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Existence of solutions to initial value problems
for the second order mixed monotone type of

impulsive differential inclusions

By

Shihuang Hong

Abstract

In this paper we consider the initial value problems for the second
order mixed monotone type of impulsive differential inclusions. By in-
troducing a special partial order, we present the existence of maximal
and minimal fixed points for mixed monotone multivalued operators in
Banach spaces. Applying the results, we establish the existence and
uniqueness of above impulsive differential inclusions.

1. Introduction

Recently, the theory of impulsive differential equations and inclusions has
been emerging as an important area of investigation (see [1]). The first- and
second-order problems in this area has been widely discussed (see [1–6]). In
the earlier paper [2], the Banach fixed point theorem was used to investigate
the existence and uniqueness of solutions to second order impulsive integro-
differential equations in Banach spaces. In [3], the coupled fixed point theorem
for mixed monotone condensing operators was used to discuss the initial value
problems for the second order mixed monotone type of impulsive differential
equations. In this paper, we shall use the coupled fixed point theorem for
multivalued operators which is derived in the present paper to investigate the
existence and uniqueness of solutions for the initial value problems of the second
order mixed monotone type of impulsive differential inclusions (IDI) in a special
partial order Banach space.

Our paper has two main sections. In Section 2, we shall derive some
coupled fixed point results for multivalued operators on special partially ordered
sets by means of monotone sequence of iterations of such operators. Coupled
fixed point theorems for mixed monotone operators have been considered in
[7–9]. For instance, in [7] the existence and iterative approximation of coupled
fixed points for multivalued operators are proved by applying the set-condensing
condition, in [8] the existence result for single-valued operators is given by using
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330 Shihuang Hong

the completely continuous property of operators. Then, in Section 3, offer some
applications to the initial value problems for the second order mixed monotone
type of IDI.

Let (E, | · |) be a Banach space, (Y, | · |Y ) a ordered Banach space. For the
sake of convenience, we first recall some definitions.

Definition 1. A function p : E → Y is said to be of class B, denoted by
p ∈ B, if p is uniformly continuous on E and p(x) = p(y) if and only if x = y.

Given a p ∈ B, introduce a partial ordering ≤ in E as follows:
x ≤ y if and only if p(x) ≤ p(y) and x < y if and only ifx ≤ y andx �= y. Here
x, y ∈ E.

C(J,E) is a Banach space consisting of all continuous functions from J =
[0, 1] into E with the norm ‖x‖ = sup{|x(t)| : t ∈ J}. For any x, y ∈ C(J,E),
define x ≤ y if and only if x(t) ≤ y(t) for each t ∈ J , x < y if and only if x ≤ y
and there exists some t ∈ J such that x(t) �= y(t).

For two subsets A, B of E we write A ≤ B if

∀a ∈ A ∃ b ∈ B such that a ≤ b.

Definition 2. Let D be a subset of E, and A : D ×D → 2E a multi-
valued operator. A is said to be mixed monotone, if A(x, y) is increasing in x
and decreasing in y, that is,

(a1) for each y ∈ D and any x1, x2 ∈ D with x1 ≤ x2 (x1 ≥ x2), if
u1 ∈ A(x1, y) then there exists a u2 ∈ A(x2, y) such that u1 ≤ u2 (u1 ≥ u2);

(a2) for each x ∈ D and any y1, y2 ∈ D with y1 ≤ y2 (y1 ≥ y2) if v1 ∈
A(x, y1) then there exists a v2 ∈ A(x, y2) such that v1 ≥ v2 (v1 ≤ v2).

Definition 3. Let D be a subset of E. Point (x, y) ∈ D×D is called a
coupled fixed point of A, if x ≤ y and

x ∈ A(x, y), y ∈ A(y, x).

Point (x∗, y∗) is said to be a coupled minimax fixed point if it is a coupled fixed
point and satisfies that x∗ ≤ x ≤ y ≤ y∗ for any coupled fixed point (x, y) of
A.

Definition 4. Let D be a subset of E. A : D × D → 2E is called p-
continuous at point (x0, y0) ∈ D × D, if for any sequences {xn}, {yn} ⊂ D,
p(xn) → p(x0), p(yn) → p(y0) and any weak neighbourhood W of A(x0, y0),
there exists a positive integer N such that for n ≥ N , we have p ◦A(xn, yn) ⊂
p(W ). If A is p-continuous at each point of D×D, then A is called p-continuous
on D ×D.

2. Existence of coupled minimax fixed points

Throughout this section we always assume that E is partially ordered by
a given p ∈ B. Take u0, v0 ∈ E with u0 ≤ v0 and denote by D = [u0, v0] =
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{u ∈ E : u0 ≤ u ≤ v0} the ordered interval of E which is bounded with regard
to the norm.

Theorem 1. Let A : D × D → 2D be a p-continuous mixed mono-
tone miltivalued operator with nonempty weakly closed values. Suppose that A
satisfies the conditions:

(H) Let C1 = {xn} and C2 = {yn} be countable and totally ordered
subsets that satisfy C1 ⊂ cl({x1} ∪ A(C1, C2)) and C2 ⊂ cl({y1} ∪ A(C2, C1)),
respectively, then C1 and C2 both are relatively compact.

Then A has a coupled fixed point (x∗, y∗) ∈ D ×D and

p(x∗) = lim
n→∞ p(un), p(y∗) = lim

n→∞ p(vn),

where un ∈ A(un−1, vn−1) and vn ∈ A(vn−1, un−1) for n = 1, 2, . . . satisfy the
following condition:

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0,

and if un+1 = un, vn+1 = vn then un+k = un, vn+k = vn for k = 1, 2, . . . .
Moreover, (x∗, y∗) is the coupled minimax fixed point of A in D ×D.

Proof. We first prove that A has a coupled mninmax fixed point if A has
at least a coupled fixed point. In order to do this, we define

B = D1 ×D2 = {(x, y) : x ∈ A(x, y) ∩D, y ∈ A(y, x) ∩D}.
Then B is nonempty under this hypothesis. Let us introduce a partial order in
B by

(x1, y1) ≤ (x2, y2) ⇔ x2 ≤ x1 ≤ y1 ≤ y2

for any (x1, y1), (x2, y2) ∈ B. We are now in a position to prove the existence
of maximal element of B. In order to apply Zorn’s Lemma, we consider any
given totally ordered subset M = DM

1 ×DM
2 of B. It is sufficient to show that

M an upper bound. First we prove that any sequence {(x′n, y′n)} of M there is
a convergent subsequence. For each n = 1, 2, . . ., let

(xn, yn) = max{(x′1, y′1), (x′2, y′2), . . . , (x′n, y′n)},
then {(xn, yn)} is increasing. Let C1 = {xn} and C2 = {yn}, then C1 and
C2 satisfy the condition (H), therefore, they are relatively compact, which
shows that {(x′n, y′n)} there is a convergent subsequence. Moreover, this im-
plies that M is relatively compact. Note that p(M) = p(DM

1 ) × p(DM
2 ) is

also relatively compact, hence it is separable, i.e., there exists a countable
subset {(x′n, y′n)} of M such that {(p(x′n), p(y′n))} is dense in P (M). Take
(xn, yn) = max{(x′1, y′1), (x′2, y′2), . . . , (x′n, y′n)} for n = 1, 2, . . . , then {(xn, yn)}
is an increasing sequence and {(p(xn), p(yn))} is dense in P (M). We claim that
there exists (x′, y′) ∈ B such that

(2.1) p(x′) = inf
x∈DM

1

p(x), p(y′) = sup
y∈DM

2

p(y).
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Indeed, if there exists some {(xn, yn)} such that (2.1) is satisfied, then our claim
holds. Otherwise, since p(M) is relatively compact, there exists a subsequence
{(xni

, yni
)} of {(xn, yn)} and a point (x′, y′) ∈ E such that

p(xni
) → p(x′), p(yni

) → p(y′)

for i → ∞. It is easy to prove p(xn) → p(x′), p(yn) → p(y′) for n → ∞
since {xn} is decreasing and {yn} is increasing. In virtue of the density of
{(p(xn), p(yn))} we conclude that (x′, y′) satisfies (2.1).

It remains to prove that (x′, y′) ∈ B. Obviously, (x′, y′) ∈ D × D. It
is enough to show that (x′, y′) is a coupled fixed point of A. In fact, by the
p-continuity of A at point (x′, y′), for any weakly closed neighbourhood W of
A(x′, y′), there exists a positive integer N such that for n ≥ N , we have

p(xn) ∈ p ◦A(xn, yn) ⊂ p(W ).

Let n tend to infinity, from the continuity of p it follows that p(x′) ∈ p(W ).
The definition of p guarantees that x′ ∈ W . By the arbitrariness of W , we
obtain that x′ is a weak cluster of A(x′, y′). Since A(x′, y′) is weakly closed,
x′ ∈ A(x′, y′). Similarly we can prove that y′ ∈ A(y′, x′). Hence, (x′, y′) is
an upper bound and (x′, y′) ∈ B. This implies that B has a maximal element
(x∗, y∗). It is easy to see that (x∗, y∗) is a coupled minimax fixed point of A.

Next, we prove the existence of coupled fixed points of A on D × D and
etceteras of Theorem 1 hold. If u0 ∈ A(u0, v0) and v0 ∈ A(v0, u0), take x∗ =
un = u0, y

∗ = vn = v0 for n = 1, 2, . . . , then the conclusion of Theorem 1 is
proved. Otherwise, from the mixed monotonicity of A, for any u′1 ∈ A(u0, v0),
there exists v̄1 ∈ A(u′1, v0) with u′1 ≤ v̄1 and there exists ṽ1 ∈ A(u′1, u0) such
that v̄1 ≤ ṽ1. Moreover, there exists v′1 ∈ A(v0, u0) such that ṽ1 ≤ v′1 ≤ v0.
On the other hand, it is obvious that u0 < x∗ ≤ y∗ < v0, thus there exist
v∗1 ∈ A(v0, u0) u∗1 ∈ A(u0, v0) such that u0 ≤ u∗1 ≤ x∗ ≤ y∗ ≤ v∗1 ≤ v0. We now
take u1 = min{u′1, u∗1}, v1 = max{v′1, v∗1}, then

u0 ≤ u1 ≤ x∗ ≤ y∗ ≤ v1 ≤ v0.

Repeating this process, we can inductively get sequences {un} and {vn} such
that

uk ∈ A(uk−1, vk−1), vk ∈ A(vk−1, uk−1)

and

u0 ≤ uk−1 ≤ uk ≤ x∗ ≤ y∗ ≤ vk ≤ vk−1 ≤ v0 for k = 1, 2, . . . .

It is clear that C1 = {un} and C2 = {vn} both satisfy the condition (H),
hence, both are relatively compact. By the same process as the above, there
exist x, y ∈ E such that p(x) = lim

n→∞ p(un) and p(y) = lim
n→∞ p(vn). Clearly,

(x, y) ∈ D ×D. By the same way as the above proof we can verify that (x, y)
is a coupled fixed point of A on D ×D and

(2.2) x ≤ x∗ ≤ y∗ ≤ y.
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On the other hand, we have proved that (x∗, y∗) is a coupled minimax fixed
point, which, together with (x, y) ∈ B, implies that

x∗ ≤ x ≤ y ≤ y∗.

This, combining (2.2), yields x = x∗, y = y∗. This completes the proof of
Theorem 1.

Corollary 1. Suppose that A satisfies all conditions in Theorem 1 ex-
cept for (H), then the results of Theorem 1 hold if p ∈ B is completely contin-
uous.

If E is a partially ordered Banach space, then the results of Theorem 1
hold when we take p to be identity mapping. In addition, we have

Corollary 2. Let E be a real Banach space with a partial order intro-
duced by a normal cone of E, A : D×D → 2D a p-continuous mixed monotone
multivalued operator with nonempty weakly closed values. Then the results of
Theorem 1 hold if one of the following hypotheses holds.

(h1) A is completely continuous.
(h2) Assume that A(D,D) is weakly sequentially compact in E.
(h3) For any D1, D2 ⊂ D if either γ(D1) or γ(D2) is greater than 0, then

we have

γ(A(D1, D2)) < max{γ(D1), γ(D2)},
where γ stands for Kuratowski noncompactness measure.

Remark 1. (h1) and (h2) are the main conditions of [8] and [9], re-
spectively, for single-valued operators, (h3) is the main condition of [7]. Hence,
the results presented here extend and improve the corresponding results of the
above cited references.

Theorem 2. Let all assumptions in Theorem 1 be satisfied. For any
x, y ∈ D, suppose that there exists 0 < L < 1 such that

|p(u) − p(v)|Y ≤ L|p(x) − p(y)|Y
for all u ∈ A(x, y), v ∈ A(y, x). Then A has a unique fixed point u∗ in D and
x∗ = u∗ = y∗, where (x∗, y∗) is the coupled minimax fixed point of A in D.

The proof of this theorem we refer to [8].

3. Solvability of impulsive differential inclusions

In this section, as an application of Theorem 1, we shall discuss the ini-
tial value problems for the second order mixed monotone type of impulsive
differential inclusions (IDI) in the partial ordered Banach space E,

(3.1)



u′′ ∈ F (t, u, u) t ∈ J, t �= ti,

∆u|t=ti
= Ii(u(ti))

∆u′|t=ti
= Īi(u(ti)) (i = 1, 2, . . . ,m),

u(0) = w0, u′(0) = w1
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where F : J × E × E → W (E) is p-continuous multivalued map, W (E) is the
family of all nonempty weakly closed subsets of E, J = [0, 1], Ii, Īi ∈ C(E,E)
and all Ik, Īk are monotone operators for i = 1, 2, . . . ,m, 0 < t1 < t2 < · · · <
tm < 1, ∆u|t=ti

= u(t+i ) − u(t−i ) with u(t+i ) and u(t−i ) representing the right
and left limits of u(t) at t = ti, respectively, and ∆u′|t=ti

has a similar meaning
for u′(t), w0, w1 ∈ E.

Let PC[J,E] = {x : x is a function from J into E such that x(t) is contin-
uous at t �= tk, left continuous at t = tk, and x(t+k ) exist for k = 1, 2, . . . ,m},
PC1[J,E] = {x : x is a function from J into E such that x(t) is continuously
differentiable at t �= tk, left continuous at t = tk, and x(t+k ), x′(t+k ), x′(t−k )
exist for k = 1, 2, . . . ,m}. Throughout this section, u′(ti) is understood as
u′−(ti) (see [2]). Evidently, PC[J,E] and PC1[J,E] both are Banach spaces
with norm |x|PC = sup

t∈J
|x(t)| and |x|PC1 = max{|x(t)|PC , |x′|PC}.

Given p ∈ B, and let E be partially ordered as in section 1, then Q =
{u ∈ PC1[J,E] : u(t) ≥ 0, u′(t) ≥ 0, t ∈ J} is a cone in PC1[J,E]. Denote
J ′ = J/{t1.t2, . . . , tm}. u, v ∈ PC1[J,E] ∩ C2[J ′, E] with u ≤ v is called a
coupled solution of IDI(3.1) if



u′′ ∈ F (t, u, v) t ∈ J, t �= ti,

∆u|t=ti
= Ki(u(ti), v(ti))

∆u′|t=ti
= K̄i(u(ti), v(ti)) (= 1, 2, . . . ,m),

u(0) = w0, u′(0) = w1

v′′ ∈ F (t, v, u) t ∈ J, t �= ti,

∆u|t=ti
= Ki(v(ti), u(ti))

∆u′|t=ti
= K̄i(v(ti), u(ti)) (i = 1, 2, . . . ,m),

u(0) = w0, u′(0) = w1

where

Ki(x, y) =

{
Ii(x) if Ii is increasing
Ii(y) if Ii is decreasing,

K̄i(x, y) =

{
Īi(x) if Īi is increasing
Īi(y) if Īi is decreasing.

If u = v = x, then x is called a solution of IDI(3.1).
For any x, y ∈ PC[J,E], the set of L1− selections SF,x,y of the multivalued

map F defined by

SF,x,y := {fx,y ∈ L1(J,E) : fx,y(t) ∈ F (t, x(t), y(t)) a. e. for t ∈ J}.

This may be empty. It is nonempty if and only if the function z : J → R
defined by

z(t) = inf{|v| : v ∈ F (t, x(t), y(t))}
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belongs to L1(J,R) (see [10]).
Throughout this paper we always assume that the multivalued map F has

nonempty, weakly closed values and L1−selections SF,x,y is nonempty.
Let us list the following hypotheses which are crucial in the proof of our

main theorems.
(i) All Ik, Īk (k = 1, 2, . . . ,m) satisfy

sup{|Ik(x(tk))| : x ∈ E, 1 ≤ k ≤ m} <∞,

sup{|Īk(x(tk))| : x ∈ E, 1 ≤ k ≤ m} <∞;

(ii) F (t, x, y) is increasing in x ∈ E for each fixed t ∈ J and y ∈ E,
decreasing in y ∈ E for each fixed x ∈ E and t ∈ J ;

(iii) There exist functions u0, v0 ∈ PC1[J,E] ∩ C2[J ′, E] with u0 ≤ v0 and
D = [u0, v0] is bounded with regard to the norm in PC1[J,E] such that



{u′′0(t)} ≤ F (t, (u0), v0(t)), t ∈ J ′,
�u0|t=tk

≤ min{Ik(u0(tk)), Ik(v0(tk)),
�u′0|t=tk

≤ min{Īk(u0(tk)), Īk(v0(tk)) k = 1, 2, . . . ,m
u0(0) ≤ w0, u′0(0) ≤ w1


{v′′0 (t)} ≥ F (t, (v0), u0(t)), t ∈ J ′,
�v0|t=tk

≥ max{Ik(u0(tk)), Ik(v0(tk)),
�v′0|t=tk

≥ max{Īk(u0(tk)), Īk(v0(tk)) k = 1, 2, . . . ,m
v0(0) ≥ w0, v′0(0) ≥ w1

(iv) sup{|w(t)| : w(t) ∈ F (t, x, y)} ≤ α(t) a.e. on J , for all x, y ∈ E. Here
the function α satisfies that β(t) :=

∫ t

0
α(s)ds ∈ L1(J,R+).

(v) There exists a function ω : J×R+×R+ → R+, ω(t, ·, ·) being increas-
ing for given t ∈ J , such that

γ(F (t,M1,M2)) ≤ ω(t, γ(M1), γ(M2)) a.e. on J.

for every set Mj ⊂ D satisfying sup{|x| : x ∈ Mj} ≤ α(t) (j = 1, 2) with α(t)
given as in (iv). In addition ρ(t) = 0 is the unique solution in L1(J,R+) to the
inequality

ρ(t) ≤ 2
∫ t

0

ω(t, ρ(s), ρ(s))ds a.e. on J.

Theorem 3. If conditions (i)–(v) are satisfied, then IDI(3.1) has the
coupled minimax solution (u∗, v∗) with u∗, v∗ ∈ D ∩ PC1[J,E] ∩ C2[J ′, E].
Moreover, we construct the iterative sequences
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un(t) = w0 + w1t+
∫ t

0

(t− s)fun−1,vn−1(s)ds

+
∑

0<ti′<t

Ii′(un−1(ti′)) +
∑

0<ti′′<t

Ii′′(vn−1(ti′′))

+
∑

0<ti1<t

(t− ti1)Īi1(un−1(ti1))

+
∑

0<ti2<t

(t− ti2)Īi2(vn−1(ti2)),

(3.2)

vn(t) = w0 + w1t+
∫ t

0

(t− s)fvn−1,un−1(s)ds

+
∑

0<ti′<t

Ii′(vn−1(ti′)) +
∑

0<ti′′<t

Ii′′(un−1(ti′′))

+
∑

0<ti1<t

(t− ti1)Īi1(vn−1(ti1))

+
∑

0<ti2<t

(t− ti2)Īi2(un−1(ti2))

(3.3)

for n = 1, 2, . . . . We have p(un(t)) → p(u∗(t)) and p(vn(t)) → p(v∗(t)) (n →
∞), where Ii′ , Īi1 are increasing, Ii′′ , Īi2 are decreasing, fun−1,vn−1 ∈ SF,un−1,vn−1

and fvn−1,un−1 ∈ SF,vn−1,un−1 .

Proof. We denote by Q the set D ∩ PC1[J,E] ∩ C2[J ′, E]. In virtue of
the references [2] and [3] we can prove that (u, v) ∈ Q×Q is a coupled solution
of IDI(3.1) if and only if (u, v) is a coupled fixed point of A defined by

A(u, v)(t) = w0 + w1t+
∫ t

0

(t− s)fu,v(s)ds

+
∑

0<ti′<t

Ii′(u(ti′)) +
∑

0<ti′′<t

Ii′′(v(ti′′))

+
∑

0<ti1<t

(t− ti1)Īi1(u(ti1)) +
∑

0<ti2<t

(t− ti2)Īi2(v(ti2)),

where Ii′ , Īi1 are increasing, Ii′′ , Īi2 are decreasing and fu,v ∈ SF,u,v. To prove
the existence of coupled solutions for problem IDI(3.1) is thus sufficient to see
that are satisfied the hypotheses in Theorem 1.

It has been proved in [3] that A is the multivalued operator fromD×D into
2D, by the condition (ii) we know easily A is mixed monotone and p-continuous,
and clearly, A has nonempty weakly closed values.

It remains to prove that the condition (H) is satisfied. Suppose that the
sets C1 = {xn} ⊂ D,C2 = {yn} ⊂ D both are countable and totally ordered
and satisfy C1 ⊂ cl ({x1} ∪A(C1, C2)), C2 ⊂ cl ({y1} ∪A(C2, C1)), we have to
prove that the set C1, C2 are relatively compact. Similar to [4], we can obtain
that there exist ϕ, ψ ∈ L1[J,R+] such that

|xn(t)| ≤ ϕ(t), |yn(t)| ≤ ψ(t)



�

�

�

�

�

�

�

�

Existence of solutions to impulsive differential inclusions 337

for a.e. all t ∈ J, where n = 1, 2, . . . . Hence, by virtue of [10] we see that
γ ({fxn,yn

(t) : n ≥ 1}) ∈ L1(J,R+), γ ({fyn,xn
(t) : n ≥ 1}) ∈ L1(J,R+) for

given t ∈ J and

γ(C1(t)) = γ

({∫ t

0

(t− s)fxn,yn
(s)ds : n ≥ 1

})

≤ 2
∫ t

0

γ ({fxn,yn
(s) : n ≥ 1}) ds

γ(C2(t)) = γ

({∫ t

0

(t− s)fyn,xn
(s)ds : n ≥ 1

})

≤ 2
∫ t

0

γ ({fyn,xn
(s) : n ≥ 1}) ds.

for each t ∈ J0 = [0, t1]. While by means of (v) we have

γ({fxn,yn
(s) : n ≥ 1}) ≤ γ(F (s, C1(s), C2(s)))

≤ ω(s, γ(C1(s)), γ(C2(s))) ≤ ω(s, µ(s), µ(s)),

γ({fyn,xn
(s) : n ≥ 1}) ≤ γ(F (s, C2(s), C1(s)))

≤ ω(s, γ(C2(s)), γ(C1(s))) ≤ ω(s, µ(s), µ(s)),

where µ(s) = max{γ(C1(s)), γ(C2(s))}. It yields

(3.4) µ(t) ≤ 2
∫ t

0

ω(s, µ(s), µ(s))ds.

By means of (v) again we obtain that µ(t) = 0 for all t ∈ J0 (in especial,
µ(t1) = 0, i.e., C1(t1), C2(t1) is relatively compact ).

For each t ∈ J1 = (t1, t2], in view of (3.6), one has

µ(t) ≤ 2
∫ t

0

ω(s, µ(s), µ(s))ds+ max{γ(I1(C1(t1))), γ(I1(C2(t1)))}
+ max{γ(Ī1(C1(t1))), γ(Ī1(C2(t1)))}.

(3.5)

Since I1, Ī1 ∈ C(E,E) and Ci (t1) (i = 1, 2) is relatively compact in E, we have
that

γ (I1 (Ci(t1))) = γ(Ī1(Ci(t1)) = 0 (i = 1, 2).

Load this into (3.7), we obtain that (3.6) holds for each t ∈ J1. From (v) it
follows that µ(t) = 0 for all t ∈ J1 (in especial, µ(t2) = 0, i.e., C1(t2), C2(t2) is
relatively compact ).

Inductively assume that µ(t) = 0 for all t ∈ Jk = (tk, tk+1] and µ(tk+1) = 0
with k = 1, 2, . . . ,m−1, then, when k = m, the definition of operator A induces
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that

µ(t) ≤ 2
∫ t

0

ω(s, µ(s), µ(s))ds+
m∑

k=1

γ(Ik(C1(tk)))

+
m∑

k=1

γ(Ik(C2(tk))) +
m∑

k=1

γ(Īk(C1(tk))) +
m∑

k=1

γ(Īk(C2(tk)))

= 2
∫ t

0

ω(s, µ(s), µ(s))ds.

Similar to the above proof we have that µ(t) = 0 for all t ∈ J, which implies
that C1(t), C2(t) both are relatively compact for all t ∈ J.

Now we shall prove that C1, C2 are equicontinuous. Indeed, since C1, C2

both are countable, we can find a countable set U = {un : n ≥ 1} ⊂ A(C1, C2),
V = {vn : n ≥ 1} ⊂ A(C2, C1) with C1 ⊂ cl ({x1} ∪ U) , C2 ⊂ cl ({y1} ∪ V ) .
There exists xn ∈ C1, yn ∈ C2 and fxn,yn

∈ SF,xn,yn
such that

un(t) = w0 + w1t+
∫ t

0

(t− s)fxn,yn
(s)ds

+
∑

0<ti′<t

Ii′(xn(ti′)) +
∑

0<ti′′<t

Ii′′(yn(ti′′))

+
∑

0<ti1<t

(t− ti1)Īi1(xn(ti1)) +
∑

0<ti2<t

(t− ti2)Īi2(yn(ti2)),

for n = 1, 2, . . . . It is easy to see that

u′n(t) = w1 +
∫ t

0

fxn,yn
(s)ds

+
∑

0<ti1<t

Īi1(xn(ti1)) +
∑

0<ti2<t

Īi2(yn(ti2)),

Set Jk = (tk, tk+1] (k = 0, 1, . . . ,m) with J0 = [0, t1], Jm = (tm, 1] and take
τ1, τ2 ∈ Jk with τ1 ≤ τ2 and un ∈ U , from (iv) it follows that

|un(τ2) − un(τ1)| ≤ |w1||τ2 − τ1|

+
∣∣∣∣
∫ τ2

0

(τ2 − s)fxn,yn
(s)ds−

∫ τ1

0

(τ1 − s)fxn,yn
(s)ds

∣∣∣∣
≤ |w1||τ2 − τ1| +

∫ τ1

0

|(τ2 − τ1)fxn,yn
(s)|ds+

∫ τ2

τ1

|(τ2 − s)fxn,yn
(s)|ds

≤ |w1||τ2 − τ1| + (τ2 − τ1)
∫ τ1

0

α(s)ds+
∫ τ2

τ1

|(τ2 − s)α(s)|ds.

This inequality is also true with any xn ∈ C1 instead of un for n ≥ 1. Hence,
C1 is equicontinuous on Jk. Similarly, we can prove C2 is equicontinuous on Jk.
This concludes that C1, C2 are relatively compact on Jk, for k = 0, 1, . . . ,m, in
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the light of Arzela-Ascoli’s theorem. Moreover, we can prove that C1, C2 are
relatively compact on PC1[J,E]. Consequently, the condition (H) is satisfied.

Summing up, A satisfies all the conditions of Theorem 1, thus, A has a
minimax coupled fixed point and the proof of Theorem 3 is completed.

Corollary 3. Suppose that the conditions (i)–(iv) are satisfied. In ad-
dition, if there exists a constant L ≥ 0 such that

γ(F (t,D1, D2)) ≤ Lmax{γ(D1), γ(D2)}

for any t ∈ J and D1, D2 ⊂ D. Then results of Theorem 3 hold.

Proof. It is enough to show that the hypothesis (v) is satisfied. Let
ω(t, s, τ) = Lmax{s, τ} with s, τ ≥ 0 and t ∈ J . Consider the multivalued
operator

T (x(t), y(t)) =
{∫ t

0

(t− s)fx,y(s)ds : fx,y ∈ SF,x,y

}
.

For any countable set D1 ⊂ cl(T (D1, D2)) and D2 ⊂ cl(T (D2, D1)) with
|u(t)| ≤ v(t) a.e. on J for all u ∈ D1 ∪D2 and some v ∈ L1(J,R+), denoting
ρ(t) = max{γ(D1(t)), γ(D2(t))}, from [10] it follows that

ρ(t) ≤ max{γ((T (D1, D2)(t)), γ((T (D1, D2)(t))}

= max
{
γ

({∫ t

0

(t− s)fx,y(s)ds : (x, y) ∈ (D1, D2), fx,y ∈ SF,x,y

})
,

γ

({∫ t

0

(t− s)fy,x(s)ds : (y, x) ∈ (D2, D1), fy,x ∈ SF,y,x

})}
≤ 2

∫ t

0

ρ(s)ds.

This implies that ρ(t) = 0 on J by Growall inequality.

Corollary 4. Let E be a ordered Banach space and p = I, an identity
mapping. Suppose that the conditions (ii) and (iii) hold and

(vi) For any t ∈ J, uj , vj ∈ PC1[J,E] (j = 1, 2), there exist constants
a ≥ 0, bi ≥ 0, ci ≥ 0 (i = 1, 2, . . . ,m) satisfying a+

∑m
i=1(bi + ci) ≤ 1 such that

max{|fu1,v1(t) − fu2,v2(t)| : fuj ,vj
∈ SF,uj ,vj

(j = 1, 2)}
≤ aφ(max{|u1 − u2|PC1 , |v1 − v2|PC1}),

|Ii(u1(t)) − Ii(u2(t))| ≤ biφ(|u1 − u2|PC1),
|Īi(u1(t)) − Īi(u2(t))| ≤ ciφ(|u1 − u2|PC1) (i = 1, 2, . . . ,m),

where φ : [0,+∞) → [0,+∞) is increasing and φ(τ+) < τ for τ > 0.
Then IDI(3.1) has an unique solution x ∈ Q and the iterative sequences

given by (3.2) and (3.3) satisfy that

lim
n→∞un(t) = x(t), lim

n→∞ vn(t) = x(t).



�

�

�

�

�

�

�

�

340 Shihuang Hong

Proof. Similar to [3, Theorem 1] we can show that the conditions of The-
orem 2 are satisfied.

Corollary 5. Let all assumptions in Theorem 3 be satisfied. For any
x, y ∈ D, suppose that there exist constants a ≥ 0, bi ≥ 0, ci ≥ 0 (i =
1, 2, . . . ,m) satisfying a+

∑m
i=1(bi + ci) < 1 such that

|p(u) − p(v)|Y ≤ a|p(x) − p(y)|Y
for all u ∈ F (t, x, y), v ∈ F (t, y, x) and

|p(Ii(x)) − p(Ii(y))|Y ≤ bi|p(x) − p(y)|Y ,
|p(Īi(x)) − p(Īi(y))|Y ≤ ci|p(x) − p(y)|Y (i = 1, 2, . . . ,m).

Then IDI(3.1) has an unique solution x ∈ Q and the iterative sequences given
by (3.2) and (3.3) satisfy that

lim
n→∞ p(un(t)) = p(x(t)), lim

n→∞ p(vn(t)) = p(x(t)).

Proof. It is easy to see that the operator A satisfies conditions of Theorem
2.
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