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Global in time behavior of viscous surface
waves: horizontally periodic motion

By

Takaaki Nishida, Yoshiaki Teramoto and Hideaki Yoshihara

1. Introduction

This paper is concerned with the equations of motion of a viscous incom-
pressible fluid bounded above by an atmosphere of constant pressure and below
by a fixed plane extending horizontally. The flow is governed by the Navier-
Stokes equations with appropriate boundary conditions (see [17]). The gravity
is the only external force. This problem is treated in [3]. There, by including
the effect of surface tension on the upper free surface, Beale showed that there
exists a unique global solution to the problem for a sufficiently small initial
data with certain compatibility conditions. In the report [4] Beale and Nishida
announced that the above solution in [3] decays in time with an algebraic decay
rate. Tani showed in [15] the local in time existence result for arbitrary initial
data. For the compressible case Tani and Tanaka showed the global in time
existence result for small initial data in [14]. For other results see [9], [15], [14]
and their references.

In this paper we assume that the motion of fluid is horizontally periodic and
that spatial mean of the motion of unknown free surface over the space period
is equal to zero. Under these assumptions we show that global in time solution
to this problem with sufficiently small initial data decays exponentially. This
problem is treated by Padula and Solonnikov in [10]. They showed the decay in
time of the L2 norm of the solutions to the problem under the assumptions that
the global in time solutions exist and are bounded in time for certain norms.

To formulate our problem we take the mean depth b > 0 as the unit
of length. We take U0 =

√
gb and T0 = b/U0 as units of velocity and time

respectively. Here g is the acceleration of gravity. We denote the velocity field
by u(x, y, t) and the scalar pressure by p̄(x, y, t). Then the equations of motion
of fluid is now written as follows:

∂tu+ (u,∇)u− ν∆u+ ∇p̄ =

 0
0
−1

 ,

div u = 0 in Ω(t), t > 0,
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where Ω(t) = {(x′, y); x′ ∈ T2, −1 < y < η(x′, t)}. Here T2 = R2/2πZ2.
The coefficient ν is the reciprocal of the Reynolds number. The unknown free
surface is denoted by y = η(x′, t), x′ ∈ T2, t > 0. On the free surface we impose
the kinematic boundary condition

∂tη = u3 − (∂1η)u1 − (∂2η)u2 on y = η(x′, t), x′ ∈ T2, t > 0.

The balance of stress tensor at the free surface is the following

p̄nj − ν (∂juk + ∂kuj)nk + σ∇F

((
1 + |∇F η|2

)− 1
2 ∇F η

)
nj = patmnj .

Here n = (n1, n2, n3) =
(
1 + |∇F η|2

)− 1
2

(−∂1η,−∂2η, 1) is the outward unit
normal to the free surface and σ is the nondimensionalized coefficient of sur-
face tension. See [17] for this condition. It is understood to take a sum over
repeated indeces. patm is the atmospheric pressure assumed to be constant.
∇F = (∂1, ∂2) denotes the horizontal gradient. The condition on the bottom is

u = 0 on y = −1.

If we assume u(x′, y, t) ≡ 0 and η ≡ 0, then the equations and the boundary
conditions are satisfied by setting p̄ = patm − y. To consider perturbations from
this equilibrium state we write the pressure as

p̄(x′, y, t) = patm − y + p(x′, y, t).

The equations of motion become

∂tu+ (u,∇)u− ν∆u+ ∇p = 0,
div u = 0 in Ω(t), t > 0,

and the balance of stress tensor at the free surface becomes

(−η(x′, t) + p)nj − ν(∂juk + ∂kuj)nk

+ σ∇F

((
1 + |∇F η|2

)− 1
2 ∇F η

)
nj = 0 on y = η(x′, t).

A solution is uniquely determined by specifying the initial data

η(x′, 0) = η0(x′), x′ ∈ T2 and u(x′, y, 0) = u0(x′, y), −1 < y < η0(x′)

subject to certain compatibility conditions and smallness assumption.
As in [3], to show existence and decay of global in time solutions, we

transform the problem to the one on the equilibrium domain Ω = {(x′, x3);x′ ∈
T2, −1 < x3 < 0} using the unknown free surface η(x′, t). For each t ≥ 0 we
define Θ : Ω → Ω(t) by

Θ(x1, x2, x3 : t) = (x1, x2, (η̃ + 1)x3 + η̃), −1 < x3 < 0.
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Here η̃ is an extension of η to T2 × (−∞, 0) defined by

(1.1) η̃(x′, x3, t) =
∑

ξ′∈Z2\{(0,0)}

η(ξ′)

1 + (|ξ′|x3)2
exp(iξ′ · x′),

where η(ξ′) is the coefficient of the Fourier series expansion. The velocity u on

Ω(t) is given by uα =
1
J
θαβvβ in terms of v defined on Ω. (θαβ) is the Jacobian

matrix of Θ and J is the Jacobian det(θαβ). It is easily seen that u satisfies
the solenoidal condition in Ω(t) if and only if v satisfies the same condition in
Ω. We set q(x, t) = p(Θ(x, t)). From these definitions of v and q we derive the
equations for η, v and q:

∂tη − v3 = 0 on SF = {(x′, 0) ∈ Ω ; x′ ∈ T2}, t > 0,(1.2)
∂tv − ν ∆v + ∇q = F0 +Q∇q, div v = 0 in Ω, t > 0.(1.3)

The α-th component (α=1,2,3) of the right hand side of (1.3) is written as
follows:

F0,α =
1
J
∂3((x3 + 1)η̃t)vα − δα3

J
∂k((x3 + 1)η̃t)vk +

1
J

((x3 + 1)η̃t)∂3vα

− 1
J2

((x3 + 1)η̃t)∂2
3((x3 + 1)η̃)vα +

δα3

J2
((x3 + 1)∂tη̃)∂3∂k((x3 + 1)η̃)vk

+ ν

[
− 2
J
∂c((1 + x3)η̃)∂3∂cvα +

1
J2
∂c((1 + x3)η̃)∂c((1 + x3)η̃)∂2

3vα

− 2
ζceζde

J
∂c∂3((1 + x3)η̃)∂dvα + 2ζα3ζceζde∂c∂k((1 + x3)η̃)∂dvk

− ζce∂c

(
1
J
∂e((1 + x3)η̃)

)
∂3vα + ζce∂c

(
1
J
∂e((1 + x3)η̃)

)
× 1
J
∂2
3((1 + x3)η̃)vα + ζα3ζce∂cζde∂d∂k((1 + x3)η̃)vk

+ ζceζde

(
− 1
J
∂c∂d∂3((1 + x3)η̃) δαk +

2
J2
∂c∂3((1 + x3)η̃)

× ∂d∂3((1 + x3)η̃)δαk − 2ζα3

J
∂d∂3((1 + x3)η̃)∂c∂k((1 + x3)η̃)

+ ζα3∂c∂d∂k((1 + x3)η̃)
)
vk

]
− 1
J
vγ∂γvα − vcvdζαe∂c

(
1
J
θed

)
,

(1.4)

(Q∇q)α = (δαe − Jζαcζec)∂eq

=
(
−∂3((1 + x3)η̃)δαe + δα3∂e((1 + x3)η̃)

+ δe3∂α((1 + x3)η̃) − 1
J
δα3δe3∂c((1 + x3)η̃)∂c((1 + x3)η̃)

)
∂eq,

(1.5)



�

�

�

�

�

�

�

�

274 Takaaki Nishida, Yoshiaki Teramoto and Hideaki Yoshihara

where (ζαk) is the inverse of the Jacobian matrix dΘ = (θαk). Since (1.2) must
hold, the terms ∂tη in (1.4) are replaced by the restriction of v3 to SF .

The boundary condition on the bottom is

(1.6) v = 0 on SB = {(x′,−1) ∈ Ω ; x′ ∈ T2}, t > 0.

The conditions on the upper boundary SF =
{
(x′, 0) ∈ Ω ; x′ ∈ T2

}
are written

as follows

∂αv3 + ∂3vα = Fα, α = 1, 2,(1.7)
q − 2ν ∂3v3 − η + σ∆F η = F3 on SF , t > 0,(1.8)

where

F1 =
(
δk1δ3�

1
J
∂3((1 + x3)η̃) + δk3δ3�

1
J2
∂1((1 + x3)η̃)

− δk1
1
J
∂�((1 + x3)η̃) + δk3

1
J2
∂1((1 + x3)η̃)∂�((1 + x3)η̃)

)
∂kv�

+ ∂3((1 + x3)η̃)
1 + J

J2
∂3v1 +

ζk3

J2
∂k∂3((1 + x3)η̃)v1

− ζk1

(
− 1
J2
∂k∂3((1 + x3)η̃)(δ3� + ∂�((1 + x3)η̃)) +

1
J
∂k∂�((1 + x3)η̃)

)
v�

+ 2∂1η

(
ζk1∂k

(
1
J
θ1�v�

)
− ζk3∂k

(
1
J
θ3�v�

))
+ ∂2η

(
ζk1∂k

(
1
J
θ2�v�

)
+ ζk2∂k

(
1
J
θ1�v�

))
+ (∂1η)2

(
ζk1∂k

(
1
J
θ3�v�

)
+ ζk3∂k

(
1
J
θ1�v�

))
+ (∂1η)(∂2η)

(
ζk2∂k

(
1
J
θ3�v�

)
+ ζk3∂k

(
1
J
θ2�v�

))
,

F2 =
(
δk2δ3�

1
J
∂3 ((1 + x3)η̃) + δk3δ3�

1
J2
∂2((1 + x3)η̃)

(1.9)

− δk2
1
J
∂�((1 + x3)η̃) + δk3

1
J2
∂2((1 + x3)η̃)∂�((1 + x3)η̃)

)
∂kv�

+ ∂3((1 + x3)η̃)
1 + J

J2
∂3v2 +

ζk3

J2
∂k∂3((1 + x3)η̃)v2

− ζk2

(
− 1
J2
∂k∂3((1 + x3)η̃)(δ3� + ∂�((1 + x3)η̃)) +

1
J
∂k∂�((1 + x3)η̃)

)
v�

+ 2∂2η

(
ζk2∂k

(
1
J
θ2�v�

)
− ζk3∂k

(
1
J
θ3�v�

))
+ ∂1η

(
ζk1∂k

(
1
J
θ2�v�

)
+ ζk2∂k

(
1
J
θ1�v�

))
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+ (∂2η)2
(
ζk2∂k

(
1
J
θ3�v�

)
+ ζk3∂k

(
1
J
θ2�v�

))
+ (∂1η)(∂2η)

(
ζk1∂k

(
1
J
θ3�v�

)
+ ζk3∂k

(
1
J
θ1�v�

))
and

F3 =
2ν

1 + |∇F η|2
{
− |∇F η|2 ∂3v3

+
(
−δk3δ3�

1
J
∂3((1 + x3)η̃) − δk3δ3�

1
J2
∂3((1 + x3)η̃)

+
1
J
δk3∂�((1 + x3)η̃) − δk3

1
J2
∂3((1 + x3)η̃)∂�((1 + x3)η̃)

)
∂kv�

+ ζk3

(
− 1
J2
∂k∂3((1 + x3)η̃)(δ3� + ∂�((1 + x3)η̃)) +

1
J
∂k∂�((1 + x3)η̃)

)
v�

+ (∂1η)2ζk1∂k

(
1
J
θ1�v�

)
+ (∂2η)2ζk2∂k

(
1
J
θ2�v�

)
+ (∂1η)(∂2η)

(
ζk1∂k

(
1
J
θ2�v�

)
+ ζk2∂k

(
1
J
θ1�v�

))
− ∂1η

(
ζk1∂k

(
1
J
θ3�v�

)
+ ζk3∂k

(
1
J
θ1�v�

))

− ∂2η

(
ζk2∂k

(
1
J
θ3�v�

)
+ ζk3∂k

(
1
J
θ2�v�

))}
− σ

 1√
1 + |∇F η|2

− 1


×∆F η +

σ(
1 + |∇F η|2

) 3
2

{
(∂1η)2∂2

1η + 2(∂1η)(∂2η)∂1∂2η + (∂2η)2∂2
2η
}
.

(1.10)

In deriving the nonlinear terms above we have used the explicit forms of the
Jacobian matrix and its inverse

θαβ = δαβ + δ3α∂β((1 + x3)η̃), ζαβ = δαβ − δ3α

J
∂β((1 + x3)η̃).

We now state our results in this paper.

Theorem 1.1. Suppose 3 < � <
7
2
. There exists a δ > 0 such that, if

the initial data η0, v0 satisfy ∫
T2
η0(x′)dx′ = 0,(1.11)

|v0|H�−1(Ω) + |η0|
H

�− 1
2

0 (T2)
≤ δ,



�

�

�

�

�

�

�

�

276 Takaaki Nishida, Yoshiaki Teramoto and Hideaki Yoshihara

and the compatibility conditions

v0 = 0 on SB , div v0 = 0 in Ω,(1.12)
∂αv0,3 + ∂3v0,α = Fα(η0, v0) on SF , α = 1, 2,(1.13)

then there is a unique solution η, v, q to the problem (1.2), (1.3), (1.6)–(1.8)
with v(0) = v0, η(0) = η0. Moreover, they satisfy

η ∈ K
�+ 1

2
0

(
T2 × (0,∞)

)
,

v ∈ K�(Ω × (0,∞)),

∇q ∈ K�−2(Ω × (0,∞)), q|SF
∈ K�− 3

2
(
T2 × (0,∞)

)
.

We give in the next section the definition of function spaces used in this paper.
To prove this theorem we follow [3], but, to obtain the regularity of η we use
different method that will be discussed in Section 3. We also have the higher
regularity for the above solution similarly as in [3].

Theorem 1.2. Take T1 > 0 and an integer k > 0 arbitrarily. Then
there exists δ0 > 0 such that, if the initial data η0, v0 satisfy the assumptions
in Theorem 1.1 and, further,

|v0|H�−1(Ω) + |η0|
H

�− 1
2

0 (T2)
≤ δ0,

then it holds that

η ∈ K
�+k+ 1

2
0

(
T2 × (T1,∞)

)
, v ∈ K�+k(Ω × (T1,∞)),

∇q ∈ K�−2+k(Ω × (T1,∞)), q|SF
∈ K�+k− 3

2
(
T2 × (T1,∞)

)
.

As in [3] the full nonlinear problem can be written in the form Lz = F (z),
where z = (η, v, q) , F = (0, F0, F1, F2, F3) and L is a linear operator consisting
of the left hand sides of (1.2), (1.3), (1.7) and (1.8). The proof of existence
result is given by the usual fixed point argument z = L−1F (z). So we have
to solve the linearized problem with given right hand sides and to obtain the
global in time estimate for the solution of the linearized problem.

In Section 2 we introduce the function spaces and the notations used in this
paper and state preliminary lemmas and proposition. In Section 3 we study the
auxiliary linear problems in the half space Ω∞ = T2 × (0,∞) with the several
boundary conditions following the method in [13]. In Section 4 we consider
the model problem in the half space including the unknown free surface. The
solvability of the linear nonstationary problem is shown in Section 5. There
we construct the resolvent operator and obtain its uniform estimate, which is
crucial for the solvability of the full nonlinear problem. In Section 6, deriving
the energy inequality, we show

Theorem 1.3. Let η, v, q be the global in time solution obtained in The-
orem 1.2. Then there exist the constants C > 0 and γ > 0 such that

|v(t)|H2(Ω) + |η(t)|H3(T2) ≤ C exp(−γt), t > 0.
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Our results described above are concerned with the problem transformed
to the equilibrium domain Ω by use of the unknown free surface η. As noted in
page 310 in [3], η obtained in Theorem 1.1 belongs to C1

(
T2
)

for each t > 0,
so that we can convert the solution of Theorem 1.1 into the one in the domain
Ω(t) depending on η.

2. Notations and preliminaries

Let T2 = R2/2πZ2 be the two-dimensional torus and set Ω = T2 × (−1, 0).
Let � ≥ 0. We denote by H� (Ω) the Sobolev space of functions that are periodic
in x′ = (x1, x2) with period 2π and whose derivatives in the sense of distribution
to order � are in L2 if � is a nonnegative integer. Otherwise we adopt the usual
generalization. See, for example, [7]. H�

(
T2
)

denotes the Sobolev space of the
order � consisting of 2π periodic functions. Identifying SF = ∂Ω ∩ {x3 = 0}
with T2, we regard H� (SF ) as H�

(
T2
)
. We introduce the space

K�(Ω × (0, T )) = H0
(
0, T ;H�(Ω)

) ∩H �
2
(
0, T ;H0(Ω)

)
.

The spaces on the right hand side are Sobolev spaces of H� (Ω) valued and
H0 (Ω) valued functions on an interval (0, T ). We write (0,∞) as R+. We use
the same notations for the spaces of C valued and C3 valued functions. From
the context it should be clear which valued function spaces we refer to.

To treat (1.2) we need the following function space

K
�+ 1

2
0

(
T2 × (0, T )

)
= H0

(
0, T ;H�+ 1

2
0

(
T2
)) ∩H �+ 1

2
2
(
0, T ;H0

0

(
T2
))
,

where � ≥ 1. We set, for s ≥ 0,

Hs
0(T2) =

{
φ ∈ Hs(T2);

∫
T2
φ(x′)dx′ = 0

}
.

To avoid the complicated case for the compatibility at t = 0 we assume that
� is not a half integer throughout this paper. As a norm of K�(Ω × (0, T )) we
can adopt the one given by

|f |K� =

∫ T

0

|f(t)|2� +

∣∣∣∣∣∂[ �
2 ]f(t)

∂t[
�
2 ]

∣∣∣∣∣
2

0

 dt+

∣∣∣∣∣∂[ �
2 ]f

∂t[
�
2 ]

∣∣∣∣∣
2

�
2−[ �

2 ];T


1
2

,

where ∣∣∣∣∣∂[ �
2 ]f

∂t[
�
2 ]

∣∣∣∣∣
2

�
2−[ �

2 ];T

=
∫ T

0

∫ T

0

∣∣∣∣∂[ �
2 ]f(t1)

∂t[
�
2 ]

− ∂[ �
2 ]f(t2)

∂t[
�
2 ]

∣∣∣∣2
0

| t1 − t2 |1+2( �
2−[ �

2 ])
dt1dt2.

We define the norm of K�
(
T2 × (0, T )

)
similarly. See [7] for other norms equiv-

alent to these.
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We review some properties of these function spaces.
If u ∈ K� (Ω × (0, T )), then ∂k

t ∂
α
x u ∈ K�−2k−|α| (Ω × (0, T )) for |α| + 2k < �,

where ∂α
x = ∂α1

1 ∂α2
2 ∂α3

3 and |α| = α1 +α2 +α3. For convenience we sometimes
use y to denote x3 and set ∂y = ∂3. For 0 ≤ 2k < �− 1, we have traces ∂k

t u(·, 0)
∈ H�−2k−1 (Ω) and K� (Ω × (0, T )) ⊆ Ck

(
0, T ;H�−2k−1 (Ω)

)
. See Chapter 4 in

[7].
We denote by K�

(0) (Ω × (0, T )) the subspace of functions u ∈ K� (Ω × (0, T ))

with ∂k
t u(·, 0) = 0 for 2k < �− 1. K�+ 1

2
0,(0)

(
T2 × (0, T )

)
is defined similarly.

Lemma 2.1. If f ∈ K�(Ω × (0, T )) with � > 5
2 and g ∈ Ks(Ω × (0, T ))

with � ≥ s ≥ 0, then fg ∈ Ks(Ω × (0, T )) and |fg|Ks ≤ C |f |K� |g|Ks .

We can prove this lemma in just the same way as in Lemma 5.1 in [3] using
the Fourier series expansion instead of the Fourier transform. In order to show
the exponential decay in time of solutions we need

Lemma 2.2. i) Suppose � > 3
2 and � ≥ s ≥ 0. If f ∈ H� (Ω) and g ∈

Hs(Ω), then fg ∈ Hs(Ω) and |fg|Hs ≤ C |f |H� |g|Hs .
ii) Suppose � > 1 and � ≥ s ≥ 0. If f ∈ H�(T2) and g ∈ Hs(T2), then fg ∈
Hs(T2) and |fg|Hs ≤ C |f |H� |g|Hs .

See Lemma 2.5 in [3] or [11] for the proof of this lemma.
Later we formulate our problem in the form of an evolution equation in

some function spaces by applying to the equations of motion the projection
orthogonal to the space of gradients as in [16]. Since the boundary conditions
on SF is different from the adherence condition, we introduce the projection
orthogonal to the space

G0 =
{∇φ ; φ ∈ H1(Ω), φ = 0 on SF

}
.

Define the orthogonal projection by P 0 from L2(Ω) to
(G0
)⊥

. We briefly review
the properties of P 0. See Lemma 3.1 in [2].

Lemma 2.3. Let � ≥ 0. P 0 is a bounded operator on H�(Ω) and
K� (Ω × (0, T )). If φ ∈ H�+1 (Ω), then P 0 (∇φ) = ∇ψ, where ψ satisfies

(2.1) ∆ψ = 0 in Ω, ψ = φ on SF , ∂nψ = 0 on SB .

Proof. Suppose v ∈ Hs(Ω), s ≥ 1. Then (I − P 0)v = ∇�, where � is a
weak solution of

(2.2) ∆� = div v in Ω, � = 0 on SF , ∂n� = v · n on SB.

By the regularity theory of the elliptic boundary value problem, it holds that

|�|Hs+1 ≤ C
{
|div v|Hs−1 + |v · n|

Hs− 1
2

}
.

By interpolation we see the boundedness of P 0 on H�(Ω) and K� (Ω × (0, T )),
� ≥ 0. (2.1) follows by setting v = ∇φ and ψ = φ−�.
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In the study of the Navier-Stokes equations in the fixed domain we need
the projection P : L2(Ω) → G⊥, where G =

{∇φ ; φ ∈ H1(Ω)
}
. Since G⊥

�
(G0
)⊥

, PP 0 = P and there is the complement in P 0L2 (Ω) orthogonal to
G⊥. In fact,

Lemma 2.4. P 0L2 (Ω) = G⊥ ⊕ G, where

G = {∇φ ; ∆φ = 0 in Ω, ∂nφ = 0 on SB} .

Proof. Suppose ∇φ ∈ G orthogonal to G0. Then

0 =
∫

Ω

∇φ · ∇ψ dx for any ∇ψ ∈ G0

It is easily seen that the orthogonal decomposition follows from this.

To discuss the linear problem with inhomogeneous right hand sides and
homogeneous boundary conditions, we begin with the following integral iden-
tity: Suppose v, u ∈ H2(Ω), q ∈ H1 (Ω) and div v = 0. Then integration by
parts gives

(2.3)
∫

Ω

(−ν ∆v + ∇q)u∗ dx = 〈v, u〉 +
∫

∂Ω

njSjk(v, q)u∗kdS −
∫

Ω

q div u∗dx,

where
〈v, u〉 =

ν

2

∑
j,k

∫
Ω

(∂kvj + ∂jvk)(∂kuj + ∂juk)∗dx

and Sjk(v, q) = qδjk − ν (∂kvj + ∂jvk). Here and hereafter {·}∗ denotes the
complex conjugate of {·}. For the solvability of the linear problem with homo-
geneous boundary conditions we use the lemma below.

Lemma 2.5. For u ∈ H1(Ω) with u = 0 on SB, we have

|u|2H1(Ω) ≤ C〈u, u〉

with C > 0 independent of u.

See Lemma 2.7 in [2] and [5] for the proof of this lemma.
We next formulate the problem linearized at the equilibrium state

∂tη − v3 = 0 on SF ,(2.4)
∂tv − ν∆v + ∇q = f0 in Ω,(2.5)
div v = 0 in Ω,(2.6)
v = 0 on SB,(2.7)
∂3vj + ∂jv3 = fj , j = 1 2, on SF ,(2.8)
q − 2ν∂3v3 − (1 − σ∆F )η = f3 on SF .(2.9)
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Here f0 is given in K�−2(Ω × R+) and fj in K�−3/2(T2 × R+), j = 1, 2, 3 for
some � ≥ 2. Applying P 0 to (2.5) we have

∂tv − νP 0∆v + P 0∇q = P 0f0.

Using Lemma 2.3 and the boundary condition (2.9), we write this as

∂tv − νP 0∆v + ∇q1 + ∇q2 + ∇q3 = P 0f0,

where

∆qj = 0 in Ω, ∂3qj = 0 on SB , j = 1, 2, 3,
q1 = 2ν∂3v3, q2 = (1 − σ∆F )η, q3 = f3 on SF .

As noted in page 315 in [3] and [4], each ∇qj can written as

∇q1 = R∗(2ν∂3v3), ∇q2 = R∗(1 − σ∆F )η, ∇q1 = R∗f3,

where R∗ is the formal adjoint with respect to the L2 inner product of the
restriction

(2.10) R : v → v3|SF
, v ∈ P 0L2(Ω).

We now introduce the operator A defined by

(2.11) Av = −νP 0∆v + ∇q1 ≡ −νP 0∆v +R∗(2ν∂3v3).

The equations for η and v can be written as follows

∂tη −Rv = 0, on SF(2.12)

∂tv +Av +R∗(1 − σ∆F )η = P 0f0 −R∗f3, in Ω.(2.13)

We first consider the case of zero initial data

v = 0, η = 0 at t = 0

and f = P 0f0 −R∗f3 is assumed to belong to K�−2
(0) (Ω×R+). Let us extend f

to be zero for t < 0. By the Laplace transform we derive the problem for

v̂ =
∫ ∞

−∞
e−λtv(t)dt, η̂ =

∫ ∞

−∞
e−λtη(t)dt.

Transforming (2.12), (2.13) in t, we have the linear stationary problem with a
parameter λ ∈ C,

λη̂ −Rv̂ = 0, on SF(2.14)

λv̂ +Av̂ +R∗(1 − σ∆F )η̂ = f̂ , in Ω.(2.15)
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This problem is closely related to the equation of the resolvent for η and v

(2.16) λ

(
η
v

)
−G

(
η
v

)
=
(
g0
f

)
for g0 and f given in suitable function spaces (we omit the hat )̂. G is the
matrix of operators given by

G

(
η
v

)
=
(

0 R
−R∗(1 − σ∆F ) −A

)(
η
v

)
.

In the rest of this section we reduce the second equation of (2.16) to the
one with homogeneous right hand side. To do this we need the solution to the
the following boundary value problem with the homogeneous boundary data
and inhomogeneous right hand sides.

λv(0) − ν∆v(0) + ∇q(0) = f in Ω,(2.17)

div v(0) = 0 in Ω,(2.18)

v(0) = 0 on SB,(2.19)

∂3v
(0)
j + ∂jv

(0)
3 = 0, j = 1, 2, on SF ,(2.20)

q(0) − 2ν∂3v
(0)
3 = 0 on SF ,(2.21)

where f is given in P 0H�−2 (Ω). By the integral identity (2.3) it holds

(2.22) λ
(
v(0), v

)
L2

+ 〈v(0), v〉 = (f, v)L2

for any v ∈ H1(Ω) satisfying div v = 0 in Ω and v = 0 on SB. By Lemma 2.5
we see that the real part of the left hand side of (2.22) with v replaced by v0 is
positive definite for any Reλ ≥ 0. By the Lax–Milgram’s lemma we first obtain
a unique weak solution to the above problem. Since the boundary conditions
(2.19) and (2.20), (2.21) satisfy the complementary condition of [1], we obtain
the higher regularity of the weak solution. Thus we have

Proposition 2.1. Suppose � ≥ 2 and λ ∈ C with Reλ ≥ 0. For a given
f ∈ P 0H�−2 (Ω) there is a unique solution v(0), q(0) of (2.17)–(2.21), which
satisfies∣∣∣v(0)

∣∣∣
H�(Ω)

+ |λ| �
2

∣∣∣v(0)
∣∣∣
H0(Ω)

≤ C
(
|f |H�−2(Ω) + |λ| �−2

2 |f |H0(Ω)

)
,∣∣∣∇q(0)∣∣∣

H�−2(Ω)
+ |λ| �−2

2

∣∣∣∇q(0)∣∣∣
H0(Ω)

+
∣∣∣q(0)|SF

∣∣∣
H�−3/2(T2)

+ |λ| �−3/2
2

∣∣∣q(0)|SF

∣∣∣
H0(T2)

≤ C
(
|f |H�−2(Ω) + |λ| �−2

2 |f |H0(Ω)

)
.

For the details of Proposition 2.1, see Lemma 3.3 of [3]. To see how to
recover q(0) we refer to Section 3 of [2] and [12]. Since v(0) and q(0) obtained in



�

�

�

�

�

�

�

�

282 Takaaki Nishida, Yoshiaki Teramoto and Hideaki Yoshihara

Proposition 2.1 satisfy (2.21), we can derive λv(0) +Av(0) = f by applying P 0

to (2.17). Setting v̂ = v(1) + v(0) in (2.14) and (2.15), we obtain the equations
for v(1) and η

λη −Rv(1) = Rv(0) on SF ,(2.23)

λv(1) + Av(1) +R∗(1 − σ∆F )η = 0 in Ω.(2.24)

After preparing the results of the auxiliary problems in the next section, we
discuss the solvability of the problem above in Section 4.

3. The auxiliary linear problems

We are concerned in this section with the linear stationary problem with
a parameter λ

(3.1) λu− ν∆u+ ∇p = 0, div u = 0

in the half space Ω∞ = T2 × (0,∞). The equations are supplemented with the
one of the boundary conditions:

I) ∂ju3 + ∂3uj = aj , j = 1, 2,(3.2)
− p+ 2ν∂3u3 = a3,

II) uj = bj , j = 1, 2, u3 = 0(3.3)

on the boundary ∂Ω∞ = {(x′, 0);x′ ∈ T2}. We identify this boundary with T2.
The boundary data aj and bj are given arbitrarily in H

1
2
(
T2
)

and H
3
2
(
T2
)
,

respectively.
These boundary value problems have been discussed by several authors in

the various context (see, for example [13], [8]). For our later use we need the
results in the following form.

Proposition 3.1. Let γ be an arbitrarily fixed positive constant. Let aj

be given in H
1
2 (T2), j = 1, 2 and a3 in H

1
2
0 (T2). Then, for Reλ ≥ γ there is a

unique solution u, p to (3.1), (3.2) satisfying

|u|H2(Ω∞) + |λ||u|H0(Ω∞) + |∇p|H0(Ω∞)

≤ C

3∑
j=1

(
|aj |

H
1
2 (T2)

+ |λ| 14 |aj |H0(T2)

)
,

(3.4)

∫
Ω∞

pdx′dy = 0.

The constant C is bounded for λ with Reλ ≥ γ.

Proposition 3.2. Let λ be as above. Let bj be given in H
3
2 (T2), j =
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1, 2. Then there is a unique solution u, p to (3.1), (3.3) satisfying

|u|H2(Ω∞) + |λ||u|H0(Ω∞) + |∇p|H0(Ω∞)

≤ C
2∑

j=1

(
|bj |

H
3
2 (T2)

+ |λ| 34 |bj |H0(T2)

)
,

(3.5)

∫
Ω∞

pdx′dy = 0.

We first construct and estimate the solutions to the problem (3.1), (3.2).
We expand u(x′, y) and p(x′, y) in the Fourier series in x′ ∈ T2:

u(x′, y) =
∑

ξ′∈Z2

u(ξ′)(y)eiξ′·x′
, p(x′, y) =

∑
ξ′∈Z2

p(ξ′)(y)eiξ′·x′
.

For each mode ξ′ = (ξ1, ξ2) ∈ Z2 we obtain the system of ordinary differential
equations

λu
(ξ′)
j − ν

((
d

dy

)2

− |ξ′|2
)
u

(ξ′)
j + iξjp

(ξ′) = 0, j = 1, 2,(3.6)

λu
(ξ′)
3 − ν

((
d

dy

)2

− |ξ′|2
)
u

(ξ′)
3 +

dp(ξ′)

dy
= 0,(3.7)

iξ1 u
(ξ′)
1 + iξ2 u

(ξ′)
2 +

du
(ξ′)
3

dy
= 0, in y > 0.(3.8)

We follow the arguments in [13], Section 2. For a while we assume ξ′ �= (0, 0).
The solution to (3.6)–(3.8) which decays as y tends to ∞ can be written as

u(ξ′)(y) =

 Φ1

Φ2
1
r

(iξ1Φ1 + iξ2Φ2)

 e−ry + φ

 iξ1
iξ2
−|ξ′|

 e−|ξ′|y,

p(ξ′)(y) = −λφe−|ξ′|y,(3.9)

where |ξ′| =
√
ξ21 + ξ22 , r =

√
λ

ν
+ |ξ′|2, |arg r| < π

4
. Substituting (3.9) into

the boundary condition (3.2), we derive the linear algebraic system for Φ1,Φ2, φ.
Using the results by Solonnikov in [13], Sections 2 and 3, we have the explicit
form of u(ξ′), p(ξ′)

u
(ξ′)
j (y) = −a

(ξ′)
j

r
(1 − δj3)e0(y)

+
e0(y)

r(r + |ξ′|)D0

3∑
k=1

U0
jka

(ξ′)
k +

e1(y)
(r + |ξ′|)D0

3∑
k=1

V 0
jka

(ξ′)
k , j = 1, 2, 3,

(3.10)

p(ξ′)(y) =
λ

D0

(
2r
(
iξ1a

(ξ′)
1 + iξ2a

(ξ′)
2

)
− 1
ν

(
r2 + |ξ′|2) a(ξ′)

3

)
e−|ξ′|y,
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where a
(ξ′)
j is the Fourier coefficient of aj , (j = 1, 2, 3). U0

jk and V 0
jk are

components of the matrices

U0 =


(3r − |ξ′|)λ

ν
ξ21 (3r − |ξ′|)λ

ν
ξ1ξ2 i ξ1r(r − |ξ′|) λ

ν2

(3r − |ξ′|)λ
ν
ξ1ξ2 (3r − |ξ′|)λ

ν
ξ22 i ξ2r(r − |ξ′|) λ

ν2

−i ξ1r(r − |ξ′|)λ
ν

−i ξ2r(r − |ξ′|)λ
ν

−|ξ′|r(r + |ξ′|) λ
ν2

 ,

V0 =


−2
ν
λrξ21 −2

ν
λrξ1ξ2 −iξ1 λ

ν2

(
r2 + |ξ′|2)

−2
ν
λrξ1ξ2 −2

ν
λrξ22 −iξ2 λ

ν2

(
r2 + |ξ′|2)

−iξ1 2|ξ′|
ν

λr −iξ2 2|ξ′|
ν

λr
λ|ξ′|
ν2

(
r2 + |ξ′|2)

 ,

and e0(y) = e−ry, e1(y) = e−ry−e−|ξ′|y
r−|ξ′| , D0 = (r2 + |ξ′|2)2 − 4r|ξ′|3. The next

lemma was proved in Lemma 2.5 of [13].

Lemma 3.1. If Reλ ≥ γ, ξ′ ∈ Z2, then

|D0| ≥ γ2

ν2
, |D0| ≥ 2

ν
|λ||ξ′|2, 2|D0| ≥

∣∣∣∣λν
∣∣∣∣2 .

For the fundamental solutions e0(y), e1(y) we have the estimates

Lemma 3.2. For any ξ′ ∈ Z2 \ {(0, 0)}, Reλ ≥ γ, we have∫ ∞

0

|e1(y)|2 dy ≤ 1
|r|2|ξ′| ,∫ ∞

0

∣∣∣∣dje1(y)
dyj

∣∣∣∣2 dy ≤ C
|r|2j−1 + |ξ′|2j−1

|r|2 , j = 1, 2, 3, . . . ,∫ ∞

0

∣∣∣∣dje0(y)
dyj

∣∣∣∣2 dy ≤ 1√
2
|r|2j−1, j = 0, 1, 2, . . . .

For these estimates, see Lemma 3.1 in [13]. To obtain the desired estimate we
start with the inequality derived from (3.10)

|r|4
∫ ∞

0

∣∣∣u(ξ′)
j (y)

∣∣∣2 dy ≤ 3(1 − δj3)|r|4
∣∣∣∣∣a

(ξ′)
j

r

∣∣∣∣∣
2 ∫ ∞

0

|e0(y)|2 dy

+
3|r|4

|r(r + |ξ′|)D0|2
∣∣∣∣∣

3∑
k=1

U0
jka

(ξ′)
k

∣∣∣∣∣
2 ∫ ∞

0

|e0(y)|2 dy

+
3|r|4

|(r + |ξ′|)D0|2
∣∣∣∣∣

3∑
k=1

V 0
jka

(ξ′)
k

∣∣∣∣∣
2 ∫ ∞

0

|e1(y)|2 dy,

(3.11)

j = 1, 2, 3.
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Using Lemma 3.2, we estimate the right hand side of (3) term by term. We see
that, for j, k = 1, 2

|r|4
∫ ∞

0

|e0(y)|2 dy 1
|r (r + |ξ′|)D0|2

∣∣∣U0
jka

(ξ′)
k

∣∣∣2 ≤ 9√
2

1
|D0|2

∣∣∣∣λν
∣∣∣∣2 |ξ′|4 |r||a(ξ′)

k |2,

|r|4
∫ ∞

0

|e1(y)|2 dy 1
|(r + |ξ′|)D0|2

∣∣∣V 0
jka

(ξ′)
k

∣∣∣2 ≤ 4
|D0|2

∣∣∣∣λν
∣∣∣∣2 |ξ′|3 |r||r||a(ξ′)

k |2

≤ 4
|D0|2

∣∣∣∣λν
∣∣∣∣2 |ξ′|3

(∣∣∣∣λν
∣∣∣∣ 12 + |ξ′|

)
|r||a(ξ′)

k |2

=
4

|D0|2
((∣∣∣∣λν

∣∣∣∣ |ξ′|2) 3
2
∣∣∣∣λν
∣∣∣∣+ ∣∣∣∣λν

∣∣∣∣2 |ξ′|4
)
|r||a(ξ′)

k |2

and, for j = 1, 2, k = 3

|r|4
∫ ∞

0

|e1(y)|2 dy 1
|(r + |ξ′|)D0|2

∣∣∣V 0
j3a

(ξ′)
3

∣∣∣2
≤ 1

|D0|2
|r|
∣∣∣∣ λν2

∣∣∣∣2 |ξ′| ∣∣∣r2 + |ξ′|2
∣∣∣ |r||a(ξ′)

3 |2

≤ 4
ν2 |D0|2

(∣∣∣∣λν
∣∣∣∣ 72 |ξ′| + ∣∣∣∣λν

∣∣∣∣2 |ξ′|4
)
|r||a(ξ′)

3 |2

=
4

ν2 |D0|2
((∣∣∣∣λν

∣∣∣∣ |ξ′|2) 1
2
∣∣∣∣λν
∣∣∣∣3 +

∣∣∣∣λν
∣∣∣∣2 |ξ′|4

)
|r||a(ξ′)

3 |2.

We can estimate other terms in (3) in a similar way. By Lemma 3.1 we see
that the right hand side of (3) is bounded by

C|r|
(
|a(ξ′)

1 |2 + |a(ξ′)
2 |2 + |a(ξ′)

3 |2
)
,

where the constant C is independent of λ and ξ′. The quantity |ξ′|2|p(ξ′)(y)|2
can be estimated in a same way as above where e−ry is replaced by e−|ξ′|y. For
the constant mode (0, 0) we obtain

λu
(0,0)
j − ν

(
d

dy

)2

u
(0,0)
j = 0, j = 1, 2,(3.12)

λu
(0,0)
3 − ν

(
d

dy

)2

u
(0,0)
3 +

dp(0,0)

dy
= 0,(3.13)

du
(0,0)
3

dy
= 0 in y > 0.(3.14)
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The boundary conditions become

du
(0,0)
j

dy
(0) = aj , j = 1, 2,(3.15)

−p(0,0) + 2ν
du

(0,0)
3

dy
(0) = 0.(3.16)

The solution for the constant mode which is bounded in y > 0 is

(3.17)
u

(0,0)
j (y) = −a(0,0)

j

√
ν

λ
e−y

√
λ
ν , j = 1, 2,

u
(0,0)
3 (y) = 0, p(0,0)(y) = 0.

The fact that
∫
Ω∞

p dx′dy = 0 follows from this. Since Reλ > 0, it holds that

Re
√

λ
ν ≥ 1√

2

√
|λ|
ν . Using this, we can estimate u(0,0)

j , j = 1, 2 as follows:∣∣∣∣λν
∣∣∣∣2 ∫ ∞

0

∣∣∣u(0,0)
j (y)

∣∣∣2 dy ≤ 1√
2

√
|λ|
ν

∣∣∣a(0,0)
j

∣∣∣2 .
Collecting these estimates and taking sum in ξ′ ∈ Z2, we can prove Proposition
3.1.

We next give a brief outline of the proof of Proposition 3.2.
In the same way as the proof of Proposition 3.1 we decompose the unknowns
into the Fourier mode. For ξ′ ∈ Z2 \ {(0, 0)} we derive the same system (3.6),
(3.7) and (3.8) supplemented with the boundary condition

u
(ξ′)
j (0) = b

(ξ′)
j , j = 1, 2, u

(ξ′)
3 (0) = 0 on y = 0.

Here b(ξ
′)

j is the Fourier coefficient of the boundary data. The explicit form of
the solution which decays as y tends to ∞ is the following

u(ξ′)(y) =

b(ξ
′)

1

b
(ξ′)
2

0

 e0(y) +
(
iξ1b

(ξ′)
1 + iξ2b

(ξ′)
2

)
− iξ1
|ξ′|

− iξ2
|ξ′|
1

 e1(y),(3.18)

p(ξ′)(y) = − ν

|ξ′|
(
iξ1b

(ξ′)
1 + iξ2b

(ξ′)
2

)
(r + |ξ′|)e−|ξ′|y.(3.19)

Using Lemma 3.2, we estimate each term in (3.18) and (3.19)

|r|4
∫ ∞

0

∣∣∣b(ξ′)
j e0(y)

∣∣∣2 dy ≤ 1√
2
|r|3
∣∣∣b(ξ′)

j

∣∣∣2 , j = 1, 2,

|r|4
∫ ∞

0

∣∣∣(iξ1b(ξ′)
1 + iξ2b

(ξ′)
2

)
e1(y)

∣∣∣2 dy ≤ |r|3
(∣∣∣b(ξ′)

1

∣∣∣2 +
∣∣∣b(ξ′)

2

∣∣∣2) ,
|ξ′|2

∫ ∞

0

∣∣∣p(ξ′)
∣∣∣2 dy ≤ 2ν2|r|3

(∣∣∣b(ξ′)
1

∣∣∣2 +
∣∣∣b(ξ′)

2

∣∣∣2) .
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For the constant mode ξ′ = (0, 0) we obtain the bounded solution

(3.20)
u

(0,0)
j (y) = b

(0,0)
j e−y

√
λ
ν , j = 1, 2,

u
(0,0)
3 (y) = 0, p(0,0)(y) = 0,

which can be estimated as above. Collecting these estimates and taking sum
in ξ′ ∈ Z2, we can prove Proposition 3.2.

By using two previous propositions above we show

Proposition 3.3. Let aj ∈ H
1
2 (T2), j = 1, 2, a3 ∈ H

1
2
0 (T2), bj ∈

H
3
2
(
T2
)
, j = 1, 2 be given arbitrarily. Then there is a positive constant γ0

such that, if Reλ ≥ γ0, then there is a unique solution u, p to the problem

λu− ν∆u+ ∇p = 0, div u = 0 in Ω,(3.21)
∂ju3 + ∂3uj = aj , j = 1, 2, −p+ 2ν∂3u3 = a3 on SF ,(3.22)

uj = bj , j = 1, 2, u3 = 0 on SB,(3.23) ∫
Ω

p dx = 0,

which satisfies

|u|H2(Ω) + |λ||u|H0(Ω) + |∇p|H0(Ω)

≤ C

 3∑
j=1

(
|aj |

H
1
2 (T2)

+ |λ| 14 |aj |H0(T2)

)

+
2∑

j=1

(
|bj |

H
3
2 (T2)

+ |λ| 34 |bj |H0(T2)

) .

(3.24)

Here the constant C does not depend on the boundary data and is bounded for
Reλ ≥ γ0.

By Proposition 3.2 we can construct u0 and p0 such that

λu0 − ν∆u0 + ∇p0 = 0, div u0 = 0 in T2 × {y > −1},
u0

j = bj , j = 1, 2, u0
3 = 0 on y = −1.(3.25)

Since estimate (3.5) holds and

div u0 = 0,
∫

T2×{y>−1}
p0dx′dy = 0,

it follows that, on SF

∂ju
0
3 + ∂3u

0
j ∈ H

1
2 (T2), j = 1, 2, −p0 + 2ν∂3u

0
3 ∈ H

1
2
0 (T2).
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Hence we can reduce the boundary value problem (3.22) to the case bj = 0,
j = 1, 2.

To construct a solution in Proposition 3.3 we first take uf , pf which is the
solution to the problem

λuf − ν∆uf + ∇pf = 0, div uf = 0 in Ω−∞ = T2 × {y < 0},(3.26)

∂ju
f
3 + ∂3u

f
j = aj , j = 1, 2, −pf + 2ν∂3u

f
3 = a3 on y = 0.(3.27)

By Proposition 3.1 it is possible to construct such uf , pf . Then set u1 = ζ(y)uf

and p1 = ζ(y)pf . Here ζ(y) is a smooth cut off function such that

ζ(y) = 1 for y ≥ −1
3
, ζ(y) = 0 for y ≤ −2

3
.

To adjust the solenoidal condition we need

Lemma 3.3. For f ∈ H�−2(Ω), b ∈ H�− 3
2 (T2), � ≥ 2, there is a unique

solution ϕ to the problem

∆ϕ = f in Ω, ϕ = 0 on SF , ∂yϕ = b on SB

and it holds that

|ϕ|H�(Ω) ≤ C
(
|f |H�−2(Ω) + |b|

H�− 3
2 (T2)

)
.

For the proof of this lemma see Lemma 2.8 in [2]. By this lemma we can
take φ2 satisfying

(3.28) ∆φ2 = −ζ ′(y)uf
3 in Ω, φ2 = 0 on SF , ∂yφ

2 = 0 on SB.

Set u2 = ∇φ2 and take u3, p3 which solve

λu3 − ν∆u3 + ∇p3 = 0, div u3 = 0 in T2 × {y > −1},
u3 = −∇φ2 on y = −1.(3.29)

Note that u2
3 = ∂yφ

2 = 0 on SB. Hence we can apply Proposition 3.2 to
construct such u3, p3. Let ũ = u1 + u2 + u3 and p̃ = p1 + p3. We see that

ũ = 0 on SB , div ũ = 0 in Ω.

In terms of u2, u3, p3 we define the operator

M0 :
(
H

1
2
(
T2
))2

×H
1
2
0 (T2) →

(
H

1
2 (T2)

)2

×H
1
2
0 (T2)

by

M0

a1

a2

a3

 ≡


(
∂1u

2
3 + ∂3u

2
1

)∣∣
SF

+
(
∂1u

3
3 + ∂3u

3
1

)∣∣
SF(

∂2u
2
3 + ∂3u

2
2

)∣∣
SF

+
(
∂1u

3
3 + ∂3u

3
2

)∣∣
SF

2ν ∂3u
2
3

∣∣
SF

+
(−p3 + 2ν∂3u

3
3

)∣∣
SF


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in order to express the equalities for ũ, p̃ on SF

(3.30)

 ∂1ũ3 + ∂3ũ1

∂2ũ3 + ∂3ũ2

−p̃+ 2ν∂3ũ3

 = (I + M0)

a1

a2

a3

 .

We next give an estimate of the operator norm of M0. Let j, k = 1, 2, 3. By
the usual estimate for trace operator∣∣∣∂ju

2
k

∣∣
SF

∣∣∣
H

1
2 (T2)

≤ C
∣∣∂ju

2
k

∣∣
H1(Ω)

.

Since u2 = ∇φ2 where φ2 is the solution to (3.28) the right hand side of the
inequality above can be estimated as follows:

(3.31) C
∣∣∂j∂kφ

2
∣∣
H1(Ω)

≤ C1

∣∣φ2
∣∣
H3(Ω)

≤ C2

∣∣∣uf
3

∣∣∣
H1(Ω−∞)

.

By the convexity of Sobolev norm and by estimate (3.4) we see that

C2

∣∣∣uf
3

∣∣∣
H1(Ω−∞)

≤ C2

∣∣∣uf
3

∣∣∣ 12
H2(Ω−∞)

∣∣∣uf
3

∣∣∣ 12
H0(Ω−∞)

(3.32)

≤ C3
1

|λ| 12
3∑

m=1

(
|am|

H
1
2 (T2)

+ |λ| 14 |am|H0(T2)

)
.

Hence

(3.33)
∣∣∣∂ju

2
k

∣∣
SF

∣∣∣
H

1
2 (T2)

≤ C4
1

|λ| 14
3∑

m=1

|am|
H

1
2 (T2)

, j, k = 1, 2, 3.

We next estimate the traces of ∂ju
3
k and p3 on SF . Since we use Proposition

3.2 to construct u3, p3, we only have to replace y by y+ 1 in (3.18) and (3.19).
Let j = 1, 2. The explicit form of ∂yu

3
j is written as

∂yu
3
j (x

′, 0) =
∑

ξ′∈Z2

eix′·ξ′
{
−rb(ξ′)

j e−r.

+
ξj
|ξ′| · (ξ1b

(ξ′)
1 + ξ2b

(ξ′)
2 )

−re−r + |ξ′|e−|ξ′|

r − |ξ′|

}
,

where bj = −∂jφ
2, j = 1, 2 on SB. We regard the second term as 0 for ξ′ = (0, 0)

in the above sum. From this we have

∣∣∣∂yu
3
j

∣∣
SF

∣∣∣2
H

1
2 (T2)

≤
∑
ξ′

2|ξ′|

|r|2
∣∣∣b(ξ′)

j

∣∣∣2 ∣∣e−r
∣∣2(3.34)

+
∣∣∣ξ1b(ξ′)

1 + ξ2b
(ξ′)
2

∣∣∣2
∣∣∣−re−r + |ξ′|e−|ξ′|

∣∣∣2
|r − |ξ′||2

 .
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Note that |r| ≤ √
2 Re r since Reλ > 0. From this fact we have |e−r|2 =

e−2 Re r ≤ e−
√

2|r|. Using this inequality and the equality∣∣∣∣ 1
r − |ξ′|

∣∣∣∣ =
∣∣∣∣∣νλ
(√

λ

ν
+ |ξ′|2 + |ξ′|

)∣∣∣∣∣ ,
from (3.34) we easily derive∣∣∣∂yu

3
j

∣∣
SF

∣∣∣2
H

1
2 (T2)

≤ C
∑
ξ′

(∣∣∣b(ξ′)
1

∣∣∣2 +
∣∣∣b(ξ′)

2

∣∣∣2)

= C

(∣∣∣∂1φ
2
∣∣
H0(SB)

∣∣∣2 +
∣∣∣∂2φ

2
∣∣
H0(SB)

∣∣∣2) ≤ C
∣∣∇φ2

∣∣2
H1(Ω)

.

Since φ2 is the solution to (3.28), this can be estimated by
∣∣∣uf

3

∣∣∣
H0(Ω−∞)

. Taking

into account the estimate for uf obtained in Proposition 3.1, we obtain

(3.35)
∣∣∣∂yu

3
j

∣∣
SF

∣∣∣
H

1
2 (T2)

≤ C

|λ| 34
3∑

m=1

|am|
H

1
2 (T2)

, j = 1, 2.

In a similar way we can obtain

(3.36)
∣∣∣∂ju

3
3

∣∣
SF

∣∣∣
H

1
2 (T2)

≤ C

|λ| 34
3∑

m=1

|am|
H

1
2 (T2)

, j = 1, 2.

The explicit form of p3
∣∣
SF

is as follows

p3(x′, 0) =
∑

ξ′∈Z2\{(0,0)}
eix′·ξ′

(
− ν

|ξ′|
(
iξ1b

(ξ′)
1 + iξ2b

(ξ′)
2

)
(r + |ξ′|)

)
e−|ξ′|.

From this we have∣∣∣p3(x′, 0)
∣∣
SF

∣∣∣2
H

1
2 (T2)

(3.37)

≤
∑

ξ′∈Z2\{(0,0)}
|ξ′| ν

2

|ξ′|2 |ξ
′|2
(∣∣∣b(ξ′)

1

∣∣∣2 +
∣∣∣b(ξ′)

2

∣∣∣2) |r + |ξ′||2 e−2|ξ′|

≤
∑

ξ′∈Z2\{(0,0)}

3ν2

2

( |λ|
ν
|ξ′| + 3|ξ′|3

)
e−2|ξ′|

(∣∣∣b(ξ′)
1

∣∣∣2 +
∣∣∣b(ξ′)

2

∣∣∣2)

≤ C(1 + |λ|)
(∣∣∣∂1φ

2
∣∣
H0(SB)

∣∣∣2 +
∣∣∣∂2φ

2
∣∣
H0(SB)

∣∣∣2) .
By the same reasoning as above we obtain the estimate

(3.38)
∣∣∣p3(x′, 0)

∣∣
SF

∣∣∣
H

1
2 (T2)

≤ C

|λ| 14
3∑

m=1

|am|
H

1
2 (T2)

.
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Collecting (3.33), (3.35), (3.36) and (3.38), we see that one can take a positive
constant γ0 > 0 with the following property: if Reλ ≥ γ0, then the operator

norm of M0 satisfies |M0| ≤ 1
2
, hence the bounded inverse (I + M0)

−1 ex-
ists. Therefore, for such a λ we can construct ũ , p̃ for a1, a2, a3 replaced by
(I + M0)

−1 (a1, a2, a3)T . This (ũ, p̃) obviously satisfies the boundary condi-
tion on SF and the homogeneous boundary condition on SB . The equations
satisfied by (ũ, p̃) in Ω are the followings:

λũ− ν∆ũ+ ∇p̃
= − (2ζ ′(y)∂yu

f + ζ ′′(y)uf
)

+ pf∇ζ(y) + λu2 − ν∆u2,

(3.39)

div ũ = 0.(3.40)

Here (I + M0)
−1 (a1, a2, a3)T determines the right hand side of (3.39). By

Proposition 2.1 we have the solution (v0, q0) to the problem (2.17)–(2.21) with
f in (2.17) replaced by the right hand side of (3.39). Here we note that the
third component uf,(0,0)

3 (y) and pf,(0,0) vanish, where uf,(0,0)(y) and pf,(0,0) are
the constant mode in the Fourier expansion of uf and pf respectively. From
this we easily see that u2,(0,0)

3 also vanishes by its construction. Hence the
third component of the constant mode in the Fourier expansion of the right
hand side of (3.39) is equal to 0. From this fact, the solenoidal condition and
the boundary conditions (2.19), (2.21) it follows that

dq0,(0,0)

dy
= 0 on − 1 < y < 0, q0,(0,0)(0) = 0.

Thus we see that ∫
Ω

q0dx =
∫ 0

−1

∫
T2
q0dx′dy = 0.

By setting u = ũ− v0, p = p̃− q0, we obtain the solution (u, p) which satisfies
all the requirements in Proposition 3.3.

4. The model problems

In this section we are first concerned with construction and estimation of
the solutions to the equations with a parameter λ

λu− ν∆u+ ∇p = 0,(4.1)
div u = 0,(4.2)

in the half space Ω∞ =
{
(x′, y);x′ ∈ T2, y > 0

}
supplemented with the condi-

tions

λη − u3 = b0,(4.3)
∂ju3 + ∂3uj = 0, j = 1, 2,(4.4)
− p+ 2ν∂3u3 + σ∆F η = b3(4.5)
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on the boundary ∂Ω∞ = T2 × {y = 0}. Here η(x′) is the unknown function on
the boundary. The first result in this section is

Proposition 4.1. Let � ≥ 2. Let b0 , b3 be given in H
�− 1

2
0 (T2) and

H
�− 3

2
0 (T2), respectively. Fix γ > 0 arbitrarily. For λ ∈ C with Reλ ≥ γ, there

exists a unique solution η, u, p to (4.1)–(4.4) and (4.5) satisfying∫
Ω∞

p dx′dy = 0,
∫

T2
η dx′ = 0,

|u|H�(Ω∞) + |λ| �
2 |u|H0(Ω∞) + |∇p|H�−2(Ω∞) + |λ| �−2

2 |∇p|H0(Ω∞)

+ |η|
H�+ 1

2 (T2)
+ |λ| �+1/2

2 |η|H0(T2)

≤ Cγ

(
|b3|

H�− 3
2 (T2)

+ |λ| �−3/2
2 |b3|H0(T2)

+ |b0|
H�− 1

2 (T2)
+ |λ| �−1/2

2 |b0|H0(T2)

)
.

(4.6)

Further, η satisfies

|η|
H

5
2 (T2)

≤ Cγ

(
|b3|

H
1
2 (T2)

+ |b0|
H

3
2 (T2)

)
,(4.7)

|λ||η|
H

3
2 (T2)

≤ Cγ

(
|b3|

H
1
2 (T2)

+ |b0|
H

3
2 (T2)

)
.(4.8)

The constant Cγ remains bounded for Reλ ≥ γ.

We divide the proof of this proposition into several steps. As in the previous
section we follow [13]. After expanding the unknowns into the Fourier series
in x′ ∈ T2, we obtain the system of ordinary differential equations (3.6), (3.7)
and (3.8) supplemented with the boundary conditions on y = 0

λη(ξ′) − u
(ξ′)
3 = b

(ξ′)
0 ,(4.9)

iξαu
(ξ′)
3 +

du
(ξ′)
α

dy
= 0, α = 1, 2,(4.10)

−p(ξ′) + 2ν
du

(ξ′)
3

dy
− σ |ξ′|2 η(ξ′) = b

(ξ′)
3 ,(4.11)

where ξ′ = (ξ1, ξ2) ∈ Z2, |ξ′| =
√
ξ21 + ξ22 and b(ξ

′)
α (α = 0, 3) denotes the

corresponding Fourier coefficient of the boundary data. For a while we assume
ξ′ �= (0, 0). From (4.9) and (4.11) we can eliminate the unknown η(ξ′) and
replace (4.11) by

(4.12) −p(ξ′) + 2ν
du

(ξ′)
3

dy
− σ

λ
|ξ′|2 u(ξ′)

3 = b
(ξ′)
3 +

σ

λ
|ξ′|2 b(ξ′)

0 .

We use (3.9) again to obtain the solution. Substituting (3.9) into (4.10) and
(4.12), we derive the linear algebraic system for Φ1,Φ2, φ.
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By virtue of the results in [13], Sections 2 and 3, we get the explicit form of
the solution u(ξ′), p(ξ′), η(ξ′)

u(ξ′)
α (λ, y) =

e0(y)
r(r + |ξ′|)D iξαr(r − |ξ′|) λ

ν2

(
b
(ξ′)
3 +

σ

λ
|ξ′|2 b(ξ′)

0

)
+

e1(y)
(r + |ξ′|)D (−iξα)

λ

ν2

(
r2 + |ξ′|2) (b(ξ′)

3 +
σ

λ
|ξ′|2 b(ξ′)

0

)
, α = 1, 2,

(4.13)

u
(ξ′)
3 (λ, y) =

e0(y)
D (− |ξ′|) λ

ν2

(
b
(ξ′)
3 +

σ

λ
|ξ′|2 b(ξ′)

0

)
+

e1(y)
(r + |ξ′|)D |ξ′| λ

ν2

(
r2 + |ξ′|2) (b(ξ′)

3 +
σ

λ
|ξ′|2 b(ξ′)

0

)
,

(4.14)

p(ξ′)(λ, y) = − 1
D
λ

ν

(
r2 + |ξ′|2) (b(ξ′)

3 +
σ

λ
|ξ′|2 b(ξ′)

0

)
e−|ξ′|y,(4.15)

η(ξ′) =
1
λ

(
1 − σ|ξ′|3

ν2D
)
b
(ξ′)
0 − |ξ′|

ν2D b
(ξ′)
3 ,(4.16)

where
D =

(
r2 + |ξ′|2)2 − 4r|ξ′|3 +

σ

ν2
|ξ′|3.

To obtain crucial estimates we need

Lemma 4.1. Let γ > 0 be arbitrarily fixed. For λ ∈ C with Reλ ≥ γ it
holds that

|D| ≥ γ2

ν2
, |D| ≥ 2

ν
|λ||ξ′|2,(4.17)

σ|ξ′|3 ≤ ν2

(
7
2

+
σ

2

√
ν

γ

)
|D|, |λ|2 ≤

(
3ν2 +

σ

2

√
ν

γ

)
|D|.(4.18)

This lemma was proved in [13], Lemma 2.5. We first note that

(4.19) 2−
3
4

(√
|λ|
ν

+ |ξ|
)

≤ |r| ≤
√

|λ|
ν

+ |ξ|.

We proceed to estimate u(ξ′) term by term as in proving Proposition 3.1. The
first and second terms of u(ξ′)

α , α = 1, 2 can be estimated as follows:

|r|2�

∫ ∞

0

|e0(y)|2 dy |i ξα|
2 |r (r − |ξ′|)|2

|r (r + |ξ′|)D|2
∣∣∣∣ λν2

b
(ξ′)
3 +

σ|ξ′|2
ν2

b
(ξ′)
0

∣∣∣∣2
≤

√
2

(
|λ|2
ν4

|ξ′|2|r|2
|D|2 |r|2�−3

∣∣∣b(ξ′)
3

∣∣∣2 +
σ2

ν4

|ξ′|6
|D|2 |r|

2�−1
∣∣∣b(ξ′)

0

∣∣∣2) ,
(4.20)

|r|2�

∫ ∞

0

|e1(y)|2 dy
|−iξα|2

∣∣r2 + |ξ′|2∣∣2
|(r + |ξ′|)D|2

∣∣∣∣∣ λν2
b
(ξ′)
3 +

σ |ξ′|2
ν2

b
(ξ′)
0

∣∣∣∣∣
2

≤ 4

(
|λ|2
ν4

|ξ′||r|3
|D|2 |r|2�−3

∣∣∣b(ξ′)
3

∣∣∣2 +
σ2

ν4

|r||ξ′|5
|D|2 |r|2�−1

∣∣∣b(ξ′)
0

∣∣∣2) .
(4.21)
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Here we have used Lemma 3.2 and the fact that∣∣r2 + |ξ′|2∣∣2
|r + |ξ′||2 ≤ 2|r|2.

In the same manner we can derive the similar inequalities for the first and
second term of u(ξ′)

3 . For p(ξ′) we have

|r|2�−4

∫ ∞

0

|ξ′|2
∣∣∣p(ξ′)

∣∣∣2 dy(4.22)

≤ 4

(
|λ|2
ν2

|ξ′||r|3
|D|2 |r|2�−3

∣∣∣b(ξ′)
3

∣∣∣2 +
σ2

ν2

|r||ξ′|5
|D|2 |r|2�−1

∣∣∣b(ξ′)
0

∣∣∣2) .
As a consequence of these estimates, by Lemma 4.1 we have

3∑
α=1

|r|2�

∫ ∞

0

∣∣∣u(ξ′)
α

∣∣∣2 dy + |r|2�−4

∫ ∞

0

|ξ′|2
∣∣∣p(ξ′)

∣∣∣2 dy(4.23)

≤ C

(
|r|2�−1

∣∣∣b(ξ′)
0

∣∣∣2 + |r|2�−3
∣∣∣b(ξ′)

3

∣∣∣2) .
By Lemma 3.2 the derivatives with respect to y up to the �-th order can be
bounded by the right hand side of (4.23) if � is a positive integer. For ξ′ = (0, 0)
the solution becomes trivial, because b(0,0)

0 = b
(0,0)
3 = 0. It also follows from

(4.9) that η(0,0) = 0. Collecting these and summing over ξ′ ∈ Z2, we obtain
the estimates for u and p in Proposition 4.1 for a positive integer � ≥ 2. For
non integer � we obtain the desired estimates by interpolation.

We now start to estimate η(ξ′). Note that we can rewrite (4.16) as follows

(4.24) η(ξ′) =
r3 + |ξ′|r2 + 3|ξ′|2r − |ξ′|3

ν(r + |ξ′|)D b
(ξ′)
0 − |ξ′|

ν2D b
(ξ′)
3 ≡ I0 + I3.

Lemma 4.2. Let Reλ ≥ γ (> 0) and � ≥ 2. Then

|r|�+ 1
2 |η(ξ′)| ≤ C

(
|r|�− 1

2 |b0| + |r|�− 3
2

∣∣∣b(ξ′)
3

∣∣∣) ,(4.25)

|ξ′| 52 |η(ξ′)| + |λ||ξ′| 32 |η(ξ′)| ≤ C
(
|ξ′| 32

∣∣∣b(ξ′)
0

∣∣∣+ |ξ′| 12
∣∣∣b(ξ′)

3

∣∣∣) .(4.26)

The constant C is uniformly bounded for Reλ ≥ γ (> 0).

Proof. From (4.24) and Lemma 4.1, we have

|r|�+ 1
2 |I0| = |r|�+ 1

2

∣∣r3 + |ξ|r2 + 3|ξ|2r − |ξ|3∣∣
|ν||r + |ξ|||D|

∣∣∣b(ξ′)
0

∣∣∣
≤ C

ν|D|

(√
|λ|
ν

+ |ξ|
)3

|r|�− 1
2

∣∣∣b(ξ′)
0

∣∣∣
≤ C|r|�− 1

2

∣∣∣b(ξ′)
0

∣∣∣ .
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It is easily seen from Lemma 4.1 that the constant C is uniformly bounded for
Reλ ≥ γ (> 0). In the same way we obtain

|r|�+ 1
2 |I3| ≤ C|r|�− 3

2

∣∣∣b(ξ′)
3

∣∣∣ .
Combining these two inequalities, we can show (4.25). The first term of the
left hand side of (4.26) can be estimated in the same manner as above. For the
second term in (4.26) we use expression (4.16).

|λ| |ξ′| 32
∣∣∣η(ξ′)

∣∣∣ ≤ ∣∣∣∣1 − σ|ξ′|3
ν2D

∣∣∣∣ |ξ′| 32 ∣∣∣b(ξ′)
0

∣∣∣+ |λ||ξ′|2
ν2 |D| |ξ′| 12

∣∣∣b(ξ′)
3

∣∣∣ .
From this inequality and Lemma 4.1 the second estimate follows.

This lemma completes the proof of Proposition 4.1.
From Proposition 4.1 it follows

Corollary 4.1. Let 2 ≤ � ≤ 4. Let b0 be given in H
�− 1

2
0

(
T2
)
. Then

we can take γ1 > 0 so that , for λ ∈ C with Reλ ≥ γ1, there exists a unique
solution η, u, p to (4.1)–(4.4) and

−p+ 2ν∂3u3 + (−1 + σ∆F ) η = 0(4.27) ∫
Ω∞

p dx′dy = 0,
∫

T2
η dx′ = 0,

which satisfies

|u|H�(Ω∞) + |λ| �
2 |u|H0(Ω∞) + |∇p|H�−2(Ω∞) + |λ| �−2

2 |∇p|H0(Ω∞)

+ |η|
H�+ 1

2 (T2)
+ |λ| �+1/2

2 |η|H0(T2)

≤ Cγ1

(
|b0|

H�− 1
2 (T2)

+ |λ| �−1/2
2 |b0|H0(T2)

)
.

Further, this solution satisfies

|u|H2(Ω∞) + |λ||u|H0(Ω∞) + |∇p|H0(Ω∞) ≤ Cγ1 |b0|H 3
2 (T2)

,(4.28)

|η|
H

5
2 (T2)

+ |λ||η|
H

3
2 (T2)

≤ Cγ1 |b0|H 3
2 (T2)

.(4.29)

The constant Cγ1 remains bounded for Reλ ≥ γ1.

Proof. Let η be given in H
3
2
0 (T2). By Proposition 4.1 we have the solution

η̌, u, p to the problem (4.1)–(4.4) and

−p+ 2ν∂3u3 + σ∆F η̌ = η.

Then we can define the mapping

H
3
2
0

(
T2
) � η → η̌ ∈ H

3
2
0

(
T2
)
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for fixed b0. For given ηj , j = 1, 2 in H
3
2
0

(
T2
)
, estimate (4.8) yields

|λ| |η̌1 − η̌2|
H

3
2 (T2)

≤ Cγ |η1 − η2|
H

1
2 (T2)

≤ Cγ |η1 − η2|
H

3
2 (T2)

.

We can choose γ1 > 0 so that, if Reλ ≥ γ1, then

Cγ

|λ| ≤
Cγ

Reλ
≤ Cγ

γ1
≤ 1

2
.

Hence, for λ with Reλ ≥ γ1 we have the unique fixed point η = η̌, which solves
(4.1)–(4.4) and (4.27) together with the corresponding u and p. For this η, by
estimates (4.7), (4.8), it holds that

(4.30) |η|
H

5
2 (T2)

+ |λ||η|
H

3
2 (T2)

≤ Cγ1 |b0|H 3
2 (T2)

.

The constant Cγ1 remains bounded for Reλ ≥ γ1. To obtain estimate (4.28),
we set � = 2 in (4.20) and (4.21) with b3 replaced by η = η̌. To estimate the
first and second terms of u(ξ′)

α , α = 1, 2, we have

|r|4
∫ ∞

0

|e0(y)|2 dy |i ξα|
2 |r (r − |ξ′|)|2

|r (r + |ξ′|)D|2
∣∣∣∣ λν2

η(ξ′) +
σ|ξ′|2
ν2

b
(ξ′)
0

∣∣∣∣2
≤

√
2

(
1
ν4

|ξ′||r|3
|D|2 |λ|2|ξ′|

∣∣∣η(ξ′)
∣∣∣2 +

σ2

ν4

|ξ′|3|r|3
|D|2 |ξ′|3

∣∣∣b(ξ′)
0

∣∣∣2) ,
(4.31)

|r|4
∫ ∞

0

|e1(y)|2 dy
|−iξα|2

∣∣r2 + |ξ′|2∣∣2
|(r + |ξ′|)D|2

∣∣∣∣∣ λν2
η(ξ′) +

σ |ξ′|2
ν2

b
(ξ′)
0

∣∣∣∣∣
2

≤ 4

(
1
ν4

|r|4
|D|2 |λ|

2|ξ′|
∣∣∣η(ξ′)

∣∣∣2 +
σ2

ν4

|r|4|ξ′|2
|D|2 |ξ′|3

∣∣∣b(ξ′)
0

∣∣∣2) .
(4.32)

By Lemma 4.1 we see that the right hand sides of both inequalities above can
be bounded by

C

(
|λ|2|ξ′|

∣∣∣η(ξ′)
∣∣∣2 + |ξ′|3

∣∣∣b(ξ′)
0

∣∣∣2)
where the constant C is independent of λ and ξ′. We can estimate u3 in the
same manner. Since we already have (4.30), taking sums in ξ′ ∈ Z2, we can
show

|u|H2(Ω∞) + |λ||u|H0(Ω∞) ≤ Cγ1 |b0|H 3
2 (T2)

.

For p we set � = 2 in (4.22) with b3 replaced by η∫ ∞

0

|ξ′|2
∣∣∣p(ξ′)

∣∣∣2 dy ≤ 4

(
1
ν2

|r|4
|D|2 |λ|

2|ξ′|
∣∣∣η(ξ′)

∣∣∣2 +
σ2

ν2

|r|4|ξ′|2
|D|2 |ξ′|3

∣∣∣b(ξ′)
0

∣∣∣2)
and proceed as above. Combining the estimates for u and η, we obtain (4.28).

We next prove
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Proposition 4.2. Let b0 be given in H
3
2
0

(
T2
)
. There is a γ2 > 0 such

that, for λ ∈ C with Reλ ≥ γ2, the problem

λη − u3 = b0 on SF ,(4.33)
λu− ν∆u+ ∇p = 0 in Ω,(4.34)
div u = 0 in Ω,(4.35)
u = 0 on SB,(4.36)
∂αu3 + ∂3uα = 0, α = 1, 2, on SF ,(4.37)
− p+ 2ν∂3u3 + (1 − σ∆F ) η = 0 on SF ,(4.38) ∫

Ω

p dx′dy = 0,
∫

T2
η dx′ = 0.

has a unique solution η, u, p which satisfies

|u|H2(Ω) + |λ||u|H0(Ω) + |∇p|H0(Ω) ≤ C|b0|H 3
2 (T2),(4.39)

|η|
H

5
2 (T2)

+ |λ||η|
H

3
2 (T2)

≤ C|b0|
H

3
2 (T2)

.(4.40)

The proof of this proposition starts with the solution η, uf , pf to the prob-
lem in the half space

λη − uf
3 = b0 on ∂Ω−∞ = T2 × {y = 0},(4.41)

λuf − ν∆uf + ∇pf = 0 in Ω−∞,(4.42)

div uf = 0 in Ω−∞,(4.43)

∂αu
f
3 + ∂3u

f
α = 0, α = 1, 2, on ∂Ω−∞,(4.44)

− pf + 2ν∂3u
f
3 + (1 − σ∆F ) η = 0 on ∂Ω−∞.(4.45)

Corollary 4.1 implies the existence of such a solution. Indeed, let u′, p′, η′ be the
solution to the problem (4.1)–(4.4) and (4.27) in Ω∞ for −b0 given in Corollary
4.1. Then for (x′, y) ∈ Ω−∞

(4.46) uf (x′, y) = (u′1(x
′,−y), u′2(x′,−y),−u′3(x′,−y)), pf (x′, y) = p′(x′,−y)

and η(x′) = −η′(x′) satisfy (4.41)–(4.45). Using the cut off function ζ(y)
used in Section 3, we set u1 = ζ(y)uf , p1 = ζ(y)pf . To adjust the solenoidal
condition, we put u2 = ∇φ2, where φ2 is the solution to the problem

∆φ2 = −ζ ′(y)uf
3 in Ω,(4.47)

φ2 = 0 on SF , ∂yφ
2 = 0 on SB,(4.48)

guaranteed by Lemma 3.3. Here we notice that the constant mode φ2,(0,0) of
φ2 is equal to zero since uf,(0,0)

3 is zero. To adjust the boundary conditions on
SF and SB, we use Proposition 3.3, noting that u2

3 = 0 on SB. Let u3, p3 be
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the solution to the problem

λu3 − ν∆u3 + ∇p3 = 0, div u3 = 0 in Ω,(4.49)

∂αu
3
3 + ∂3u

3
α = − (∂αu

2
3 + ∂3u

2
α

)
, α = 1, 2, on SF ,(4.50)

− p3 + 2ν∂3u
3
3 = −2ν∂3u

2
3 on SF ,(4.51)

u3 = −∇φ2 on SB.(4.52)

Proposition 2.1 implies the existence of the solution u4, p4 to the homogeneous
boundary value problem

λu4−ν∆u4+∇p4 = ν
(
2ζ ′∂3u

f + ζ ′′uf
)−pf∇ζ−λu2+ν∆u2,(4.53)

div u4 = 0 in Ω,

∂αu
4
3 + ∂3u

4
α = 0, α = 1, 2, on SF ,(4.54)

− p4 + 2ν∂3u
4
3 = 0 on SF ,(4.55)

u4 = 0 on SB.(4.56)

Here we set ũ = u1 + u2 + u3 + u4, p̃ = p1 + p3 + p4. Then we see that

λũ− ν∆ũ+ ∇p̃ = 0 in Ω,(4.57)
div ũ = 0 in Ω,(4.58)
∂αũ3 + ∂3ũα = 0, α = 1, 2, on SF ,(4.59)
− p̃+ 2ν∂3ũ3 + (1 − σ∆F )η = 0 on SF ,(4.60)
ũ = 0 on SB,(4.61)

and that

(4.62) λη − ũ3 = b0 + Mb0 on SF .

Here M is the linear operator defined by

Mb0 ≡ −R(u2 + u3 + u4) = − (u2
3 + u3

3 + u4
3

)∣∣
SF
.

By virtue of the estimates of solutions in Corollary 4.1, Lemma 3.3, Proposition
3.3 and Proposition 2.1, we see that M is the bounded operator in H

3
2
0

(
T2
)
. If

there exists a bounded inverse (I+M)−1 in H
3
2
0

(
T2
)
, the proof of Proposition

4.2 is completed by solving problem (4.33)–(4.38) with b0 replaced by (I +
M)−1b0. For this we begin by estimating each Ruj , j = 2, 3, 4 in Mb0 in
terms of the norm |b0|

H
3
2 (T2)

. It is clear that
∣∣Ruj

∣∣
H

3
2 (T2)

≤ ∣∣uj
∣∣
H2(Ω)

. By

Proposition 2.1 the norm
∣∣u4
∣∣
H2(Ω)

can be estimated in terms of the L2 norm
of the right hand sides (4.53), which is bounded as follows:

(4.63)
∣∣ν (2ζ ′∂3u

f + ζ ′′uf
)− pf∇ζ − λu2 + ν∆u2

∣∣
H0(Ω)

≤ C
(∣∣uf

∣∣
H1(Ω−∞)

+
∣∣pf
∣∣
H0(Ω−∞)

+
∣∣λu2

∣∣
H0(Ω)

+
∣∣u2
∣∣
H2(Ω)

)
.
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Since u2 = ∇φ2 and φ2 is the solution to problem (4.47), (4.48), it holds that,
for any ψ ∈ H1 (Ω) vanishing on SF ,(

λu2,∇ψ)
L2(Ω)

=
(−λ div(ζ(y)uf ), ψ

)
L2(Ω)

=
(
λζ(y)uf ,∇ψ)

L2(Ω)
.

From this fact it follows that∣∣λu2
∣∣
H0(Ω)

≤ ∣∣λuf
∣∣
H0(Ω−∞)

,

whose right hand side can be estimated when we recall (4.46) and expressions
(4.13), (4.14) with b3 replaced by η. In fact, for the first and second terms of
uf,(ξ′)

α , α = 1, 2

|λ|2
∫ ∞

0

|e0(y)|2 dy |i ξα|
2 |r (r − |ξ′|)|2

|r (r + |ξ′|)D|2
∣∣∣∣ λν2

η(ξ′) +
σ|ξ′|2
ν2

b
(ξ′)
0

∣∣∣∣2
≤

√
2

ν4

(
|λ|2

|r| |D|2 |λ|
2|ξ′|2

∣∣∣η(ξ′)
∣∣∣2 + σ2 |ξ′|3|λ|2

|r| |D|2 |ξ′|3
∣∣∣b(ξ′)

0

∣∣∣2) ,
(4.64)

|λ|2
∫ ∞

0

|e1(y)|2 dy
|−iξα|2

∣∣r2 + |ξ′|2∣∣2
|(r + |ξ′|)D|2

∣∣∣∣∣ λν2
η(ξ′) +

σ |ξ′|2
ν2

b
(ξ′)
0

∣∣∣∣∣
2

≤ 4
ν4

(
|λ|2
|D|2 |λ|

2|ξ′|
∣∣∣η(ξ′)

∣∣∣2 + σ2 |λ|2|ξ′|2
|D|2 |ξ′|3

∣∣∣b(ξ′)
0

∣∣∣2)
(4.65)

(cf. (4.20), (4.21) with � = 0 ). We can estimate uf
3 in the same manner.

Summing in ξ′ ∈ Z2 and using Lemma 4.1 and (4.29), we obtain∣∣λu2
∣∣
H0(Ω)

≤ ∣∣λuf
∣∣
H0(Ω−∞)

≤ C|λ|− 1
4 |b0|

H
3
2 (T2)

.

The last term of (4.63) can be estimated by (4.28) as follows:

(4.66)
∣∣∆u2

∣∣
H0(Ω)

≤ ∣∣φ2
∣∣
H3(Ω)

≤ C
∣∣uf
∣∣
H1(Ω−∞)

≤ C
∣∣uf
∣∣ 12
H0(Ω−∞)

∣∣uf
∣∣ 12
H2(Ω−∞)

≤ C|λ|− 5
8 |b0|

H
3
2 (T2)

.

Here we used the convexity of Sobolev norm. To estimate |pf | we use (4.15)
with b3 replaced by η and proceed as above∫ ∞

0

∣∣∣p f,(ξ′)
∣∣∣2 dy ≤ 4|r|4

ν2 |D|2
( |λ|2
|ξ′|
∣∣∣η(ξ′)

∣∣∣2 + σ2|ξ′|3
∣∣∣b(ξ′)

0

∣∣∣2) .
By Lemma 4.1 the quantity

|λ|2|r|4
|D|2

is bounded from above. Hence, summing in ξ′ and using estimate (4.29), we
obtain ∣∣pf

∣∣
H0(Ω−∞)

≤ C

|λ| |b0|H 3
2 (T2)

.



�

�

�

�

�

�

�

�

300 Takaaki Nishida, Yoshiaki Teramoto and Hideaki Yoshihara

We next estimate
∣∣u3
∣∣
H0(Ω)

. By (3.24) in Proposition 3.3 it holds that

(4.67)
∣∣u3
∣∣
H2(Ω)

≤ C

(∣∣∇φ2
∣∣
H

3
2 (T2)

+ |λ| 34 ∣∣∇φ2
∣∣
H0(T2)

+
3∑

α=1

(∣∣∂αu
2
3 + ∂3u

2
α

∣∣
H

1
2 (T2)

+ |λ| 14 ∣∣∂αu
2
3 + ∂3u

2
α

∣∣
H0(T2)

))
.

Since u2 = ∇φ2, (4.66) yields∣∣∂αu
2
3 + ∂3u

2
α

∣∣
H

1
2 (T2)

=
∣∣2∂α∂3φ

2
∣∣
H

1
2 (T2)

≤ C
∣∣φ2
∣∣
H3(Ω)

≤ C
∣∣uf
∣∣
H1(Ω−∞)

≤ C

|λ| 58 |b0|
H

3
2 (T2)

,

|λ| 14 ∣∣∂αu
2
3 + ∂3u

2
α

∣∣
H0(T2)

≤ C

|λ| 38 |b0|
H

3
2 (T2)

, α = 1, 2, 3,

and ∣∣∇φ2
∣∣
H

3
2 (T2)

≤ C
∣∣φ2
∣∣
H3(Ω)

≤ C

|λ| 58 |b0|
H

3
2 (T2)

.

We need to estimate the second term in (4.67) more carefully because of the
factor |λ| 34 . Noting that

∇φ2 =
(
∂1φ

2, ∂2φ
2, 0
)

on SB,

we see that the norm
∣∣∇φ2

∣∣
H0(T2)

is equivalent to the square root of

∑
ξ′∈Z2\{(0,0)}

|ξ′|2
∣∣∣φ2,(ξ′)(−1)

∣∣∣2 ,
where

φ2(x′, y) =
∑

ξ′∈Z2\{(0,0)}
φ2,(ξ′)(y) eix′·ξ′

, (x′, y) ∈ Ω = T2 × (−1, 0).

From equation (4.47) it follows that, for each ξ′ ∈ Z2 \ {(0, 0)},

(4.68) −
(
d

dy

)2

φ2,(ξ′)(y) + |ξ′|2φ2,(ξ′)(y) = ζ ′(y)uf,(ξ′)
3 (y) on (−1, 0).

We take the scalar product of (4.68) with |ξ′|2φ2,(ξ′)(y) on the interval (−1, 0).
Then, integrating by parts and using the boundary conditions (4.48), we obtain∫ 0

−1

∣∣∣∣ ddy |ξ′|φ2,(ξ′)(y)
∣∣∣∣2 dy +

∫ 0

−1

∣∣∣|ξ′|2φ2,(ξ′)(y)
∣∣∣2 dy

≤
(∫ 0

−1

∣∣∣ζ ′(y)uf,(ξ′)
3 (y)

∣∣∣2 dy) 1
2
(∫ 0

−1

∣∣∣|ξ′|2φ2,(ξ′)(y)
∣∣∣2 dy) 1

2
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by the Schwarz inequality. From this we can derive∫ 0

−1

∣∣∣∣ ddy |ξ′|φ2,(ξ′)(y)
∣∣∣∣2 dy ≤ 1

2

∫ 0

−1

∣∣∣ζ ′(y)uf,(ξ′)
3 (y)

∣∣∣2 dy.
This inequality together with the equality

|ξ′|φ2,(ξ′)(−1) =
∫ 0

−1

d

dy

(
|ξ′|φ2,(ξ′)(y)

)
dy

yields

|ξ′|2
∣∣∣φ2,(ξ′)(−1)

∣∣∣2 ≤
(∫ 0

−1

∣∣∣∣ ddy (|ξ′|φ2,(ξ′)(y)
)∣∣∣∣ dy)2

≤
∫ 0

−1

∣∣∣∣ ddy |ξ′|φ2,(ξ′)(y)
∣∣∣∣2 dy ≤ 1

2

∫ 0

−1

∣∣∣ζ ′(y)uf,(ξ′)
3 (y)

∣∣∣2 dy.
Summing in ξ′ and using estimate (4.28) we obtain

|λ| 34 ∣∣∇φ2
∣∣
H0(T2)

≤ C|λ| 34 ∣∣uf
∣∣
H0(Ω−∞)

≤ C|λ|− 1
4 |b0|

H
3
2 (T2)

.

Collecting the estimates obtained above, we can show

|Mb0|
H

3
2 (T2)

≤ C

|λ| 14 |b0|
H

3
2 (T2)

,

where the constant C is independent of λ. Therefore we can conclude the
assertion of Proposition 4.2.

5. Linear nonstationary problem

In this section we solve globally in time the linear nonstationary problem

∂tη − v3 = 0 on SF ,(5.1)
∂tv − ν∆v + ∇q = f0 in Ω,(5.2)
div v = 0 in Ω,(5.3)
v = 0 on SB,(5.4)
∂3vj + ∂jv3 = 0, j = 1, 2, on SF ,(5.5)
q − 2ν∂3v3 − (1 − σ∆F )η = 0 on SF ,(5.6)
v = 0, η = 0 t = 0(5.7)

for arbitrarily given f0 ∈ K�−2
(0) (Ω × R+) with 3 < � <

7
2
. As seen in Section 2,

we obtain the linear stationary problem (2.14), (2.15) with a parameter λ ∈ C

by transforming in t. By applying the orthogonal projection P 0 introduced in
Section 2, this stationary problem was reduced to (2.16):

(5.8) (λ−G)
(
η
v

)
=
(
g0
f

)
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with g0 ∈ H
3
2
0

(
T2
)

and f ∈ P 0H0(Ω). G is the matrix of operators

G =
(

0 R
−R∗(1 − σ∆F ) −A

)
introduced in Section 2. From now on we set X = H

3
2
0

(
T2
) × P 0H0(Ω) and

Y = H
5
2
0

(
T2
)× P 0H2(Ω).

Proposition 5.1. Let γ2 > 0 be the constant in Proposition 4.2. Let
(g0, f) be arbitrarily given in X. If λ satisfies Reλ ≥ γ2, then there is a unique
solution (η, v) to problem (5.8) such that

∂jv3 + ∂3vj = 0 on SF , j = 1, 2,(5.9)
v = 0 on SB,(5.10)

|v|H2(Ω) + |λ||v|H0(Ω)+ |η|
H

5
2 (T2)

+ |λ||η|
H

3
2 (T2)

≤ C
(
|f |H0(Ω) + |g0|

H
3
2 (T2)

)
.

(5.11)

The constant C > 0 remains bounded for Reλ ≥ γ2.

Proof. As noticed in the end of Section 2, we first take the solution
v(0), q(0) to problem (2.17)–(2.21) obtained in Proposition 2.1. Note that Rv(0)

belongs to H
3
2
0

(
T2
)
. We next take the solution η, v(1), q(1) to the problem

λη − v
(1)
3 = Rv(0) + g0 on SF ,(5.12)

λv(1) − ν∆v(1) + ∇q(1) = 0 in Ω,(5.13)

div v(1) = 0 in Ω,(5.14)

v(1) = 0 on SB,(5.15)

∂αv
(1)
3 + ∂3v

(1)
α = 0, α = 1, 2, on SF ,(5.16)

− q(1) + 2ν∂3v
(1)
3 + (1 − σ∆F )η = 0 on SF ,(5.17)

by using Proposition 4.2 . We apply P 0 to (2.17) and to (5.13). Using Lemma
2.3 and boundary conditions (2.21), (5.17), we have

λv(0) +Av(0) = f

λv(1) +Av(1) +R∗(1 − σ∆F )η = 0 in Ω.(5.18)

Setting v = v(0) + v(1), we obtain the solution (η, v) to (5.8). Estimate (5.11)
comes from the estimates in Propositions 2.1, 4.2.

By this proposition we can regard G as a densely defined closed operator
in X, whose domain of definition is given by

(5.19) D(G) =
{

(η, v) ∈ X ; η ∈ H
3
2
0 (T2), v ∈ P 0H2(Ω),

∂jv3 + ∂3vj = 0 on SF , j = 1, 2, v = 0 on SB

}
.
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Proposition 4.2 above states that λ ∈ C with Reλ ≥ γ2 belongs to the resolvent
set ρ(G) and that the resolvent operator satisfies∣∣(λ−G)−1

∣∣
X

≤ C

|λ| ,(5.20) ∣∣(λ−G)−1
∣∣
X→Y

≤ C,(5.21)

for Reλ ≥ γ2. As a consequence of (5.20) and (5.21) we have

Corollary 5.1. We can take θ ∈ (π
2 , π
)

so that, if |arg(λ− γ2)| ≤ θ,
then λ ∈ ρ(G) and estimate (5.21) holds with a different constant C.

For the proof see, e.g., [6], Chapter 1, Section 3. Another important feature
following from (5.11) is that (λ − G)−1 is a compact operator by the Rellich
theorem. Hence the spectrum σ(G) consists of eigenvalues, and if λ ∈ C is not
an eigenvalue of G, λ belongs to ρ(G). Keeping this in mind, we have

Lemma 5.1. If Reλ ≥ 0, then λ belongs to ρ(G).

Proof. Let λ be as such. Suppose that

(λ−G)
(
η
v

)
=
(

0
0

)
,

or equivalently

λη −Rv = 0 on SF ,

λv +Av +R∗(1 − σ∆F )η = 0 in Ω.

Taking account of the definition of P 0 and R∗, we can recover a scalar q so that

λη − v3 = 0 on SF ,(5.22)
λv − ν∆v + ∇q = 0 in Ω,(5.23)
div v = 0 in Ω,(5.24)
v = 0 on SB,(5.25)
∂jv3 + ∂3vj = 0, j = 1, 2, on SF ,(5.26)
− q + 2ν∂3v3 + (1 − σ∆F )η = 0 on SF .(5.27)

We take the scalar product of (5.23) with v. Employing integral identity (2.3)
and using the boundary conditions (5.25)–(5.27), we have

λ(v, v)L2 + 〈v, v〉 +
∫

T2
(1 − σ∆F )ηv∗3dx

′ = 0.

Substituting v3 = λη into the boundary integral and integrating by parts, we
have

λ(v, v)L2 + 〈v, v〉 + λ∗
∫

T2
(|η|2 + σ |∇F η|2)dx′ = 0.
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Taking the real part of this identity, we see that v ≡ 0 by Lemma 2.5 and η = 0.
Hence, if Reλ ≥ 0, λ belongs to ρ(G).

Since the resolvent set ρ(G) is open in C, we can extend ρ(G) beyond the
imaginary axis by this lemma. Combining this fact and Corollary 5.1, we can
obtain

Proposition 5.2. We can take γ0 > 0 and θ0 ∈
(π

2
, π
)

so that , if

|arg(λ+ γ0)| ≤ θ0, then λ belongs to ρ(G) and it holds that

∣∣(λ−G)−1
∣∣
X

≤ C

1 + |λ| ,∣∣(λ−G)−1
∣∣
X→Y

≤ C.(5.28)

We state the regularity property of the solution to (5.8).

Proposition 5.3. Let � ≥ 2. Assume that λ satisfies the same condi-
tion in Proposition 5.2. Suppose f ∈ P 0H�−2(Ω), g0 ∈ H

�− 1
2

0 (T2). Then the
solution

(5.29)
(
η
v

)
= (λ−G)−1

(
g0
f

)
satisfies

(5.30) |v|H�(Ω) + |λ| �
2 |v|H0(Ω) + |η|

H�+1
2 (T2)

+ |λ| �
2+ 1

4 |η|H0(T2)

≤ C
(
|f |H�−2(Ω) + |λ| �

2−1|f |H0(Ω) + |g0|
H�− 1

2 (T2)
+ |λ| �

2− 1
4 |g0|H0(T2)

)
.

Proof. As in the proof of the previous lemma, we treat the following
problem by recovering q:

λη − v = g0 on SF ,(5.31)
λv − ν∆v + ∇q = f in Ω,(5.32)
div v = 0 in Ω,(5.33)
v = 0 on SB,(5.34)
∂jv3 + ∂3vj = 0, j = 1, 2, on SF ,(5.35)
− q + 2ν∂3v3 + (1 − σ∆F )η = 0 on SF .(5.36)

We begin the proof by differentiating η, v, q in the horizontal coordinates x′

formally and estimating these derivatives. To do this we define the operator
Λ�−2 by

Λ�−2φ =
∑

ξ′∈Z2

|ξ′|�−2φ(ξ′)eix′·ξ′
for φ =

∑
ξ′∈Z2

φ(ξ′)eix′·ξ′
.
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Applying Λ�−2 to (5.31)–(5.36), we see that

(5.37)
(

Λ�−2η
Λ�−2v

)
= (λ−G)−1

(
Λ�−2g0
Λ�−2f

)
.

From Proposition 5.2 it follows that Λ�−2v ∈ H2(Ω), hence Λ�−2v
∣∣
SF

∈H 3
2 (T2).

This implies that Rv ∈ H
�− 1

2
0 (T2) . We regard v, q as the solution to the

boundary value problem for the Stokes system

−ν∆v + ∇q = f − λv, div v = 0 in Ω,(5.38)
∂jv3 + ∂3vj = 0, j = 1, 2, on SF ,(5.39)

v3 = Rv on SF ,(5.40)
v = 0 on SB.(5.41)

Note that the set of the boundary conditions (5.39), (5.40) satisfies the com-
plementary condition. Therefore we obtain the estimate

|v|H�(Ω) ≤ C
(
|Rv|

H�− 1
2 (T2)

+ |λ||v|H�−2(Ω) + |f |H�−2(Ω)

)
≤ C

(∣∣Λ�−2v
∣∣
H2(Ω)

+ |λ||v|H�−2(Ω) + |f |H�−2(Ω)

)
.

See Lemma 3.3 in [3] for this estimate. By Proposition 5.2 we have∣∣Λ�−2v
∣∣
H2(Ω)

≤ C
(∣∣Λ�−2f

∣∣
H0(Ω)

+
∣∣Λ�−2g0

∣∣
H

3
2 (T2)

)
≤ C

(
|f |H�−2(Ω) + |g0|

H�− 1
2 (T2)

)
.

By the interpolation inequality of Sobolev norms we can bound the term
|λ||v|H�−2(Ω) as follows:

|λ||v|H�−2(Ω) ≤ |λ||v|1− 2
�

H�(Ω)
|v| 2�H0(Ω) ≤ ε|v|H�(Ω) + Cε|λ| �

2 |v|H0(Ω).

Choosing ε > 0 suitably, we obtain

|v|H�(Ω) ≤ C
(
|λ| �

2 |v|H0(Ω) + |g0|
H�− 1

2 (T2)
+ |f |H�−2(Ω)

)
.

The first term in the right hand side can be estimated as follows

|λ| �
2 |v|H0(Ω) ≤ C|λ| �

2−1
(
|f |H0(Ω) + |g0|

H
3
2 (T2)

)
(5.42)

≤ C

(
|λ| �

2−1|f |H0(Ω) + |λ| �
2−1|g0|

3
2�−1

H�− 1
2 (T2)

|g0|
2�−4
2�−1

H0(T2)

)
≤ C

(
|λ| �

2−1|f |H0(Ω) + |g0|
H�− 1

2 (T2)
+ |λ| �

2− 1
4 |g0|H0(T2)

)
.

By Proposition 5.2 we obtain∣∣Λ�−2η
∣∣
H

5
2 (T2)

≤ C
(∣∣Λ�−2f

∣∣
H0(Ω)

+
∣∣Λ�−2g0

∣∣
H

3
2 (T2)

)
,
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hence
|η|

H�+1
2 (T2)

≤ C
(
|f |H�−2(Ω) + |g0|

H�− 1
2 (T2)

)
.

We next estimate |λ| �
2+ 1

4 |η|H0(T2). Since we already show the boundedness of
the resolvent operator in Proposition 5.2, we can assume |λ| ≥ 1. Using (5.31),
we have

|λ| �
2+ 1

4 |η|H0(T2) ≤ C|λ| �
2− 3

4
(|Rv|H0(T2) + |g0|H0(T2)

)
.

We can bound |Rv|H0(T2) by |v|H1(Ω) so that Proposition 5.2 yields,

|Rv|H0(T2) ≤ C|v|H1(Ω) ≤ C|v| 12H0(Ω)|v|
1
2
H2(Ω)

≤ C|λ|− 1
2

(
|f |H0(Ω) + |g0|

H
3
2 (T2)

)
.

Hence, as in (5.42) we obtain

|λ| �
2+ 1

4 |η|H0(T2) ≤ C
(
|λ| �

2− 5
4

(
|f |H0(Ω) + |g0|

H
3
2 (T2)

)
+ |λ| �

2− 3
4 |g0|H0(T2)

)
≤ C

(
|λ| �−2

2 |f |H0(Ω) + |g0|
H�− 1

2 (T2)
+ |λ| �

2− 1
4 |g0|H0(T2)

)
.

Combining these estimates we get (5.30).

We now consider the problem (5.1)–(5.7).

Theorem 5.1. Let � > 2 be not a half integer. Suppose that the inho-
mogeneous term f0 in (5.2) is given in K�−2

(0) (Ω×R+). Then there is a unique
solution (η, v, q) to problem (5.1)–(5.7), with

η ∈ K
�+ 1

2
0,(0)(T

2 × R+), v ∈ K�
(0)(Ω × R+),

∇q ∈ K�−2
(0) (Ω × R+), q|SF

∈ K
�− 3

2
(0) (T2 × R+).(5.43)

This solution satisfies

|η|
K

�+ 1
2

0,(0)(T
2×R+)

+ |v|K�
(0)(Ω×R+) + |∇q|K�−2

(0) (Ω×R+) +
∣∣q|SF

∣∣
K

�− 3
2

(0) (T2×R+)
(5.44)

≤ C|f0|K�−2
(0) (Ω×R+).

Proof. We give the outline of the proof since the argument is almost in
the same line as in [3], Section 3. Extending f0 to be zero for t < 0, and
transforming this extension in t, we have

f̂0(τ ) =
∫ ∞

0

e−iτtf0(t)dt for τ ∈ R.

By setting λ = iτ , we see that this f̂0(−iλ) has an analytic extension to the
half-plane Reλ ≥ 0. By Proposition 5.3 we can find η̂(−iλ) and v̂(−iλ) such
that

(5.45)
(
η̂(−iλ)
v̂(−iλ)

)
= (λ−G)−1

(
0

P 0f̂0(−iλ)

)
.
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From the estimate (5.30) it follows that

|v̂(−iλ)|H�(Ω) + |λ| �
2 |v̂(−iλ)|H0(Ω) + |η̂(−iλ)|

H�+1
2 (T2)

+ |λ| �
2+ 1

4 |η̂(−iλ)|H0(T2)

(5.46)

≤ C
(
|f̂0(−iλ)|H�−2(Ω) + |λ| �

2−1|f̂0(−iλ)|H0(Ω)

)
.

Since the right hand side of (5.45) is analytic in λ in the half-plane Reλ ≥
0, η̂(−iλ) and v̂(−iλ) are also analytic there. We see that v̂(−iλ) on the
line Reλ = k with a fixed k > 0 is the transform of e−ktv(t) which, by
(5.46), is in K� (Ω × R+). Then Paley–Wiener theorem implies that e−ktv(t) ∈
K�

(0) (Ω × R+). As we see in Proposition 5.2, the imaginary axis Reλ = 0 be-
longs to the resolvent set ρ(G). Hence we can convert the path of the inverse
transform from Reλ = k to Reλ = 0, so that v(t) ∈ K�

(0) (Ω × R+). By the

same argument we have η(t) ∈ K
�+ 1

2
(0)

(
T2 × R+

)
. We can recover q from the

definition of P 0, whose estimate follows from (5.1) and (5.6).

As a corollary of this theorem we can show

Corollary 5.2. Let � > 2 be not a half integer. Suppose that f0 and
fj (j = 1, 2) are given in K�−2

(0) (Ω × R+) and K
�− 3

2
(0)

(
T2 × R+

)
, respectively.

Then there is a unique solution (η, v, q) to problem (5.1)–(5.7) where (5.5) is
replaced by

∂3vj + ∂jv3 = fj , j = 1, 2 on SF .

This solution satisfies

(5.47) |η|
K

�+ 1
2

(0) (T2×R+)
+ |v|K�

(0)(Ω×R+) + |∇q|K�−2
(0) (Ω×R+) +

∣∣q|SF

∣∣
K

�− 3
2

(0) (T2×R+)

≤ C

(
|f0|K�−2

(0) (Ω×R+) + |f1|
K

�− 3
2

(0) (T2×R+)
+ |f2|

K
�− 3

2
(0) (T2×R+)

)
with the indicated norms.

The outline of the proof of Corollary. We again follow the proof of The-
orem 2 in [3]. By Theorem 4.2.3 of [7] we can choose z ∈ K�+1

(0) (Ω × R+) so
that

z = 0, ∂yz = 0, ∂2
yz = (f2,−f1, 0) on SF

and z vanishes near SB. Setting v(1) = ∇×z and v = v(1) +v(2), we can reduce
the problem to the one for (η, v(2), q) in the previous theorem.

6. Decay estimates for full nonlinear problem

In this section we give the proof of Theorem 1.3. As noted in Theorem
1.2, after a finite instant T1 > 0, the solution η, v, q to the problem (1.2), (1.3),
(1.6)–(1.8) and

η(0) = η0, v(0) = v0
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belongs to the more regular class:

η ∈ K�+2+ 1
2
(
(T1,∞) × T2

)
, v ∈ K�+2 ((T1,∞) × Ω) ,

∇q ∈ K� ((T1,∞) × Ω) , q|SF
∈ K�+ 1

2
(
(T1,∞) × T2

)
.

Since 3 < � <
7
2

implies

K�+2+ 1
2
(
(T1,∞) × T2

) ⊆ Ck
(
(T1,∞) ;H�+1+ 1

2−2k
(
T2
))

for �+ 1 +
1
2
− 2k > 0 and

K�+2 ((T1,∞) × Ω) ⊆ Ck
(
(T1,∞) ;H�+1−2k (Ω)

)
for �+ 1 − 2k > 0

with continuous imbedding, it holds that

(6.1) |v(t)|H�+1(Ω) + |η(t)|
H

�+ 3
2

0 (T2)
≤ Cδ0 for t ≥ T1,

where C is independent of the solution and δ0 > 0 is given in Theorem 1.2.
Employing these facts, we derive the energy inequality in the following.

Since we are interested in the real-valued initial data, we can assume that
any scalar or vector functions in the sequel are real valued.

Step 1. We take the L2(Ω) scalar product of the first equation of (1.3)
with v to get by integrating by parts

(6.2)
1
2
d

dt
|v|2Ω + 〈v, v〉 +

∫
∂Ω

njSjk(v, q)vkdx
′ = (F0, v)Ω + (Q∇q, v)Ω.

From the first equation of (1.3) we have

(I −Q)∇q = −∂tv + ν∆v + F0.

Since I −Q = J (ζjcζjk) is symmetric positive definite if (ζij) is nonsingular,
we can replace ∇q in the right hand side of (6.2) by

(6.3) ∇q = (I −Q)−1 (−∂tv + ν∆v + F0) ,

so that

(Q∇q, v)Ω =
(
Q(I −Q)−1 (−∂tv + ν∆v + F0) , v

)
Ω

(6.4)

= −1
2
d

dt

(
Q(I −Q)−1v, v

)
Ω

+
1
2
(
∂t

(
Q(I −Q)−1

)
v, v
)
Ω

+
(
Q(I −Q)−1 (ν∆v + F0) , v

)
Ω
.

On the boundary ∂Ω = SB ∪SF (1.6)–(1.8) hold, hence the boundary terms in
(6.2) can be written as follows:∫

∂Ω

njSjk(v, q)vkdx
′ = −ν (F1, v1)T2 − ν (F2, v2)T2(6.5)

+ ((1 − σ∆F ) η, v3)T2 + (F3, v3)T2 .
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Here we identify SF with T2 . From (1.2) it follows that

((1 − σ∆F ) η, v3)T2 = ((1 − σ∆F ) η, ∂tη)T2(6.6)

=
1
2
d

dt

{
|η|2H0(T2) + σ |∇F η|2H0(T2)

}
.

Collecting these, we obtain

1
2
d

dt
|v|2H0(Ω) + 〈v, v〉 +

1
2
d

dt

{
|η|2H0(T2) + σ |∇F η|2H0(T2)

}
(6.7)

+
1
2
d

dt

(
Q(I −Q)−1v, v

)
Ω

= ν (F1, v1)T2 + ν (F2, v2)T2 − (F3, v3)T2

+ (F0, v)Ω +
1
2
(
∂t

(
Q(I −Q)−1

)
v, v
)
Ω

+
(
Q(I −Q)−1 (ν∆v + F0) , v

)
Ω
.

Step 2. Differentiate the first equation of (1.3) with respect to xα (α =
1 , 2 ) and take the inner product with ∂αv . In the same manner as in Step 1
we get

1
2
d

dt
|∂αv|2H0(Ω) + 〈∂αv, ∂αv〉 +

∫
T2

(1 − σ∆F )∂αη∂αv3dx
′

= ν (∂αF1, ∂αv1)T2 + ν (∂αF2, ∂αv2)T2 − (∂αF3, ∂αv3)T2

+ (∂αF0, ∂αv)Ω + (Q∂α∇q, ∂αv)Ω + (∂αQ∇q, ∂αv)Ω.

We use (1.2) again to get

((1 − σ∆F ) ∂αη, ∂αv3)T2 = ((1 − σ∆F ) ∂αη, ∂t∂αη)T2(6.8)

=
1
2
d

dt

{
|∂αη|2H0(T2) + σ |∇F ∂αη|2H0(T2)

}
.

Replacing ∇q by (6.3), we have

(Q∂α∇q, ∂αv)Ω =
(
Q∂α

(
(I −Q)−1 (−∂tv + ν∆v + F0)

)
, ∂αv

)
Ω

(6.9)

=
(
Q(I −Q)−1 (−∂t∂αv + ν∆∂αv + ∂αF0) , ∂αv

)
Ω

+
(
Q∂α(I −Q)−1 (−∂tv + ν∆v + F0) , ∂αv

)
Ω

= −1
2
d

dt

(
Q(I −Q)−1∂αv, ∂αv

)
Ω

+
1
2
(
∂t

(
Q(I −Q)−1

)
∂αv, ∂αv

)
Ω

+
(
Q(I −Q)−1 (ν∆∂αv + ∂αF0) , ∂αv

)
Ω

+
(
Q∂α(I −Q)−1 (−∂t∂αv + ν∆∂αv + ∂αF0) , ∂αv

)
Ω
.
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Collecting these, we obtain

1
2
d

dt
|∂αv|2H0(Ω) + 〈∂αv, ∂αv〉 +

1
2
d

dt

{
|∂αη|2H0(T2) + σ |∇F ∂αη|2H0(T2)

}
(6.10)

+
1
2
d

dt

(
Q(I −Q)−1∂αv, ∂αv

)
Ω

= ν (∂αF1, ∂αv1)T2 + ν (∂αF2, ∂αv2)T2 − (∂αF3, ∂αv3)T2

+ (∂αF0, ∂αv)Ω +
1
2
(
∂t

(
Q(I −Q)−1

)
∂αv, ∂αv

)
Ω

+
(
Q(I −Q)−1 (ν∆∂αv + ∂αF0) , ∂αv

)
Ω

+
(
Q∂α(I −Q)−1 (−∂tv + ν∆v + F0) , ∂αv

)
Ω

+
(
∂αQ(I −Q)−1 (−∂tv + ν∆v + F0) , ∂αv

)
Ω
.

Step 3. We next derive the similar equality for ∂2
αβv and ∂2

αβη, α, β =
1, 2. To do this we apply ∂2

αβ to the first equation of (1.3) and take the inner
product with ∂2

αβv. In a similar way as above we obtain

1
2
d

dt
|∂2

αβv|2H0(Ω) + 〈∂2
αβv, ∂

2
αβv〉(6.11)

+
1
2
d

dt

{
|∂2

αβη|2H0(T2) + σ
∣∣∇F ∂

2
αβη
∣∣2
H0(T2)

}
+

1
2
d

dt

(
Q(I −Q)−1∂2

αβv, ∂
2
αβv
)
Ω

= ν
(
∂2

αβF1, ∂
2
αβv1

)
T2 + ν

(
∂2

αβF2, ∂
2
αβv2

)
T2 −

(
∂2

αβF3, ∂
2
αβv3

)
T2

+ (∂2
αβF0, ∂

2
αβv)Ω +

1
2
(
∂t

(
Q(I −Q)−1

)
∂2

αβv, ∂
2
αβv
)
Ω

+
(
Q(I −Q)−1

(
ν∆∂2

αβv + ∂2
αβF0

)
, ∂2

αβv
)
Ω

+
(
∂α

(
Q(I −Q)−1

)
∂β (−∂tv + ν∆v + F0) , ∂2

αβv
)
Ω

+
(
∂β

(
Q(I −Q)−1

)
∂α (−∂tv + ν∆v + F0) , ∂2

αβv
)
Ω

+
(
∂2

αβ

(
Q(I −Q)−1

)
(−∂tv + ν∆v + F0) , ∂2

αβv
)
Ω
.

Step 4. We next derive the similar equality for ∂tv and ∂tη. Differentiate
the first equation of (1.3) in t and take the inner product with ∂tv. Similarly
we have

1
2
d

dt
|∂tv|2H0(Ω) + 〈∂tv, ∂tv〉 +

1
2
d

dt

{
|∂tη|2H0(T2) + σ |∇F ∂tη|2H0(T2)

}
(6.12)

+
1
2
d

dt

(
Q(I −Q)−1∂tv, ∂tv

)
Ω

= ν (∂tF1, ∂tv1)T2 + ν (∂tF2, ∂tv2)T2 − (∂tF3, ∂tv3)T2

+ (∂tF0, ∂tv)Ω +
1
2
(
∂t

(
Q(I −Q)−1

)
∂tv, ∂tv

)
Ω

+
(
Q(I −Q)−1 (ν∆∂tv + ∂tF0) , ∂tv

)
Ω
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+
(
Q∂t(I −Q)−1 (−∂tv + ν∆v + F0) , ∂tv

)
Ω

+
(
∂tQ(I −Q)−1 (−∂tv + ν∆v + F0) , ∂tv

)
Ω
.

We now set

E(t) = | v(t) |2H0(Ω) +
2∑

α=1

|∂αv(t)|2H0(Ω) +
2∑

α,β=1

|∂2
αβv(t)|2H0(Ω)

+ |∂tv(t)|2H0(Ω),

F(t) = 〈v, v〉 +
2∑

α=1

〈∂αv, ∂αv〉 +
2∑

α,β=1

〈∂2
αβv, ∂

2
αβv〉

+ 〈∂tv, ∂tv〉,

H(t) = |η|2H0(T2) + σ |∇F η|2H0(T2) +
2∑

α=1

(
|∂αη|2H0(T2) + σ |∇F ∂αη|2H0(T2)

)
+

2∑
α,β=1

(
|∂2

αβη|2H0(T2) + σ
∣∣∇F ∂

2
αβη
∣∣2
H0(T2)

)
+ |∂tη|2H0(T2) + σ |∇F ∂tη|2H0(T2) ,

Q(t) =
(
Q(I −Q)−1v, v

)
Ω

+
2∑

α=1

(
Q(I −Q)−1∂αv, ∂αv

)
Ω

+
2∑

α,β=1

(
Q(I −Q)−1∂2

αβv, ∂
2
αβv
)
Ω

+
(
Q(I −Q)−1∂tv, ∂tv

)
Ω
,

NB(t) = ν (F1, v1)T2 + ν (F2, v2)T2 − (F3, v3)T2

+
2∑

α=1

(ν (∂αF1, ∂αv1)T2 + ν (∂αF2, ∂αv2)T2 − (∂αF3, ∂αv3)T2)

+
2∑

α,β=1

(
ν
(
∂2

αβF1, ∂
2
αβv1

)
T2 +ν

(
∂2

αβF2, ∂
2
αβv2

)
T2−

(
∂2

αβF3, ∂
2
αβv3

)
T2

)
+ ν (∂tF1, ∂tv1)T2 + ν (∂tF2, ∂tv2)T2 − (∂tF3, ∂tv3)T2

and

NΩ(t) = (F0, v)Ω +
1
2
(
∂t

(
Q(I −Q)−1

)
v, v
)
Ω

+
(
Q(I −Q)−1 (ν∆v + F0) , v

)
Ω

+
2∑

α=1

{
(∂αF0, ∂αv)Ω +

1
2
(
∂t

(
Q(I −Q)−1

)
∂αv, ∂αv

)
Ω

+
(
Q(I −Q)−1 (ν∆∂αv + ∂αF0) , ∂αv

)
Ω

+
(
Q∂α(I −Q)−1 (−∂tv + ν∆v + F0) , ∂αv

)
Ω
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+
(
∂αQ(I −Q)−1 (−∂tv + ν∆v + F0) , ∂αv

)
Ω

}
+

2∑
α,β=1

{
(∂2

αβF0, ∂
2
αβv)Ω +

1
2
(
∂t

(
Q(I −Q)−1

)
∂2

αβv, ∂
2
αβv
)
Ω

+
(
Q(I −Q)−1

(
ν∆∂2

αβv + ∂2
αβF0

)
, ∂2

αβv
)
Ω

+
(
∂α

(
Q(I −Q)−1

)
∂β (−∂tv + ν∆v + F0) , ∂2

αβv
)
Ω

+
(
∂β

(
Q(I −Q)−1

)
∂α (−∂tv + ν∆v + F0) , ∂2

αβv
)
Ω

+
(
∂2

αβ

(
Q(I −Q)−1

)
(−∂tv + ν∆v + F0) , ∂2

αβv
)
Ω

}
+ (∂tF0, ∂tv)Ω +

1
2
(
∂t

(
Q(I −Q)−1

)
∂tv, ∂tv

)
Ω

+
(
Q(I −Q)−1 (ν∆∂tv + ∂tF0) , ∂tv

)
Ω

+
(
Q∂t(I −Q)−1 (−∂tv + ν∆v + F0) , ∂tv

)
Ω

+
(
∂tQ(I −Q)−1 (−∂tv + ν∆v + F0) , ∂tv

)
Ω
.

Summing the equalities obtained in Steps 1 ∼ 4, we get

(6.13)
1
2
d

dt
(E(t) + H(t) + Q(t)) + F(t) = NB(t) + NΩ(t).

Proposition 6.1. Let η, v, q be the solution given in Theorem 1.2. If
δ0 > 0 in Theorem 1.2 is small enough, it holds that

(6.14) H(t) ≤ CF(t) for t > T1,

with a constant C > 0 independent of the solution.

For the proof of this proposition and the estimates of terms in NB(t), NΩ(t)
and Q(t), we need the following lemmas.

Lemma 6.1. If δ0 > 0 in Theorem 1.2 is small enough, then the normal
derivatives of the velocity components ∂3vj , j = 1, 2, 3 on SF can be written in
terms of the tangential derivatives of the velocity components on SF for t > T1,
with T1 given in Theorem 1.2.

Proof. From the solenoidal condition, it holds

(6.15) ∂3v3 = −∂1v1 − ∂2v2.

Note that η and v satisfy on SF . Using (6.15), we can rewrite (1.6), (1.7) as
follows:

∂3v1 + ∂1v3 = C11 (η,∇η̃) ∂3v1 + C12 (η,∇η̃) ∂3v2

+ F ′
1

(
η,∇η̃,∇2η̃, v,∇F v

)
,

∂3v2 + ∂2v3 = C21 (η,∇η̃) ∂3v1 + C22 (η,∇η̃) ∂3v2

+ F ′
2

(
η,∇η̃,∇2η̃, v,∇F v

)
.
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Take δ0 > 0 so small that

det
(

1 − C11 (η,∇η̃) −C12 (η,∇η̃)
−C21 (η,∇η̃) 1 − C22 (η,∇η̃)

)
≥ 1

2
on SF .

Then we can solve the above system for ∂3v1and ∂3v2.

Lemma 6.2. Let u and p satisfy

− ν∆u+ ∇p = f0, div u = 0 in Ω,(6.16)
u = 0 on SB,(6.17)
∂ju3 + ∂3uj = fj on SF , j = 1, 2,(6.18)
u3 = f3 on SF ,(6.19)

then it holds for any � ≥ 0

(6.20) |u|H�+2(Ω) + |∇p|H�(Ω)

≤ C
(
|f0|H�(Ω) + |f1|

H�+1− 1
2 (T2)

+ |f2|
H�+1− 1

2 (T2)
+ |f3|

H�+2− 1
2 (T2)

)
.

This estimate comes from the facts that the Stokes system is elliptic in the sense
of [1], and that the boundary conditions satisfy the complementary condition.

Lemma 6.3. Take � ≥ 0. Let f be given in H�(T2). If φ defined on T2

satisfies
(1 − σ∆F )φ = f on T2,

then it holds that

(6.21) |φ|H�+2(T2) ≤ C|f |H�(T2).

This can be seen by Fourier series expansion.

The proof of Proposition 6.1. Since η, v and q satisfy for t > T1

− ν∆v + ∇q = −∂tv + F0 +Q∇q in Ω,
div v = 0 in Ω,
v = 0 on SB,

∂jv3 + ∂3vj = Fj on SF , j = 1, 2,
v3 = v3 on SF ,

by Lemma 6.2 it holds that

|v(t)|H3(Ω) + |∇q(t)|H1(Ω)(6.22)

≤ C
(
|∂tv(t)|H1(Ω) + |F0(t)|H1(Ω) + |Q∇q|H1(Ω)

+ |F1(t)|
H

3
2 (T2)

+ |F2(t)|
H

3
2 (T2)

+ |v3(t)|
H

5
2 (T2)

)
.
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Taking account of the explicit forms (1.4) and (1.5) of F0 and Q∇q and estimate
(6.1), we can estimate the second and third terms in the right hand side as
follow:

(6.23) |F0|H1(Ω) + |Q∇q|H1(Ω)

≤ Cδ0

(
|v(t)|H3(Ω) + |∇q(t)|H1(Ω) +

∣∣∇F
3η(t)

∣∣
H

1
2 (T2)

)
.

Remind that ∇F denotes the horizontal gradient (see page 272). In a similar
way we have

(6.24) |F1(t)|
H

3
2 (T2)

+ |F2(t)|
H

3
2 (T2)

≤ Cδ0

(
|v(t)|H3(Ω) +

∣∣∇F
3η(t)

∣∣
H

1
2 (T2)

)
.

From the solenoidal condition we see that the trace of v3 onto SF belongs to
H

5
2
0 (T2). Thus the last term in the right hand side of (6.22) can be estimated

as

(6.25) |v3(t)|
H

5
2 (T2)

≤ C|∇F
2v3(t)|

H
1
2 (T2)

≤ |∇F
2v3(t)|H1(Ω).

Collecting these and taking δ0 > 0 sufficiently small we get

(6.26) |v(t)|H3(Ω) + |∇q(t)|H1(Ω)

≤ C
(
|∂tv(t)|H1(Ω) + δ0

∣∣∇F
3η(t)

∣∣
H

1
2 (T2)

+ |∇F
2v3(t)|H1(Ω)

)
.

We now have to estimate the norm of η(t) in terms of the norms of v(t).
We differentiate the boundary condition (1.8) in ∂j , j = 1, 2 to get

(6.27) − (1 − σ∆F ) ∂jη = −∂jq + 2ν∂j∂3v3 + ∂jF3 on SF , t ≥ T1, j = 1, 2.

By use of the solenoidal condition and by Lemma 6.3 we obtain

(6.28) |∇F η(t)|H 5
2 (T2)

≤ C
(
|∇F q(t)|H 1

2 (T2)

+ |∇F (∂1v1 + ∂2v2) (t)|
H

1
2 (T2)

+ |∇F F3(t)|
H

1
2 (T2)

)
.

Taking the explicit form (1.9) of F3 and estimate (6.1) into account we see that

(6.29) |∇F F3(t)|
H

1
2 (T2)

≤ Cδ0 |∇F η(t)|H 5
2 (T2)

.

Hence we obtain

|∇F η(t)|H 5
2 (T2)

≤ C
(
|∇F q(t)|H1(Ω)(6.30)

+
∣∣∇F

2v
∣∣
H1(Ω)

+ δ0 |∇F η(t)|H 5
2 (T2)

)
.
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From this and (6.26) we can derive

|∇F η(t)|H 5
2 (T2)

≤ C
(
|∂tv(t)|H1(Ω) + δ0

∣∣∇F
3η(t)

∣∣
H

1
2 (T2)

(6.31)

+
∣∣∇F

2v
∣∣
H1(Ω)

+ δ0 |∇F η(t)|H 5
2 (T2)

)
.

Taking δ0 > 0 sufficiently small, we get

(6.32) |∇F η(t)|H 5
2 (T2)

≤ C
(
|∂tv(t)|H1(Ω) +

∣∣∇F
2v
∣∣
H1(Ω)

)
.

Since equation (1.2) holds, the norms of the time derivative ∂tη in H(t) can be
estimated as follows:

|∇F ∂tη|H0(T2)
= |∇F v3|H0(T2)

≤ C |∇F v|H1(Ω)
,

|∂tη|H0(T2) = |v3|H0(T2) ≤ C |v|H1(Ω) .(6.33)

From (6.32) and (6.33), we can derive (6.14) by use of Lemma 2.5.

We next give the bounds for NB(t),NΩ(t) and Q(t) by F(t) in the follow-
ing propositions. The proof of these propositions is elementary, but lengthy.
Therefore we explain only how to get the bounds for the terms containing the
highest order derivatives and the time derivatives. To get the estimates for
nonlinear terms we frequently use Lemma 2.2.

Proposition 6.2. Let η, v, q be the solution given in Theorem 1.1.
Then it holds that

(6.34) |NB(t)| ≤ Cδ0F(t) for t > T1

with a constant C > 0 independent of the solution.

To show this proposition we use

Lemma 6.4. Let ϕ ∈ H1
(
T2
)

and let ψ ∈ H
1
2
(
T2
)
. Then it holds that

|(∂αϕ, ψ)
T2 | ≤ C |ϕ|

H
1
2 (T2)

|ψ|
H

1
2 (T2)

, α = 1, 2.

This lemma can be easily proved by Fourier series expansion.

The outline of the proof of Proposition 6.2. We first treat the term of the
form (

∂2
αβ

(
∂k ((1 + x3) η̃)

J
∂�vm

)
, ∂2

αβvn

)
T2

≡ I1(t), α, β, � = 1, 2

in
(
∂2

αβFj , ∂
2
αβvj

)
T2

. By Lemma 6.4 we have

|I1(t)| ≤ C

∣∣∣∣∂k ((1 + x3) η̃)
J

∂�vm

∣∣∣∣
H

3
2 (T2)

∣∣∂2
αβvj

∣∣
H

1
2 (T2)

≤ C |η|H3(T2) |∂�vn|
H

3
2 (T2)

∣∣∂2
αβvj

∣∣
H

1
2 (T2)

≤ C |η(t)|H3(T2)

2∑
α,β=1

∣∣∂2
αβvj(t)

∣∣2
H

1
2 (T2)

.
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By the trace theorem and by Lemma 2.5 we have

2∑
α,β=1

∣∣∂2
αβvj(t)

∣∣2
H

1
2 (T2)

≤ C
2∑

α,β=1

〈∂2
αβv(t), ∂

2
αβv(t)〉.

If � is 3, by Lemma 6.1 we can replace ∂3vn by a linear combination of tangential
derivatives ∂av with coefficients written in terms of η and its derivatives. Hence
we can get the same estimate as for the case � = 1, 2. We next deal with the
term∂2

αβ

σ
 1√

1 + |∇F η|2
− 1

∆F η

 , ∂2
αβvn


T2

=

∂2
αβ

σ − |∇F η|2√
1 + |∇F η|2

(
1 +
√

1 + |∇F η|2
)∆F η

 , ∂2
αβvn


T2

≡ I2(t), α, β = 1, 2

in
(
∂2

αβF3, ∂
2
αβv3

)
T2

. By Lemma 6.4 we have

|I2(t)|

≤ C

∣∣∣∣∣∣∣∣∂β

σ − |∇F η|2√
1 + |∇F η|2

(
1 +
√

1 + |∇F η|2
)∆F η


∣∣∣∣∣∣∣∣
H

1
2 (T2)

∣∣∂2
αβvj

∣∣
H

1
2 (T2)

≤ C |∇F η(t)|H 3
2 (T2)

|η(t)|
H

7
2 (T2)

∣∣∂2
αβvj(t)

∣∣
H

1
2 (T2)

.

Since η(t) ∈ H4
0

(
T2
)

for t ≥ T1, by the Poincaré inequality and by estimate
(6.32), we have

|η(t)|
H

7
2 (T2)

≤ C
(
|∂tv(t)|H1(Ω) +

∣∣∇F
2v
∣∣
H1(Ω)

)
.

From this, by use of Lemma 2.5 we can derive

|I2(t)| ≤ Cδ0

 2∑
α,β=1

〈∂2
αβv(t), ∂

2
αβv(t)〉 + 〈∂tv(t), ∂tv(t)〉

 .

The terms in (∂tFj , ∂tvj)T2 can be treated similarly. The term(
∂t

(
∂k ((1 + x3) η̃)

J
∂�vm

)
, ∂tvn

)
T2

≡ I3(t), � = 1, 2
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can be rewritten as follows

I3(t) =
(
∂k ((1 + x3) η̃)

J
∂�∂tvm + ∂t

(
∂k ((1 + x3) η̃)

J

)
∂�vm, ∂tvn

)
T2

=
(
∂�

(
∂k ((1 + x3) η̃)

J
∂tvm

)
− ∂�

(
∂k ((1 + x3) η̃)

J

)
∂tvm, ∂tvn

)
T2

+
(
∂t

(
∂k ((1 + x3) η̃)

J

)
∂�vm, ∂tvn

)
T2

.

By Lemma 6.4 and by the Schwarz inequality, we have

|I3(t)| ≤ C

∣∣∣∣∂k ((1 + x3) η̃)
J

∂tvm

∣∣∣∣
H

1
2 (T2)

|∂tvn|
H

1
2 (T2)

+
∣∣∣∣∂�

(
∂k ((1 + x3) η̃)

J

)
∂tvm

∣∣∣∣
H0(T2)

|∂tvn|H0(T2)

+
∣∣∣∣∂t

(
∂k ((1 + x3) η̃)

J

)
∂�vm

∣∣∣∣
H0(T2)

|∂tvn|H0(T2) .

Since η satisfies (1.2), ∂tη in ∂t

(
∂k ((1 + x3) η̃)

J

)
can be replaced by v3(x′, 0),

x′ ∈ T2. Using the fact (6.1), we can derive from the above

|I3(t)| ≤ Cδ0

(
|∂tv(t)|2

H
1
2 (T2)

+ |∇F v(t)|H0(T2) |∂tv(t)|H0(T2)

)
.

As stated in the case for I1(t), if � = 3, we can replace ∂3vm in I3(t) by a linear
combination of tangential derivatives ∂av with coefficients written in terms of η
and its derivatives. Thus we can get the same estimate as for the case � = 1, 2.
One of the terms containing the highest order derivative in (∂tF3, ∂tv3)T2 is the
following:

∂t

σ
 1√

1 + |∇F η|2
− 1

∆F η

 , ∂tv3


T2

(6.35)

=

σ
 1√

1 + |∇F η|2
− 1

∆F ∂tη, ∂tv3


T2

+

−σ (∂1η) (∂1∂tη) + (∂2η) (∂2∂tη)(
1 + |∇F η|2

) 3
2

∆F η, ∂tv3


T2

≡ I4(t).
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As noted in the above, this can be rewritten as

I4(t) =

σ
 1√

1 + |∇F η|2
− 1

∆F v3(x
′, 0), ∂tv3


T2

+

−σ (∂1η) (∂1v3(x′, 0)) + (∂2η) (∂2v3(x′, 0))(
1 + |∇F η|2

) 3
2

∆F η, ∂tv3


T2

.

Using (6.1), we can estimate this as follows

|I4(t)| ≤ Cδ0

(∣∣∇F
2v
∣∣
H0(T2)

|∂tv|H0(T2) + |∇F η|H1(T2) |∂tv|H0(T2)

)
.

The other terms in NB(t) can be treated in a similar way as above. Hence
by the trace theorem, Lemma 2.5 and by Proposition 6.1, we can derive the
desired bound.

Proposition 6.3. Let η, v, q be the solution given in Theorem 1.1.
Then it holds that

(6.36) |NΩ(t)| ≤ Cδ0F(t) for t > T1

with a constant C > 0 independent of the solution.

The outline of the proof. The terms of the highest order derivatives of v
in F0,α are Ccd∂c∂dv�, where

Ccd ≡ Ccd

(
η̃,∇θ̃

)
= ζceζde − δceδde

= −2
δ3d

J
∂c ((1 + x3) η̃) +

δ3cδ3d

J2
∂e ((1 + x3) η̃) ∂e ((1 + x3) η̃) .

It is clear that this coefficient vanishes if c, d = 1, 2. The terms corresponding
to c = 3 and d = 1, 2 in NΩ(t) are written as, by integrating by parts

(
∂2

αβ (C3d∂3∂dv�) , ∂2
αβv�

)
Ω

= − (∂β (C3d∂3∂dv�) , ∂2
α∂βv�

)
Ω
≡ I5(t), α, β = 1, 2.

This term can be estimated by

|I5(t)| ≤ C |η̃(t)|H2(Ω)

∣∣∇F
2v(t)

∣∣2
H1(Ω)

.
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Changing the order of differentiation and integrating by parts, we get(
∂2

αβ

(
C33 (η̃,∇η̃) ∂2

3v�

)
, ∂2

αβv�

)
Ω

=
(
∂2

αβ (∂3 (C33 (η̃,∇η̃) ∂3v�) − ∂3C33 (η̃,∇η̃) ∂3v�) , ∂2
αβv�

)
Ω

=
(
∂3

(
∂2

αβ (C33 (η̃,∇η̃) ∂3v�)
)
, ∂2

αβv�

)
Ω

− (∂2
αβ (∂3C33 (η̃,∇η̃) ∂3v�) , ∂2

αβv�

)
Ω

=
(
∂2

αβ (C33 (η̃,∇η̃) ∂3v�) , ∂2
αβv�

)
T2

− (∂2
αβ (C33 (η̃,∇η̃) ∂3v�) , ∂3∂

2
αβv�

)
Ω

− (∂2
αβ (∂3C33 (η̃,∇η̃) ∂3v�) , ∂2

αβv�

)
Ω
≡ I6(t).

Note that the boundary condition (1.6) holds. By Lemmas 6.1, 6.4 and (6.1)
we get∣∣∣(∂2

αβ (C33 (η̃,∇η̃) ∂3v�) , ∂2
αβv�

)
T2

∣∣∣
≤ Cδ

(∣∣∇F
2v(t)

∣∣2
H

1
2 (T2)

+
∣∣∇F

2v(t)
∣∣
H

1
2 (T2)

∣∣∇F
2η(t)

∣∣
H

1
2 (T2)

)
.

For the other two terms in I6(t) , we see that∣∣∣(∂2
αβ (C33 (η̃,∇η̃) ∂3v�) , ∂3∂

2
αβv�

)
Ω

∣∣∣+ ∣∣∣(∂2
αβ (∂3C33 (η̃,∇η̃) ∂3v�) , ∂2

αβv�

)
Ω

∣∣∣
≤ Cδ

(∣∣∇F
2v
∣∣2
H1(Ω)

+ |∇F v|H1(Ω)

∣∣∇F
2v
∣∣
H1(Ω)

+ |v|H1(Ω)

∣∣∇F
2v
∣∣
H1(Ω)

)
.

The term containing the highest order derivative of η̃ in NΩ(t) is(
∂2

αβ (ζceζdeζ�3∂c∂d∂k ((1 + x3)η̃) vk) , ∂2
αβv�

)
Ω
≡ I7(t), α, β = 1, 2.

Integrating by parts implies

I7(t) = − (∂β (ζceζdeζ�3∂c∂d∂k ((1 + x3)η̃) vk) , ∂2
α∂βv�

)
Ω
.

By virtue of (6.1) and estimate (6.32) we can derive from this

|I7(t)| ≤ C |η̃(t)|H4(Ω) |v(t)|H1(Ω)

∣∣∇F
2v(t)

∣∣
H1(Ω)

≤ Cδ0

(
|∂tv(t)|H1(Ω) +

∣∣∇F
2v
∣∣
H1(Ω)

) ∣∣∇F
2v(t)

∣∣
H1(Ω)

.

In the same way as above we can deal with the term(
∂t

(
C33 (η̃,∇η̃) ∂2

3v�

)
, ∂tv�

)
Ω
≡ I8(t)

in (∂tF0, ∂tv)Ω.

I8(t) = (∂t∂3 (C33 (η̃,∇η̃) ∂3v�) , ∂tv�)Ω − (∂t (∂3C33 (η̃,∇η̃) ∂3v�) , ∂tv�)Ω
= (∂t (C33 (η̃,∇η̃) ∂3v�) , ∂tv�)T2 − (∂t (C33 (η̃,∇η̃) ∂3v�) , ∂t∂3v�)Ω
− (∂t (∂3C33 (η̃,∇η̃) ∂3v�) , ∂tv�)Ω .
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By Lemma 6.1 ∂3v� in the boundary term is replaced by a linear combination
of tangential derivatives ∂av with coefficients written in terms of η and its
derivatives. Since (1.2) holds ∂tη̃ in the coefficients is replaced by the extension
of v3(x′, 0) (see (1.1)). Taking (6.1) into account we can obtain

|I8(t)| ≤ Cδ0

(
|∂tv|2

H
1
2 (T2)

+ |∇F v|H0(T2) |∂tv|H0(T2)

+ |∂tv|2H1(Ω) + |v|H1(Ω) |∂tv|H0(Ω)

)
.

The term which contains the highest order derivative of η in (∂tF0, ∂tv)Ω is

(6.37) (∂t (ζceζdeζ�3∂c∂d∂k ((1 + x3)η̃) vk) , ∂tv�)Ω .

As noticed above, ∂tη is replaced by Rv by means of (1.2)(see (1.1), (2.10)).
According to the definition of extension (1.1), we see∣∣∣R̃v∣∣∣

H3(Ω)
≤ C |Rv|

H
5
2 (T2)

.

Hence the term

((ζceζdeζ�3∂c∂d∂k ((1 + x3)∂tη̃) vk) , ∂tv�)Ω

=
(
ζceζdeζ�3∂c∂d∂k

(
(1 + x3)R̃v

)
vk, ∂tv�

)
Ω
≡ I9(t)

appearing in (6.37) is estimated as follows

|I9(t)| ≤ Cδ0 |Rv|
H

5
2 (T2)

|∂tv|H0(Ω) ≤ Cδ0
∣∣∇F

2Rv
∣∣
H

1
2 (T2)

|∂tv|H0(Ω) .

The other terms in (6.37)

(∂t (ζceζdeζ�3) ∂c∂d∂k ((1 + x3)η̃) vk, ∂tv�)Ω
+ (ζceζdeζ�3∂c∂d∂k ((1 + x3)η̃) ∂tvk, ∂tv�)Ω

can be estimated in a similar manner. Here we again replace ∂tη in ∂t (ζceζdeζ�3)
by v3(x′, 0). Thus, by the trace theorem and (6.1), we have

|(∂t (ζceζdeζ�3∂c∂d∂k ((1 + x3)η̃) vk) , ∂tv�)Ω|
≤ Cδ

(∣∣∇F
2v
∣∣
H1(Ω)

+ |∂tv|H0(Ω) + |v|H0(Ω)

)
|∂tv|H0(Ω) .

We can treat the other terms in NΩ(t) similarly. Collecting these estimates and
using Lemma 2.5, we obtain the desired estimate.

The next proposition is shown in a same manner as above, therefore we
only state the result.

Proposition 6.4. Let η, v, q be the solution given in Theorem 1.1.
Then it holds that

(6.38) Q(t) ≤ CF(t) for t > T1

with a constant C > 0 independent of the solution.
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Proof of Theorem 1.3. We add γ (E(t) + H(t) + Q(t)) to the both side of
(6.13) to get

1
2
d

dt
(E(t) + H(t) + Q(t)) + γ (E(t) + H(t) + Q(t))(6.39)

= NB(t) + NΩ(t) + γ (E(t) + H(t) + Q(t)) −F(t),

where γ > 0 is to be chosen small later. By virtue of the Poincaré inequality
and Lemma 2.5 we have E(t) ≤ CF(t). Using the results in Propositions 6.1,
6.4, we have

E(t) + H(t) + Q(t) ≤ C1F(t).

By the estimates in Propositions 6.36, 6.34, we can derive from (6.39)

1
2
d

dt
(E(t) + H(t) + Q(t)) + γ (E(t) + H(t) + Q(t))(6.40)

≤ C2δ0F(t) + C1γF(t) −F(t).

In Theorems 1.2, 1.3 we start with the assumption that δ > 0 is so small that
C2δ0 −1 < 0. Further we choose γ > 0 so small that C2δ0 +C1γ−1 < 0. Then
we obtain

1
2
d

dt
(E(t) + H(t) + Q(t)) + γ (E(t) + H(t) + Q(t)) ≤ 0.

From this we have

E(t) + H(t) + Q(t) ≤ Ke−2γt for t > T1,

where K = e2γT1 (E(T1) + H(T1) + Q(T1)). Hence we get

(6.41) E(t) + H(t) ≤ Ke−2γt for t > T1.

Since H(t) includes
2∑

α,β=1

∣∣∇F ∂
2
αβη
∣∣2
H0(T2)

,

by the Poincaré inequality it follows immediately that |η|H3(T2) ≤ Ce−γt. Let
us show the exponential decay of |v|H2(Ω). Using Lemma 6.2 leads to

|v(t)|H2(Ω) + |∇q(t)|H0(Ω)

≤ C
(
|∂tv(t) |H0(Ω) + |F0(t)|H0(Ω) + |Q∇q|H0(Ω)

+ |F1(t)|
H

1
2 (T2)

+ |F2(t)|
H

1
2 (T2)

+ |v3(t)|
H

3
2 (T2)

)
.

By (6.1) we see that |Q∇q |H0(Ω) ≤ Cδ0| ∇q |H0(Ω) . Hence, taking δ > 0 small
enough if necessary, we have

|v(t)|H2(Ω) ≤ C
(
|∂tv(t)|H0(Ω) + |F0(t)|H0(Ω)(6.42)

+ |F1(t)|
H

1
2 (T2)

+ |F2(t)|
H

1
2 (T2)

+ |v3(t)|
H

3
2 (T2)

)
.
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The solenoidal condition implies v3(x′, 0) ∈ H
3
2
0

(
T2
)
. Thus from the trace

theorem and the Poincaré inequality it follows

|v3(t)|
H

3
2 (T2)

≤ C|∇F v3(t)|H 1
2 (T2)

≤ C|∇∇F v3(t)|H0(Ω)

≤ C
2∑

α,β=1

|∂2
αβv(t)|H0(Ω).

Here we use the solenoidal condition again in the most right inequality. From
this and (6.41), taking the explicit forms of F0, F1, F2 into account, we conclude
that

|∂tv(t)|H0(Ω) + |F0(t)|H0(Ω) + |F1(t)|
H

1
2 (T2)

(6.43)

+ |F2(t)|
H

1
2 (T2)

+ |v3(t)|
H

3
2 (T2)

≤ Ce−γt for t > T1.

This completes the proof of Theorem 1.3.
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