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Abstract

In their paper [LY] Livné and Yui discuss several examples of non-
rigid Calabi-Yau varieties which admit semi-stable K3-fibrations with
6 singular fibres over a base which is a rational modular curve. They
also establish the modularity of the L-function of these examples. The
purpose of this note is to point out that the examples which were listed in
[LY] but which do not lead to semi-stable fibrations are still modular in
the sense that their L-function is associated to modular forms. We shall
treat the case associated to the group Γ1(7) in detail, but our technique
also works in the other cases given in [LY]. We shall also make some
comments concerning the Kummer construction for fibre products of
elliptic surfaces in general.

1. Introduction

In their paper [LY] Livné and Yui consider Calabi-Yau varieties which
possess a non-constant semi-stable K3-fibration with 6 singular fibres, which is
the minimal number (Arakelov-Yau bound) of singular fibres of such a fibration
([STZ]). In this case the base curve must be a rational modular curve. They
start with the list of the (up to conjugacy) 9 possible torsion free genus 0
congruence subgroups of index 24 of PSL(2, Z). These 9 cases separate into two
types, depending on whether the group is a subgroup of Γ(2) or, equivalently,
whether the curve of 2-torsion points decomposes into four sections (4 cases)
or not (5 cases). The first situation leads to semi-stable K3 fibrations by
performing the following Kummer construction: if Y is the universal elliptic
curve and E is an elliptic curve then X ′ = (Y × E)/ι (where ι is the map
given by x �→ −x) is a singular threefold. The fibre structure of Y induces a
fibration on X ′, whose general fibre is a (singular) Kummer surface. Blowing
up the fixed point set of ι gives the desired smooth Calabi-Yau variety X.
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Livné and Yui also show that these non-rigid Calabi-Yau varieties are modular
in the sense that their L-function is modular. The point of this note is to make
some general statements about Kummer fibrations and to point out that the
modularity statement is also true in the remaining cases. Here we shall restrict
ourselves to the Γ1(7) case which is particularly interesting. The same method,
however, also applies to the other cases. The main difference to the examples
treated in [LY] is that the curve of non-zero 2-torsion points is an elliptic curve.
This leads to extra contributions in the motive of X.

2. The Kummer construction and topological considerations

Let r : Y → S and r′ : Y ′ → S be two relatively minimal elliptic fibrations
with a section over the same base curve. We assume these to be semi-stable,
i.e. all fibres are of type In, n ≥ 0. The involutions ιY resp. ιY ′ which, on
the general fibre, are given by x �→ −x extend to Y , resp. Y ′. We label
the components of a In-fibre cyclically by e0, . . . , en−1 and in such a way that
e0 corresponds to the component which meets the 0-section. Then ι acts by
ei �→ e−i. Hence, if n is even, two components are fixed, namely e0 and en/2,
and the others are exchanged pairwise, whereas for n odd only one component
is fixed, namely e0. Let O, B ⊂ Y , resp. O′, B′ ⊂ Y ′ be the 0-section and the
closure of the non-zero 2-torsion points. These are smooth curves. If n is even,
B meets e0 and en/2 transversally in 1, resp. 2 smooth points, whereas if n is
odd then B meets e0 transversally in one point, as well as the intersection of
e(n−1)/2 and e(n+1)/2. In this case the map B → S is branched.

Let W = Y ×S Y ′. This variety is singular and has nodes (A1-singulari-
ties) exactly at pairs of nodes of the singular fibres. If, say, Y ′ = E × P1 for
an elliptic curve E (and this will be the situation in our example), then W is
smooth. We consider the diagonal involution

ι = (ιY , ιY ′) : W → W.

Let W̃ be the (big) resolution of W , i.e., the variety where all nodes are replaced
by quadrics. The involution ι lifts to W̃ where we shall denote it by the same
letter. The (singular) Kummer family associated to the pair (Y, Y ′) is defined
by

X ′ = W̃/ι.

This variety is always singular, even if W is smooth. The general fibre is a
Kummer surface with 16 nodes. In the analytic category one can also consider
small resolutions Ŵ of W where the double points are replaced by a P1. These
small resolutions are not necessarily projective and it is possible that W does
not possess a small projective resolution. Moreover, even if a small projective
resolution Ŵ exists, then it is not clear that ι lifts to Ŵ . For a discussion of
this issue see [Sch]. In view of the arithmetic applications we have in mind
we are not concerned with the existence of small projective resolutions at this
point and hence we will work with either W if this is smooth or with a big
resolution W̃ otherwise.
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The singularities of X ′ come from fixed points of ι on W . One has to
distinguish two cases, namely:

(1) There is no fibre In × Im with both n, m odd.
(2) There is such a fibre.

The fixed locus of ι is given by

D := (O + B) ×S (O′ + B′) ⊂ W.

In the case (1) the curve D does not go through any of the singularities of W ,
in case (2) it does. In the first case one obtains a desingularization of X ′ in a
way exactly like the usual desingularization of Kummer surfaces: Blowing up
W̃ along the curve D replaces D by a P1-bundle over D whose rulings have
relative degree −2. We shall denote the resulting 3-fold by Z. Then

X = Z/ι

is a smooth variety, fibred over the base whose general fibre is a smooth K3-
surface. Alternatively we could have obtained X by blowing up X ′ along its
double curve. We call X the smooth Kummer fibration associated to the pair
(Y, Y ′).

In the second case the situation is as follows. Locally, near a singular point
we can choose (analytic) coordinates x, y on Y and u, v on Y ′ such that the
projection onto the base is given by (x, y) �→ xy and (u, v) �→ uv. Then the fibre
product Y ×S Y ′ is locally isomorphic to the subvariety given by xy − uv = 0.
We obtain W̃ by blowing up the A1-singularity given by xy − uv = 0, thus
inserting a quadric Q. The strict transform of B is a smooth curve meeting
Q in two points. The involution ι on Q has 4 fixed points. The first two of
these lie on the strict transform of B, the other two are isolated singularities.
In the quotient X the latter two points give rise to isolated singularities of type
V 1

2 (1,1,1), i.e. to cones over Veronese surfaces. These can be resolved by a P2

with normal bundle OP2(−2). In particular, these singularities are rational,
and in an arithmetic context they will not contribute in an essential way to the
motive of X.

We are interested in examples where X is Calabi-Yau. For the examples
which we shall consider we shall now assume that r : Y → P1 is a K3-surface
and that Y ′ = E ×P1, where E is an elliptic curve. Note that W = Y ×E and
the curve D are smooth.

We denote the exceptional P1-bundle over D by V . Moreover, we denote
by n+ the rank of the (+1)-eigenspace of NS(Y ) with respect to ιY and by
n− the rank of the (−1)-eigenspace. Let g(D) be the sum of the genera of the
components of D and let c(D) be the number of components of D.

Theorem 2.1. Let r : Y → P1 be a K3-surface and Y ′ = E × P1.
Then the associated Kummer variety X is a Calabi-Yau threefold whose Hodge
numbers are as follows:

(i) h00(X) = 1, h10(X) = h01(X) = 0,
(ii) h20(X) = h02(X) = 0, h11(X) = ρ(X) = n+ + 1 + c(D),
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(iii) h30(X) = h03(X) = 1, h12(X) = h21(X) = 1 + n− + g(D).
Moreover, for the Euler numbers

e(X) =
3
2
e(D)

and

n+ − n− =
3
4
e(D) − c(D) + g(D) =

1
4
e(D).

Proof. In this case W is smooth and there exists a (up to a scalar) unique
3-form on W which descends to X. As in the case of Kummer surfaces one shows
that this form has no zeroes on X and hence ωX = OX and thus h30(X) =
h03(X) = 1. Since there is no invariant 1-form on W we can also conclude that
h10(X) = h01(X) = 0 and hence by Serre duality h20(X) = h02(X) = 0. This
shows that X is a Calabi-Yau threefold. One immediately obtains from the
Hodge diamond that

e(X) = 2(h11(X) − h12(X)).

In order to compute the Betti numbers of X we first note that it is easy to
determine the Betti numbers of W from those of Y and E via the Künneth
formula. Let π : Z → W be the blow-up along D. Then

H∗(Z) ∼= π∗H∗(W ) ⊕ H∗(V )/(π|V )∗(H∗(D)).

Moreover, recall that H∗(V ) is generated by the tautological class as a ring
over H∗(D). From this one obtains

h0(Z) = h0(W ), h1(Z) = h1(W )

h2(Z) = h2(W ) + c(D), h3(Z) = h3(W ) + h1(D).

For the Euler characteristic of X we thus find

e(X) =
1
2
(e(W ) − e(D)) + e(V )

=
1
2
(e(W ) − e(D)) + 2e(D)

=
1
2
(e(W ) + 3e(D))

=
3
2
e(D)

where the last equality follows from e(W ) = 0.
In order to compute h2(X) = ρ(X) we have to determine the ι-invariant

divisors on Z. The divisors on Y are spanned by a general fibre F , the 0-section
O, and the components ej

i of the singular fibres which do not meet the 0-section.
The divisors on W are spanned by taking the product of these divisors times
E and by Y × {0}. The pullback of this divisor under π and the components
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of the exceptional divisors are clearly invariant under ι. This accounts for the
summand 1+c(D) in the formula for h11(X) = ρ(X). If l ∈ NS(Y )± then l×E
is invariant (anti-invariant) under ι and altogether this shows the formula for
h11(X). It remains to determine the invariant part of H3(Z). We shall first
treat the contribution from W = Y ×E. Let T ⊂ H2(Y ) be the rank 2 subspace
spanned by the transcendental cycles. Then T ⊗ H1(E) is 4-dimensional and
ι acts by −1 on both T and H1(E). This is clear for H1(E). If it did not act
by −1 on T then h20(X) 	= 0 resp. there would be no 3-form on X. Hence ι
acts by +1 on T ⊗H1(E) and this contributes to H3(X). The same argument
applies to NS(X)−⊗H1(E). Moreover H3(V ) is invariant under ι and in total
we find that

h3(X) = 4 + 2n− + 2g(D).

Since we already know that h30(X) = h03(X) = 1 this proves the claim for
h12(X). The final assertion follows from subtracting (iii) from (ii).

Remark 1. The middle cohomology of X fits into an exact sequence

0 → T ⊗ H1(E) → H3(X, C) → (NS(Y )− ⊗ H1(E))⊕ H3(V ) → 0.

Proposition 2.1. Let r : Y → S be an elliptic fibration with semi-stable
fibres. The numbers n+ and n− are given by

n+ − n− = 2 + #{singular fibres In with n > 1 even}

and n+ + n− = ρ(Y ).

Proof. The Nèron-Severi group NS(Y ) is generated by a general fibre F ,
the 0-section O and the components ej

i of the singular fibres In where j runs
through the cusps and i = 0, . . . , n − 1. Then ι acts on these components
by ej

i �→ ej
−i. This means the following: if n is odd then this fibre contributes

equally to n+ and n−, whereas for even n we have one more invariant component
(namely ej

n/2), than odd components. Since F and the 0-section O are clearly
invariant we obtain the first claim. The second claim follows since n+ + n− =
2 + ρ(Y ).

3. The example associated to Γ1(7)

From now on we shall concentrate on the example associated to the group
Γ1(7). We note, however, that this method can also be applied to the other
examples in [LY] which do not lead to semi-stable K3-fibrations.

Let Y = S(Γ1(7)). Then Y has 6 singular fibres, namely 3 of type I1

and 3 of type I7. By results of Igusa, one knows that the moduli problem for
Γ1(N) for N > 3 can be represented by a smooth scheme Y1(N) over Z[1/N ]
(see [KM, Introduction] and [KM, Table (10.9.6), p. 308]). Since we shall need
this, we shall briefly sketch the construction of a smooth model defined over Q.
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Tate [Tate, p. 195] (and also [K, case 15., Table 3, p. 217]) gives the following
equation for the universal elliptic curve with a group of sections of order 7

(3.1) y2 + (1 + t − t2)xy + (t2 − t3)y = x3 + (t2 − t3)x2.

Note that after a change of variables y �→ y − 1
2 (1 + t − t2)x − 1

2 (t2 − t3) this
has the Weierstrass form

(3.2) 4y2 = 4x3 + (t4 − 6t3 + 3t2 + 2t + 1)x2 + 2t2(t3 − 2t2 + 1)x + t4(t− 1)2.

This shows that the curve B of non-zero 2-torsion points is given by the fol-
lowing equation (which was first pointed out to us by N. Yui)

(3.3) 4x3 + (t4 − 6t3 + 3t2 + 2t + 1)x2 + 2t2(t3 − 2t2 + 1)x + t4(t − 1)2 = 0.

Lemma 3.1. The curve B of non-zero 2-torsion points of Y is an
elliptic curve defined over Q, with conductor 14. The Mellin transform of
the L-series of this curve is the unique weight 2 level 14 modular newform,
η(τ )η(2τ )η(7τ )η(14τ ).

Proof. The curve B parametrizes elliptic curves with a point of order 7
and a point of order 2. This is an irreducible family, and by the Hurwitz formula
it has genus 1. In particular, B is isomorphic to the modular curve X1(2, 7) =
Γ1(2) ∩ Γ1(7) \ h∗ (where h∗ is the upperhalf complex plane union the cusps).
There is a degree 3 natural map from this curve to X0(2, 7) = Γ0(2)∩Γ0(7)\h∗

which parametrizes elliptic curves together with a subgroup of order 2 and a
subgroup of order 7. This curve is isomorphic to X0(14), which is an elliptic
curve. Hence the map from B to X0(14) must be an isogeny of degree 3. The
fact that the map from X1(2, 7) to X0(14) is defined over Q follows, viewing
X1(2, 7) as a fibre product, from the fact that the maps X1(7) → X0(7) ([E,
(4.24)]) and X0(2) → X0(1), in the following diagram, are defined over Q.

X1(2, 7)

3:1

φ1

���
��

��
��

��
��

3:1

����
��

��
��

��
��

X0(2, 7)

���
��

��
��

��
��

�

����
��

��
��

��
�

X1(7)

3:1

φ2

����
��

��
��

��
�

X0(2)

3:1

φ4

���
��

��
��

��
��

X0(7)

8:1

φ3

����
��

��
��

��
��

X0(1)

φ1 : (x, t) �→ t

φ2 : t �→ r := t3−8t2+5t+1
49t(t−1)

φ3 : r �→ (74r2+72·5r+1)3(49r2+13r+1)
r

φ4 : u �→ (256u+1)3

u
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In the diagram x and t are modular functions satisfying the relation (3.3), and
u = (η(2τ )/η(τ ))24 and r = (η(7τ )/η(τ ))4 are hauptmodules for Γ0(2) and
Γ0(7) respectively, taken from [CN, Table 3]. The maps given in the diagram
may be found by comparison of Q-expansions, and the fact that the degree
of the rational functions equals the index of the corresponding groups. This
implies that B has the same L-series as X0(14), which is the given modular
form (listed in [M]).

As a surface (3.1) is isomorphic to S(Γ1(7)) away from the singular fibres.
This example is discussed in more detail by Elkies [E, §4.2], where the parameter
t is given explicitly as a Hauptmodul for Γ1(7). The j-invariant of this elliptic
curve (for both (3.1) and (3.2)) is

(t2 − t + 1)3(t6 − 11t5 + 30t4 − 15t3 − 10t2 + 5t + 1)3

t7(t − 1)7(t3 − 8t2 + 5t + 1)
,

which implies that, after resolution of singularities, this model has I7 fibres at
t = 0, 1,∞, and I1 fibres at the roots of t3 − 8t2 + 5t + 1 = 0.

The surface (3.1) is singular, but it is important for us to have a smooth
resolution defined over Q, so we now give an outline of an explicit desingular-
ization of (3.1). First, we make the change of variables

(3.4) x = x′t2, y = y′t2(t − 1), z = x′/(t − 1) + y′ + z′,

which is invertible on the fibres for t 	= 0, 1,∞. This gives us

(3.5) t(t − 1)x(x − y)(y + z) + (t − 1)(x − y − z)yz + t(x − y)xz = 0

(where we write x, y, z instead of x′, y′, z′). This surface (3.5) has 8 singular
points, namely P1 = (1 : 0 : 1), P2 = (1 : 1 : 0), P3 = (1 : 0 : 0) on the fibre
t = 0, Q1 = (0 : 0 : 1), Q2 = (0 : 1 : 0), Q3 = (1 : 1 : 0) over t = 1 and
R1 = (0 : 0 : 1) and R2 = (0 : 1 : −1) over t = ∞. Note that these points also
lie on the closure of the sections given by the points of order 7. These points
may be resolved by a sequence of blow ups in the singular points. The first
blow up replaces P1, P2, Q1, Q2 and R1 by one line, and the other points by
2 lines. The resulting surface still has one singular point, namely a point on
the singular fibre over t = ∞, which is infinitesimally close to R2. Blowing up
once more in this point gives rise to a further line and the resulting surface is
then smooth. It has three singular fibres of type I1 and three of type I7 and is
isomorphic to S(Γ1(7)).

The locus which is blown up is defined over Q, and so the resulting surface
is also defined over Q (see the discussion in the proof of Proposition 3.3). More-
over, going through the above sequence of blow ups shows that all components
of the singular fibres are defined over Q. This gives us the following result.

Proposition 3.1. The group NS(Y ) can be generated by classes of
curves defined over Q.
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Proof. As already mentioned (in the proof of Proposition 2.1), NS(Y ) is
generated by a general fibre, the zero section, and components of the singular
fibres not meeting this section. Since all components of the singular fibres and
the zero-section are defined over Q this gives the result.

Proposition 3.2. The Mellin transform of the L-series of the summand
of the middle cohomology of Y corresponding to the transcendental lattice is
given by (η(τ )η(7τ ))3, the unique normalized weight 3 modular form for Γ1(7),
where η(τ ) =

∏
n>0(1 − exp(2πinτ )) is the Dedekind η-function.

Sketch of proof. We first note that modularity as such can be deduced
from Livné’s result [Liv2, Example 1.6]. One may also apply Serre and Deligne’s
[D] methods, (details given by Conrad [C]), as is done in a related situation in
[SY]. Using the formula for the dimensions of spaces of cusp forms and applying
the transformation properties of the Dedekind η-function, one shows that the
corresponding form is as given.

Alternatively, in order to determine the modular form, we can use the
Lefschetz trace formula to compute the values of the trace of Frobp on H2(Y, Q�)
by counting points on Y (using e.g., Magma [BCP]). These may be compared
with coefficients of (η(τ )η(7τ ))3. We want to use Livné’s result [Liv1] to show
that the two representations coincide up to semi-simplification. In order to
apply this result we first observe that the determinant is χ−7χ

2
� (again cf.

[Liv2, Example 1.6] and [LY, (2.1)]). Here χ� is the cyclotomic character and
χ−7 is the quadratic character associated to the field Q(

√−7). We also need
that the number of points on Y is even. This depends on the curve B having
an even number of points. Since B and X0(14) are isogenous over Q by Lemma
3.1 it is enough to consider the latter curve. Looking at a Weierstrass equation
one observes that this curve has a non-trivial 2-torsion point over Q, and this is
enough to conclude that the number of points over Fp is even for almost all p.
This approach also essentially uses Serre and Deligne’s work for the existence
of a modular Galois representation corresponding to (η(τ )η(7τ ))3.

Remark 2. The form g3 is related to the unique newform h2 of weight
2 and level 49 as follows: in terms of representations (at least up to semi-
simplification) Sym2(h2) = g3 ⊗ χ−7χ�.

For what follows we need to understand the exceptional locus of the blow
up along the fixed point set of ι.

Proposition 3.3. The exceptional locus V ⊂ Z has the following prop-
erties:

(i) V consists of 8 components. Of these 4 are Hirzebruch surfaces Σ2 and
4 are isomorphic to B × P1.

(ii) If the 2-torsion points of E are defined over Q, then so are the com-
ponents of V . In this case the isomorphism of the 4 non-rational components
with B × P1 is defined over Q.
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Proof. We first note that the fix curve D of ι decomposes as

D = (O + B) ×P1 (O1 + O2 + O3 + O4),

where the Oi correspond to the four 2-torsion points of E, and B is an elliptic
curve by Lemma 3.1.

We start with the geometric statements. Let D′ be one of the components
of D. Then the component V ′ of V which lies over D′ is isomorphic to the
projectivized normal bundle P(ND′/W ) = P(ND′/Z). Since Y is a K3-surface,
and hence has trivial canonical bundle, the adjunction formula shows that
ND′/Y

∼= OP1(−2) if D′ is rational and ND′/Y
∼= OD′ if D′ is elliptic. Hence

ND′/W
∼= OP1(−2) ⊕OP1 or ND′/W

∼= 2OD′ .
Now assume that the 2-torsion points of E are defined over Q. Then the

same is true for all components of the curve D. The fact that the components
of the exceptional divisor are then defined over Q, follows from the general fact
that blowing up is compatible with base change (cf. the proof of [Liu, Theorem
1.1.9]). In the case of the non-rational components we saw from the adjunction
formula that the normal bundle is trivial, i.e. we have isomorphisms ND′(C)

∼=
2OD′(C) and, in particular, H0(HomOD′(C)

(ND′(C),OD′(C))) is 2-dimensional.
Since cohomology commutes with the flat base extension Q ↪→ C ([Ha, Propo-
sition III.9.3]) this implies that the Q vector space H0(HomOD′(Q)

(ND′(Q),

OD′(Q))) is also 2-dimensional and in particular there is a homomorphism
ND′(Q) → 2OD′(Q) which, after tensoring with C, is an isomorphism. Using
once more flatness of Q ↪→ C it follows that ND′(Q)

∼= 2OD′(Q).

Theorem 3.1. Assume that the elliptic curve E, as well as its 2-torsion
points, are defined over Q. Then the ι-invariant part of the middle cohomology
of the blow up Z of Y (Γ1(7)) × E along the fixed locus of ι is modular. More
precisely

L(H3
ét(Z)ι, s) � L(g3 ⊗ gE

2 , s)L(gE
2 , s − 1)9L(gB

2 , s − 1)4,

where g3 is the weight 3 form associated to the transcendental lattice T and gE
2

and gB
2 are the weight 2 cusp forms associated to the elliptic curves E and B

respectively. In terms of the Dedekind η-function, we have

g3(τ ) = (η(τ )η(7τ ))3 = q − 3q2 + 5q4 − 7q7 − 3q8 + 9q9 − 6q11 + · · · ,

gB
2 (τ ) = η(τ )η(2τ )η(7τ )η(14τ ) = q − q2 − 2q3 + q4 + 2q6 + q7 − q8 + · · · .

(Here � denotes equality of the L-series up to finitely many primes, and q =
exp(2πiτ).)

Proof. We first note that n+(Y ) = 11 and n−(Y ) = 9. This follows from
Proposition 2.1 and the fact that there are 3 fibres of type I1 and 3 of type
I7. Now recall from Remark 1, that we have the following exact sequence of
cohomology groups

0 → T ⊗ H1(E) → H3(Z, C)ι → (NS(Y )− ⊗ H1(E))⊕ H3(V ) → 0,
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where

H3(V ) ∼= H3(E × P1)4.

By Proposition 3.1 the standard generators of NS(Y ) are defined over Q. More-
over, by Proposition 3.3 all components of the exceptional locus V are defined
over Q and there are 4 components with non-vanishing third cohomology, each
isomorphic to E × P1 (over Q). Hence the above sequence can be read as a
sequence of étale cohomology groups and this implies the assertion. We saw
that gB

2 and g3 have the given η-product expressions in Proposition 3.2 and
Lemma 3.1.

As an immediate application we obtain the L-series of the middle coho-
mology of the Kummer variety X.

Corollary 3.1. Assume that the elliptic curve E as well as its 2-torsion
points are defined over Q. Then the Kummer variety X = X(Γ1(7)) is modular,
in the sense that its L-series of its middle cohomology is given in terms of
modular forms as follows, where gE

2 , gB
2 and g3 are as in Theorem 3.1.

L(H3
ét(X), s) � L(H3

ét(Z)ι, s) � L(g3 ⊗ gE
2 , s)L(gE

2 , s − 1)9L(gB
2 , s − 1)4.

Proof. Since Z and the involution ι are defined over Q, general theory
implies that X is also defined over Q and L(H3

ét(X), s) � L(H3
ét(Z)ι, s).

Remark 3. It follows from the work of Kim and Shahidi [KS] that
L(g3 ⊗ gE

2 , s) has the expected analytic properties.

4. Point counting

We will now make a verification of the above result (Corollary 3.1) about
the L-series of the Kummer variety X by a counting argument. Suppose that
we have q-expansions

gB
2 =

∑
n≥1

bnqn, gE
2 =

∑
n≥1

cnqn, and g3 =
∑
n≥1

anqn,

where gB
2 , gE

2 and g3 are as in Theorem 3.1. The following table gives us the
traces on the cohomology of X predicted by Corollary 3.1, Proposition 3.1, and
the fact that ι is defined over Q.

dimension trace of Frobp

H6 1 p3

H5 0 0
H4 20 20p2

H3 30 apcp + 9pcp + 4pbp

H2 20 20p
H1 0 0
H0 1 1.
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From the Lefschetz fixed trace formula this tells us that

(4.1) np = p3 + 20p2 − (apcp + 9pcp + 4pbp) + 20p + 1.

We will now compute the number of points in another way and show that we
still get the same result.

In the following our notation remains as in Section 2. We will suppose
that the characteristic is not 2 or 3, and that all two-torsion points of E are
defined over Q. Suppose that Y and E are given by the following Weierstrass
equations in affine space,

Y : y2 = p1(x, t),E : y2
2 = p2(x2),

where

p1(x, t) := x3 + (t4 − 6t3 + 3t2 + 2t + 1)x2 + 8t2(t3 − 2t2 + 1)x + 16t4(t − 1)2

is obtained from (3.2) by scaling x and y. The involution on the product is
now given by

ι : (x, y, x2, y2, t) �→ (x,−y, x2,−y2, t).

Now define a rational map Y × E → A5 by

φ : (x, y, x2, y2, t) �→ (x, y2, x2, yy2, t).

Then the points in the image of this map lie on a variety X ′ having equation

X ′ :w = p1(x, t), w2
2 = p1(x, t)p2(x2),(4.2)

where A5 is taken to have coordinates x, w, x2, w2, t. Since φ is surjective onto
X ′, and identifies exactly points identified by ι, X ′ gives a model of an affine
piece of the quotient, away from the I7 × E fibres. The situation at the I7 ×
E fibres is as follows. Let e0, e1, . . . , e6 be the components of the I7 fibres
enumerated as usual in such a way that ι acts by ei �→ e−i. Then the products
ei × P1 for i = 1, 6 and i = 2, 5 are identified and give rise to two copies of
E × P1 in the quotient. The component e0 × E is mapped to itself and ι has
8 fixed points on this surface. The resulting quotient is a rational surface with
8 nodes which are resolved by blowing up the fixed locus of ι. Finally, the two
surfaces e3 × E and e4 × E are interchanged. Since, however, the intersection
point of e3 and e4 is fixed it follows that the resulting quotient is a non-normal
surface which is singular along a P1.

We can now count the number of points over Fp on the Kummer variety
X and find the following expression

(4.3) np = #X ′ + #X∞ + 6#A + 3#B + #C + 2#F + #V − #D,

where the terms of this equation have the following meaning. First of all #X ′

are all the points on the affine model counted by the Legendre symbol, i.e.

(4.4) #X ′ =
∑

x,x2,t∈Fp

((
p1(x, t)p2(x2)

p

)
+ 1

)
.
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A is the surface A1 × E. This term counts the contribution from the ruled
surfaces coming from the components ei × E, i = 1, 2 from the three I7 fibres.
B comes from the component e3 × E and C comes from e0 × E. The terms
for A and B are counted three times, corresponding to the three fibres over
t = 0, 1,∞. The term C refers to t = ∞ only, since the corresponding terms
for t = 0, 1 are already taken care of by the term X ′ (up to a correction given
by F , see below). Note that we have taken care to count the fibres over the
intersection points ei ∩ ei+1 only once. Recall that

(4.5) #E(Fp) =
∑

x2∈Fp

((
p2(x2)

p

)
+ 1

)
+ 1 = p + 1 − cp.

We now find from our geometric discussion and the fact that everything is
defined over Q that

(4.6) #A = #(A1 × E) = p(p − cp + 1)

and

(4.7) #B = #(A1 × E) − #E + #P1 = p(p − cp + 1) + cp.

The surface which is the blow up of the quotient of e0 ×E is a smooth rational
surface with Picard number 10. Moreover the Nèron-Severi group is generated
by elements defined over Q. Hence it has 1 + 10p + p2 points. It contains 8
lines which belong to the exceptional divisor V . Removing these, but counting
the points on D, we get the contribution

(4.8) #C = p2 + 2p + 1.

This is counted once, namely for the I7-fibre over ∞. The term F comes from
the following effect. The surfaces coming from e0 × E over the t = 0, 1 are
counted in the expression given by the Legendre symbol. However, this needs
a correction. In this affine model the elliptic fibre is a nodal cubic and over the
node we have a P1. However, when we blow up this node gets resolved and we
have two fibres isomorphic to E which are identified by the involution. This
means that we need the correction term

(4.9) #F = #E − #P1 = −cp.

For the exceptional locus we find

(4.10) #V − #D = 4p(#B + #P1) = 4p(p − bp + 1 + p + 1).

This can be seen as follows: the ruled surfaces over the elliptic components of
D are isomorphic (over Q) to B×P1 and the other components are Hirzebruch
surfaces Σ2 which have a basis of the Nèron-Severi group which is defined over
Q. Finally X∞ means points where t 	= ∞, but x or x2 = ∞. We find that

(4.11) #X∞ = #(Yt�=∞ ∪ (E × A1))/ι = 2#(P1 × A1) − #A1 = 2p2 + p.
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We can now rewrite the number of points as

np =
∑

x,x2,t∈Fp

[((
p1

p

)
+ 1

) ((
p2

p

)
+ 1

)
−

(
p1

p

)
−

(
p2

p

)]
+

+ #X∞ + 6#A + 3#B + #C + 2#F + #V − #D,

(4.12)

where p1 = p1(x, t) and p2 = p2(x2). Finally note that from the Lefschetz fixed
point theorem, bearing in mind that ρ(Y ) = 20, and that NS(Y ) is generated
by classes of curves defined over Q (Proposition 3.1), we have

(4.13) #Y (Fp) =
∑

x,t∈Fp

((
p1(x, t)

p

)
+ 1

)
+ 20p = p2 + 20p + ap + 1.

Note that in these expressions we have taken into account the points at infinity
on E and on the fibres of Y , and the components of the I7 fibres of Y , which
are not counted by the factor involving the Legendre symbol. Using (4.5) and
(4.13) together with (4.12), we obtain

np = (#E(Fp) − 1)(#Y (Fp) − 20p)

− (#E(Fp) − 1 − p)p2 − (#Y (Fp) − 20p − p2)p
+ #X∞ + 6#A + 3#B + #C + 2#F + #V − #D

= (p − cp)(p2 + ap + 1) − (p − cp − p)p2 − (p2 + ap + 1 − p2)p

+ (2p2 + p) + 6p(p + 1 − cp) + 3(p(p + 1 − cp) + cp)

+ (p2 + 2p + 1) − 2cp + 4p(p + 1 − bp + p + 1)

= p3 + 20p2 − (apcp + 9pcp + 4pbp) + 20p + 1,

which, as predicted, is the same as the number of points given by (4.1).
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