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Abstract

The CR geometry is applied to the representation theory of the
group SU(p, q). We prove that the kernel of the CR Yamabe operator on
a CR manifold M is a representation of the conformal CR automorphism
group of M . So we can construct a representations of SU(p, q) on the
kernel of the CR Yamabe operator on the projective hyperquadric Qp,q.
This is a complex version of Kobayashi-Orsted’s model of the minimal
irreducible unitary representation �p,q of SO(p, q) on Sp−1 × Sq−1.

1. Introduction

Conformal geometry on pseudo-Riemannian manifolds can be applied to
the representation theory of the group SO(p, q) (cf. [3], [13], [14], [15], [16] and
references therein). Kostant used the conformal invariance of the vanishing of
scalar curvature on 6 dimensional manifolds to explore the minimal represen-
tation of SO(4, 4) in [16]. Recently, T. Kobayashi and B. Orsted [13], [14], [15]
gave a geometric and intrinsic model of the minimal irreducible unitary repre-
sentation �p,q of SO(p, q) on Sp−1 × Sq−1 and on various pseudo-Riemannian
manifolds which are conformally equivalent, by using the Yamabe operator.
They also gave branching formulae and unitarization of various models. In this
paper, we use CR geometry to realize representations of SU(p, q).

The geometry of strictly pseudoconvex CR manifolds has many parallels
with Riemannian geometry [1], and there is a far reaching analogue between
conformal geometry and CR geometry. Jerison and Lee gave a table [11] sum-
marizing some important parallels. More generally, strictly k-pseudoconvex CR
manifolds correspond to the pseudo-Riemannian manifolds. A nondegenerate
contact form on a CR manifold plays the role of a metric in pseudo-Riemannian
geometry. In CR geometry, there is a natural connection, called the Webster
connection, associated to a contact form θ on a CR manifold. We can define
conformal contact forms in CR geometry and develop conformal geometry on
CR manifolds. For example we can define a CR Yamabe operator and have
similar transformation formula [11]. The kernel of the CR Yamabe operator
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on a CR manifold M is proved to be a representation of the conformal CR au-
tomorphism group of M . The group SU(p, q) can be realized as the conformal
CR automorphism group of the projective hyperquadric Qp,q and so the space
of solutions to the CR Yamabe equation on the projective hyperquadric is a
representation of SU(p, q).

In Section 2, we collect some basic facts about CR geometry and the
Heisenberg group. In Section 3, we prove a transformation formula for the
CR Yamabe operator under CR transformations and so the kernel of CR Yam-
abe operator on a CR manifold M is a representation of the conformal CR
automorphism group of M . In Section 4, we find some solutions to the CR
Yamabe equations. In Section 5, we show SU(p, q) acting as conformal CR
transformations on the projective hyperquadric Qp,q and construct a represen-
tation of SU(p, q) on the kernel of CR Yamabe operator on it. Its connection
to the degenerate principal series representations is mentioned. Representation
of SU(p, q) on the Heisenberg group H

p−1,q−1 is also considered.
The Heisenberg group H

p−1,q−1 (or equivalently, the hypersurface Q′
p,q)

and its compactification, the projective hyperquadric Qp,q, correspond to the
Euclidean space Rp−1,q−1 and its compactification Sp−1 × Sq−1, respectively.
Compared to the Yamabe operators on Sp−1×Sq−1 and on the Euclidean space,
the analysis of the CR Yamabe operators on the projective hyperquadric Qp,q

and on the Heisenberg group is much more complicated. Unitarization and
other properties of these representations will be given in the second part.

For other rank-1 Lie groups Sp(1)Sp(n+1, 1) and F−20
4 , there exist quater-

nionic and octanionic CR geometries. For example, we have corresponding
Webster connections, corresponding conformal geometry, corresponding
Yamabe operators, etc. (cf. [2]). It is interesting to study the representa-
tion theories of Sp(1)Sp(n + 1, 1) (more generally, of Sp(p, q)) and F−20

4 by
using corresponding conformal geometries.

Acknowledgement. The results were presented at RIMS Symposium
‘Representation theory of groups and extension of harmonic analysis’ 2005.
I would like to thank Professor Toshiyuki Kobayashi for his hospitality and
for valuable discussions. This work is supported by National Nature Science
Foundation in China.

2. Preliminaries on CR Geometry

We collect some basic facts about CR geometry and the Heisenberg group
in this section (cf. [11] and [17]).

Let M be a real (2n+1)-dimensional orientable C∞ manifold. A CR struc-
ture on M is an n-dimensional complex subbundle T1,0M of the complexified
tangent bundle CTM satisfying T1,0M ∩ T0,1M = {0}, where T0,1M = T1,0M ,
and the integrability condition: [Z1, Z2] ∈ C∞(M,T1,0M) whenever Z1, Z2 ∈
C∞(M,T1,0M). Set

(2.1) H = Re{T1,0M ⊕ T0,1M},
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the 2n-dimensional real horizontal subbundle of TM . H carries a complex
structure J : H −→ H satisfying J2 = −idH and T1,0 = ker(J − i · idCH),
T0,1 = ker(J + i · idCH). When M is a codimension-1 submanifold of the
complex manifold W , M has an induced CR structure defined by

(2.2) T1,0M = CTM ∩ T1,0W,

if dim(T1,0M)x =const. for each x ∈ M , where T1,0W is the holomorphic
tangential space of the complex manifold W .

A mapping f : (M1, T1,0M1) −→ (M2, T1,0M2) is called a Cauchy-Riemann
mapping (or a CR mapping ) if

(2.3) f∗T1,0M1 ⊂ T1,0M2,

where f∗ is the tangential mapping of f . If f is invertible, f and f−1 are both
CR mappings, f is called a CR diffeomorphism.

Let E ⊂ T ∗M denote the 1-dimensional real line bundle H⊥. Namely, any
section of E annihilatesH. Because we assume M to be orientable and the com-
plex structure J induces an orientation on H, E has a globally non-vanishing
section θ. A globally non-vanishing section θ of E is called a pseudohermitian
structure on (M,T1,0M). We call the triple (M,T1,0M, θ) a pseudohermitian
manifold. An 1-form θ onM is called a contact form if θ∧(dθ)n is non-vanishing
on M .

We say θ̃ is conformal to θ if θ̃ = φ
4

Q−2 θ for some positive smooth function
φ on M , where Q = dimM + 1 is the homogeneous dimension of M . A CR
mapping between two pseudohermitian manifolds, f : (M1, T1,0M1, θ1) −→
(M2, T1,0M2, θ2), is called conformal if f∗θ2 = φ

4
Q−2 θ1 for some positive smooth

function φ on M1.
If f is a CR diffeomorphism, then f∗H1 = H2, where H1 and H2 are

real horizontal subbundles of TM1 and TM2, respectively. Then, f∗θ2 is a
globally non-vanishing section of E1 = H⊥

1 if θ2 is a globally non-vanishing
section of E2 = H⊥

2 . Note that E is 1-dimensional. Thus, given any globally
non-vanishing section θ1 of E1, we have

(2.4) f∗θ2 = φθ1,

for some non-vanishing function φ on M1. So, a CR diffeomorphism f is con-
formal up to a sign and the CR geometry is the complex counterpart of the
conformal geometry.

We can define a Hermitian form on T1,0M associated to a pseudohermitian
structure θ by

(2.5) Lθ(V,W ) = −idθ(V ∧W ),

which is called the Levi form of θ. This can also be written as

(2.6) Lθ(V,W ) = dθ(V ∧ JW ).
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In this form Lθ(·, ·) extends by complex linearity to a symmetric form on CH
which is real onH. If the Levi form has k positive eigenvalues and n−k negative
eigenvalues, (M,T1,0M, θ) is said to be strictly k-pseudoconvex. The inner
product Lθ(·, ·) determines an isomorphism H∗ ∼= H, which in turn determines
a dual form L∗

θ(·, ·) on H∗. L∗
θ(·, ·) can be naturally extended to T ∗M . This

defines a norm |ω|θ on the space of real 1−forms ω by

(2.7) |ω|2θ = L∗
θ(ω, ω) = 2

n∑
j=1

|ω(Zj)|2,

where Z1, . . . , Zn form an orthonormal basis for T1,0M with respect to the Levi
form Lθ(·, ·).

In [21], Webster showed that there exists a natural connection on the
bundle T1,0M adapted to a pseudohermitian structure θ. For a pseudohermitian
structure θ on a strictly k-pseudoconvex CR manifold (M,T1,0M, θ), there is a
unique vector field T , which is transversal to H, defined by

(2.8) θ(T ) = 1, dθ(T ∧ ·) = 0.

Let θα be an admissible coframe, i.e. (1, 0)−forms θα form a basis for T ∗
1,0 such

that θα(T ) = 0 for all α = 1, . . . , n. The integrability condition implies

(2.9) dθ = igαβθ
α ∧ θβ

for some Hermitian matrix of functions (gαβ), which is nondegenerate and has
k positive eigenvalues and n−k negative eigenvalues if (M,T1,0M, θ) is strictly
k-pseudoconvex. In this case, θ is a contact form, i.e. θ ∧ (dθ)n is nowhere
vanishing. Here and in the following, we will use the convention that sum over
repeated indices. Webster showed that there are uniquely determined 1-forms
ω β

α and τβ on M satisfying

(2.10)


dθβ = θα ∧ ω β

α + θ ∧ τβ

ωαβ + ωβα = dgαβ

τα ∧ θα = 0,

where we use (gαβ) to raise and lower indices, e.g. ωαβ = ω γ
α gγβ . Let

Ω α
β = dω α

β − ω γ
β ∧ ω α

γ .(2.11)

Webster showed that Ω α
β could be written as

(2.12) Ω α
β = R α

β ρσθ
ρ ∧ θσ +W α

β ρθ
ρ ∧ θ −Wα

βρθ
ρ ∧ θ + iθβ ∧ τα − iτβ ∧ θα

The Webster-Ricci tensor of (M,T1,0M, θ) has components Rαβ = R ρ

ρ αβ
.

The Webster scalar curvature is

(2.13) Rθ = gαβRαβ .
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The CR Yamabe problem is to find a contact form θ̃ = u
4

Q−2 θ, u > 0,
which is conformal to the given contact form θ, such that Rθ̃ ≡constant. This
problem is considered by D. Jerison and L. Lee [11] for strictly pseudoconvex
CR manifolds and completely solved recently by N. Gamara and R. Yacoub [7],
[8].

A pseudohermitian manifold (M,T1,0M, θ) has a natural volume form

(2.14) ψθ = (−1)n−kθ ∧ (dθ)n,

which is nowhere vanishing because M is strictly k-pseudoconvex. It induces
an L2 inner product on functions

(2.15) 〈u, v〉θ =
∫

M

uvψθ,

and an L2 inner product on sections of H∗,

(2.16) 〈ω, η〉θ =
∫

M

L∗
θ(ω, η)ψθ.

For u ∈ C∞(M), we define a section dbu of H∗ by

(2.17) dbu = pr ◦ du,
where pr : T ∗M −→ H∗ is the restriction map. We can define the SubLaplacian
�θ associated to a strictly k-pseudoconvex contact form θ by

(2.18) 〈�θu, v〉θ =
1
2
〈dbu, dbv〉θ.

Since evidently, |θ|θ = 0, L∗
θ(·, ·) is degenerate on T ∗M and so the operator �θ

is a degenerate ultrahyperbolic operator. Let {W1, . . . ,Wn} be a local basis of
T1,0M dual to an admissible coframe {θα}, i.e. θα(Wβ) = δαβ. Denote covari-
ant differentiations uα = Wαu, uα = Wαu, uαβ = WβWαu − ω γ

α (Wβ)Wγu,

uαβ = WβWαu − ω γ
α (Wβ)Wγu, u

γ
α = uαβg

γβ, u γ
α = uαβg

βγ , where (gαβ)
is the inverse of (gαβ).

Proposition 2.1 (Proposition 4.10 in [17]). If u ∈ C∞
0 (M), then,

(2.19) �θu = −u α
α − u α

α .

Define a product on Cn+2 by

(2.20) (ζ, ξ)p,q =
n+1∑
j=0

εjζjξj ,

where n+ 2 = p+ q, and

(2.21) εj =

{
1, for j = 0, 1, . . . , p− 1,
−1, for j = p, . . . , p+ q − 1.
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We denote (ζ, ζ)p,q by |ζ|2p,q for ζ ∈ Cn+2. Similarly, we define a product on
Cn by

(2.22) (z, w)p−1,q−1 =
n∑

α=1

εαzαwα.

We also denote (z, z)p−1,q−1 by |z|2p−1,q−1 for z ∈ Cn.
The simplest CR manifold is the Heisenberg group H

p−1,q−1, whose un-
derlying manifold is Cp+q−2 × R, with coordinates (z, t). Its multiplication is
given by

(2.23) (z, t) · (z′, t′) = (z + z′, t+ t′ + 2Im(z, z′)p−1,q−1) .

It’s obvious that (z, t)−1 = (−z,−t). On the Heisenberg group H
p−1,q−1, there

are the following CR transformations:
(1) dilations:

(2.24) δa(z, t) = (az, a2t), a > 0;

(2) left translations:

(2.25) τ(z,t) : (z′, t′) −→ (z, t) · (z′, t′), (z, t), (z′, t′) ∈ H
p−1,q−1;

(3) unitary transformations:

(2.26) UA : (z, t) −→ (Az, t), A ∈ U(p− 1, q − 1);

and the inversions. The vector fields

(2.27) Zα =
∂

∂zα
+ iεαzα

∂

∂t
,

α = 1, . . . , n, are left invariant vector fields on H
p−1,q−1. The standard CR

structure on the Heisenberg group H
p−1,q−1 is given by the subbundle

(2.28) T1,0H
p−1,q−1 = spanC{Z1, . . . , Zn}.

Let

(2.29) θHp−1,q−1 = dt+
n∑

α=1

iεα(zαdzα − zαdzα)

be the standard contact form on H
p−1,q−1, which is also left invariant. Note

that θHp−1,q−1 (Zα) = 0 for each α. Since δ∗λθHp−1,q−1 = λ2θHp−1,q−1 ,

(2.30) δ∗λ(θHp−1,q−1 ∧ (dθHp−1,q−1)n) = λ2n+2θHp−1,q−1 ∧ (dθHp−1,q−1)n,

which means the homogeneous dimension of H
p−1,q−1 is

(2.31) Q = 2(p+ q − 2) + 2 = 2n+ 2.
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Since dθHp−1,q−1 = 2i
∑n

α=1 εαdzα ∧ dzα, we can choose {θα = dzα} as an
admissible coframe (T = ∂

∂t ), and so (gαβ) = (2εαδαβ). Then, {Zα}, defined
by (2.27), is a dual frame since θα(Zβ) = δαβ . Then, by the formula for the
SubLaplacian in Proposition 2.1,

(2.32) �θ
Hp−1,q−1 = −1

2

p−1∑
α=1

(ZαZα + ZαZα) +
1
2

p+q−2∑
α=p

(ZαZα + ZαZα).

Let us consider a real hypersurface Q′
p,q in Cn+1 defined by equation

(2.33) Imz0 = |z|2p−1,q−1, z ∈ Cn, z0 ∈ C,

which is the boundary of the Siegel upper half space

(2.34) S =
{
(z0, z) ∈ C × Cn; Im z0 > |z|2p−1,q−1

}
.

The Cayley transformation C is defined by

(2.35) w0 =
z0 − i

z0 + i
, wα =

2zα

z0 + i
,

which transforms the hypersurface Q′
p,q into the hyperquadric Qp,q ,

(2.36) Qp,q =
{
w = (w0, w

′);w0 ∈ C, w′ ∈ Cn, |w0|2 + |w|2p−1,q−1 = 1
}
.

Now introduce homogeneous coordinates ζj , j = 0, . . . , n+ 1. By equations

(2.37) zj =
ζj
ζn+1

, j = 0, . . . , n,

Cn+1 is embedded as an open subset of the complex projective space CPn+1

of dimension n + 1. In the homogeneous coordinates, Qp,q is embedded as an
open subset of the projective hyperquadric

(2.38) Qp,q =
{
ζ = (ζ0, . . . , ζn+1) ∈ CPn+1; |ζ|2p,q = 0

}
.

Projective hyperquadric Qp,q is the compactification of Qp,q in CPn+1. The
hypersurface Q′

p,q and the projective hyperquadric Qp,q have induced CR struc-
tures by (2.2) from complex manifolds Cn+1and CPn+1, respectively.

In Cn+2, let

V0 =
{
ζ ∈ Cn+2|(ζ, ζ)p,q = 0

}
,

V− =
{
ζ ∈ Cn+2|(ζ, ζ)p,q < 0

}
.

(2.39)

Let π : Cn+2 \ {0} −→ CPn+1 be the canonical projection onto the complex
projective space. Then, Hn+1

C = π(V−) is the complex hyperbolic space and
the group U(p, q) is a subgroup of GL(n+ 2,C) whose elements preserving the
Hermitian form (·, ·)p,q defined by (2.20). The action of U(p, q) on V− induces
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an action on Hn+1
C with kernel isomorphic to S1. Set PU(p, q) = U(p, q)/kernel.

SU(p, q) is the group of unimodular transformations preserving the Hermitian
form (2.20). Its center K consists of n+ 2 transformations:

(2.40) ζj −→ ηζj , ηn+2 = 1, j = 0, . . . , n+ 1.

Then SU(p, q)/K acts on π(V0) = Qp,q effectively and PU(p, q) = SU(p, q)/K.
It is well known that AutCRπ(V0) = PU(p, q) [5].

3. Representations realized as conformal CR diffeomorphisms

The transformation formula for the Webster scalar curvatures under con-
formal changes of pseudohermitian structures is proved by L. Lee in Proposition
5.15 in [17] for any nondegenerate pseudohermitian structure.

Proposition 3.1 ( Proposition 5.15 in [17]). Let (M,T1,0M, θ) be a
pseudohermitian manifold with dimM = 2n+1. The Webster scalar curvature
Rθ̃ associated with the pseudohermitian structure θ̃ = e2fθ is

(3.1) Rθ̃ = e−2f (Rθ + 2(n+ 1)�θf − 4n(n+ 1)fαf
α).

LetQ = 2n+2. If we take f = 2
Q−2 log u for u > 0 in the above proposition,

we can write the transformation formula in the following form.

Corollary 3.1. Let (M,T1,0M, θ) be a pseudohermitian manifold with
dimM = 2n+ 1. The Webster scalar curvature Rθ̃ associated with the pseudo-
hermitian structure θ̃ = u

4
Q−2 θ satisfies

(3.2) bn�θu+Rθu = Rθ̃u
Q+2
Q−2 ,

where bn = 2 + 2
n .

Proof. By the definitions of covariant differentiations, we have that

(3.3) fα =
1
n

uα

u
, fα =

1
n

uα

u
,

and

(3.4) �θf = − 1
n

(
1
u

(
u α

α + u α
α

)− 1
u2

(
uαu

α + uαu
α
))

,

by the formula for the SubLaplacian in Proposition 2.1. Substituting (3.3) and
(3.4) into (3.1) and noting that

(3.5) uαu
α = gαβu

βuα = uβuβ = uαu
α

by using (gαβ) to raise and lower indices, the result follows.

The following is a transformation formula for the SubLaplacians under
a conformal CR transformation. See [18] for the corresponding transforma-
tion formula for Laplacian under a conformal transformation in the pseudo-
Riemannian case.
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Proposition 3.2. Let (M1, T1,0M1) and (M2, T1,0M2) be two CR man-
ifolds with strictly k-psedoconvex pseudohermitian structure θ1 and θ2, respec-
tively. Suppose Φ : (M1, T1,0M1) −→ (M2, T1,0M2) is a CR diffeomorphism
with Φ∗θ2 = u

4
Q−2 θ1 for some positive smooth function u on M1. Then

(3.6) �θ1(u · Φ∗f) − u
Q+2
Q−2 Φ∗ (�θ2f) = �θ1u · Φ∗f,

for any smooth real function f on M2.

Proof. For real 1-forms ω1 and ω2, we have the symmetry L∗
θ(ω1, ω2) =

L∗
θ(ω2, ω1) and so 〈ω1, ω2〉θ = 〈ω2, ω1〉θ by the definition of inner product

(2.16). Note that

2 〈�θ1(uΦ
∗f) , g 〉θ1 = 〈db(uΦ∗f), dbg〉θ1

= 〈dbu,Φ∗f · dbg〉θ1
+ 〈db(Φ∗f), udbg〉θ1

= 〈dbu, db(Φ∗f · g)〉θ1
− 〈dbu, db(Φ∗f) · g)〉θ1

+ 〈db(Φ∗f), udbg〉θ1

= 2 〈�θ1u,Φ
∗f · g〉θ1

+ 〈db(Φ∗f), udbg − gdbu〉θ1
,

(3.7)

for any smooth real function g on M1. Let us calculate the second term in the
right side of (3.7). Since

(3.8) Φ∗(dθ2) = d(Φ∗θ2) = u
4

Q−2 dθ1 +
4

Q− 2
u

4
Q−2−1du ∧ θ1,

we find that
(3.9)

Φ∗ψθ2 = (−1)n−kΦ∗(θ2 ∧ (dθ2)n) = (−1)n−ku
4(n+1)

Q−2 θ1 ∧ (dθ1)n = u
2Q

Q−2ψθ1 ,

by θ1 ∧ du ∧ θ1 = 0. Consequently,

(3.10) 〈Φ∗f1,Φ∗f2〉θ1
=
〈
(u ◦ Φ−1)−

2Q
Q−2 f1, f2

〉
θ2

for two smooth functions f1 and f2 on M2.
Since Φ is a CR diffeomorphism, we have Φ∗H1 = H2, where H1 and H2

are real horizontal subbundles of TM1 and TM2, respectively. Dually, we have

(3.11) Φ∗ ◦ pr2 = pr1 ◦ Φ∗,

where prj is the restriction mapping T ∗Mj −→ H∗
j , j = 1, 2, and so

(3.12) db(Φ∗u) = pr1(d(Φ∗u)) = pr1(Φ∗(du)) = Φ∗(pr2(du)) = Φ∗(dbu).

By using (3.8), we have

Lθ2(Φ∗V,Φ∗W ) = −idθ2(Φ∗V ∧ Φ∗W ) = −iΦ∗(dθ2)(V ∧ W )

= −iu 4
Q−2 dθ1(V ∧ W ) = u

4
Q−2Lθ1(V,W )

(3.13)
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for any V,W ∈ T1,0M1. Consequently, Lθ2(Φ∗V1,Φ∗V2) = u
4

Q−2Lθ1(V1, V2) for
any V1, V2 ∈ H1, the real horizontal subspace of TM1. Dually, we get

(3.14) L∗
θ1

(Φ∗(ω1),Φ∗(ω2))(x) = u
4

Q−2L∗
θ2

(ω1, ω2)(Φ(x)),

for ω1, ω2 ∈ H∗
2 and any x ∈M1. Now by using the pull back properties (3.9),

(3.10), (3.12) and (3.14), we find that

〈db(Φ∗f), udbg − gdbu〉θ1

=
∫

M1

L∗
θ1

(Φ∗(dbf), udbg − gdbu) (x)ψθ1(x)

=
∫

M1

u−2L∗
θ2

(
dbf,

(
Φ−1

)∗
(udbg − gdbu)

)
(Φ(x)) (Φ∗ψθ2) (x)

=
∫

M2

(
u ◦ Φ−1

)−2
L∗

θ2

(
dbf,

(
Φ−1

)∗
(udbg − gdbu)

)
ψθ2

=
〈
dbf, db

((
Φ−1

)∗ (
u−1g

))〉
θ2

= 2
〈
�θ2f,

(
Φ−1

)∗
(u−1g)

〉
θ2

= 2
〈
u

Q+2
Q−2 Φ∗ (�θ2f) , g

〉
θ1

.

(3.15)

Equation (3.6) follows from (3.7) and (3.15). The proposition is proved.

Now define the CR Yamabe operator to be

(3.16) �̃θ = bn�θ +Rθ,

where bn = 2 + 2
n , Rθ is the Webster scalar curvature (2.13). This operator in

the positive-definite case has already appeared in the work [19] of N. Stanton.
The transformation formula for the CR Yamabe operator is a consequence of
Corollary 3.1 and Proposition 3.2 as follows.

Proposition 3.3. Under the same assumption as in Proposition 3.2,
we have that

(3.17) �̃θ1(u · Φ∗f) = u
Q+2
Q−2 Φ∗

(
�̃θ2f

)
,

for any smooth function f on M2.

Suppose (M1, T1,0M1, θ1) and (M2, T1,0M2, θ2) are two pseudohermitian
manifolds of homogeneous dimension Q. Let conformal CR mapping Φ :
(M1, T1,0M1, θ1) −→ (M2, T1,0M2, θ2) be a local diffeomorphism such that

(3.18) Φ∗θ2 = Ω2θ1,

for some positive function Ω on M1. We can define twisted pull back

(3.19) Φ∗
λ : C∞(M2) −→ C∞(M1), f �−→ Ωλ(Φ∗f),
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and write the twisted pull back for λ = Q−2
2 as Φ̃∗ = Φ∗

Q−2
2

.
Let G be a Lie group acting as conformal CR diffeomorphisms on a pseu-

dohermitian manifold (M,T1,0M, θ). We write the action of h ∈ G as Lh :
(M,T1,0M, θ) −→ (M,T1,0M, θ), x �−→ Lhx. There exists a positive valued
function Ω(h, x) for h ∈ G and x ∈M such that

(3.20) L∗
hθ = Ω(h, ·)2θ.

We have the cocycle formula for Ω(·, ·).

Proposition 3.4. For h1, h2 ∈ G and x ∈M , we have

(3.21) Ω(h1h2, x) = Ω(h1, Lh2x)Ω(h2, x).

Proof. By the definition of Ω, we have

(3.22)
Ω(h1h2, ·)2θ = L∗

h1h2
θ = L∗

h2
L∗

h1
θ = L∗

h2
(Ω(h1, ·)2θ) = Ω(h2, ·)2Ω(h1, Lh2 ·)2θ.

The proposition follows.

Now for λ ∈ C, we can define a representation �λ of the group G on
C∞(M) as follows. For h ∈ G, f ∈ C∞(M) and x ∈M , let

(3.23)
(
�λ(h−1)f

)
(x) = Ω(h, x)λf(Lhx).

Proposition 3.4 assures that �λ(h1h2) = �λ(h1)�λ(h2), i.e., �λ is a represen-
tation of G. By Proposition 3.3, we have

(3.24) Ω
Q+2

2 Φ∗
(
�̃θf

)
= �̃θ

(
Ω

Q−2
2 Φ∗f

)
.

for a conformal CR diffeomorphism Φ : (M,T1,0M, θ) −→ (M,T1,0M, θ) and

any smooth function f onM . Thus, �̃θf = 0 if and only if �̃θ

(
Ω

Q−2
2 Φ̃∗f

)
= 0.

In summary, we have the following theorem.

Theorem 3.1. Suppose G is a Lie group acting as conformal CR dif-
feomorphisms on a pseudohermitian manifold (M,T1,0M, θ) of homogeneous
dimension Q. Then,

(1) the CR Yamabe operator �̃θ is an intertwining operator from �Q−2
2

to
�Q+2

2
.

(2) The kernel ker �̃θ is a subrepresentation of G through �Q−2
2

.

We can obtain the functoriality of our representations as in the pseudo-
Riemannian case in Proposition 2.6 in [13]. We omit the details.
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4. The CR Yamabe operator on the hypersurface Q′
p,q

Let ξ −→ ξ̃ denote the canonical projection of Cn+2 \{0} into the complex
projective space CPn+1. It is easy to see that the transformation

(4.1) I(z0, z1, . . . , zn) =
(
z0 − i

2
, z,

z0 + i

2

)e

,

maps the hypersurface Q′
p,q defined by (2.33) into the projective hyperquadric

Qp,q (2.38). Define a 1-form

(4.2) θ =

∑n+1
j=0 iεj(ξjdξj − ξjdξj)∑p−1

j=0 |ξj |2
,

on Cn+2 \ {ξ ∈ Cn+2; ξ0 = · · · = ξp−1 = 0}. Since this form is invariant under
the homogeneous transformation (ξ0, . . . , ξn+1) −→ (cξ0, . . . , cξn+1) for c ∈ C,
it induces a 1-form on an open set CPn+1 \ {ξ ∈ CPn+1; ξ0 = · · · = ξp−1 =
0}. So it induces a 1-form on the projective hyperquadric Qp,q in (2.38) since
Qp,q ∩ {ξ ∈ CPn+1; ξ0 = · · · = ξp−1 = 0} = ∅. This is actually a contact form
on Qp,q (see Remark 5.1). We denote it by θQp,q

. The hyperquadric Qp,q in
(2.36) has a contact form

(4.3) θQp,q
=

n∑
α=0

iεα(zαdzα − zαdzα),

(here we use variables zα instead of wα, α = 0, . . . , n, in the definition of Qp,q

in (2.36)) and the hypersurface Q′
p,q in (2.33) has a contact form

(4.4) θQ′
p,q

=
n∑

α=1

iεα(zαdzα − zαdzα) +
1
2
(dz0 + dz0).

Contact forms (4.3) and (4.4) are actually

(4.5) i(∂ − ∂)r

for corresponding defining functions r of Qp,q and Q′
p,q , respectively. Let

T0,1Qp,q and T0,1Qp,q be the induced CR structures, i.e., T0,1Qp,q = T0,1Cn+1∩
CTQp,q , T0,1Qp,q = T0,1CPn+1 ∩ CTQp,q.

Proposition 4.1.

(4.6) I∗θQp,q
=

1
1
4 |z0 − i|2 +

∑p−1
j=1 |zj |2

θQ′
p,q
,

on the hypersurface Q′
p,q.
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Proof. This can be checked by simple calculation.

The vector fields

(4.7) Zα =
∂

∂zα
+ 2iεαzα

∂

∂z0
,

α = 1, . . . , n, are complex tangential vectors of hyperquadric Q′
p,q in (2.33),

namely, Zαr = 0, where r = Imz0 − |z|2p−1,q−1, the defining function of hyper-
surface Q′

p,q. They span T1,0(Q′
p,q) (note that T1,0(Q′

p,q) ⊂ ker θQ′
p,q

).
Note that dθQ′

p,q
=
∑n

α=1 2iεαdzα ∧ dzα, i.e., (gαβ) = (2εαδαβ). We can
choose an admissible coframe θα = dzα. It is easy to see the corresponding
1-forms ω β

α = 0 and τβ = 0. So Q′
p,q has vanishing curvature. Then, {Zα},

defined by (4.7), is a dual frame since θα(Zβ) = δαβ. Hence,

(4.8) �θQ′
p,q

= −1
2

p−1∑
α=1

(ZαZα + ZαZα) +
1
2

p+q−2∑
α=p

(ZαZα + ZαZα),

by the formula for the SubLaplacian in Proposition 2.1.

Proposition 4.2. Let S0 =
∑n+1

j=0 aj |ξj |2 with aj = εj or 0, but a0 = 1
and an+1 = 0. Then the function

(4.9) S(z0, z) = S0

(
z0 − i

2
, z,

z0 + i

2

)
on hypersurface Q′

p,q satisfies where it is positive

(4.10) �̃θQ′
p,q
S−Q−2

4 =
n+ 1

2

 n∑
j=1

2ajεj − n

S−Q+2
4 ,

where Q = 2n+ 2.

Proof. Direct manipulation gives

(4.11) ZjS
−Q−2

4 = −n
2
S−n

2 −1

(
1
2
iεjzj(z0 + i) + ajzj

)
,

Zj = ∂
∂zj

− 2iεjzj
∂

∂z0
and

ZjZjS
−Q−2

4 = −n
2
S−n

2 −1

(
1
2
iεjz0 − 1

2
εj + aj + |zj |2

)
− n

2

(
−n

2
− 1
)
S−n

2 −2

(
1
2
iεjzj(z0 + i) + ajzj

)(
−1

2
iεjzj(z0 − i) + ajzj

)
= −n

2
S−n

2 −1

(
1
2
iεjz0 − 1

2
εj + aj + |zj |2

)
+
n

2

(n
2

+ 1
)
S−n

2 −2

(
1
4
|zj |2|z0 − i|2 + a2

j |zj |2 − ajεj |zj |2 + ajεj |zj |2Imz0
)
.

(4.12)
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Since ajεj = a2
j for each j by the definition of aj , the bracket in the second

sum in the right hand side of (4.12) is 1
4 |zj |2|z0 − i|2 + ajεj |zj |2|z|2p−1,q−1 by

the defining equation of Q′
p,q and

(4.13)
n∑

j=1

εj

(
1
4
|zj |2|z0 − i|2 + ajεj |zj |2|z|2p−1,q−1

)
= |z|2p−1,q−1S(z0, z),

by the definitions of S and |z|2p−1,q−1. Thus, by multiplying εj in both sides of
(4.12), summing over j and adding its conjugate, we find that

(4.14)
n∑

j=1

εj(ZjZj + ZjZj)S−Q−2
4 = −n

2

 n∑
j=1

2ajεj − n

S−n
2 −1,

which is equivalent to (4.10) by (4.8) and �̃θQ′
p,q

= bn�θQ′
p,q

.

If we choose aj so that
∑n

j=1 2ajεj = n, then S−Q−2
4 is a solution of the

CR Yamabe equation on hypersurface Q′
p,q.

Corollary 4.1. The scalar curvature of the projective quadric Qp,q with
contact form θQp,q

is n+1
2 (p− q).

Proof. Since RθQ′
p,q

= 0, we have RθQp,q
= S

Q+2
4 · �̃θQ′

p,q
S−Q−2

4 with
a0 = · · · = ap−1 = 1, ap = · · · = an+1 = 0 by the transformation formula (3.2)
and the conformal relation in Proposition 4.1. Then the result follows from
Proposition 4.2.

See [18] for the corresponding proposition in the Euclidean case.

5. Representations on the projective hyperquadric Qp,q

Define open subsets of CPn+1

(5.1) Oj = {ξ = (ξ0, . . . , ξn+1) ∈ CPn+1; ξj �= 0},
j = 0, . . . , n + 1. Then {O0, . . . , On+1} is a covering of CPn+1. Define a
diffeomorphism

(5.2) Ij : Oj −→ Cn+1,

given by

(5.3) ξ �→ z = (z1, . . . , zn), zl = ξl/ξj , l = 0, . . . , j−1, j+1, . . . , n+1.

Then, In+1 maps Qp,q ∩ On+1 to Qp,q isomorphically. The inverse I−1
j of Ij

provides the embedding

(5.4) I−1
j : Cn+1 −→ CPn+1, z �→ (z0, . . . , zj−1, 1, zj+1, . . . , zn+1).
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Thus, under the identification I−1
n+1, SU(p, q) acts on Cn+1 and so on the hy-

perquadric Qp,q as

(5.5) g(z) =
(

g(z, 1)0
g(z, 1)n+1

, . . . ,
g(z, 1)n

g(z, 1)n+1

)
,

for g ∈ SU(p, q) and z ∈ Qp,q , where we denote by g(z, 1)j the j-th component
of g(z, 1) ∈ Cn+2. Let us calculate the conformal factors of elements of SU(p, q)
acting on the hyperquadric Qp,q. We have calculated the conformal factors of
elements of SU(n+ 1, 1) acting on the unit sphere S2n+1 in [20].

Proposition 5.1. For g ∈ SU(p, q) and z ∈ Qp,q, we have

(5.6) g∗θQp,q
(z) =

1
|g(z, 1)n+1|2 θQp,q

(z).

Proof. Note that

(5.7) dg(z) =
(
. . . ,

g(dz, 0)j

g(z, 1)n+1
− g(z, 1)jg(dz, 0)n+1

g(z, 1)2n+1

, . . .

)
,

by the linearity of g. We have, for z ∈ Qp,q,

n∑
j=0

εjg(z)jdg(z)j =
n∑

j=0

εj
g(z, 1)jg(dz, 0)j

|g(z, 1)n+1|2 −
n∑

j=0

εj |g(z, 1)j |2g(dz, 0)n+1

|g(z, 1)n+1|2g(z, 1)n+1

=
n+1∑
j=0

εj
g(z, 1)jg(dz, 0)j

|g(z, 1)n+1|2 ,

(5.8)

by

(5.9)
n∑

j=0

εj |g(z, 1)j |2 − |g(z, 1)n+1|2 =
n∑

j=0

εj |zj |2 − 1 = 0

for z ∈ Qp,q and g ∈ SU(p, q), which preserves the Hermitian product (2.20).
By differentiation the first equation in (5.9), which holds for any z ∈ Cn+1,
with respect to z, we get

(5.10)
n∑

j=0

εjg(z, 1)jg(dz, 0)j − g(z, 1)n+1g(dz, 0)n+1 =
n∑

j=0

εjzjdzj .

Then,

(5.11)
n∑

j=0

εjg(z)jdg(z)j =

∑n
j=0 εjzjdzj

|g(z, 1)n+1|2 .
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(5.6) follows from the definition of θQp,q
in (4.3). This complete the proof of

the proposition.

Define the light cone to be

(5.12) Ξ := {ξ ∈ Cn+2; |ξ|p,q = 0} \ {0},
and

(5.13) Σ :=

ξ ∈ Cn+2;
p−1∑
j=0

|ξj |2 =
p+q−1∑

j=p

|ξj |2 = 1

 � S2p−1 × S2q−1.

The multiplicative group R×
+ acts on Ξ as a dilation and the quotient space

Ξ/R×
+ is identified with Σ. By definition, Ξ/C× � Σ/S1 � Qp,q. Because the

action of SU(p, q) on Cn+2 commutes with that of C×, we can define the action
of SU(p, q) on the quotient space Ξ/C×, and also on Qp,q through the above
diffeomorphism. This action will be denoted by

(5.14) Lh : Qp,q −→ Qp,q, ξ �→ Lhξ,

for h ∈ SU(p, q), ξ ∈ Qp,q.
For a ∈ C, denote by Sa(Ξ) the space of smooth function on Ξ homoge-

neous of degree a, i.e.

(5.15) Sa(Ξ) = {f ∈ C∞(Ξ); f(tξ) = taf(ξ), ξ ∈ Ξ, t ∈ R×
+}.

A character ψ of C× has the form

(5.16) ψ(t) = |t|a
(
t

|t|
)m

,

for some a ∈ C×,m ∈ Z, which can be formally written as

(5.17) ψ(t) = ψα,β(t) = tαt
β
,

with α+β = a and α−β = m. We see that a pair (α, β) can occur if and only
if α − β is an integer. For such a pair, we define Sα,β(Ξ) ⊂ Sa(Ξ) to be the
ψα,β eigenspace for C×. Then, we have a decomposition

(5.18) Sa(Ξ) =
∑

α+β=a,
α−β∈Z

Sα,β(Ξ).

Let ν : Ξ −→ R+ be defined by

(5.19) ν(ξ) =

p−1∑
j=0

|ξj |2


1
2

=

p+q−1∑
j=p

|ξj |2


1
2

.
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Proposition 5.2. For g ∈ SU(p, q) and ξ ∈ Qp,q, we have

(5.20) g∗θQp,q
(ξ) =

1
ν(g(ξ))2

θQp,q
(ξ),

if we require the coordinates of ξ satisfying
∑p−1

j=0 |ξj |2 = 1.

Proof. Note that

(5.21) Qp,q =
n+1⋃
j=p

(
Oj ∩Qp,q

)
.

We only show (5.20) for ξ ∈ On+1 ∩ Qp,q. For ξ ∈ Oj ∩ Qp,q, j = p, . . . , n,
(5.20) follows just by the permutation of coordinates zj ↔ zn+1.

By the definitions of θQp,q
in (4.2) and θQp,q

in (4.3) and the definition of

the embedding I−1
n+1 in (5.4), we find that I−1

n+1 (Qp,q) = On+1 ∩Qp,q and

(5.22)
((
I−1
n+1

)∗
θQp,q

)
(z) =

1∑p−1
j=0 |zj |2

θQp,q
(z),

for z ∈ Qp,q. By the formula for g∗θQp,q
in Proposition 5.1 and the definition

of group SU(p, q) acting on Qp,q in (5.5), we have

g∗
(

1∑p−1
j=0 |zj |2

θQp,q

)
(z) =

1∑p−1
j=0

∣∣∣ g(z,1)j

g(z,1)n+1

∣∣∣2 · 1
|g(z, 1)n+1|2

θQp,q
(z)

=
1∑p−1

j=0 |g(z, 1)j |2
θQp,q

(z)

=

∑p−1
j=0 |zj |2∑p−1

j=0 |g(z, 1)j |2
· θQp,q

(z)∑p−1
j=0 |zj |2

.

(5.23)

Consequently, by substituting zj = ξj/ξn+1 = In+1(ξ),

(5.24) g∗θQp,q
(ξ) =

∑p−1
j=0 |ξj |2∑p−1

j=0 |g(ξ)j |2
θQp,q

(ξ),

for ξ ∈ On+1. Now (5.20) follows from this equation. The proposition is
proved.

Remark 5.1. (5.22) implies θQp,q
(ξ) being a contact form for ξ ∈

On+1 ∩ Qp,q since θQp,q
is a contact form on Qp,q . This is because θQp,q

∧
(dθQp,q

)n is non-vanishing on Qp,q by dθQp,q
=
∑n

α=0 2iεαdzα ∧dzα by the def-
inition of θQp,q

in (4.3). Similar formulae show θQp,q
(ξ) being a contact form

for ξ ∈ Oj ∩Qp,q, j = p, . . . , n. Therefore, θQp,q
is a contact form on Qp,q.
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Proposition 5.3. S−λ
2 ,−λ

2 (Ξ) is isomorphic to
(
�λ, C

∞ (Qp,q

))
as

U(p, q) modules.

Proof. For f ∈ S−λ
2 ,−λ

2 (Ξ), g ∈ U(p, q) and ξ ∈ Qp,q with
∑p−1

j=0 |ξj |2 = 1,

(5.25) f(g(ξ)) = f

(
ν(g(ξ))

g(ξ)
ν(g(ξ))

)
= ν(g(ξ))−λf(Lgξ) =

(
�λ

(
g−1

)
f
)
(ξ),

since Ω(g, ξ) = ν(g(ξ))−1 by (5.20), where
∑p−1

j=0

∣∣∣ g(ξ)j

ν(g(ξ))

∣∣∣2 = 1.

Define the representation (�p,q, V p,q) to be
(
�Q−2

2
, ker �̃θQp,q

)
.

Let us identify Sα,β(Ξ) with degenerate principal series representations
in the standard notations (cf. [6]). Let G = U(p, q) and let K be maximal
compact subgroup U(p − 1) × U(q − 1) of G and let H = U(1) × U(p − 1, q).
Let

(5.26) L =

 0 0 1
0 On 0
1 0 0

 ,

where On is the zero matrix of size n. Let A denote the group of matrix
at = exp(tL), t ∈ R, and let M be its centralizer in H. The Lie algebra g of
G can be decomposed into a direct sum

∑2
j=−2 gj , where gj are eigenspaces

of the operator adL : adL|gj
= j · id. Denote by N = exp n, where n is the

nilpotent subalgebra n = g1 + g2, generated by positive roots. Then,

(5.27) Pmax = MAN

is a maximal parabolic subgroup of G. Let χl, l = 0, 1, . . ., be the one-
dimensional representation of the group M given by

(5.28)

 eiθ 0 0
0 v 0
0 0 eiθ

 −→ e−ilθ,

with v ∈ U(p − 1, q − 1), θ ∈ R. We define F to be the C∞ or D′ valued
degenerate principal series by

(5.29)
F − IndG

Pmax(χl ⊗ Cλ) = {f ∈ F(G); f(gmatn) = χl(m−1)e−(λ+ρ)tf(g)},
where ρ = p+ q − 1.

Let M0 be the subgroup of M , consisting of the matrices as in (5.28) but
with θ = 0. Then, G/M0N can be identified with the light cone Ξ. We have
an isomorphism of G−modules

(5.30) F − IndG
Pmax(χl ⊗ Cλ) � S−λ+ρ+l

2 ,− λ+ρ−l
2 (Ξ).

Since (�p,q, V p,q) is a subrepresentation of S−Q−2
4 ,−Q−2

4 (Ξ) by Proposition
5.3 and Q−2

4 = ρ−1
2 , we have
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Corollary 5.1. (�p,q, V p,q) is a subrepresentation of S− ρ−1
2 ,− ρ−1

2 (Ξ),
or equivalently, of C∞ − IndG

Pmax(χ0 ⊗ C−1)

Now consider representations on the Heisenberg group H
p−1,q−1.

Lemma 5.1. Under the Cayley transformation C (2.35), we have

(5.31) C∗θQp,q
(z) =

4
|z0 + i|2 θQ′

p,q
(z)

for z ∈ Q′
p,q.

Proof. Direct calculation gives

wαdwα =
4zαdzα

|z0 + i|2 − 4|zα|2dz0
|z0 + i|2(z0 + i)

,

w0dw0 =
2i(z0 + i)dz0

|z0 + i|2(z0 + i)
,

(5.32)

by the Cayley transformation (2.35). Noting that
∑n

α=1 εα|zα|2 = 1
2i (z0 − z0),

and summing (5.32) over α, we find that

n∑
α=0

iεα(wαdwα − wαdwα)

=
4

|z0 + i|2
(

n∑
α=1

iεα(zαdzα − zαdzα) +
1
2
(dz0 + dz0)

)
,

(5.33)

by direct calculation, which is exactly (5.31).

We can identify H
p−1,q−1 with the hypersurface Q′

p,q by the map

(5.34)

ι̃ : H
p−1,q−1 −→ Q′

p,q, (z1, . . . , zn, t) �→
(
t+ i

n∑
α=1

εα|zα|2, z1, . . . , zn

)
.

Denote ι = C ◦ ι̃ : H
p−1,q−1 −→ Qp,q , where C is the Cayley transformation

(2.35). We can calculate the conformal factor Ω
(
g, z; Hp−1,q−1

)
, defined by

(5.35) g∗θHp−1,q−1(z) = Ω
(
g, z; Hp−1,q−1

)2
θHp−1,q−1(z),

by using Lemma 5.1 and Proposition 5.1. We omit the details.
Since H

p−1,q−1 is flat, i.e. it has vanishing curvature, its CR Yamabe
operator is

(5.36) �̃θ
Hp−1,q−1 = −bn

4

n∑
α=1

εα(X2
α + Y 2

α ),
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where

(5.37) Xα =
∂

∂xα
+ 2εαyα

∂

∂t
, Yα =

∂

∂yα
− 2εαxα

∂

∂t
,

zα = xα + iyα, α = 1, . . . , n. Then, Zα = 1
2 (Xα + iYα) for each α. Since

group SU(p, q) acts on H
p−1,q−1 as “meromorphic” CR transformations (the

inversions are not continuous), we obtain a ‘representaion’ with parameter λ ∈
C

(5.38) �λ,Hp−1,q−1(g−1)f(z) = Ω
(
g, z; Hp−1,q−1

)λ
f(Lgz).

C∞(Hp−1,q−1) is not a real representation since it is unstable under the action
�λ,Hp−1,q−1 (g−1). The maximal parabolic subgroup is

(5.39) Pmax = AmaxMmaxNmax = (R×
+ × SU(p− 1, q − 1)) ∗ H

p−1,q−1.

When restricted to its maximal parabolic subgroup Pmax, the representation
has a simple form as follows

(�λ(δa)f)(z) = aλf(δ−1
a z), a ∈ R+,

(�λ(UA)f)(z) = f(U−1
A z), A ∈ SU(p− 1, q − 1),

(�λ(τw)f)(z) = f(τ−1
w z), w ∈ H

p−1,q−1.

(5.40)

Remark 5.2. When Xα = ∂
∂xα

+ 2λαyα
∂
∂t , Yα = ∂

∂yα
− 2λαxα

∂
∂t with

λα > 0 for each α, the Green function of the “wave operator”
∑p−1

α=1(X
2
α +

Y 2
α ) −∑n

α=p(X
2
α + Y 2

α ) has been constructed by T. Godoy and L. Saal in [9]
and also by D.-C. Chang and J. Tie in [4]. Their method can be applied to our
SubLaplacian �̃θH

(5.36)–(5.37) with small modifications.
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