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Abstract

Concerning the uniqueness in the Cauchy problem at doubly char-
acteristic points, discrete conditions on lower order terms are known. In
this paper, uniqueness is studied when those conditions are not satisfied.

1. Introduction

In Holmgren’s uniqueness theorem, the initial surface is assumed to be non-
characteristic. We already have an important extension to simply characteristic
points. Namely, let P (x, ∂) be a partial differential operator of order m with
analytic coefficients in an open set Ω in Rn, the coefficients of its principal part
Pm(x, ∂) be real-valued and F (x) be a real-valued C 2 function with F ′(x) �= 0.
Then the following theorem is known (see [3] and [10]).

Theorem 1.1. Let xo ∈ Ω and denote ν = F ′(xo). Suppose P is simply
characteristic at (xo, ν) and let (x(t), ξ(t)) be the bicharacteristic strip with
(x(0), ξ(0)) = (xo, ν). Also, suppose there exists a distribution solution u(x) to
the equation Pu = 0 with xo ∈ supp[u] ⊂ Ω+ = {x ∈ Ω;F (x) ≥ F (xo)}. Then
x(t) ∈ Ω+ in a neighborhood of t = 0.

If P is doubly characteristic at (xo, ν) and there are two bicharacteristic
strip issued from (xo, ν), how does the uniqueness depend on them? This paper
is concerned with this problem, however our consideration is restricted to the
following equation for simplicity.

(1.1) Pu := {∂2
1 − x2

1∂
2
2 + a(x)∂1 + b(x)∂2 + c(x)}u = 0,

where x = (x1, x2) ∈ R2, ∂i = ∂/∂xi (i = 1, 2) and the coefficients are all
analytic in an open set Ω containing the origin. Let F (x) = x2 − ρ(x1) and
ρ(x1) be a real- valued C 1 function satisfying ρ(0) = ρ′(0) = 0. This operator
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P is doubly characteristic at (0, ν) with ν = F ′(0) = (0, 1) and it has two
characteristic curves ϕ(x) := x2 + x2

1/2 = 0 and ψ(x) := x2 − x2
1/2 = 0 which

satisfy ϕ′(0) = ψ′(0) = ν. We denote xϕ(t) = (t,−t2/2) and xψ(t) = (t, t2/2).
Then we have the following theorem and its corollary.

Theorem 1.2. Suppose there exists a solution u(x) ∈ D′(Ω) to the
equation (1.1) with 0 ∈ supp[u] ⊂ Ω+ = {x ∈ Ω;F (x) ≥ 0}. Then i)
xψ(t) ∈ Ω+ in a neighborhood of t = 0. Moreover, ii) when b(0) /∈ {1, 3, 5, · · · },
xϕ(t) ∈ Ω+ in at least one of one-sided neighborhoods of t = 0, i.e. one of two
intervals −δ < t ≤ 0 and 0 ≤ t < δ with some δ > 0.

Corollary 1.1. Let G be a closed subset of Ω and σ be a real constant.
Suppose K = G ∩ {x ∈ Ω;x2 − σx2

1 ≤ 0} be compact and u(x) be a distribution
solution to (1.1) in Ω with supp[u] ⊂ G. Then u(x) vanishes in a neighborhood
of K if i) σ ≥ 1/2 or if ii) b(0, x2) /∈ {1, 3, 5, · · · } for (0, x2) ∈ Ω and 1/2 >
σ ≥ −1/2.

When a = c = 0 and b is a real constant, Corollary 1.1 with σ = 0 is
due to F. Trèves [12] and B. Birkeland and J. Persson [1], and Theorem 1.2 to
S. Nakane [9]. The author ([5]) has extended it in a slightly different form to
more general equations including (1.1), which will be explained later (see 3.1
and 3.2). Concerning the uniqueness and non-uniqueness in the characteristic
Cauchy problem, see also [4], [7], [8], [11] and their references.

The discrete condition b(0) /∈ {1, 3, 5, · · · } still interests us much. When
a = c = 0 and b is a constant, we know it is necessary (cf. [12]), however the
author knows no other results. In general, is it essential for the uniqueness?
Our aim is to investigate this problem. The obtained results will be stated in
the following section. We will see there the uniqueness may hold in the case
b(0) ∈ {1, 3, 5, · · · },too, namely Theorem 1.2 remains true even if the condition
b(0) /∈ {1, 3, 5, · · · } is replaced by the one that b(0, x2) ≡ 2µ+ 1 ∈ {1, 3, 5, · · · }
and c(0) differs from a certain number (Theorem 2.1). Especially, when a = 0
and b, c are constants, we will have a necessary and sufficient condition that
(b, c) �= (2µ+ 1, 0), µ = 0, 1, 2, · · · (Corollary 2.2).

2. Results

First, we suppose

(2.1) b(0, x2) ≡ 2µ+ 1 ∈ {1, 3, 5, · · · }.

To state the results, we need a new quantity. Let tP stand for the transposed
operator of P and λ be a parameter. Since ϕ is a phase function of tP , one can
write ϕ−λ+1 tP (ϕλv) = λMv +O(ϕ), where

(2.2) M = 2x1(∂1 − x1∂2) − b− ax1 + 1.

This is a Fuchsian partial differential operator with characteristic exponent µ.
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Proposition 2.1. Concerning the operator M , the following i) and ii)
hold under the condition (2.1).

i) There exists a unique sequence 
j(ξ) (0 ≤ j ≤ µ) with 
µ = 1 such that
π0LM = 0 with L =

∑µ
j=0 
j(ϕ)(∂1 − x1∂2)j, where π0 denotes the operator

which restricts functions onto x1 = 0.
ii) There exists a unique sequence rj(ξ) (j ≥ µ) with rµ = 1 such that

MR = 0 with R =
∑∞
j=µ rj(ϕ)xj1/j!.

Setting Q = tP −M∂2, we define

(2.3) q(x2) = π0LQR.

Then the following theorem and its corollary hold.

Theorem 2.1. Suppose (2.1) and q(0) �= 0. Also, suppose there exists
a solution u(x) ∈ D′(Ω) to the equation (1.1) with 0 ∈ supp[u] ⊂ Ω+. Then
xϕ(t) ∈ Ω+ in at least one of one-sided neighborhoods of t = 0, i.e. one of two
intervals −δ < t ≤ 0 and 0 ≤ t < δ with some δ > 0.

Corollary 2.1. Let G be a closed subset of Ω and σ be a real constant
with 1/2 > σ ≥ −1/2. Suppose (2.1) and q(x2) �= 0. Also, suppose K =
G ∩ {x ∈ Ω;x2 − σx2

1 ≤ 0} be compact and u(x) be a distribution solution to
(1.1) in Ω with supp[u] ⊂ G. Then u(x) vanishes in a neighborhood of K.

Remark 1. Since π0Lc(x)R = c(0, x2), one may take q(0) �= 0 a condi-
tion on the value c(0).

As a special case, consider the equation

(2.4) Pu = {∂2
1 − x2

1∂
2
2 + b∂2 + c}u = 0, b, c constants.

When b = 2µ + 1(µ = 0, 1, 2, · · · ), we see easily L = (∂1 − x1∂2)µ, R = xµ1/µ!
and so q = c. Therefore the following corollary follows from Theorem 1.2 and
Theorem 2.1. (One can also get a corresponding result to Corollary 2.1.)

Corollary 2.2. Suppose there exists a distribution solution u(x) to the
equation (2.4) in Ω with 0 ∈ supp[u] ⊂ Ω+. It then follows that xϕ(t) ∈ Ω+

in at least one of one-sided neighborhoods of t = 0, if and only if (b, c) /∈
{(2µ+ 1, 0);µ = 0, 1, 2, · · · }.

Lastly, by an example, we point out a different aspect of the problem
appearing in the case b(0) = 2µ+ 1 (µ = 0, 1, 2, · · · ) but b(0, x2) �≡ 2µ+ 1.

(2.5) Pu = {∂2
1 − x2

1∂
2
2 + (2µ+ 1 + ψ)∂2 + c}u = 0, c a constant,

where ψ = x2 − x2
1/2. For this equation, the result is opposite to the above

ones, namely, the following proposition holds, which means the consequence in
Theorem 2.1 and that in Corollary 2.1 are not true for this equation.
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Proposition 2.2. There exists a distribution solution u(x) to the equa-
tion (2.5) in a neighborhood of the origin such that 0 ∈ supp[u] ⊂ {x;ψ(x) ≥ 0}.

3. Proofs

Though Theorem 1.2 and Corollary 1.1 are essentially not new, we begin
with their proofs for the paper to be self-contained.

3.1. Proof of Theorem 1.2
Take δi > 0 (i = 1, 2) such that D := {x; |xi| < δi, i = 1, 2} ⊂ Ω, |ρ(x1)| <

δ2 and x2
1/2 < δ2 for |x1| < δ1 and suppose there exists |α| < δ1 such that

xψ(α) /∈ Ω+, i.e. ρ(α) > α2/2. If α > 0, there exists ε > 0 such that ρ(α) >
εα+α2/2. The curve G(x) := x2 − εx1 −x2

1/2 = C with a parameter C is non-
characteristic for the equation (1.1) when x1 > −ε/2. Hence, noting that u = 0
when x2 < ρ(x1) and ρ(0) = ρ′(0) = 0, we see u = 0 near the origin by the
well-known sweeping-out method with Holmgren’s uniqueness theorem, which
contradicts the assumption 0 ∈ supp[u]. One can derive the same contradiction
in the case α < 0, too, which proves i).

Next, let D be the same one as defined above and suppose there exist α
and β with −δ1 < α < 0 < β < δ1 such that ρ(α) > −α2/2 and ρ(β) > −β2/2.
Then there exists 0 < ε < 1 such that ρ(α) > (ε−1/2)α2 and ρ(β) > (ε−1/2)β2.
Since the curve x2 − (ε− 1/2)x2

1 = C with a parameter C is non-characteristic
except for x1 = 0 for the equation (1.1), one can see u = 0 for x2−(ε−1/2)x2

1 <
0 by the sweeping-out method with Holmgren’s uniqueness theorem. Besides,
by the following theorem, we see u = 0 near the origin. It contradicts the
assumption 0 ∈ supp[u], which proves ii).

Theorem 3.1 ([5]). Let 0 ∈ Ω and suppose b(0) /∈ {1, 3, 5, · · · }. Also,
let u be a distribution solution to (1.1) with supp[u] ⊂ {0}∪{x;x2 +x2

1/2 > 0}.
Then u vanishes in a neighborhood of x = 0.

3.2. Proof of Corollary 1.1
Suppose supp[u] ∪ {x;x2 − σx2

1 ≤ 0} �= ∅. Denoting by κ(C) the curve
x2−σx2

1 = C, let Cmin be the minimum of C such that supp[u]∪{x;x2−σx2
1 =

C} �= ∅. Since the curve κ(C) is non-characteristic for the equation (1.1) when
σ �= ±1/2 and simply characteristic when σ = ±1/2 both for x1 �= 0 and
supp[u] ∩ κ(Cmin) is compact, we see supp[u] ∩ κ(Cmin) = {(0, Cmin)} by
Holmgren’s theorem and Theorem 1.1. Lastly, by applying Theorem 1.2 at
(0, Cmin), we see u = 0 near this point. It contradicts the assumption, which
proves Corollary 1.1.

3.3. Proof of Proposition 2.1
We change the variables by x̃1 = x1 and x̃2 = x2+x2

1/2 and denote (x̃1, x̃2)
by (x1, x2) again for simplicity. Then P , ϕ, ψ and F are respectively written
as
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(3.1)

{
P = ∂2

1 + 2x1∂1∂2 + a∂1 + (b+ ax1 + 1)∂2 + c,

ϕ = x2, ψ = x2 − x2
1, F = x2 − ρ∗(x1)

with ρ∗(x1) = ρ(x1) + x2
1/2. Besides, tP and M are done as

(3.2)




tP = ∂2
1 + 2x1∂1∂2 − a∂1 − (b+ ax1 − 1)∂2

+ c− ∂1a− ∂2b− x1∂2a,

M = 2x1∂1 − b− ax1 + 1.

Denote b̃ = b+ ax1 − 1, then

π0LM = π0

µ∑
j=0


j(x2)∂
j
1(2x1∂1 − b̃(x))

= π0

µ∑
j=0


j


2x1∂

j+1
1 + 2j∂j1 −

∑
0≤k≤j

(
j

k

)
(∂k1 b̃)∂

j−k
1




=
µ∑
j=0


2j
j −

∑
0≤k≤µ−j

(
j + k

k

)

j+k∂

k
1 b̃(0, x2)


π0∂

j
1.

Therefore π0LM = 0 means that

(2µ− b̃(0, x2))
µ = 0,

(2j − b̃(0, x2))
j =
∑

1≤k≤µ−j

(
j + k
k

)

j+k∂

k
1 b̃(0, x2) for 0 ≤ j < µ.

Since b̃(0, x2) = 2µ by the assumption (2.1), we see 
µ is free, and so we may put

µ = 1. For each 0 ≤ j < µ, 
j is determined uniquely by the second relations
successively. Thus the proof of i) has been completed. The second part ii) is a
well-known fact in the theory of Fuchsian partial differential equations.

3.4. A characteristic Cauchy problem
Employing the same coordinate system as in 3.3, we consider the following

characteristic Cauchy problem, whose solvability will be used to prove Theorem
2.1.

(3.3) tPv = M∂2v +Qv = f, v = O(x2 − h)

where Q = ∂2
1 − a∂1 + c̃, c̃ = c − ∂1a − ∂2b − x1∂2a and h is a parameter.

Because π0LM = 0, wee see the right hand side needs to satisfy

(3.4) π0Lf = 0 at x2 = h.

We denote by Arx̂ the set of all analytic functions f(x) at x = x̂ whose Taylor
expansion f(x) =

∑
α ∂

(α)f(x̂)(x − x̂)α/α! converge in {x; |xj − x̂j | < r, j =
1, 2}. One may suppose all the coefficients of P belong to Ar0 for some r > 0.
Then the following theorem holds.
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Theorem 3.2 ([6]). Let r > 0 and assume all the coefficients of P be-
long to Ar0. Also, assume (2.1) and q(0) �= 0. Then there exists δ > 0 such
that for any f(x) ∈ Ar0 satisfying (3.4) and any |h| < δ there exists a unique
solution u(x) ∈ Aδ(0,h) to the Cauchy problem (3.3).

This theorem is a special case of Theorem 3.1 in our preceding paper [6],
and so we only explain how the condition q(0) �= 0 works.

Let Mh(x1, ∂1) stand for M(x1, h, ∂1), and so do Lh(x1, ∂1), Qh(x1, ∂1)
and Rh(x1). We set ṽ = ∂2v and define ∂−1

2 ṽ =
∫ x2

h
ṽ(x1, x2)dx2. Then the

Cauchy problem (3.3) is written as

Mhṽ +Q∗∂−1
2 ṽ = f,

where Q∗ = (M −Mh)∂2 +Q. If we put

(3.5) Mhṽ = w, π0∂
µ
1 ṽ = p(x2),

then we have π0Lhw = 0 because π0LhMh = 0. Oppositely, given analytic
w(x) with π0Lhw = 0 and analytic p(x2) arbitrarily, one can verify easily that
there exists a unique analytic function ṽ satisfying (3.5). We set

M−1
h w = ṽ − p(x2)Rh(x1).

Then, since MhRh = 0, it follows that MhM
−1
h w = w and π0∂

µ
1M

−1
h w = 0.

Hence we have

(3.6) w +Q∗∂−1
2 M−1

h w +Q∗∂−1
2 pRh = f.

Next, we operate π0Lh from the left. Then, by noting π0Lhw = 0, π0LhQhRh =
q(h) and ∂−1

2 pRh = Rh∂
−1
2 p, we have

(3.7) q(h)∂−1
2 p+ π0LhQ

∗∂−1
2 M−1

h w + π0LhQ
∗∗Rh∂−1

2 p = π0Lhf,

where Q∗∗ = (M −Mh)∂2 +Q−Qh. If q(h) �= 0, one can solve the equations
(3.6) and (3.7) with respect to w(x) and ∂−1

2 p(x2) by the contraction principle.
(See [6] for the details.)

3.5. Proof of Theorem 2.1 and Corollary 2.1
In the same coordinate system as in 3.3 and 3.4, take δi > 0 (i = 1, 2)

such that D := {x; |xi| < δi, i = 1, 2} ⊂ Ω, |ρ∗(x1)| < δ2 and x2
1 < δ2 for

|x1| < δ1, and suppose there exist −δ1 < α < 0 < β < δ1 such that ρ∗(α) > 0
and ρ∗(β) > 0. Then there exists 0 < σ < 1 such that σα2 < ρ∗(α) and
σβ2 < ρ∗(β). We set

Σ = {x ∈ supp[u];α ≤ x1 ≤ β, x2 ≤ σx2
1},

and, considering Σ �= ∅, put

s = min{x2 − σx2
1; (x1, x2) ∈ Σ}.
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If s < 0, the set Σs = Σ∩ {x2 − σx2
1 = s} does not contain (0, s), (α, σα2) and

(β, σβ2). Therefore Σs is a compact set and the curve x2 − σx2
1 = s is non-

characteristic at every point of Σs. Since u = 0 when x2 − σx2
1 < s, it follows

from Holmgren’s uniqueness theorem that Σs = ∅. This is a contradiction, and
so we may suppose s = 0, namely u = 0 in {α < x1 < β, x2 < σx2

1}.
Next, we take δ, h and h′ so small that δ < min{−α, β}, 0 < h < h′ <

σδ2 < δ/2, U := {(x1, x2); |x1| < δ, |x2| < σδ2} ⊂ Ω and Theorem 3.2 would
be applicable. Let χ(x2) be a C∞ function such that χ(x2) = 1 for x2 ≤ h
and χ(x2) = 0 for x2 ≥ h′, and set ũ = χu. Then ũ ∈ E ′(U) and P ũ = 0 in
Uh := {(x1, x2) ∈ U ;x2 < h}. Besides we see there exist an positive integer 
,
a compact set K ⊂ U and a positive constant C such that

|〈ũ, f〉| ≤ C
∑
|α|≤�

sup
x∈K

|∂αf(x)| ∀f ∈ E(U),

and therefore ũ is extendable to a linear form on E�(U).
Next, let F�+2(U) stand for the set of all functions f(x) in U such that

∂αf are continuous in U for |α| ≤ 
 + 2, α2 ≤ 
 + 1 and f(x) = 0 for x2 ≥ h.
Then 〈Pu, v〉 = 〈P ũ, v〉 = 〈ũ,tPv〉 = 0 for any v ∈ D(U) with supp[v] ⊂ Uh
which are dense in F�+2. Therefore we have

〈ũ,tPv〉 = 0 ∀v ∈ F�+2(U).

Lastly, for f(x) ∈ D(U) with supp[f ] ⊂ Uh, define

fε = (x2 − h)�+2[eε ∗ {(x2 − h)−�−2f}],
where eε(x) = (4πε)−1 exp[−|x|2/(4ε)] and ∗ denotes the convolution. Then
fε(x) = O{(x2 − h)�+2} and it is an entire function. By Theorem 3.2, there
exists a solution vε ∈ Aδ(0,h) to the equation tPvε = fε with vε = O{(x2−h)�+2}.
Let f∗ε denote the function such that f∗ε = fε for x2 < h and f∗ε = 0 for x2 ≥ h
and so do v∗ε . Then v∗ε ∈ F�+2 and tPv∗ε = f∗ε and hence we have

〈ũ, f∗ε 〉 = 0.

Now that f∗ε tends to f in E�(U), it follows that 〈ũ, f〉 = 〈u, f〉 = 0. Thus we
see u = 0 in Uh. This contradicts the assumption 0 ∈ supp[u], which completes
the proof of Theorem 2.1. One can prove Corollary 2.1 in the same way as the
proof of Corollary 1.1.

3.6. Proof of Proposition 2.2
First, we change the variables by x̃1 = x1 and x̃2 = ψ and denote the new

variables by (x1, x2) again for simplicity. Then the transformed operator is

P = −2x1∂1∂2 + (2µ+ x2)∂2 + ∂2
1 + c.

Next, we set u = ∂m2 v with the minimum non-negative integer m such that
−�c + m > −1. Then we have P∂m2 v = ∂m2 (P − m)v. Next, we obtain a
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solution v of (P −m)v = 0 by setting v =
∑
k≥0 x

λ+k
2 vk(x1) with a parameter

λ. Noting that

(P −m)v = {−2x1∂1∂2 + 2µ∂2 + x2∂2 + ∂2
1 + c−m}

∑
k≥0

xλ+k
2 vk(x1)

=
∑
k≥0

(−2x1∂1 + 2µ)vk(λ+ k)xλ+k−1
2

+
∑
k≥0

(λ+ k + c−m+ ∂2
1)vkxλ+k

2 ,

we get a recurrence relation

λ(−2x1∂1 + 2µ)v0(x1) = 0,

(λ+ k)(−2x1∂1 + 2µ)vk(x1) + (λ+ k − 1 + c−m+ ∂2
1)vk−1(x1) = 0,

k = 1, 2, · · · .
The first relation is solved by v0 = xµ1 . For the second relation with k = 1 to
have a solution, it is necessary and sufficient that π0∂

µ
1 (λ + c −m + ∂2

1)xµ1 =
(λ + c − m)µ! = 0, so we set λ = −c + m. Since −�c + m > −1, we have
λ + k �= 0 for k ≥ 1. Hence the second relation with k = 1 is solved by a
polynomial v1(x1) of degree µ − 2, and successively the relation with k ≥ 2 is
done by a polynomial vk(x1) of degree µ− 2. The obtained series converges in
V = {x; |x2| < 4}.

Now, we set v+ = v for x2 > 0 and v+ = 0 for x2 ≤ 0. Noting that v+ is
locally summable, we define u+ = ∂m2 v+ in D′ sense and prove Pu+ = 0. For
ϕ ∈ D(V ), we have

〈Pu+, ϕ〉 = 〈v+,t(P∂m2 )ϕ〉
= lim

ε→+0

∫ ∫
x2≥ε

v ·t(P∂m2 )ϕdx = lim
ε→+0

∫ ∫
x2≥ε

v · (tP −m)(−∂2)mϕdx

= lim
ε→+0

∫
x2=ε

(−2x1∂1 + 2µ+ x2)v · (−∂2)mϕdx1

+ lim
ε→+0

∫ ∫
x2≥ε

(P −m)v · (−∂2)mϕdx.

Because (−2x1∂1 + 2µ + x2)v = (−2x1∂1 + 2µ)v0(x1)xλ2 + O(xλ+1
2 ) = o(1) as

x2 → +0 and (P −m)v = 0, we see < Pu+, ϕ >= 0 for any ϕ ∈ D(V ), that is,
Pu+ = 0, which completes the proof.
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