7Y) 9 (—w + vAv + Fy),02,0)
+ (95 (QU = Q)™") da (=0kv + vAv + Fy) , 025v),,
(8343 (Q(I* Q) ) (=0 + vAv + Fp) ,80431))9}

+ (0cFp, 0rv)q ( (QU—-Q)™") 9, dv),
+ (Q ) VAatU + 0, Fp) atv)ﬂ
+ (Qat (=0 +vAv + Fy) , 0w)

)
(&gQ( — Q) (=0 + vAv + Fp), 8,511)9

Summing the equalities obtained in Steps 1 ~ 4, we get

(6.13) —— (E(t) +H(t) + Q(t)) + F(t) = Np(t) + Na(t).

Proposition 6.1. Let n, v, q be the solution given in Theorem 1.2. If
dg > 0 in Theorem 1.2 is small enough, it holds that

(6.14) H(t) < CF(t) for t>1Ty,
with a constant C' > 0 independent of the solution.

For the proof of this proposition and the estimates of terms in Nz (t), Na(t)
and Q(t), we need the following lemmas.

Lemma 6.1.  Ifdy > 0 in Theorem 1.2 is small enough, then the normal
derivatives of the velocity components Osvj,j = 1,2,3 on Sg can be written in
terms of the tangential derivatives of the velocity components on Sg fort > 11,
with Ty given in Theorem 1.2.

Proof. From the solenoidal condition, it holds
(6.15) 831]3 = —811]1 — 82’1)2.

Note that  and v satisfy on Sp. Using (6.15), we can rewrite (1.6), (1.7) as
follows:

O3v1 + O1vs = Ch1 (1, V7)) O3v1 + Cia (n, Vi) D309
+ F{ (n, Vi, VZij,0,V o),

0309 + Oavg = Cay (1, V7)) O5v1 + Caa (1, V) D309
+ F} (0, Vi), V2,0,V p o).
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Take §p > 0 so small that

1—Cu(n,Vi) —Cia(n, Vi) > 1
det - ) > = Sp.
¢ < —Co1 (7, V7))  1—=Ca(n,Vi)) = 2 oo

Then we can solve the above system for d3viand Oszvs. O

Lemma 6.2.  Let u and p satisfy

(6.16) —vAu+Vp=fy, divu=0 in

(6.17) u=20 on Spg,

(6.18) 8jU3 + 83’&]‘ = fj on Sp, j=12,
(6.19) us = f3 on Sp,

then it holds for any £ >0

(620) \u|Hz+2(Q) + |Vp|Hz(Q)
< O (Ifolmewen + il ey ogay + ol e g gny + sl ges ) -

This estimate comes from the facts that the Stokes system is elliptic in the sense
of [1], and that the boundary conditions satisfy the complementary condition.

Lemma 6.3.  Take { > 0. Let f be given in H*(T?). If ¢ defined on T?
satisfies
(1—0Ap)p=f on T2

then it holds that
(6.21) Pl ee+2(r2y < C|f|me(r2).-
This can be seen by Fourier series expansion.

The proof of Proposition 6.1. Since n, v and ¢ satisfy for ¢t > T}

—vAv+Vq= -0+ Fy+ QVq in Q,

dive =10 in €,

v=20 on Spg,

0jv3 + O3v; = Fj on Sp, j=1,2,
v3 = U3 on Spg,

by Lemma 6.2 it holds that

(6.22) [v(t) 3 () + V()| (o)
<C (|atv(t)|H1(Q) + [ Fo ()| a1 ) + 1QVala (o)

IO g gy + O3 ) + |U3(t)|H%(T2)> '
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Taking account of the explicit forms (1.4) and (1.5) of Fy and @V ¢ and estimate
(6.1), we can estimate the second and third terms in the right hand side as
follow:

< 00 (100 ey + V4Ol ) + 195 00 )

Remind that V, denotes the horizontal gradient (see page 272). In a similar
way we have

(6:29) 1Fu(0)] 3 gy + B0 33 gy < CB0 (100 150 + V5500 3 )

From the solenoidal condition we see that the trace of vz onto Sg belongs to

5
HZ (T?). Thus the last term in the right hand side of (6.22) can be estimated
as

(6.25) |v3(t)‘H%(T2) < C|VF 2v3(t)| ) < ‘VF 2’1}3(t)|H1(Q).

1
HZ (T?

Collecting these and taking §o > 0 sufficiently small we get

(6.26) |v(t)|m3) + IVa(t)| 1)
< C (100®)s(@) + 00 [V 0(0)] 3 o) + 1V 205Dy ) -

We now have to estimate the norm of 7(t) in terms of the norms of v(t).
We differentiate the boundary condition (1.8) in 9;, j = 1,2 to get

(627) — (1 - UAF ) 0j77 = —ajq + 2V8j831)3 + ang on Sg, t>1Ty, j=1,2.

By use of the solenoidal condition and by Lemma 6.3 we obtain

(6:28) V0], ) < C (IV£ a0l 3 o

Ve (011 4 8a02) (1) ) TIVE E5(1)]

HE (12 H%mr?)) '

Taking the explicit form (1.9) of F3 and estimate (6.1) into account we see that

(6.29) |V F5(1)] ) < Coo [V pn(t)]

HE (T2 H3(T2)

Hence we obtain

(6.30) V0] 48 ) < C (IV 20O )

|V 20 g gy + 001V £ 0O 3 7)) -
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From this and (6.26) we can derive
631 Ven)] 5y < C (1900l + 80| V0] 43 0

+ |VF Q’U‘Hl(g) + 50 |VF 77(75)|

)

H%(Tz)) '
Taking §y > 0 sufficiently small, we get

(632 IVen(t)l,30 < C (1000lm@) + Vo0l ) -

Since equation (1.2) holds, the norms of the time derivative 9y in H(t) can be
estimated as follows:
|VF 8t77|H0(T2) = ‘VF v3|H0(']1‘2) <C |VF U|H1(Q) )

(6.33) |8t77|H0(T2) = ‘U3|H0(’11‘2) <C ‘U‘Hl(ﬂ) :
From (6.32) and (6.33), we can derive (6.14) by use of Lemma 2.5. O

We next give the bounds for Np(t), No(t) and Q(t) by F(t) in the follow-
ing propositions. The proof of these propositions is elementary, but lengthy.
Therefore we explain only how to get the bounds for the terms containing the

highest order derivatives and the time derivatives. To get the estimates for
nonlinear terms we frequently use Lemma 2.2.

Proposition 6.2.  Let n, v, q be the solution given in Theorem 1.1.
Then it holds that
(6.34) INB(t)| < CopF(t)  for t>T

with a constant C > 0 independent of the solution.
To show this proposition we use
Lemma 6.4. Let p € H' (T?) and let ¢ € H: (T?). Then it holds that
(G, ¥zl < Lol ooy Wy 0 €= 1,2
This lemma can be easily proved by Fourier series expansion.

The outline of the proof of Proposition 6.2. We first treat the term of the
form
Ok (1 +x3)7
(3545 (M‘%’Wu) 78§5Un) = Il(t)v a,B,0=1,2
T2
in <8§BFJ7 aZﬂUj)W' By Lemma 6.4 we have

O (1 +x3)7)

1h(t)] <C 7

8@1} ’ 82 Vi 1
" H? (T2) % j|H2(T2)

<C ‘77|H3(']1'2) |a[Un|H%(T2) ’agﬂvj|H%(T2)

2
2
< Cn(®)|gsre) E : ’ac%ﬁ”j(t)’H%(T?)'
a,B8=1
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By the trace theorem and by Lemma 2.5 we have

2

2
S 1025050k ey S C D (O250(8), B20(0)).
a,B=1

a,f=1

If ¢is 3, by Lemma 6.1 we can replace 03v,, by a linear combination of tangential
derivatives 0,v with coefficients written in terms of n and its derivatives. Hence
we can get the same estimate as for the case £ = 1,2. We next deal with the
term

1
02 —1,An ,8351)”

ol | O B —
1+ |Ven]| -
2

_|VF77‘

AFn 9
1+ |Vl (1+ 1+ |an|2)

EIQ(t)a a, /6:172

825 o 3iﬁvn

T2

«

in (026F3’ 8‘21603)11‘2' By Lemma 6.4 we have

| L2(t)]

A\
2 : 2 Arn ‘325%"}1%@2)
14+ |Venl <1+\/1+|VF77|> .
H3(T2)

< CIVEn®) 3 gy 1O 15 2y 102505 (O] 114 oy -

SC% o

Since n(t) € Hy (TQ) for t > T, by the Poincaré inequality and by estimate
(6.32), we have

)13 oy < € (100Dl ) + [V 20 1)
From this, by use of Lemma 2.5 we can derive
2
()| < Coo | Y (D250(1), D2gv(t) + (Dro(t), Drv(t))

a,8=1

The terms in (0;F}, 0yv;)p. can be treated similarly. The term

(at (Mawm) ,atvn>qrz = L), (=1,2
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can be rewritten as follows

IS(t) = (walatvm + 81‘, (w) 8[1}77“ at'Un)T2

_ <8£ <3k ((1;533)77)@%) _ 8 (3k: ((1J;$3)77)> 3tvm,3tvn)w

(o (2D 5 )

By Lemma 6.4 and by the Schwarz inequality, we have

O (1 +x3)17)
J

+ 1o, <M) 3tvm‘ -
d HO(T2)

O (14 x3) 7
O (M) aevm‘ |atvn|H°('J1‘2) :
HO(T?2)

[Is(t)] < C |Oyvn|

HZ (T2)

O, It (T2)

+

O ((1 + x3) 1)
J
2’ € T2, Using the fact (6.1), we can derive from the above

Since 7 satisfies (1.2), 9yn in O ( ) can be replaced by vs(z’,0),

[13(t)] < Cdo (|8tv(t)|2%m2) + Ve U(t)|Ho(1r2) ‘8tv(t)|H0(T2)) :

As stated in the case for I (t), if £ = 3, we can replace J3vy, in I3(t) by a linear
combination of tangential derivatives d,v with coefficients written in terms of 7
and its derivatives. Thus we can get the same estimate as for the case £ = 1, 2.
One of the terms containing the highest order derivative in (0. F3, 0yvs)- is the
following:

1
(6.35) O | o 72—1 Apn |, 0ws
1+‘VF77| T2
1
=0 —/———————-1) AL0m, 03

2
1+ |Ven) -

(01n) (010¢m) + (921) (020:n)
(1+1V,n)

—0o Apn, Oz = I4(t).

e

T2
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As noted in the above, this can be rewritten as

1
L(t)=|lc{ ——-1 AFU;;(I'/,O),atUg

2
1+ |Ven| -

oin) (01v3(2',0)) + (da2n) (G2v3(2",0))

3
(14+1Venl)”

—U( Apn, Opvs
']I‘?

Using (6.1), we can estimate this as follows

(O] < €00 (19520 srogray 000 sogeey + [V 11l 1 2oy 1000 o) ) -

The other terms in Np(t) can be treated in a similar way as above. Hence
by the trace theorem, Lemma 2.5 and by Proposition 6.1, we can derive the
desired bound. O

Proposition 6.3. Let n, v, q be the solution given in Theorem 1.1.
Then it holds that

(6.36) Na(t)] < C6F(t)  for t>T,
with a constant C > 0 independent of the solution.

The outline of the proof. The terms of the highest order derivatives of v
in Fy,o are Cpq0.0qv¢, where

Ccd = C’cd <ﬁ7 Vé) = CceCde - 6ce6de
03c03d
J2

_ 725%86((1+x3)77)+ 0o (1+ 23) 1) D (1 + 3)77) -

It is clear that this coefficient vanishes if ¢,d = 1,2. The terms corresponding
toc=3 and d = 1,2 in N(¢) are written as, by integrating by parts

(8345 (nga;gadvz) 5 32BUE>Q
= — (85 (C3q0304v¢) ,(92351}@)9 =I1), «o,f=1,2
This term can be estimated by

~ 2
‘IS(t)‘ < Cln(t)lfﬂ(ﬂ) ’VF QU(t)‘Hl(Q)-
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Changing the order of differentiation and integrating by parts, we get

(92 3 (Css (77, Vi) ), 8aﬁ7)g)
= (025 (95 (Cs3 (i}, Vi7) D3v¢) — 85Cs3 (11, Vi) Dsve) , 02 gve) o,
= (05 ( as (Cas (7, V1)) O3v0)) , Oagve)
— (925 (95Cs3 (71, Vi}) Dzve) , 02 500,
= (925 (Cs3 (77, Vi) D3v0) , 92 500) s
— (925 (Cs3 (77, Vi) B3v¢) , 0302 gve)
— (025 (05C33 (71, Vi)) Bzvp) , 2 gue) ., = Ts(t).

Note that the boundary condition (1.6) holds. By Lemmas 6.1, 6.4 and (6.1)
we get

’ (825 (Cs3 (71, Vi) 3v¢) 3?%5”5)?2
< ¢o (‘VF 2v(t)|§{%(1f2) + ’vF ZU(t)’H%(Tp) ‘VF 2n(t)’H%(T2)) :

For the other two terms in I5(t), we see that

‘(52/3 (Cs3 (17, Vi) O3v¢) 53333504)9‘ + ‘(325 (03C33 (1], Vi) O3vy) ﬁgﬁw)ﬂ‘
<0 (|VF 2”‘21(9) +Vevlgg) Ve 2”’1{1(9) + vl q) Vi 2”|H1(Q)) .
The term containing the highest order derivative of 7 in Ng(¢) is
([“)2,3 (CeeCaeCe30:0q0k ((1 4+ 23)7) k) ,[“)C%ﬁvg)g =I(t), a,0=1,2.
Integrating by parts implies
I7(t) = — (95 (CeeCaeCes0e0a0k (1 + m3)) i) , O205ve)
By virtue of (6.1) and estimate (6.32) we can derive from this
(L) < C i)l gagey 0O 0y |V e QU(t)|H1(Q)
< 08 <|8tv(t)|H1(Q) + |vF2v|H1(Q)) IV 5200 11 -
In the same way as above we can deal with the term
(0: (Cs3 (71, V7)) O3v0) , Opvr) , = Is(t)
in (0:Fy, 0v)q,-

Is(t) = (0105 (C33 (1], V) Ozve) , Opve) o — (9¢ (03C33 (7], Vi]) O3v¢) , Oyve)
= (0t (C33 (1, V}) O3v¢) , Opve)pe — (O (C33 (7, V1}) Osv¢) , 0:030¢)
— (¢ (03C33 (0, V) O3ve) , Oyve)
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By Lemma 6.1 d3vp in the boundary term is replaced by a linear combination
of tangential derivatives d,v with coefficients written in terms of n and its
derivatives. Since (1.2) holds 9;7 in the coefficients is replaced by the extension
of v3(2’,0) (see (1.1)). Taking (6.1) into account we can obtain

2
15(8)) < €0 (1060173 gy + 19 0 oy 1900 oo

+ |8tv|§11(9) + ‘U‘Hl(Q) ‘3tU|H0(Q)) .
The term which contains the highest order derivative of n in (9, Fy, 0v)q, is
(6.37) (0 (CeeCaeCe30:0a0k (1 + x3)7) v) , Opve) gy -

As noticed above, 9y is replaced by Rv by means of (1.2)(see (1.1), (2.10)).
According to the definition of extension (1.1), we see

‘RU‘HS(Q) < CIRel,yg 0o -

Hence the term
((CeeCaeCr30c0a0k (1 + x3)0) vi) , Opve) g
= (CceCdeClSacadak ((1 + xs)évv) Vg, Btvz) = Iy(t)
Q
appearing in (6.37) is estimated as follows

[I9(t)| < Cdp |Rv| |040| g0y < Cdo |VF2RU|H%(T2) 000 0y -

"3 (T2)
The other terms in (6.37)

(0 (CeeCaeCes) 0c0a0k (1 + 3)7) vk, Opve)
+ (Cee€aer30:0a0k ((1 + x3)7) Opvg, Orvg)q,

can be estimated in a similar manner. Here we again replace 9:n in 9 (CeeCaeCr3)
by vs(z’,0). Thus, by the trace theorem and (6.1), we have

|(0f (CeeCdeCe30:0q0k ((1 4 x3)7) Vi) , Opve) g
<0 (|VF 2”|H1(Q) + |8tU|H0(Q) + \U\HD(Q)) |8tU|H0(Q) :

We can treat the other terms in Ng(t) similarly. Collecting these estimates and
using Lemma 2.5, we obtain the desired estimate. d

The next proposition is shown in a same manner as above, therefore we
only state the result.

Proposition 6.4. Let n, v, q be the solution given in Theorem 1.1.
Then it holds that

(6.38) o) < CF(t)  for t>T,

with a constant C > 0 independent of the solution.
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Proof of Theorem 1.3. We add v (£(t) + H(t) + Q(t)) to the both side of
(6.13) to get
€0+ M) + QD) + 7 (E0) +H(1) + Q1)
= Np(t) + Na(t) + 7 (£(t) + H(t) + Q1)) — F (1),

where v > 0 is to be chosen small later. By virtue of the Poincaré inequality
and Lemma 2.5 we have £(t) < CF(t). Using the results in Propositions 6.1,
6.4, we have

N =

(6.39)

E(t)+H(t) + Q) < CLF(¢).
By the estimates in Propositions 6.36, 6.34, we can derive from (6.39)

1d

(6.40) @ (E@)+H(E)+ Q) + v (E(t) + H(t) + Q(¢))

< Cg(sof(t) + Cl’}/f(t) - f(t)

In Theorems 1.2, 1.3 we start with the assumption that § > 0 is so small that
C50p — 1 < 0. Further we choose v > 0 so small that C309 + C1y—1 < 0. Then
we obtain
1d
2dt

From this we have

(E(t) + H(t) + Q1)) + v (E(t) + H(t) + Q(t)) < 0.

E)+H({H)+Q(t) < Ke™®*  for t>Ty,
where K = T4 (£(Ty) + H(T1) + Q(T1)). Hence we get
(6.41) E(t)+H(t) < Ke ' for t>T.

Since H(t) includes
2

9 12
Z ‘VF 804677‘110(?2) )
a,B=1
by the Poincaré inequality it follows immediately that || g3 (T2) < Ce . Let
us show the exponential decay of \v\Hz(Q). Using Lemma 6.2 leads to

‘U(t)|H2(Q) + \Vq(t)|H0(Q)
<C (|at”(t) |mo() + [Fo(t)] o) + 1@Vl Hoa)

FIEL Oy oy + P2 4 oy + 10503 )

By (6.1) we see that | QVq|go) < Cdo| Vq|po(q) . Hence, taking § > 0 small
enough if necessary, we have

(642) ()]0 < C (19r0(8) o) + [Fo(®) o

IO g gy + Oy ) + |U3(t)|H%(T2)> '
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3
The solenoidal condition implies v3(2’,0) € Hg (T?). Thus from the trace
theorem and the Poincaré inequality it follows

[03(8)] 3 oy < CIV pv3(t)] ) S CIVV pvs(t)lmoge)

H3 (12
2
SO Z ‘32511(0“10(9).
a,=1

Here we use the solenoidal condition again in the most right inequality. From
this and (6.41), taking the explicit forms of Fy, F, F» into account, we conclude
that

(6.43) 10:v(t)lrro @) + [Fo(t) o) + [F1(E)] 4 )
+ |F2(t)\H%(T2) + |v3(t)\H%(T2) <Ce™ for ¢t>1Ty.
This completes the proof of Theorem 1.3. O

Acknowledgement. We would like to express our profound gratitude
for the referee, who thoroughly read through the manuscript and made lots of
constructive comments.

DEPARTMENT OF MATHEMATICS

FAcuLTY OF SCIENCE, KYOTO UNIVERSITY
SAKYO-KU, KyoTo 606-8502, KYOTO, JAPAN
e-mail: a50258@sakura.kudpc.kyoto-u.ac.jp

DEPARTMENT OF MATHEMATICS AND PHYSICS
FAcULTY OF ENGINEERING, SETSUNAN UNIVERSITY
NEYAGAWA 572-8508, OSAKA, JAPAN

e-mail: teramoto@mpg.setsunan.ac.jp

DEPARTMENT OF MATHEMATICS

FAcuLTY OF SCIENCE, KYOTO UNIVERSITY
SAKYO-KU, KyoTo 606-8502, KYOTO, JAPAN
e-mail: yosh@math.kyoto-u.ac.jp

Added in proof: After we finished writing this paper we learned from
Prof. Padula that she with B. J. Jin published “On existence of compressible
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