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Introduction
Let G be a finite group and p a prime. Let (K,R, k) be a p-modular system.

We assume that K contains the |G|-th roots of unity and that k is algebraically
closed. Suppose we are given a normal subgroup N of G such that G/N is a
p-group and a G-invariant block b of N such that N = QCN (Q) for a defect
group Q of b. Then, as is well-known, b has (up to isomorphism) a unique
projective indecomposable RN -module V . It seems natural to ask whether
there exists an extension U to G of V such that a vertex of U intersects N
trivially. Let B be a unique block of G covering b. In Section 3, we obtain two
necessary conditions such a module U must satisfy. Let P be a vertex of U and
W a P -source of U . Then

(1) PQ is a defect group of B;
(2) W is an endo-permutation module, which is identified with a lift of a

source of a unique simple kG-module in B.
(cf. Proposition 3.3, Corollary 3.17.)
In Section 4 we study the case where G/N is cyclic (and (1) holds for a

p-subgroup P with P ∩Q = 1) and show that any indecomposable RG-module
in B with vertex P and a P -source W as in (2) is actually an extension of V .

(Although we have mentioned only RG-modules, we also obtain similar
results for kG-modules.)

In Section 1 we define an action of the group of capped endo-permutation
modules over p-groups P (Dade [1, 2]) on the set of indecomposable P -modules.
In Section 2 we determine vertices and sources of certain indecomposable mod-
ules.

Notation and convention
Let o denote R or k. For oG-modules Vi (i = 1, 2), V1 ⊗ V2 stands for

V1⊗o V2. Also for a direct product G = G1×G2 and oGi-modules Vi (i = 1, 2),
V1 × V2 stands for the external tensor product V1 ⊗o V2. We denote by 1G the
trivial oG-module of rank one. For an RG-module U , let U∗ = U/πU , where
πR is the maximal ideal of R. For a kG-module X, an RG-module L such that
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222 Masafumi Murai

L∗ ∼= X is said to be a lift of X. For an oG-module U , let U∧ be the dual
module of U . For a subgroup Q ( �= 1) of G, let H(Q) be the set of all proper
subgroups of Q. Let I(oG) be the augmentation ideal of oG. Throughout this
paper all oG-modules are assumed to be o-free of finite rank. Since we often
use such expressions as “a unique module (up to isomorphism)” we suppress
for brevity the words “(up to isomorphism)” in most cases.

1. Groups of capped endo-permutation modules

Let P ( �= 1) be a p-group. For a set X of subgroups of P and oP -modules
U, V , we write U ≡ V ⊕ O(X ), if there exists an X -projective oP -module W
(or 0) such that U ∼= V ⊕W . (In particular, U ≡ O(X ) means that U is X -
projective.) An oP -module V is called (Dade [1]) an endo-permutation module
if V ⊗V ∧ is a permutation module, where V ∧ is the dual module of V . An endo-
permutation oP -module V is said to be capped, if V has an indecomposable
summand with vertex P . In that case, such a summand is determined up to
isomorphism and is denoted by cap(V ) ([1, p. 470]). Let Ep(oP ) be the set
of (isomorhism classes of) indecomposable endo-permutation oP -modules with
vertex P . (In [1], Ep(oP ) is denoted by IndP (oP ).) As in [1, Corollary 3.13
and Proposition 6.5], Ep(oP ) forms an abelian group:

For U, V ∈ Ep(oP ), the product U ·V is a unique indecomposable summand
with vertex P of U ⊗ V . So U ⊗ V ≡ U · V ⊕ O(H(P )). (In Dade’s notation
[1], U · V ∼= cap(U ⊗ V ).) In Ep(oP ) the identity is 1P (the trivial oP -module
of rank one) and the inverse of V is V ∧. So V ⊗ V ∧ ≡ 1P ⊕O(H(P )).

Let Ind(oP ) be the set of (isomorhism classes of) non-projective indecom-
posable oP -modules. In this section we define a vertex-preserving action of
the group Ep(oP ) on the set Ind(oP ). Let Q be a set of representatives of
P -conjugacy classes of all subgroups ( �= 1) of P . For any Q ∈ Q, let Ind(oP |Q)
be the set of (isomorphism classes of) indecomposable oP -modules with vertex
Q. Then we have

Ind(oP ) =
⋃

Q∈Q
Ind(oP |Q) (disjoint).

Thus it suffices to define an action of Ep(oP ) on Ind(oP |Q) for each Q ∈ Q.
We begin with the case where Q = P .

Lemma 1.1. For W ∈ Ep(oP ) and V ∈ Ind(oP |P ), let W⊗V ∼= ⊕
iXi

be a decomposition of W ⊗ V into indecomposable summands Xi. Then there
is a unique Xi with vertex P .

Proof. Tensoring with W∧, we get
⊕

iW
∧ ⊗ Xi ≡ V ⊕ O(H(P )), since

W∧ ⊗W ≡ 1P ⊕ O(H(P )). Thus, for some i, W∧ ⊗Xi ≡ V ⊕ O(H(P )) and
then P is a vertex of Xi. On the other hand, if j �= i, W∧ ⊗Xj ≡ O(H(P )).
Tensoring with W , we get that Xj ≡ O(H(P )), as required.

Let us denote the summand Xi in the above lemma by W · V . (If V ∈
Ep(oP )(⊆ Ind(oP |P )), two definitions of W · V are at hand, but they coincide
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with each other, of course.) So we have W ⊗ V ≡ W · V ⊕ O(H(P )) with
W · V ∈ Ind(oP |P ). This defines an action of Ep(oP ) on Ind(oP |P ). Namely
we have:

Proposition 1.2. Let W,W ′ ∈ Ep(oP ) and V ∈ Ind(oP |P ). Then
(i) W · (W ′ · V ) ∼= (W ·W ′) · V , and
(ii) 1P · V ∼= V .

Proof. (i) Since W ⊗ (W ′ ⊗ V ) ∼= (W ⊗W ′) ⊗ V , the result follows.
(ii) This is obvious.

To define an action of Ep(oP ) on Ind(oP |Q), Q ∈ Q, we need the following
proposition. We note that for any W ∈ Ep(oP ), WQ is capped and cap(WQ)
is well-defined ([1, Proposition 3.10]).

Proposition 1.3. Let Q ∈ Q. For W ∈ Ep(oP ) and V ∈ Ind(oP |Q),
let W⊗V ∼= ⊕

iXi be a decomposition of W⊗V into indecomposable summands
Xi. Then there is an Xi with vertex Q and the isomorphism class of such Xi

is uniquely determined. In fact, Xi is then isomorphic to (cap(WQ) ·X)P for
a Q-source X of V .

Proof. Let X be a Q-source of V . Since V ∼= XP by Green’s theorem,
we get W ⊗ V ∼= (WQ ⊗X)P . Since

WQ ≡ m× cap(WQ) ⊕O(H(Q))

for a positive integer m, we have

W ⊗ V ≡ m× (cap(WQ) ·X)P ⊕O(H(Q)),

where cap(WQ) · X is defined by the action of Ep(oQ) on Ind(oQ|Q). Since
(cap(WQ)·X)P is indecomposable with vertex Q by Green’s theorem, the result
follows.

Definition 1.4. Let Q ∈ Q. For W ∈ Ep(oP ) and V ∈ Ind(oP |Q), put

W · V = (cap(WQ) ·X)P ,

where X is a Q-source of V .

This defines an action of Ep(oP ) on Ind(oP |Q). Namely we have:

Theorem 1.5. Let W,W ′ ∈ Ep(oP ) and V ∈ Ind(oP |Q), where Q ∈ Q.
Then

(i) W · (W ′ · V ) ∼= (W ·W ′) · V , and
(ii) 1P · V ∼= V .
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Proof. (i) Let X be a Q-source of V . We have

W · (W ′ · V ) ∼= W · (cap(W ′
Q) ·X)P

∼= {
cap(WQ) · (cap(W ′

Q) ·X)
}P

∼= {(
cap(WQ) · cap(W ′

Q)
) ·X}P

∼= {cap((W ·W ′)Q) ·X}P
,

since the map sending W to cap(WQ) is a group homomorphism from Ep(oP )
to Ep(oQ) ([1, Proposition 3.15]). Hence W · (W ′ · V ) ∼= (W ·W ′) · V .

(ii) This is obvious.

2. Extensions of indecomposable modules and the Green correspon-
dence

In this section, G is a group and N is a normal subgroup of G such that
G/N is a p-group. Suppose we are given an indecomposable oG-module U such
that UN is indecomposable. Let Ind(o[G/N ], U) be the set of (isomorphism
classes of) all indecomposable o[G/N ]-modules W such that Inf(W ) ⊗ U is
indecomposable, where Inf denotes the inflation via the natural homomorphism
G→ G/N . We have:

Lemma 2.1. Every indecomposable k[G/N ]-module belongs to
Ind(k[G/N ], U) and every indecomposable endo-permutation R[G/N ]-module
belongs to Ind(R[G/N ], U).

Proof. The first assertion is proved in [5, Theorem VII 9.12]. If W is an
indecomposable endo-permutation R[G/N ]-module, then W ∗ is indecompos-
able ([1, Corollary 6.3]). So the second follows from [8, Lemma 1.1(i)].

In the following we assume that our U satisfies:
For a vertex P of U , it holds that G = PN,P ∩N = 1 and a P -source of

U is an endo-permutation oP -module.
In this situation we shall determine the vertices and sources of Inf(W )⊗U

for W ∈ Ind(oP, U). (Here P is naturally identified with G/N.) Let W0 be a
P -source of U . Since NG(P ) = P ×CN (P ), the Green correspondent of U with
respect to (G,NG(P ), P ) is of the form W0×Y for a projective indecomposable
oCN (P )-module Y . We begin with a special case.

Lemma 2.2. For every W ∈ Ind(oP, U) with vertex P , Inf(W ) ⊗ U is
the Green correspondent of (W0 ·W ) × Y with respect to (G,NG(P ), P ). Here
W0 ·W is defined as in Section 1.

Proof. Clearly (W0 ·W )×Y | (W⊗W0)×Y and (W⊗W0)×Y | (Inf(W )⊗
U)NG(P ). Here Inf(W )⊗U is P -projective and (W0 ·W )× Y has vertex P , so
P is a vertex of Inf(W ) ⊗ U and the result follows.
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Theorem 2.3. For every W ∈ Ind(oP, U), Inf(W ) ⊗ U has a vertex
and a source in common with W0 ·W .

Proof. We claim that for any subgroup Q of P , UQN has vertex Q and
source cap((W0)Q). Indeed, we have that cap((W0)Q) | (UQN)Q = UQ and that
UQN | ((W0)G)QN

∼= ((W0)Q)QN . So the claim follows.
Now let W ∈ Ind(oP, U). Let Q be a vertex of W and let X be a Q-source

of W . By the above, the Green correspondent of UQN with respect to (QN,Q×
CN (Q), Q) is of the form cap((W0)Q) × Y ′ for a projective indecomposable
oCN (Q)-module Y ′. Now (Inf(X) ⊗ UQN )G ∼= Inf(XP ) ⊗ U ∼= Inf(W ) ⊗
U . Hence Inf(X) ⊗ UQN is indecomposable and has a vertex and a source
in common with Inf(W ) ⊗ U . By Lemma 2.2, Inf(X) ⊗ UQN has vertex Q
and the Green correspondent of it with respect to (QN,Q × CN (Q), Q) is
(cap((W0)Q) ·X) × Y ′ ∼= (W0 ·W ) × Y ′. Thus the result follows.

3. Sources of extensions of projective indecomposable modules

In this section, by (G,N, b), we mean the following data:

(�) G is a group, N is a normal subgroup of G, b is a G-invariant block of N
such that N = QCN (Q) for a defect group Q of b.

Given such data, clearly Q is normal in G. Let V be the unique projective
indecomposable oN -module in b. (In an earlier version of the present paper, the
author treated the case when Q was central in N . The possibility of relaxing
this condition to the one as above was pointed out by the referee.)

The following extends slightly a result of Dade, cf. [2, Theorem 13.13].

Theorem 3.1. With the notation above, suppose that there is an exten-
sion U to G of V . Let P be a vertex of U and W a P -source of U . Then the
following conditions are equivalent.

(i) P ∩N = 1.
(ii) P ∩Q = 1.
(iii) U∧ ⊗ U is a trivial source oG-module.
(iv) UP is an endo-permutation oP -module.
(v) W is an (indecomposable) endo-permutation oP -module (with vertex

P ).
(vi) rankoW is prime to p.

Proof. (i)⇔ (ii): Let B be the block of G to which U belongs. Let D be
a defect group of B with P � D. Since b is a G-invariant block covered by B,
we have Q = D ∩N . So P ∩Q = P ∩D ∩N = P ∩N. Thus the result follows.

(i)⇒ (v): Clearly UPN has vertex P and P -source W , so we may assume
G = PN. We show that we may assume Q is central in N. We first note that
CN (Q) is a normal subgroup of G with |G/CN (Q)| a power of p. Let b0 be the
unique block of CN (Q) covered by b. Then b0 is G-invariant. Clearly b0 has
defect group Z(Q), which is central in CN (Q). Let L be an indecomposable
o[PCN (Q)]-module such that L |WPCN (Q) and that U |LG. Then, by Green’s
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theorem, U ∼= LG, since PCN (Q) is a subnormal subgroup of G with |G :
PCN (Q)| a power of p. So L has vertex P and W is a P -source of L. By
Mackey decomposition, V ∼= UN

∼= (LG)N
∼= (

LCN (Q)

)N , since PCN (Q)∩N =
(P ∩ N)CN (Q) = CN (Q). This yields that LCN (Q) is the unique projective
indecomposable oCN (Q)-module in b0. Thus we may assume G = PCN (Q)
and Q is central in N .

Consider the block ideal b as an oG-module via the conjugation action. We
claim InvQ(U∧⊗U) ∼= b as oG-modules. Indeed, let ρ : b→ Endo(U) ∼= U∧⊗U
be the representation of b on U . Clearly ρ induces an oG-homomorphism,
say ρ′, from b to InvQ(Endo(U)) = EndoQ(U). It suffices to show that ρ′

is an isomorphism. Clearly ρ′ is injective, since UN is a unique projective
indecomposable module in b. To prove that ρ′ is surjective we first consider the
case when o = k. Put UQ

∼= n(kQ) for an integer n. Then dimk EndkQ(U) =
n2|Q|. On the other hand, dimk b = (dimk U)2/|Q|. So dimk EndkQ(U) =
dimk b. Hence ρ′ is surjective. This shows that when o = R, EndRQ(U) =
Im ρ′ + πEndRQ(U), so EndRQ(U) = Im ρ′ by Nakayama’s lemma. Thus the
claim is proved.

Put D = PQ. For the P -source W of U , we claim WD|UD. Indeed, since
W |UP , there is an indecomposable summand X of UD such that W |XP . Then
P is a vertex of X and W is a P -source of X. Hence X ∼= WD by Green’s
theorem. So the claim follows. We also have WD ∼= Inf(W ) ⊗ (1P )D, where
Inf(W ) is defined through the natural isomorphism D/Q ∼= P . Hence

Inf(W )∧ ⊗ (1P )D ⊗ Inf(W ) ⊗ (1P )D | (U∧ ⊗ U)D.

By Mackey decomposition, (1P )D|(1P )D ⊗ (1P )D, so

Inf(W )∧ ⊗ Inf(W ) ⊗ (1P )D | (U∧ ⊗ U)D.

Since Inf(W )∧ ⊗ Inf(W ) is trivial on Q,

InvQ

(
Inf(W )∧ ⊗ Inf(W ) ⊗ (1P )D

)
= Inf(W )∧ ⊗ Inf(W ) ⊗ InvQ((1P )D)
∼= Inf(W )∧ ⊗ Inf(W ) ⊗ 1D

∼= Inf(W )∧ ⊗ Inf(W ),

as oD-modules. So, by the above,

Inf(W )∧ ⊗ Inf(W ) | InvQ((U∧ ⊗ U)D) ∼= bD,

as oD-modules. Since b is a direct summand of oN , we get that Inf(W )∧ ⊗
Inf(W ) is a permutation oD-module by Green’s theorem. Restriction to P
shows that W∧ ⊗W is a permutation oP -module, as required.

(i) and (v)⇒ (iii): Put H = PN. It suffices to show U ∧
H ⊗ UH is a trivial

source module. We have UH |WH ∼= Inf(W ) ⊗ (1P )H , where Inf(W ) is defined
through the natural isomorphism H/N ∼= P . Thus

U ∧
H ⊗ UH | Inf(W )∧ ⊗ (1P )H ⊗ Inf(W ) ⊗ (1P )H ,
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which is a permutation module. So (iii) follows.
(iii)⇒ (iv): Since (U∧ ⊗ U)P must be a permutation module by Green’s

theorem, the result follows.
(iv)⇒ (v): This is clear.
(v)⇒ (vi): This follows from [1, Lemma 6.4].
(vi)⇒ (i): As a direct summand of UP∩N , WP∩N is projective, so P ∩N =

1.

The following follows from Green’s theorem ([9, Problem 6(iii) on p.302]).

Lemma 3.2. Let M be a normal subgroup of a group H. Let X be an
oH-module such that XM is indecomposable. Then vx(X)M contains a p-Sylow
subgroup of H.

Proposition 3.3. Let U,P be as in Theorem 3.1. Let B be the block of
G to which U belongs. Then PQ is a defect group of B.

Proof. Let D be a defect group of B such that D � P . By Lemma 3.2,
|G : PN | is prime to p, so DN = PN . Hence D = P (D ∩ N) = PQ, since
D ∩N = Q. Thus PQ is a defect group of B.

Hereafter we consider exclusively (G,N, b) satisfying (�) for which G/N is
a p-group. We are interested in the existence of extensions to G of the unique
projective indecomposable oN -module in b which satisfy the condition (i) of
Theorem 3.1. So in view of Proposition 3.3, we add an assumption on defect
groups of the unique block of G covering b, and consider (G,N,B, b, P ) such
that:

(��) (G,N, b) satisfies the condition (�) above, B is a unique block ofG covering
b, P is a p-subgroup ( �= 1) of G with G = PN and P ∩ N = 1, and PQ is a
defect group of B.

Given such data, we let D = PQ. Let V be the unique projective indecompos-
able RN -module in b as before.

We begin by determining all indecomposable oG-modules with vertex P
in B and similar modules in a (unique) block of G/Q dominated by B. First
we prepare some group-theoretical facts.

Lemma 3.4. With the notation above, we have

Op(NG(D)) � CN (D) � CN (P ) � NG(P ) � NG(D).

Proof. It suffices to show Op(NG(D)) � CN (D), the rest being obvious.
Let x be a p′-element of NG(D). Then [D,x] � D ∩ N = Q and [Q, x] = 1,
since x ∈ CN (Q). As is well-known, this implies [D,x] = 1. So x ∈ CN (D), as
required.

Let B̃ be the Brauer correspondent of B in NG(D). Let {bi; 1 � i � t} be
the set of blocks of NG(P ) such that b G

i = B. Since NG(P ) = P × CN (P ),
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each bi covers a unique block b′i of CN (P ). Let {βm} be the set of blocks of
CN (D) covered by B̃ (note that CN (D) � NG(D)). For a block β, let l(β) be
the number of irreducible Brauer characters in β. We have the following.

Lemma 3.5. (i) Each b′i, 1 � i � t, covers some βm.
(ii) l(B̃) = 1 and l(b′i) = 1 for all i, 1 � i � t.

Proof. (i) By the First Main Theorem b G
i = B if and only if b NG(D)

i = B̃.
On the other hand, sinceNG(D)/CN (D) is a p-group by Lemma 3.4, BrP (e eB) =
e eB ∈ kCN (D), where e eB is the block idempotent of kNG(D) corresponding to
B̃ and BrP : ZkNG(D) → ZkNG(P ) is the Brauer homomorphism. Thus

∑
eb′i =

∑
ebi

=
∑

eβm

and the result follows.
(ii) As is well-known, D ∩ CN (D) is a defect group of βm. Clearly

D ∩ CN (D) is central in CN (D). Thus l(βm) = 1. Then l(B̃) = 1, since
NG(D)/CN (D) is a p-group. Similarly l(b′i) = 1 by (i).

Let 1 � i � t. By Lemma 3.5, b′i has a unique projective indecomposable
RCN (P )-module. This module is denoted by Yi. For every W ∈ Ind(RP |P ),
let Ui(W ) be the Green correspondent of W ×Yi with respect to (G,NG(P ), P )
(note that W×Yi is indecomposable and has vertex P [9, Problem 9 on p.302]).
For every W ∈ Ind(kP |P ), let U ′

i(W ) be the Green correspondent of W × Y ∗
i

with respect to (G,NG(P ), P ). For these modules, we have the following.

Proposition 3.6. The set {Ui(W ); 1 � i � t,W ∈ Ind(RP |P )} is a set
of representatives of the isomorphism classes of all indecomposable RG-modules
with vertex P in B. Further, for 1 � i � t and W ∈ Ind(RP |P ), Ui(W )N is a
multiple of V .

Proposition 3.6′. The set {U ′
i(W ); 1 � i � t,W ∈ Ind(kP |P )} is a set

of representatives of the isomorphism classes of all indecomposable kG-modules
with vertex P in B. Further, for 1 � i � t and W ∈ Ind(kP |P ), U ′

i(W )N is a
multiple of V ∗.

Proof. We prove only Proposition 3.6; the proof of Proposition 3.6′ is
similar. Let L be an indecomposable RG-module with vertex P in B. Let W
be a P -source of L. Then, since NG(P ) = P × CN (P ), we have WNG(P ) ∼=
W ×RCN (P ), so the Green correspondent of L with respect to (G,NG(P ), P )
is of the form W × Y for a projective indecomposable RCN (P )-module Y .
Then Y ∼= Yi for some i by the Nagao-Green theorem [9, Theorem 5.3.12]. So
L ∼= Ui(W ). It also follows from the Nagao-Green theorem that modules of the
form Ui(W ) lie in B. Thus the first assertion follows.

Since P ∩N = 1, Ui(W )N is projective. So the second follows.
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We also need to consider certain o[G/Q]-modules. Let us introduce some
notation. Put G = G/Q and for every H � G put H = HQ/Q. As is well-
known, B contains a unique simple kG-module, say S, so there is a unique block
B of G which is dominated by B. Let S be the unique simple kG-module in B.
Clearly B has defect group D = P . Let b be the unique block of N dominated
by b. Of course b has defect 0. Clearly (G,N,B, b, P ) satisfies (��). Let B′

be the Brauer correspondent of B in NG(P ). We have NG(P ) = P × CN (P ).
So if b′ is the block of CN (P ) covered by B′, b′ has defect 0 and b′ contains
a unique projective indecomposable RCN (P )-module Z (with Z∗ simple). Via
the natural isomorphism P ∼= P , Ind(oP ) may be identified with Ind(oP )
and we denote by W ∈ Ind(oP ) the module corresponding to W ∈ Ind(oP ).
Clearly P is a vertex of S. Let W 0 be a P -source of S. So W 0 = W0 for
W0 ∈ Ind(kP |P ). Since SN is the unique simple module in b, W0 is an endo-
permutation module by Theorem 3.1. The following lemma characterizes W0

inside G.

Lemma 3.7. W 0, or W0, is unique up to isomorphism and W0 is (up
to isomorphism) a unique indecomposable summand of SP with vertex P .

Proof. Since NG(P ) = P ×CN (P ), we see W 0 is uniquely determined ([9,
Theorem 3.3.6]). Of course, P is a vertex of W0. If W = Inf(W 0), where Inf is
taken via the natural homomorphism D → D/Q = P , then W is a D-source of
S and WP

∼= W0. So W0|SP . Conversely, let L be an indecomposable summand
of SP with vertex P . Then L |SP and P is a vertex of L. So L is a P -source
of S and we get L ∼= W 0 by the above. Thus L ∼= W0. This completes the
proof.

For every W ∈ Ind(RP |P ), let U(W ) be the Green correspondent of W×Z
with respect to (G,NG(P ), P ). For every W ∈ Ind(kP |P ), let U

′
(W ) be the

Green correspondent of W × Z∗ with respect to (G,NG(P ), P ).
Since (G,N,B, b, P ) satisfies (��), applying Propositions 3.6, 3.6′, and the

First Main Theorem, we get the following.

Proposition 3.8. The set {U(W );W ∈ Ind(RP |P )} is a set of repre-
sentatives of the isomorphism classes of all indecomposable RG-modules with
vertex P in B.

Proposition 3.8′. The set {U ′
(W );W ∈ Ind(kP |P )} is a set of repre-

sentatives of the isomorphism classes of all indecomposable kG-modules with
vertex P in B.

The indecomposable modules under investigation are closely related to
each other. To see this, we need some general facts. In the following Lemmas
3.9, 3.10 and 3.11, let M be a normal subgroup of G. Let θ : G→ G/M be the
natural homomorphism. We define a functor θ∗ as follows: For a subgroup H
of G with H � M and an oH-module U , we set θ∗(U) = U/UI(oM). So θ∗(U)
is an o[H/M ]-module. (We note that θ∗(U) may be 0 or may not be o-free in
general.)
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Lemma 3.9. We have the following isomorphisms.
(i) θ∗(U ⊕ V ) ∼= θ∗(U) ⊕ θ∗(V ) for oG-modules U and V .
(ii) θ∗(U ⊗ Inf(W )) ∼= θ∗(U) ⊗W for an oG-module U and an o[G/M ]-

module W .
(iii) θ∗(U/πU) ∼= θ∗(U)/πθ∗(U) for an RG-module U .
(iv) {θ∗(U)}H/M

∼= θ∗(UH) for an oG-module U , where G � H � M .
(v) {θ∗(U)}G/M ∼= θ∗(UG) for an oH-module U , where G � H � M .
In particular, if U is an H-projective oG-module for a subgroup H of G,

then θ∗(U) is HM/M -projective.

Proof. For the proof, we use a well-known isomorphism: θ∗(U) ∼= U ⊗oH

o[H/M ] for an oH-module U , cf. [9, Theorem 1.9.17(i)]. We extend θ to an
algebra homomorphism from oG onto o[G/M ] and denote the image of α ∈ oG
by α.

(i) This is obvious.
(ii) Define f : (U ⊗ Inf(W )) ⊗oG o[G/M ] −→ (U ⊗oG o[G/M ]) ⊗W by

f((u⊗ w) ⊗ α) = ((u⊗ 1 ⊗ w)α, u ∈ U,w ∈W,α ∈ oG.

Then f is an isomorphism; the inverse of f is given by

(u⊗ α) ⊗ w −→ (uα⊗ w) ⊗ 1, u ∈ U,w ∈W,α ∈ oG.

(iii) Define f : (U ⊗R k) ⊗kG k[G/M ] → (U ⊗RG R[G/M ]) ⊗R k by

f((u⊗ λ) ⊗ ϕ(α)) = u⊗ α⊗ λ, u ∈ U, λ ∈ k, α ∈ RG,

where ϕ : RG→ kG is the natural map. Then f is an isomorphism.
(iv) Define f : U ⊗oG o[G/M ] → U ⊗oH o[H/M ] by

f(u⊗ α) = uα⊗ 1, u ∈ U,α ∈ oG.

Then f is an isomorphism; the inverse of f is given by

u⊗ α −→ u⊗ α, u ∈ U,α ∈ oH.

(v) Define f : (U⊗oH o[H/M ])⊗o[H/M ] o[G/M ] → (U⊗oH oG)⊗oG o[G/M ]
by

f((u⊗ α) ⊗ β) = (u⊗ 1) ⊗ αβ, u ∈ U,α ∈ oH, β ∈ oG.

Then f is an isomorphism; the inverse of f is given by

(u⊗ α) ⊗ β −→ (u⊗ 1) ⊗ αβ, u ∈ U,α, β ∈ oG.

The last assertion follows from (i) and (v). This completes the proof.

Lemma 3.10. Let U be a projective indecomposable oG-module and let
T be a simple kG-module corresponding to U . Then θ∗(U) is isomorphic to the
projective indecomposable o[G/M ]-module corresponding to T , if M � Ker T ;
a zero module, otherwise.
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Proof. We first consider the case when o = k. If θ∗(U) �= 0, then there
is a surjection θ∗(U) → T , since the head of U is simple and isomorphic to T .
Thus M � Ker T . Conversely, if M � Ker T , then the required conclusion
follows by Landrock [6, II 11.15].

Now assume o = R. Since θ∗(U) | θ∗(RG) ∼= R[G/M ] by Lemma 3.9, θ∗(U)
is projective or 0. Then, since θ∗(U)/πθ∗(U) ∼= θ∗(U/πU) by Lemma 3.9, the
conclusion follows from the first paragraph.

Lemma 3.11. Let H be a subgroup of G with H � M . Put G = G/M
and H = H/M . Let B (resp. b) be a block of G (resp. H). Assume the
following conditions: B (resp. b) dominates a unique block B (resp. b) of G

(resp. H); bG is defined and equals B; b
G

is defined. Then b
G

= B.

Proof ([3, Proposition 1.2.16]). Let f : ZkG → ZkG be the algebra
homomorphism induced by the natural homomorphism G → G. Define g :
ZkH → ZkH similarly. Define sH : ZkG → ZkH by sH(K̂) =

∑
x∈K∩H x,

where K are conjugacy classes of G. Define sH : ZkG→ ZkH similarly. Then
sH ◦ f = g ◦ sH . From this and our assumption that bG = B, we see that B

dominates b
G

. Thus b
G

= B.

Now we return to our original situation. Let b̃ be a block of NN (D) (=
NG(D) ∩N) covered by B̃. It is easy to see that NN (D) is the inverse image
of CN (P ) in G.

Lemma 3.12. (i) B′ is a unique block of NG(D) which is dominated by
B̃.

(ii) b̃ dominates b′ and Y NN (D)
i is a projective indecomposable RNN (D)-

module in b̃.

Proof. (i) By Lemma 3.5, B̃ contains a unique simple kNG(D)-module,
so B̃ dominates a unique block B′′ of NG(D) = NG(P ). Clearly B′′ has defect

group D = P , and B′′G = B by Lemma 3.11. So B′′ = B′ by the First Main
Theorem. Thus the result follows.

(ii) Since NG(D) = DNN (D), we see that b̃ is a unique block of NN (D)
which is covered by B̃. This yields the first assertion.

By Lemma 3.4 and Green’s theorem Y
NN (D)

i and Y
NG(D)

i are projective
indecomposable. By Lemma 3.5, b′i covers some βm. Then, by Mackey de-
composition, (Y NG(D)

i )CN (D) has a summand in βm. Since NG(D)/CN (D) is
a p-group, it follows that Y NG(D)

i belongs to B̃. Then we see that Y NN (D)
i

belongs to b̃ by the first paragraph. This completes the proof.

In the rest of this section, let θ : G→ G/Q be the natural homomorphism.
Let θ∗ be the functor defined as above. Now we prove the following.

Theorem 3.13. For every W ∈ Ind(RP |P ) and i, 1 � i � t, we have
θ∗(Ui(W )) ∼= U(W ) ⊕Mi(W ) for an H(P )-projective RG-module Mi(W ).
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Theorem 3.13′. For every W ∈ Ind(kP |P ) and i, 1 � i � t, we have
θ∗(U ′

i(W )) ∼= U
′
(W ) ⊕M ′

i(W ) for an H(P )-projective kG-module M ′
i(W ).

Proof. Here we give only the proof of Theorem 3.13; Theorem 3.13′ is
proved in a similar way. Put Y = Yi and Ỹ = 1P × Y . First we claim that
P acts trivially on θ∗(Ỹ NG(D)). Let u ∈ P, x ∈ NG(D) and y ∈ Ỹ . Put
xux−1 = vz with v ∈ P, z ∈ Q. Then

(y ⊗ x)(u− 1) = y ⊗ vzx− y ⊗ x = (y ⊗ x)(x−1zx− 1),

since P acts trivially on Ỹ . Thus the claim follows .
Now

θ∗
(
Ỹ NG(D)

)
NN (D)

∼= θ∗
(
(Ỹ NG(D))NN (D)

)
(by Lemma 3.9)

∼= θ∗
(
Y NN (D)) (by Mackey decomposition).

Thus

θ∗
(
Ỹ NG(D)

) ∼= 1P × θ∗
(
Y NN (D)).

By Lemmas 3.10 and 3.12(ii), θ∗
(
Y NN (D)) ∼= Z. Hence

(1) θ∗
(
Ỹ NG(D)

) ∼= 1P × Z.

Put W̃ = W × 1CN (P ). Let Inf(W̃ ) be the inflation of W̃ via the natural
homomorphism NG(D) → NG(P ). Then

(2) θ∗
(
(W × Y )NG(D)

) ∼= θ∗
((

Inf(W̃ )NG(P ) ⊗ Ỹ
)NG(D))

∼= θ∗
(
Inf(W̃ ) ⊗ Ỹ NG(D)

)
∼= W̃ ⊗ θ∗(Ỹ NG(D)) (by Lemma 3.9)
∼= W × Z (by (1)).

Thus

(3) θ∗((W × Y )G) ∼= θ∗
({(W × Y )NG(D)}G

)
∼= {

θ∗
(
(W × Y )NG(D)

)}G (by Lemma 3.9)

∼= (W × Z)G (by (2))
∼= U(W ) ⊕M,

where M is an H(P )-projective module.
On the other hand, (W×Y )G ∼= Ui(W )⊕L, where L is an H(P )-projective

module. So

(4) θ∗((W × Y )G) ∼= θ∗(Ui(W )) ⊕ θ∗(L)
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and, by Lemma 3.9, θ∗(L) is H(P )-projective. Comparison of (3) and (4) yields
the result. This completes the proof.

Let V be the unique projective indecomposable RN -module in b. We
determine the extensions to G of V . Let V be the unique projective indecom-
posable RN -module in b, as before. Let T be the unique simple kN -module in
b. Clearly S is a unique extension of T to G.

Lemma 3.14. We have the following isomorphism.
(i) θ∗(V ) ∼= V .
(ii) θ∗(V/πV ) ∼= T .

Proof. (i) Since the simple kN -module corresponding to V is trivial on
Q, the assertion follows from Lemma 3.10.

(ii) By Lemma 3.9 and (i), θ∗(V/πV ) ∼= θ∗(V )/πθ∗(V ) ∼= V /πV ∼= T .

Lemma 3.15. An RG-module L is an extension of V if and only if L
is a lift of S.

Proof. Let L be an extension of V . Then L∗
N

∼= T , so L∗ ∼= S. Conversely
if L is a lift of S, then L∗

N
∼= T . Hence LN

∼= V .

Let Lf(W0) be a set of representatives of the isomorphism classes of all
indecomposable endo-permutation RP -modules W with vertex P such that
W ∗ ∼= W0.

Theorem 3.16. The set {U(W );W ∈ Lf(W0)} is a set of representa-
tives of the isomorphism classes of all extensions of V to G. In particular, the
number of isomorphism classes of such extensions equals |Lf(W0)| = |P/P ′| >
0, where P ′ is the commutator subgroup of P .

Proof. Let L be an extension of V to G. By Lemma 3.15, L is a lift of S.
So, since L lies in B, we see that L has vertex P . If W is a P -source of L, then
W ∈ Ep(RP ) by Theorem 3.1. Clearly we have W

∗ |L∗
P

∼= SP . Since W
∗

is
indecomposable with vertex P (cf. [1, Corollary 6.3] and [2, Proposition 12.1]),
we get W

∗ ∼= W 0 by Lemma 3.7. By Proposition 3.8, we get L ∼= U(W ).
Now let L1 be an R-form of an irreducible character of height 0 in B.

Then it is easy to see that L1 is an extension of V to G. By the above,
L1

∼= U(W1) with W1 ∈ Lf(W0). Let W ∈ Lf(W0). By Lemma 2.2, U(W ) ∼=
Inf(W1

∧ ·W ) ⊗ L1. Since W1
∧ ·W has R-rank 1 (cf. [2, Proposition 12.1]),

U(W ) also is an extension of V . The equality |Lf(W0)| = |P/P ′| also follows
from [2, Proposition 12.1], since K contains the |G|-th roots of unity. This
completes the proof.

Now we obtain a necessary condition for an indecomposable RG- (resp.
kG-) module in B with vertex P to be an extension of V (resp. V ∗).
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Corollary 3.17. Let W ∈ Ind(RP |P ) and 1 � i � t. If Ui(W ) is
an extension of V , then W ∈ Lf(W0). Furthermore, for W ∈ Lf(W0), the
following are equivalent.

(i) Ui(W ) is an extension of V .
(ii) θ∗(Ui(W )) ∼= U(W ).

Proof. Assume that Ui(W ) is an extension of V . Then we have

θ∗(Ui(W ))N
∼= θ∗(Ui(W )N ) ∼= θ∗(V ) ∼= V .

In particular, θ∗(Ui(W )) is indecomposable. Hence, by Theorem 3.13,
θ∗(Ui(W )) ∼= U(W ). So U(W ) is an extension of V and W ∈ Lf(W0) by
Theorem 3.16.

Let W ∈ Lf(W0). (i) ⇒ (ii): This follows from the first paragraph.
(ii) ⇒ (i): Put Ui(W )N

∼= nV for an integer n. Then

θ∗(Ui(W ))N
∼= nV .

Since U(W ) is an extension of V by Theorem 3.16, we get n = 1. This completes
the proof.

Corollary 3.17′. Let W ∈ Ind(kP |P ) and 1 � i � t. If U ′
i(W ) is an

extension of V*, then W ∼= W0. Furthermore, the following are equivalent.
(i) U ′

i(W0) is an extension of V ∗.
(ii) θ∗(U ′

i(W0)) ∼= S.

Proof. Assume that U ′
i(W ) is an extension of V ∗. Then we have

θ∗(U ′
i(W ))N

∼= θ∗(U ′
i(W )N ) ∼= θ∗(V ∗) ∼= T .

Thus θ∗(U ′
i(W )) ∼= S. Hence, by Theorem 3.13′, θ∗(U ′

i(W )) ∼= U
′
(W ). So

U
′
(W ) ∼= S and W ∼= W0.

(i) ⇒ (ii): This follows from the first paragraph.
(ii) ⇒ (i): Put U ′

i(W0)N
∼= nV ∗ for an integer n. Then

θ∗(U ′
i(W ))N

∼= nT .

So n = 1 and (i) follows.

As the following corollaries show, the existence of an extension of V (resp.
V ∗) to G with vertex P is equivalent to a statement neater than Theorem 3.13
(resp. Theorem 3.13′).

Corollary 3.18. Let 1 � i � t. The following are equivalent.
(i) Ui(W ) is an extension of V for every W ∈ Lf(W0).
(ii) Ui(W ) is an extension of V for some W ∈ Lf(W0).
(iii) θ∗(Ui(W )) is indecomposable for some W ∈ Lf(W0).
(iv) θ∗(Ui(W )) ∼= U(W ) for some W ∈ Ep(RP ).
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Proof. (i) ⇒ (ii): This is trivial.
(ii) ⇒ (iii): This follows from Corollary 3.17.
(iii) ⇒ (iv): Assume that θ∗(Ui(W1)) is indecomposable for W1 ∈ Lf(W0).

By Corollary 3.17 (and Theorem 3.13), Ui(W1) is an extension of V . Let
W ∈ Ep(RP ). By Lemma 2.2,

Ui(W ) ∼= Inf(W ∧
1 ·W ) ⊗ Ui(W1).

So

θ∗(Ui(W )) ∼= Inf(W ∧
1 ·W ) ⊗ θ∗(Ui(W1)) (by Lemma 3.9)

∼= Inf(W ∧
1 ·W ) ⊗ U(W 1) (by Theorem 3.13),

where Inf is taken via the natural isomorphism G/N ∼= P ∼= P . Since U(W 1) is
an extension of V by Theorem 3.16, θ∗(Ui(W )) is indecomposable by Lemma
2.1. Thus the result follows from Theorem 3.13.

(iv) ⇒ (i): This follows from Corollary 3.17.

Corollary 3.18′. Let 1 � i � t. The following are equivalent.
(i) U ′

i(W0) is an extension of V ∗.
(ii) θ∗(U ′

i(W )) ∼= U
′
(W ) for every W ∈ Ind(kP |P ).

Proof. (i) ⇒ (ii): Let W ∈ Ind(kP |P ). We have

U ′
i(W ) ∼= Inf(W ∧

0 ·W ) ⊗ U ′
i(W0)

by Lemma 2.2. So

θ∗(U ′
i(W )) ∼= Inf(W ∧

0 ·W ) ⊗ θ∗(U ′
i(W0)) (by Lemma 3.9).

By Corollary 3.17′, θ∗(U ′
i(W0))N

∼= T , which is simple. Thus we get the result
by Lemma 2.1 and Theorem 3.13′.

(ii) ⇒ (i): We have θ∗(U ′
i(W0)) ∼= U

′
(W 0) ∼= S. So we get the result by

Corollary 3.17′.

4. The case where P is cyclic

In this section, by (G,N,B, b, P ) we mean the following data:

(���) (G,N,B, b, P ) satisfies the condition (��) in Section 3 and P is cyclic.

We retain the notation introduced in Section 3. We shall prove the follow-
ing.

Theorem 4.1. For every i (1 � i � t) and every W ∈ Lf(W0), Ui(W )
is an extension of V .
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We postpone the proof for a while and give consequences of Theorem 4.1.

Theorem 4.1′. For every i (1 � i � t), U ′
i(W0) is an extension of V ∗.

Proof. Let W ∈ Lf(W0). By definition,

(W × Yi)G ∼= Ui(W ) ⊕ L,

where L is an H(P )-projective module. Reducing modulo p,

(1) (W0 × Y ∗
i )G ∼= Ui(W )∗ ⊕ L∗.

On the other hand, by definition,

(2) (W0 × Y ∗
i )G ∼= U ′

i(W0) ⊕M,

whereM is an H(P )-projective module. By Theorem 4.1, Ui(W ) is an extension
of V . So Ui(W )∗N ∼= V ∗, and Ui(W )∗ is indecomposble. Clearly there exists a
vertex A of Ui(W )∗ with A � P . By Lemma 3.2, G = AN . Thus A = P . So
by (1) and (2), we get Ui(W )∗ ∼= U ′

i(W0). Therefore U ′
i(W0) is an extension of

V ∗.

From Theorem 4.1, Proposition 3.6 and Corollary 3.17, we obtain the
following.

Corollary 4.2. The set {Ui(W ); 1 � i � t,W ∈ Lf(W0)} is a set of
representatives of the isomorphism classes of all extensions of V to G with
vertex P .

Also, from Theorem 4.1′, Proposition 3.6′ and Corollary 3.17′, we obtain
the following.

Corollary 4.2′. The set {U ′
i(W0); 1 � i � t} is a set of representatives

of the isomorphism classes of all extensions of V ∗ to G with vertex P .

Proof of Theorem 4.1. First we show that it suffices to consider the case
when Q is central in N .

(Reduction) Assume that the theorem is true under the assumption that
Q is central in N . Then it is true in general.

To see this, put G0 = PCN (Q) and N0 = CN (Q). Clearly N0 is a normal
subgroup of G with |G/N0| a power of p. Let b0 be the unique block of N0

covered by b. Then, since b is G-invariant, b0 is G-invariant. Clearly b0 has
defect group Z(Q), which is central in N0. Let B0 be the unique block of
G0 covering b0. Then, as is well-known, (for examaple, cf. [7, Lemma 4.13]),
PZ(Q) is a defect group of B0. Thus (G0, N0, B0, b0, P ) satisfies (���).

Let S0 be the unique simple kG0-module in B0. We claim that S0 is a
summand of SG0 . Let U (resp. U0) be the unique projective indecompos-
able kG- (resp. kG0-) module in B (resp. B0). By Green’s theorem, U G

0 is
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projective indecomposable. Now G = G0N and G0 ∩ N = PCN (Q) ∩ N =
(P ∩ N)CN (Q) = N0. So, by Mackey decomposition, U G

0 lies in a block of
G covering b, namely B. Thus U G

0
∼= U . So, by Nakayama relation S0 is a

constituent of SG0 . Then a repeated use of Clifford’s theorem proves the claim.
Let W1 be an indecomposable summand of (S0)P with vertex P , cf. Lemma
3.7. By the claim, we see W1

∼= W0 by Lemma 3.7.
Let 1 � i � t and W ∈ Lf(W0). Let L be an indecomposable RG0-module

such that L|WG0 and that Ui(W )|LG. Then, by Green’s theorem, Ui(W ) ∼= LG.
Thus L has vertex P and W is a P -source of L. Since LG ∼= Ui(W ) lies in B,
we see that L lies in B0 by Mackey decomposition. Thus by Proposition 3.6
(applied to (G0, N0, B0, b0, P )), there exist a block β ofNG0(P ) and a projective
indecomposable RCN0(P )-module Y in the block of CN0(P ) covered by β such
that βG0 = B0 and that L is the Green correspondent of W ×Y with respect to
(G0, NG0(P ), P ). Hence, by our assumption, LN0

∼= V0, where V0 is a unique
projective indecomposable RN0-module in b0. Then Ui(W )N

∼= (LG)N
∼= V N

0

by Mackey decomposition and V N
0

∼= V by Green’s theorem. Thus Ui(W ) is
an extension of V , as required.

Hereafter we consider only the case when Q is central in N . We argue by
induction on |G|. Let |P | = pn, n � 1. Fix i and put B0 = bi, V0 = Yi. Let
W ∈ Lf(W0). Put M = W × Yi and U = Ui(W ).

Let P1 be the unique subgroup of P of order p. We distinguish two cases:

(Case 1) NG(P1Q) = G, (Case 2) NG(P1Q) �= G.

(Case 1) Put G1 = NG(P1) and let B1 = B G1
0 . Let D1 be a defect group

of B1 such that P � D1. Put N1 = G1 ∩N and let b1 be a block of N1 covered
by B1. We have :

(1.a) (G1, N1, B1, b1, P ) satisfies the same assumption as (G,N,B, b, P ).

Clearly G1 = PN1 with P ∩ N1 = 1. We have D1 = P (D1 ∩ N1). Since
B G

1 = B, we get D1 ∩ N1 �G D ∩ N = Q. Since Q is normal in G, we get
D1 ∩ N1 = D1 ∩ Q. So D1 ∩ N1 is central in N1 and, since P mormalizes
D1 ∩N1, D1 ∩N1 is normal in G1. Thus D1 ∩N1 is a defect group of b1. Then,
since |D1/D1 ∩N1| = |G1/N1|, b1 is G1-invariant. Thus (1.a) is proved.

We prepare a group-theoretical fact, which enables us to reduce the proof to
the case of (G1, N1, B1, b1, P ) by arguments similar to those used in (Reduction).

(1.b) Op(G) � N1.

Let x be a p′-element of G. Since P1Q is normal in G by assumption and
x ∈ N, [x, P1Q] � P1Q ∩ N = Q. Since Q is central in N , [x,Q] = 1. As is
well-known, this implies [x, P1Q] = 1. Thus x ∈ CG(P1) ∩ N � N1 and (1.b)
follows.
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Let X be the Green correspondent of M with respect to (G1, NG(P ) =
NG1(P ), P ). So X belongs to B1 by the Nagao-Green theorem [9, Theorem
5.3.12]. Let V1 be the unique projective indecomposable RN1-module in b1 and
let S1 be the unique simple kG1-module in B1. Let W1 be an indecomposable
summand of (S1)P with vertex P .

(1.c) (1) XG ∼= U .
(2) S1 is a direct summand of SG1 .
(3) If XN1

∼= V1, then UN
∼= V .

(4) W1
∼= W0.

XG is indecomposable by (1.b) and Green’s theorem. Then P is a common
vertex of X and XG, so (1) follows. By (1)

dimk HomG(U/πU, S) = dimk HomG1(X/πX, SG1).

On the other hand, by (1.b) and a repeated use of of Clifford’s theorem, we get
SG1

∼= mS1 ⊕ L for some integer m and a semi-simple module L not involving
S1. Since HomG(U/πU, S) �= 0, we get m �= 0 and (2) follows. Then SN1

involves (S1)N1 and hence V |V N
1 by Nakayama relation. By Green’s theorem,

we get V N
1

∼= V . Then (3) follows from (1) and Mackey decomposition. (4)
follows from (2), cf. the proof of (Reduction).

By (1.c)(3), it suffices to show that X is an extension of V1.
Clearly S1 is trivial on P1. Hence by (1.c)(4), W0 is trivial on P1. So, if

n = 1, then W0 is the trivial module and W has R-rank one. Thus X = M
is an extension of V1 = V0. Thus we may assume n � 2. In the following put
H = HP1/P1 for any subgroup H of G1. We write G1 and N1 for G1 and
N1, respectively. Let B0 be the unique block of NG(P ) dominated by B0. Let
B1 be the unique block of G1 dominated by B1. Let b1 be the block of N1

identified with b1 via the natural isomorphism N1
∼= N1. Let V 1 be the module

in b1 identified with V1 via the same isomorphism.

(1.d) (1) (G1, N1, B1, b1, P ) satisfies the same assumption as (G,N,B, b,
P ).

(2) B
G1

0 = B1.

(3) V 1 is a unique projective indecomposable RN1-module in b1.

Indeed, (1) follows from (1.a). (2) follows from Lemma 3.11. (3) is clear.

As we have shown, W0 is regarded as a P -module, which we denote by
W 0. Also, S1 is regarded as a G1-module, which we denote by S1. Then the
following is clear:

(1.e) S1 is a unique simple kG1-module in B1, W 0 | (S1)P , and P is a
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vertex of W 0.

For the group NG1
(P ), the following are clear:

(1.f) (1) NG(P ) = NG1
(P ) = P × CN (P ).

(2) CN (P ) = CN1
(P ).

(3) There is a natural isomorphism: CN (P ) ∼= CN (P ).

Let V 0 be the CN (P )-module identified with V0 via the natural isomor-
phism in (1.f)(3). The following is clear:

(1.g) V 0 is a (unique) projective indecomposable RCN1
(P )-module in the

block of CN1
(P ) covered by B0.

By (1.d)(1) and (1.e), we can choose W ′ ∈ Lf(W 0). Put M ′ = W ′ ×
V 0. By (1.g), M ′ belongs to B0. Let X ′ be the Green correspondent of M ′

with respect to (G1, NG1
(P ), P ). By applying the induction hypothesis to

(G1, N1, B1, b1, P ), we get that X ′ is an extension of V 1. Thus:

(1.h) Inf(X ′) is an extension of V1.

On the other hand, we have:

(1.i) Inf(X ′) is the Green correspondent of Inf(M ′) with respect to
(G1, NG(P ), P ).

Now, since Inf(W ′) ∈ Ep(RP ) and Inf(W ′)∗ ∼= W0
∼= W ∗, there exists

an RP -module L of rank 1 such that Inf(W ′) ∼= L ⊗W , cf. [2, Proposition
12.1]. Let Inf(L) be the inflation of L to G1 via the natural homomorphism
G1 → G1/N1

∼= P . Then

Inf(M ′)G1 ∼= (
Inf(W ′) × V0

)G1

∼= (
Inf(L)NG(P ) ⊗M

)G1

∼= Inf(L) ⊗MG1

∼= (Inf(L) ⊗X) ⊕A,

where A is an H(P )-projective module. Thus, by (1.i), Inf(X ′) ∼= Inf(L) ⊗X.
Then, by (1.h), XN1

∼= V1. Thus the proof is complete in (Case 1).

(Case 2) Put G2 = NG(P1Q). Since Q�G and P is a cyclic p-group, we
have the following.

(2.a) NG(P ) � NG(D) � G2.

Put B2 = B G2
0 and let b2 be a block of G2 ∩ N covered by B2. We have
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G2 = PN2 with N2 = G2 ∩N .

(2.b) (G2, N2, B2, b2, P ) satisfies the same assumption as (G,N,B, b, P ).

It suffices to show that D is a defect group of B2. (Indeed, if this is the
case then b2 is G2-invariant and D ∩ N2 = Q is a defect group of b2.) Since
B2 = (BNG(D)

0 )G2 , D is contained in a defect group of B2. On the other hand,
since B G

0 = B and BG2
0 = B2, B G

2 = B. Thus a defect group of B2 is contained
in a G-conjugate of D. Hence the result follows.

Let X be the Green correspondent of M with respect to (G2, NG(P ), P ).

(2.c) XG ∼= U ⊕ L for a projective RG-module L.

Clearly U is the Green correspondent of X with respect to (G,G2, P ) and
XG ∼= U ⊕ L, where L is an X -projective module. Here X = {P ∩ P x;x ∈
G \G2}. Then it is easy to see X = {1}, because P is a cycllc p-group. Thus
(2.c) follows.

In the following we put H = HQ/Q for any subgroup H of G. By the in-
duction hypothesis applied to (G2, N2, B2, b2, P ) and Corollary 3.18,
X/XI(RQ) is indecomposable with vertex P . So, as in (2.c), we get the fol-
lowing.

(2.d) (X/XI(RQ))G ∼= U ⊕ L for an indecomposable RG-module U and
a projective RG-module L.

We now show the following, cf. the proof of Lemma III.5.13 in Feit [4].

(2.e) HomG,Q(U∗, S) = 0. Here the left hand side denotes the k-vector
space of Q-projective kG-homomorphisms from U∗ to S.

Let φ : U∗ → S be a Q-projective kG-homomorphism. Let I be the
injective hull of U∗ and let e : U∗ → I be the essential homomorphism. Since
U∗

Q is projective, 0 → U∗
Q → I splits. Take a kG-homomorphism f : IQ → U∗

Q

such that fe = idU∗ . Choose a kQ-homomorphlsm ψ : U∗ → S such that
φ = TrG

Q(ψ) and let g = TrG
Q(ψf). Then φ = ge. Put I =

⊕
s Ps with Ps

projective indecomposable. If e(U∗) projects onto some Ps, then Ps|U∗. This
shows U has a projective summand (Feit [4, I.17.11]), a contradiction. Thus
e(U∗) ⊆ IJ(kG), where J(kG) is the radical of kG. Hence φ(U∗) = 0, as
required.

(2.f) U/UI(RQ) is projective-free.
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Indeed,

0 = HomG,Q(U∗, S) (by (2.e))
= HomG,Q(U∗/U∗I(kQ), S) (since S is trivial on Q)
= HomG,1(U

∗/U∗I(kQ), S).

Thus U∗/U∗I(kQ) is projective-free. By Lemma 3.9,

U∗/U∗I(kQ) ∼= (U/UI(RQ))∗.

Thus U/UI(RQ) is projective-free.

From (2.c) and Lemma 3.9, we get

(2.g) (X/XI(RQ))G ∼= U/UI(RQ) ⊕ L/LI(RQ).

Thus, by (2.f), comparison of (2.d) and (2.g) shows that

(2.h) U/UI(RQ) ∼= U ,

which implies that U is an extension of V . Indeed, (2.h) shows that the condi-
tion (iii) of Corollary 3.18 holds, so by Corollary 3.18(i), U is an extension of
V . This completes the proof of Theorem 4.1.

Let (G,N,B, b, P ) be as above. Put |P | = pn and let

J(n) = {j; j is an integer prime to p and 1 � j < pn}.
For every j ∈ J(n), let Wj be the unique indecomposable kP -module of di-
mension j. Let 1 � i � t. Let W0 be as above. Define U ′

i(Wj), j ∈ J(n), and
U ′

i(W0) as above. We have U ′
i(Wj)N

∼= nijV
∗ for an integer nij (cf. Proposi-

tion 3.6′). The following shows, in particular, W0 (and hence a D-source of S)
is determined if we know the Green correspondent of W1 × Y ∗

i with respect to
(G,NG(P ), P ).

Corollary 4.3. Let 1 � i � t and j ∈ J(n). Then we have
(i) U ′

i(Wj) ∼= Inf(W0 ·Wj) ⊗ U ′
i(W0).

(ii) nij ∈ J(n); in fact, for a fixed i, the map j → nij is a permutation on
J(n) of order at most 2.

(iii) dimk W0 = ni1.

Proof. We note that W ∧
0

∼= W0.
(i) By Theorem 4.1′, U ′

i(W0) is an extension of V ∗. So the result follows
from Lemma 2.2.

(ii) By (i), nij = dimk(W0 · Wj). So nij ∈ J(n). If nij = m, then
W0 ·Wj

∼= Wm. Thus nim = dimk(W0 ·Wm) = dimk(W0 · (W0 ·Wj)) = j.
(iii) We have ni1 = dimk(W0 ·W1) = dimk(W0).

This completes the proof.
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