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CONCERNING q-SUMMABLE SZLENK INDEX

RYAN M. CAUSEY

Abstract. For each ordinal ξ and each 1 � q <∞, we define the
notion of ξ-q-summable Szlenk index. When ξ = 0 and q = 1, this

recovers the usual notion of summable Szlenk index. We define
for an arbitrary weak∗-compact set a transfinite, asymptotic ana-
logue αξ,p of the martingale type norm of an operator. We prove

that this quantity is determined by norming sets and determines

ξ-Szlenk power type and ξ-q-summability of Szlenk index. This

fact allows us to prove that the behavior of operators under the

αξ,p seminorms passes in the strongest way to injective tensor

products of Banach spaces. Furthermore, we combine this fact

with a result of Schlumprecht to prove that a separable Banach

space with good behavior with respect to the αξ,p seminorm can

be embedded into a Banach space with a shrinking basis and the

same behavior under αξ,p, and in particular it can be embedded

into a Banach space with a shrinking basis and the same ξ-Szlenk

power type. Finally, we completely elucidate the behavior of the

αξ,p seminorms under �r direct sums. This allows us to give an

alternative proof of a result of Brooker regarding Szlenk indices
of �p and c0 direct sums of operators.

1. Introduction

Two of the most important renorming theorems in Banach space theory
is Enflo’s result [12] that a superreflexive Banach space can be renormed to
be uniformly convex, and Pisier’s result [19] that any superreflexive Banach
space can be renormed to be uniformly convex (resp. uniformly smooth) with a
power type modulus of uniform convexity (resp. uniform smoothness). Pisier’s
proof also gave an exact characterization of which power types were possible in

Received November 27, 2018; received in final form November 27, 2018.
2010 Mathematics Subject Classification. Primary 46B03, 46B06. Secondary 46B28,

47B10.

381

c©2019 University of Illinois

http://www.ams.org/msc/


382 R. M. CAUSEY

terms of two isomorphic invariants of the space involving Walsh–Paley mar-
tingale difference sequences and their domination of (resp. domination by)
the canonical �p basis. Beauzamy [2] proved an operator version of Enflo’s
result: An operator is super weakly compact if and only if it can be renormed
to be uniformly convex. However, there is no operator version of Pisier’s re-
sult, since the automatic power type obtained by Pisier for Banach spaces
has to do with the submultiplicative nature of Haar type/cotype ideal norms
for Banach spaces, which are not submultiplicative for operators. The same
submultiplicative behavior of ideal norms and seminorms for spaces which are
not submultiplicative for operators is by now a well-observed phenomenon,
occurring with Rademacher, Gaussian, Haar, martingale, and the recently de-
fined asymptotic basic and asymptotic type and cotype. Since there are super
weakly compact operators which do not have non-trivial Haar type or cotype,
it has become standard to investigate the notions of subtype and subcotype of
operators, defined by whether or not the operator exhibits the worst possible
behavior with respect to a sequence of norms or seminorms. This practice has
been undertaken by Beauzamy [1] for Radmacher subtype and subcotype to
characterize when �1 or c0 is crudely finitely representable in an operator; by
Hinrichs [14] for Gaussian subcotype to characterize when c0 is crudely finitely
representable in an operator; by Wenzel [22] for martingale and Haar subtype
and subcotype to characterize super weak compactness; and Draga, Kochanek,
and the author [10] to characterize when an operator is asymptotically uni-
formly smoothable, when �1 is asymptotically crudely finitely representable
in an operator, and when c0 is asymptotically crudely finitely representable
in an operator.

The notion of asymptotic uniform smoothability is also of significant inter-
est, and is fundamentally connected to the Szlenk index of a Banach space.
A Banach space admits an equivalent asymptotically uniformly smooth norm
if and only if its Szlenk index does not exceed ω. This was shown by Knaust,
Odell, and Schlumprecht [15] for the separable case and Raja [20] for the gen-
eral case. Lancien, Prochazka, and Raja [17] proved a result analogous to that
of Knaust, Odell and Schlumprecht for separable Banach spaces having Szlenk
index not exceeding ωξ+1 for every countable ordinal ξ, and a non-separable,
operator version was proved in [9] for every (not necessarily countable) ordinal
ξ. Furthermore, Godefroy, Kalton, and Lancien [13] gave a precise renorming
theorem for a separable Banach space in terms of the Szlenk power type of
the Banach space. This was generalized to non-separable spaces and operators
in [7], as well as to higher ordinals in terms of the behavior of special convex
combinations of the branches of n-leveled weakly null trees where each level
has specified order. Further renorming results were established in [6], anal-
ogous to those of Pisier in [19]. More precisely, the existence of equivalent
norms with certain asymptotic properties was investigated in terms of special
convex combinations of the branches of ω-leveled weakly null trees where each
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level has specified order. The downside of the renorming results from [6] is
that they are only produce non-trivial equivalent norms when an operator or
a space has some power type behavior of the ε-Szlenk indices. That is, for a
fixed ξ, the results of [6] produce non-trivial equivalent norms for a Banach
space X or an operator A : X → Y if ωξkε � Sz(X,ε) � ωξ(kε + 1) (resp.
ωξkε � Sz(A,ε) � ωξ(kε + 1)) where kε ∈ N satisfies limε→0+ kε =∞ but for
some 1 � q <∞, supε>0 ε

qkε <∞. As was explained in [7], for ξ = 0, there
exists an operator A with Szlenk index ω which does not have this power
type behavior, and for any ξ > 0, there is a Banach space X with Szlenk in-
dex ωξ+1 which does not have this power type behavior. This incompleteness
in the renorming theorems from [6] is the primary motivation to define the
notion of subtype and investigate the behavior of operators with respect to a
sequence of seminorms.

For each ordinal ξ, each 1 � p � ∞, each n ∈ N, and each operator
A : X → Y , we define the quantity αξ,p,n(A). The assignments αξ,p,n will
act as our sequence of ideal seminorms. We will be interested in when an
operator satisfies supnαξ,p,n(A) <∞, which is trivial in the case p = 1. For
1 < p � ∞, the worst possible behavior would be for the operator A to sat-
isfy limsupnαξ,p,n(A)/n1−1/p > 0, so our notion of subtype will be defined

by limnαξ,p,n(A)/n
1−1/p = 0. For each ordinal ξ and 1< p � ∞, we let Aξ,p

denote the class of operators for which supnαξ,p,n(A)<∞.
For each ordinal ξ and each 1 � q < ∞, we define what it means for an

operator A :X → Y and a weak∗-compact subset K of a dual Banach space
X∗ to have ξ-q-summable Szlenk index, which generalizes to values of q greater
than 1 and higher ordinals the important notion of summable Szlenk index
defined and studied in [13]. In what follows, we let Dξ denote the class of
operators with Szlenk index not exceeding ωξ and for 1< p� ∞, Tξ,p denotes
the class of ξ-p-asymptotically uniformly smoothable operators.

Theorem 1.1. For every ordinal ξ and 1 < p � ∞, there exists an ideal
norm aξ,p on the class Aξ,p making (Aξ,p,aξ,p) a Banach ideal. Moreover,
if 1/p + 1/q = 1, the class Aξ,p coincides with the class of operators having
ξ-q-summable Szlenk index.

An operator A has Szlenk index not exceeding ωξ+1 if and only if for some
(equivalently, every) 1< p� ∞, limnαξ,p,n(A)/n1−1/p = 0.

Furthermore, for any 1< r < p � ∞,

Dξ �Aξ,r � Tξ,p ⊂Aξ,p �Dξ+1.

The quantity αξ,p(·) will be defined not only for operators, but for arbi-
trary, weak∗-compact subsets of the dual of a Banach space. We prove the
following regarding the quantities αξ,p on weak∗-compact subsets of the dual
of a Banach space.
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Theorem 1.2. Let X be a Banach space, K ⊂X∗ weak∗-compact, ξ an

ordinal, and 1< p �∞. Then αξ,p(K) = αξ,p(abs co
weak∗

(K)).

Combining Theorem 1.2 with a result of Schlumprecht, we prove the fol-
lowing.

Theorem 1.3. Suppose X is a Banach space having a separable dual.
Then there exists a Banach space W with a shrinking basis such that X is
isomorphically embeddable in W , for any countable ordinal ξ and 1 � p � ∞,
pξ(W ) = pξ(X), and if αξ,p(X)<∞, αξ,p(W )<∞.

Given operators A0 :X0 →X1, A1 :X1 → Y1, there is an induced operator
A0 ⊗ A1 : X0 ⊗̂ε X1 → Y0 ⊗̂ε Y1 between the injective tensor products. By
the geometric Hahn–Banach theorem, (A0 ⊗ A1)

∗(B(Y0⊗̂εY1)∗
) is the weak∗-

closed, convex hull of {x∗
0 ⊗ x∗

1 : x∗
0 ∈ A∗

0BY ∗
0
,A∗

1BY ∗
1
}. This fact combined

with Theorem 1.2 and a combinatorial lemma yields the following.

Theorem 1.4. Fix any 1� q <∞, any ordinal ξ, any operators Ai :Xi →
Yi, i= 0,1. Then if A0, A1 have ξ-q-summable Szlenk index, so does A0⊗A1,
and pξ(A0 ⊗A1)� max{pξ(A0),pξ(A1)}.

In the non-trivial case in which A0,A1 �= 0, A0 ⊗ A1 has ξ-q-summable
Szlenk index if and only if A0, A1 do and pξ(A0⊗A1) =max{pξ(A0),pξ(A1)}.

We also give a complete description of the behavior of the αξ,r seminorms
under finite �p direct sums of operators.

Theorem 1.5. Fix 1 � p � ∞. Then for any finite set Λ, any ordinal ξ,
and any operators Aλ :Xλ → Yλ,

αξ,r

(⊕
λ∈Λ

Aλ :

(⊕
λ∈Λ

Xλ

)
�p(Λ)

→
(⊕

λ∈Λ

Yλ

)
�p(Λ)

)
=max

λ∈Λ
αξ,r(Aλ)

if 1� r � p and

αξ,r

(⊕
λ∈Λ

Aλ :

(⊕
λ∈Λ

Xλ

)
�p(Λ)

→
(⊕

λ∈Λ

Yλ

)
�p(Λ)

)s

=
∑
λ∈Λ

αξ,r(Aλ)
s

if p < r �∞, where 1/r+ 1/s= 1/p.

We recall that an operator A :X → Y is Asplund if for any finite, positive
measure space (Ω,Σ, μ), any B : Y → L∞(Ω,Σ, μ), and any ε > 0, there exists
S ∈Σ such that μ(S)> μ(Ω)− ε and {f1S : f ∈BA(BX)} is relatively weakly
compact in L∞(Ω,Σ, μ). Brooker [3] showed that an operator is Asplund if
and only if its Szlenk index is an ordinal.

We also investigate the behavior of the αξ,r seminorms under infinite �p and
c0 directs sums of operators. In what follows, suppose that Λ is a non-empty
set and {Aλ :Xλ → Yλ : λ ∈ Λ} is a uniformly bounded collection of Asplund
operators. We offer a new proof of a result due to Brooker concerning the
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Szlenk index of diagonal operators between �p direct sums. The method of our
proof is dual to Brooker’s method of proof, working with upper estimates on
convex combinations of weakly null trees in the spaces rather than derivations
in the dual. This result has many cases, so we isolate the following single case,
which we believe to be of the greatest interest.

Theorem 1.6. Fix p ∈ {0} ∪ (1,∞) and suppose that at least one of
the operators (Aλ)λ∈Λ is non-compact. Then if Dp : (

⊕
λ∈ΛXλ)�p(Λ) →

(
⊕

λ∈Λ Yλ)�p(Λ) is the diagonal operator such that Dp|Xλ
= Aλ, Sz(Dp) =

supλ∈Λ Sz(Aλ) if and only if for every ε > 0, supλ∈Λ Sz(Aλ, ε) <
supλ∈Λ Sz(Aλ), and otherwise Sz(Dp) = (supλ∈Λ Sz(Aλ))ω.

Here, if p= 0, we replace the �p(Λ) direct sum with the c0(Λ) direct sum.

We also elucidate the values of αξ,γ(D
p) (and therefore compute pξ(D

p))
for all values of p ∈ {0}∪ [1,∞] and 1 � γ � 1 only in terms of the behaviors of
Sz(Aλ, ε) and αξ,γ(Aλ), thus completely describing the behavior of the ideal
norms and Szlenk power type of diagonal operators between �p direct sums in
terms of the ideal norms and Szlenk power types of the summands.

Theorem 1.7. Fix p ∈ {0} ∪ (1,∞) and suppose Sz(Dp) = ωξ+1 and
supλ∈Λ Sz(Aλ) = ωζ > 1. Then by Theorem 1.6, ζ + 1 = ξ + 1 if and only
if there exists ε > 0 such that supλ∈Λ Sz(Aλ, ε) = ωζ , and otherwise ζ = ξ+1.

If ζ + 1 = ξ + 1, then for any 1 � r � ∞, then αξ,r(Dp)<∞ if and only if
either p= 0 or 1� r � p <∞.

If ζ = ξ+1, then for any 1� r � ∞, then αξ,r(Dp)<∞ if and only of one
of the three following conditions hold:

(i) p= 0 and supλ∈Λαξ,r(Aλ)<∞.
(ii) 1� r � p <∞ and supλ∈Λαξ,r(Aλ)<∞.
(iii) 1 < p < r � ∞,

∑
λ∈Λαξ,r(Aλ)

s <∞, and for any ε > 0, there exists a

finite subset Υ of Λ such that supλ∈Λ\Υ Sz(Aλ, ε)<ωξ . Here, s is defined

by 1/r+ 1/s= 1/p.

2. Combinatorial necessities

2.1. Trees of peculiar importance. For a set Λ, we let Λ<N =
⋃∞

n=0Λ
n.

We denote the single member of Λ0 by ∅. We order Λ<N \ Λ0 by initial
segments, denoted by �. That is, s� (λi)

n
i=1 if s= (λi)

m
i=1 for some 1� m� n.

A subset T of Λ<N \ Λ0 will be called a tree if ∅ �= s � t ∈ T implies s ∈ T .
Given a subset U of Λ<N, we let MAX(U) denote the subset of U consisting
of those members of U which are maximal with respect to the initial segment
relation. Given two members s, t of Λ<N, we let s� t denote the concatenation
of s and t.

We first define some trees which will be of significant importance for us.
These trees and the associated convex weights defined in the next paragraphs
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were first defined in [5]. We refer the interested reader to [5] for a more com-
plete presentation. Here we are interested only in presenting the details of
the construction necessary to prove our results. Given a sequence (ζi)

n
i=1 of

ordinals and an ordinal ζ, we let ζ + (ζi)
n
i=1 = (ζ + ζi)

n
i=1. Given a set G of

sequences of ordinals and an ordinal ζ, we let ζ+G= {ζ+ t : t ∈G}. For each
ξ ∈Ord and n ∈ N, we define a tree Γξ,n which consists of finite, decreasing
sequences of ordinals in the interval [0, ωξn). We let

Γ0,1 =
{
(0)

}
.

If Γξ,1 has been defined, we let Λξ,1,1 = Γξ,1 and for 1< n ∈N and 1 � i � n,
we let

Λξ,n,i =
{(

ωξ(n− 1) + t1
)

� · · · �
(
ωξ(n− i) + ti

)
: ti ∈ Γξ,1,

t1, . . . , ti−1 ∈MAX(Γξ,1)
}

and Γξ,n =
⋃n

i=1Λξ,n,i. If for some ξ, Γξ,n has been defined for each n ∈ N,
we let Γξ+1,1 =

⋃∞
n=1Γξ,n. If ξ is a limit ordinal and Γζ,1 has been defined for

every ζ < ξ, we let

Γξ,1 =
⋃
ζ<ξ

(
ωζ +Γζ+1,1

)
.

Let us observe that for each ordinal ξ and each n ∈ N, the first member of
each sequence in Γξ,n is an ordinal which lies in the interval [ωξ(n− 1), ωξn).
Therefore the union Γξ+1,1 =

⋃∞
n=1 Γξ,n is a totally incomparable union. We

refer to the sets Λξ,n,1, . . . ,Λξ,n,n as the levels of Γξ,n. The union Γξ,1 =⋃
ζ<ξ(ω

ζ + Γζ+1,1) when ξ is a limit ordinal is also a totally incomparable
union.

We provide a brief, intuitive description of the trees constructed above.
We begin with a tree Γ0,1, which consists of a single node. Once we have
constructed Γξ,1, the tree Γξ,n consists of n levels. The first level of Γξ,n is
isomorphic to Γξ,1. Then beneath each maximal node on a level i < n, we
place another copy of Γξ,1. The tree Γξ+1,1 is a totally incomparable union of
the n-leveled trees Γξ,n. Finally, when ξ is a limit ordinal, Γξ,1 is just a totally
incomparable union of a cofinal subset of smaller trees.

We also recall the existence of functions Pξ,n : Γξ,n → [0,1] having the prop-
erty that for each ordinal ξ, each n ∈N, each 1 � i � n, and t ∈MAX(Γξ,n),

1 =
∑

Λξ,n,i�s�t

Pξ,n(s).

The functions Pξ,n are quite easy to understand. The function P0,1 is identi-
cally 1 on the single node contained in Γ0,1. Since Γξ,n is obtained by “gluing”
together many copies of trees which are canonically isomorphic to Γξ,1, we
define Pξ,n so that the canonical identification of each of these copies of Γξ,1

also identifies the values of Pξ,n on isomorphic copies of Γξ,1 with the values
of Pξ,1 on Γξ,1. For Γξ+1,1 =

⋃∞
n=1 Γξ,n, we normalize the branches (that is
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Γξ+1,1|Γξ,n
= n−1Pξ,n). For a limit ordinal ξ, Pξ,1 is defined in such a way that

its values on ωζ + Γζ+1,1 are equal to the values of Pζ+1,1 on Γζ+1,1 via the
canonical identification.

For a directed set D, a set Λ, and a subset S of Λ<N \Λ0, we let

S.D =
{
(λj , uj)

k
j=1 : (ζj)

k
j=1 ∈ S,uj ∈D

}
.

In particular, for an ordinal ξ, n ∈N, and 1� i � n,

Λξ,n,i.D =
{
(ζj , uj)

k
j=1 : (ζj)

k
j=1 ∈ Λξ,n,i, uj ∈D

}
.

We define functions (which we also denote by Pξ,n) on Γξ,n.D by letting

Pξ,n

(
(ζj , uj)

k
j=1

)
= Pξ,n

(
(ζj)

k
j=1

)
.

We remark that for each ζ and any directed set D, (ωζ + Γζ+1,1).D is
canonically identifiable with Γζ+1,1.D. For any ξ and any n ∈ N, Λξ,n,1.D is
canonically identifiable with Γξ,1.D. We often implicitly use these canonical
identifications without giving them specific names. Moreover, these canonical
identifications preserve the values of the functions Pξ,n, as was shown in [5].

We last define what it means for a subset of Γξ,n.D to be a unit. For
any ordinal ξ and any n ∈ N, Λξ,n,1.D is a unit. If for some n ∈ N, every
ordinal ξ, and every 1 � k � n, the units in Γξ,k.D are defined, we say a
subset U of Γξ,n+1.D is a unit if either U = Λξ,n+1,1.D or if there exists
t ∈MAX(Λξ,n+1,1.D) such that, if

j : {s ∈ Γξ,n+1.D : t < s}→ Γξ,n.D

is the canonical identification, j(U) is a unit in Γξ,n.D

2.2. Cofinal and eventual sets. For a fixed directed set D, we now define
sets Ωξ,n. Each set Ωξ,n will be a subset of the power set of MAX(Γξ,n.D).
Given E ⊂ Γ0,1.D, we can write

E =
{
(0, u) : u ∈D0

}
for some D0 ⊂D. Then we say E ∈Ω0,1 if D0 is cofinal in D.

Now suppose that for a limit ordinal ξ and every ζ < ξ, Ωζ+1,1 has been
defined. For each ζ < ξ, let jζ : (ω

ζ + Γζ+1).D → Γζ+1,1.D be the canonical
identification. Then a subset E ⊂MAX(Γξ,1) lies in Ωξ,1 if there exists a cofinal
subset M of [0, ξ) such that for every ζ ∈M , jζ(E ∩MAX((ωζ +Γζ+1.D)) ∈
Ωζ+1,1.

Now suppose that for an ordinal ξ and every n ∈N, Ωξ,n has been defined.
Then we say E ⊂ MAX(Γξ+1,1.D) is a member of Ωξ+1,1 if there exists a
cofinal subset M of N such that for every n ∈N, E ∩ Γξ,n.D ∈Ωξ,n.

Last, suppose that for an ordinal ξ, a natural number n, and each 1 �
i � n, Ωξ,i has been defined. Suppose that E ⊂MAX(Γξ,n+1.D) is given. For
each t ∈MAX(Λξ,n,1), let Pt = {s ∈ Γξ,n+1.D : t < s}, let jt : Pt → Γξ,n.D be
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the canonical identification, and let j : Λξ,n,1.D → Γξ,1.D be the canonical
identification. Let

F =
{
t ∈MAX(Λξ,n+1,1.D) : jt

(
E ∩MAX(Pt)

)
∈Ωξ,n

}
.

Then we say E ∈Ωξ,n+1 if j(F) ∈Ωξ,1.
We remark that an easy induction proof shows that MAX(Γξ,n.D) ∈ Ωξ,n

for every ξ an n, and if F ⊂ E ⊂MAX(Γξ,n.D) and F ∈Ωξ,n, then E ∈Ωξ,n.
We refer to the sets in Ωξ,n as cofinal in Γξ,n.D. We say a subset E of

MAX(Γξ,n.D) is eventual if MAX(Γξ,n.D) \ E fails to be cofinal. Each unit
U ⊂ Γξ,n.D is canonically identifiable with Γξ,1.D, and as such we can define
what it means for a subset of MAX(U) to be cofinal or eventual using the
identification with Γξ,1.D.

We next recall some results from [6]. For the following results, we say
d : Γξ,n.D→ Γξ,n.D is a level map if

(i) for any ∅< s< t ∈ Γξ,n.D, d(s)< d(t),
(ii) if U ⊂ Λξ,n,i.D is a unit, then there exists a unit V ⊂ Λξ,n,i.D such that

d(U)⊂ V .

Note that since Γξ,1.D is a single unit, (ii) is vacuous in the case n= 1. Given
a level map d : Γξ,n.D → Γξ,n.D, we say e : MAX(Γξ,n.D) → MAX(Γξ,n.D)
is an extension of d if for any t ∈MAX(Γξ,n.D), d(t) � e(t). Since Γξ,n.D is
well-founded, any level map d admits some extension. We define an extension
of a monotone map in the same way we define an extension of a level map.

We let Π(Γξ,n.D) = {(s, t) ∈ Γξ,n.D×MAX(Γξ,n.D) : s � t}.
Lemma 2.1. Suppose that ξ is an ordinal, n ∈ N, X is a Banach space,

and (xt)t∈Γξ,n.D ⊂X is weakly null.

(i) If E ⊂ MAX(Γξ,n.D) is cofinal, there exists a level map d : Γξ,n.D →
Γξ,n.D with extension e such that (xd(t))t∈Γξ,n.D is weakly null and
e(MAX(Γξ,n.D))⊂ E .

(ii) For any k ∈ N, if MAX(Γξ,n.D) ⊃ E =
⋃k

i=1 Ei ∈ Ωξ,n, then there exists
1� j � k such that Ej ∈Ωξ,n.

(iii) If F is a finite set and χ : Π(Γξ,n.D)→ F is a function, then there exist
a level map d : Γξ,n.D → Γξ,n.D with extension e and α1, . . . , αn ∈ F
such that for any 1� i � n and any Λξ,n,i.D � s �∈MAX(Γξ,n.D), αi =
F (d(s), e(t)), and such that (xd(t))t∈Γξ,n.D is weakly null.

(iv) If h : Π(Γξ,n.D)→R is bounded and if E ⊂MAX(Γξ,n.D) is cofinal, then
for any δ > 0, there exist a1, . . . , an ∈ R and a level map d : Γξ,n.D →
Γξ,n.D with extension e such that e(MAX(Γξ,n.D))⊂ E , for each 1� i �
n and each Λξ,n,i.D � s � t ∈MAX(Γξ,n.D), h(d(s), e(t)) � ai − δ, and
for any t ∈MAX(Γξ,n.D),

∑
∅<s�e(t)

Pξ,n(s)h
(
s, e(t)

)
� δ+

n∑
i=1

ai.
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Remark 2.2. Items (i) and (ii) together yield that if MAX(Γξ,n.D) =⋃k
i=1 Ei, then there exist 1 � j � k and a level map d : Γξ,n.D→ Γξ,n.D with

extension e such that (xd(t))t∈Γξ,n.D is weakly null and e(MAX(Γξ,n.D))⊂ Ej .
A typical application of this result will be to have a real-valued function
h : MAX(Γξ,n.D)→ C ⊂ R, where C is compact. We may then fix δ > 0 and
a finite cover F1, . . . , Fk of C by sets of diameter less than δ. We then let
Ei denote those t ∈MAX(Γξ,n.D) such that h(t) ∈ Fi. We may then find d,
e, and j as above and obtain (xd(t))t∈Γξ,n.D weakly null such that for every
t ∈MAX(Γξ,1.D), h(e(t)) ∈ Fj .

Similarly, we will often apply (iii) to a function h1 : Π(Γξ,n.D)→ C ⊂ R,
where C is compact, by first covering C by F1, . . . , Fk of sets of diameter less
than δ. We then define h(s, t) to be the minimum j � k such that h1(s, t) ∈ Fj .

3. Szlenk index

Given a Banach space X , a weak∗-compact subset K of X∗, and ε > 0,
we let sε(K) denote the set of those x∗ ∈ K such that for every weak∗-
neighborhood V of x∗, diam(V ∩K)> ε. We then define the transfinite deriva-
tions by

s0ε(K) =K,

sξ+1
ε (K) = sε

(
sξε(K)

)
,

and if ξ is a limit ordinal,

sξε(K) =
⋂
ζ<ξ

sζε(K).

For convenience, we define sξε(K) =K for each ε � 0. We let Sz(K,ε) be the
minimum ξ such that sξε(K) =∅, assuming such an ordinal exists. If no such
ordinal exists, we write Sz(K,ε) =∞. We let Sz(K) = supε>0 Sz(K,ε), with
the agreement that Sz(K) =∞ if Sz(K,ε) =∞ for some ε > 0. Given an op-
erator A :X → Y , we let Sz(A,ε) = Sz(A∗BY ∗ , ε) and Sz(A) = Sz(A∗BY ∗).
Given a Banach space X , we let Sz(X,ε) = Sz(IX , ε) and Sz(X) = Sz(IX).

Given an ordinal ξ, 1 � q <∞, and M � 0, we say K has M -ξ-q-summable

Szlenk index if for any ε1, . . . , εn � 0 such that sω
ξ

ε1 · · ·sωξ

εn (K) �=∅,
∑n

i=1 ε
q
i �

Mq . We say K has ξ-q-summable Szlenk index if it has M -ξ-q-summable
Szlenk index for some M � 0. Given an operator A :X → Y , we say A has
ξ-q-summable Szlenk index if A∗BY ∗ does, and we say the Banach space X
has ξ-summable Szlenk index if IX does. The notion of 0-1-summable Szlenk
index has been previously defined in [13], and it is quite important to the non-
linear theory of Banach spaces and renorming theory. For ξ > 0 or 1< q <∞,
the notion of ξ-q-summable Szlenk index is new.

Suppose X is a Banach space and K ⊂ X∗ is weak∗-compact and non-
empty. By a standard compactness argument, Sz(K,ε)> ωξn for each n ∈N
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would imply Sz(K,ε)>ωξn. Therefore, Sz(K) � ωξ+1 implies that for every
ε > 0, we have Sz(K,ε) � ωξn for some n ∈N. Then if Sz(K) � ωξ+1, we let
Szξ(K,ε) be the smallest n ∈ N such that Sz(K,ε) � ωξn. For this K, we
define the ξ-Szlenk power type pξ(K) by

pξ(K) := limsup
ε→0+

logSzξ(K,ε)

| log(ε)| .

This value need not be finite. We note that if Sz(K) � ωξ, Szξ(K,ε) = 1
for all ε > 0, whence pξ(K) = 0.For completeness, we write pξ(K) = ∞ if
Sz(K)>ωξ+1.

We remark that if K has M -ξ-q-summable Szlenk index, then pξ(K) � q.
Indeed, for any ε > 0, if n < Szξ(K,ε),

∅ �= sω
ξn

ε (K) = sω
ξ

ε · · ·sωξ

ε (K),

and εqn=
∑n

i=1 ε
q
i � Mq . From this it follows that

logSzξ(K,ε)� log
(
1 +Mq/εq

)
,

whence

limsup
ε→0+

logSzξ(K,ε)

| log(ε)| � q.

We also recall the following fact. This fact was shown by Lancien [16] in
the case that K =BX∗ .

Proposition 3.1 ([7, Lemma 3.8]). Let X be a Banach space, K ⊂X∗

weak∗-compact and convex, ξ an ordinal.

(i) If for some ε > 0, Sz(K,ε)>ωξ, then Sz(K,ε/n)>ωξn.
(ii) If ωξ < Sz(K) � ωξ+1, then Sz(K) = ωξ+1.
(iii) If Sz(K)>ωξ then pξ(K) � 1.

Corollary 3.2. If X is a Banach space and K ⊂X∗ is a weak∗-compact,
convex, non-empty set, then either Sz(K) = ∞ or there exists an ordinal ξ
such that Sz(K) = ωξ.

4. The quantities αξ,p,n(K)

Given a directed set D and (xt)t∈Γξ,n.D ⊂ X , if t ∈ MAX(Γξ,n.D), there
exist ∅ = t0 < · · · < tn = t such that ti ∈MAX(Λξ,n,i.D) for each 1 � i � n.
We then let

zti =
∑

ti−1<s�ti

Pξ,n(s)xs ∈ co(xs : ti−1 < s � ti).

This notation should reference the underlying collection (xt)t∈Γξ,n.D , but the
notation will not cause confusion.

Let X be a Banach space and let K ⊂X∗ be weak∗-compact. For x ∈X ,
let rK(x) = 0 if K =∅, and otherwise let rK(x) = maxx∗∈K Rex∗(x). For an
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ordinal ξ, 1 � p � ∞, and n ∈ N, we let αξ,p,n(K) be the infimum of those
α> 0 such that for any directed set D, any (ai)

n
i=1 ∈Kn, and any weakly null

(xt)t∈Γξ,n.D ⊂BX ,

inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

aiz
t
i

)
� α

∥∥(ai)ni=1

∥∥
�np
.

We let αξ,p(K) = supnαξ,p,n(K). Let θξ,n(K) be the infimum of those θ > 0
such that for any directed set D and any weakly null (xt)t∈Γξ,n.D ⊂BX ,

inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

1

n
zti

)
� θ.

Remark 4.1. It is an easy consequence of [4, Theorem 2.2] is that if
X is a Banach space, K ⊂ X∗ is weak∗-compact, ξ is an ordinal, n ∈ N,
ε > 0, Sz(K,ε) > ωξn, and D is any weak neighborhood basis at 0 in X ,
then for any 0 < δ < ε/4, there exist a weakly null collection (xt)t∈Γξ,n.D ⊂
BX and (x∗

t )t∈MAX(Γξ,n.D) ⊂K such that for each ∅< s � t ∈MAX(Γξ,n.D),
Rex∗

t (xs)� δ. In particular, θξ,n(K) � ε/4.
Conversely, it follows from [4, Theorem 2.2] and [5, Corollary 5.3] that if

θξ,1(K)� ε, sω
ξ

ε0 (K) �=∅ for any 0< ε0 < ε.

Remark 4.2. For later convenience, the definition of αξ,p,n considers all
weakly null collections indexed by any directed set D. However, in the defini-
tion of αξ,p,n could be taken to include only weakly null collections indexed
by Γξ,n.D1, where D1 is some fixed weak neighborhood basis at 0 in X . We
will freely use this fact throughout. In order to see why this holds, fix a scalar
sequence (ai)

n
i=1 and a positive number α. If we have

inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

aiz
t
i

)
� α

∥∥(ai)ni=1

∥∥
�np

for every directed set D and every weakly null collection (xt)t∈Γξ,n.D ⊂ BX ,
then we obviously have it whenever D = D1. For the converse, if there ex-
ists a directed set D and a weakly null collection (xt)t∈Γξ,n.D ⊂ BX such

that inft∈MAX(Γξ,n.D) rK(
∑n

i=1 aiz
t
i) > α‖(ai)ni=1‖�np , we may define a map

φ : Γξ,n.D1 → Γξ,n.D such that, with ut = xφ(t), (ut)t∈Γξ,n.D1 ⊂BX is weakly
null and for every t ∈MAX(Γξ,n.D1),

n∑
i=1

ai
∑

Λξ,n,i.D1

Pξ,n(s)us =

n∑
i=1

aiz
φ(t)
i ,

whence

inf
t∈MAX(Γξ,n.D1)

rK

(
n∑

i=1

ai
∑

Λξ,n,i.D1

Pξ,n(s)us

)
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� inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

aiz
t
i

)

>α
∥∥(ai)ni=1

∥∥
�np
.

The previous remark will be useful, for example, when considering direct
sums. If A1 :X1 → Y1 and A2 :X2 → Y2 are operators, we may wish to con-
sider αξ,p,n(A1 ⊕A2 :X1 ⊕r X2 → Y1 ⊕r Y2). If α1 < αξ,p,n(A1), we will find
a directed set D1 and a weakly null collection (x1

t )t∈Γξ,n.D1 ⊂ BX1 to wit-
ness that α1 < αξ,p,n(A1). Similarly, if α2 < αξ,p,n(A2), we will find a di-
rected set D2 and a weakly null collection (x2

t )t∈Γξ,n.D2 ⊂BX2 to witness that
α2 <αξ,p,n(A2). By the definition, we do not have control over D1 or D2, and
the fact that D1 need not be equal to D2 is problematic. We will use Remark
4.2 to deduce that, in both cases, we can take D1 =D2 =D, where D is a
fixed weak neighborhood basis at 0 in X1 ⊕r X2.

One inconvenience of the definitions of αξ,p,n and θξ,n is that they involve
special convex combinations, and the convex coefficient on a vector depends
upon its position in the tree. Therefore even if we know that

α< inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

aiz
t
i

)
,

if d : Γξ,n.D → Γξ,n.D is a level map such that (xd(t))t∈Γξ,n.D is weakly null,
we do not know that

α< inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

∑
t�s∈Λξ,n,i.D

aiPξ,n(s)xd(x)

)
.

Initially this prevents us from using our combinatorial lemmas to stabilize
certain quantities for members of a given tree (xt)t∈Γξ,n.D which was chosen
to witness that α < αξ,p,n(K). But suppose that (ai)

n
i=1 are non-negative reals

and that we have numbers b1, . . . , bn such that
∑n

i=1 aibi > α, a weakly null
collection (xt)t∈Γξ,n.D ⊂BX , and a collection (x∗

t )t∈MAX(Γξ,n.D) ⊂K such that
for every 1� i � n and Λξ,n,i.D � s � t ∈MAX(Γξ,n.D), Rex∗

t (xs) � bi. Then
for any level map d : Γξ,n.D → Γξ,n.D, any extension e of d, any 1 � i � n,
and Λξ,n,i.D � s � t ∈ MAX(Γξ,n.D), Rex∗

e(t)(xd(s)) � bi. Therefore for any

t ∈MAX(Γξ,n.D),

rK

(
n∑

i=1

∑
e(t)�s∈Λξ,n,i.D

aiPξ,n(s)xd(s)

)

� x∗
e(t)

(
n∑

i=1

∑
e(t)�s∈Λξ,n,i.D

aiPξ,n(s)xd(s)

)
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�
n∑

i=1

aibi >α.

Therefore if we have a map f : BX → M into a compact metric space
M , we may apply Lemma 2.1 to the function F : Π(Γξ,n.D) → M given
by F (s, t) = f(xs) to deduce that for any δ > 0, there exist �1, . . . ,�n ∈
M , a level map d : Γξ,n.D → Γξ,n.D, and an extension e of d such
that dM (F (d(s), e(t)),�i) = dM (f(xd(s)),�i) < δ for each 1 � i � n and
each Λξ,n,i.D � s � t ∈ MAX(Γξ,n.D), and the collections (xd(t))t∈Γξ,n.D ,
(x∗

e(t))t∈MAX(Γξ,n.D) ⊂K can be used as described above to deduce that

α < inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

∑
e(t)�s∈Λξ,n,i.D

aiPξ,n(s)xd(s)

)
.

Thus we can replace the collection (xt)t∈Γξ,n.D with (xd(t))t∈Γξ,n.D without
losing the inequality coming from the definition of αξ,p,n or θξ,n while sta-
bilizing the function f on each level of the collection. This is the primary
motivation for the next theorem.

Theorem 4.3. Let X be a Banach space, K ⊂X∗ weak∗-compact, 1 � p �
∞.

(i) For α ∈R, the following are equivalent:
(a) αξ,p,n(K)>α.
(b) There exist non-negative scalars (ai)

n
i=1 ∈ B�np

, a directed set D, a

weakly null collection (xt)t∈Γξ,n.D ⊂BX , and α′ >α such that{
t ∈MAX(Γξ,n.D) : rK

(
n∑

i=1

aiz
t
i

)
>α′

}

is cofinal.
(c) There exist non-negative scalars (ai)

n
i=1 ∈ B�np , a directed set D,

a weakly null collection (xt)t∈Γξ,n.D ⊂ BX , (x∗
t )t∈MAX(Γξ,n.D) ⊂ K,

and non-negative real numbers b1, . . . , bn such that α <
∑n

i=1 aibi
and for each 1 � i � n and each Λξ,n,i.D � s � t ∈ MAX(Γξ,n.D),
Rex∗

t (xs) � bi.
(ii) αξ,p,n(K) = 0 for some n ∈N if and only if αξ,p,n(K) = 0 for all n ∈N if

and only if Sz(K) � ωξ.
(iii) If R � 0 is such that K ⊂RBX∗ , αξ,p,n(K)� n1−1/pR.

(iv) αξ,p,n(K) = αξ,p,n(abs co
weak∗

(K)).

Proof. (i) First assume there exist α′ > α, a directed set D, non-negative
scalars (ai)

n
i=1 ∈B�np

, and a weakly null collection (xt)t∈Γξ,n.D ⊂BX such that

E :=

{
t ∈MAX(Γξ,n.D) : rK

(
n∑

i=1

aiz
t
i

)
>α′

}
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is cofinal. For every t ∈MAX(Γξ,n.D), fix x∗
t ∈K such that

Rex∗
t

(
n∑

i=1

aiz
t
i

)
= rK

(
n∑

i=1

aiz
t
i

)
.

Define h : Π(Γξ,n.D) → R by h(s, t) = Rex∗
t (aixs), where Λξ,n,i � s � t ∈

MAX(Γξ,n.D). Fix a positive number δ such that δ(n + 1) < α′ − α. By
Lemma 2.1(iv), there exists a level map d : Γξ,n.D → Γξ,n.D with extension
e : MAX(Γξ,n.D) → E and scalars b′1, . . . , b

′
n ∈ R such that (xd(t))t∈Γξ,n.D is

weakly null, for each 1 � i � n and each Λξ,n,i.D � s � t ∈ MAX(Γξ,n.D),
Rex∗

e(t)(aixd(t))� b′i − δ, and for each t ∈MAX(Γξ,n.D),

α′ < x∗
e(t)

(
n∑

i=1

aiz
d(t)
i

)
=

∑
∅<s�e(t)

Pξ,n(s)h
(
s, e(t)

)
< δ +

n∑
i=1

b′i.

By relabeling, we assume d(t) = t and e(t) = t. Furthermore, by replacing
xt with 0 for any 1 � i � n such that b′i − δ � 0 and t ∈ Λξ,n,i.D, we may
assume xt = 0 for any such t and i. We then let bi = 0 provided b′i − δ � 0,
and bi = (b′i − δ)/ai if b′i − δ > 0. Note that the condition b′i − δ > 0 implies
bi > 0. Then

inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

aiz
t
i

)
� Rex∗

t

(
n∑

i=1

aiz
t
i

)

�
n∑

i=1

∑
Λξ,n,i�s�t

Pξ,n(s)Rex
∗
t (aixs)

�
n∑

i=1

(
b′i − δ

)
� α′ − (n+ 1)δ > α.

Now assume there exist a directed setD, non-negative scalars (ai)
n
i=1 ∈B�np ,

and a weakly null collection (xt)t∈Γξ,n.D ⊂BX such that

inf
t∈Γξ,n.D

rK

(
n∑

i=1

aiz
t
i

)
>α.

Then for any α′ such that

inf
t∈Γξ,n.D

rK

(
n∑

i=1

aiz
t
i

)
>α′ >α,

{
t ∈MAX(Γξ,n.D) : rK

(
n∑

i=1

aiz
t
i

)
>α′

}
=MAX(Γξ,n.D)

is cofinal.
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Obviously the condition in the previous paragraph implies that αξ,p,n(K)>
α. Conversely, suppose there exists (ai)

n
i=1 ∈ Kn, a directed set D, and a

weakly null collection (xt)t∈Γξ,n.D ⊂BX such that

inf
t∈Γξ,n.D

rK

(
n∑

i=1

aiz
t
i

)
>α

∥∥(ai)ni=1

∥∥
�np
.

By positive homogeneity of rK , we may assume (ai)
n
i=1 ∈ S�np . For each 1 �

i � n, fix a unimodular scalar εi such that ai/εi = |ai|. For each 1� i � n and
each t ∈ Λξ,n,i.D, let xε

i := εixt. For t ∈MAX(Γξ,n.D), let

zε,ti =
∑

Λξ,n,i.D�s�t

Pξ,n(s)x
ε
s.

Then for each t ∈MAX(Γξ,n.D),

rK

(
n∑

i=1

aiz
t
i

)
= rK

(
n∑

i=1

|ai|zε,ti

)
.

Since (xε
t )t∈Γξ,n.D ⊂BX is weakly null, this finishes (i).

(ii) The main theorem of [4] can be stated as: αξ,p,1(K) = 0 if and only if
Sz(A) � ωξ. The rest of (ii) follows from the fact that that (αξ,p,n(K))∞n=1 is
non-decreasing and the obvious fact that αξ,p,n(K) � nαξ,p,1(K).

(iii) This is obvious from Hölder’s theorem.
(iv) We let T = {ε ∈K : |ε|= 1} and TK = {εx∗ : ε ∈ T, x∗ ∈K}. We first

show that αξ,p,n(K) = αξ,p,n(TK). Since rK � rTK , αξ,p,n(K) � αξ,p,n(TK).
Fix α < αξ,n,p(TK), non-negative scalars (ai)

n
i=1 ∈ B�np

, b1, . . . , bn ∈ R such

that α <
∑n

i=1 aibi, a directed set D, a weakly null collection (xt)t∈Γξ,n.D ⊂
BX , and a collection (εtx

∗
t )t∈MAX(Γξ,n.D) ⊂ TK such that for every 1 � i � n

and every Λξ,n,i.D � s � t ∈MAX(Γξ,n.D),

bi � Reεtx
∗
t (xs).

We may fix such constants, vectors, and functionals by (i). Here, the collection(
εtx

∗
t

)
t∈MAX(Γξ,n.D)

⊂ TK

is written such that |εt|= 1 and x∗
t ∈K for all t ∈MAX(Γξ,n.D). Fix R > 0

such that K ⊂RBX∗ and δ > 0 such that nRδ+α <
∑n

i=1 aibi. Fix a finite δ-

net (εi)
k
i=1 of T. For each 1� i � k, let Ei = {t ∈MAX(Γξ,n.D) : |εi− εt| � δ}.

By Lemma 2.1, we may relabel and assume there exists a single ε ∈ T such
that |ε− εt| � δ for all t ∈MAX(Γξ,n.D). Let ci = bi −Rδ, so that

n∑
i=1

aici �
n∑

i=1

aibi − nRδ > α.

Note that for each 1� i � n and each Λξ,n,i.D � s � t ∈MAX(Γξ,n.D),

Rex∗
t (εxt) �Re εtx

∗
t (xt)− |ε− εt|‖xt‖� bi −Rδ = ci.
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We now appeal to (i) to deduce that αξ,p,n(K) > α. This shows that
αξ,p,n(K) = αξ,p,n(TK).

We now note that for any weak∗-compact set L of X∗, rL = rcoweak∗ (L),
whence

αξ,p,n(L) = αξ,p,n

(
coweak∗

(L)
)
.

If L= TK, then

abs co
weak∗

(K) = coweak∗
(L),

and

αξ,p,n

(
abs co

weak∗

(K)
)
= αξ,p,n

(
coweak∗

(L)
)
= αξ,p,n(L)

= αξ,p,n(TK) = αξ,p,n(K). �

Remark 4.4. In Theorem 4.3(i), we showed that in order to check the
values of αξ,p,n(K), it is sufficient to check only over sequences (ai)

n
i=1 ∈ S�np

of non-negative, real scalars. We now note that it is sufficient to check only
over positive, real scalars by density of {(ai)ni=1 ∈ �np : ai > 0} in {(ai)ni=1 ∈ �np :
ai � 0}.

Remark 4.5. We note that a weak∗-compact set K ⊂X∗ is norm compact
if and only if α0,p,1(K) = 0 for some 1 � p �∞ if and only if α0,p,1(K) = 0 for
every 1 � p � ∞ if and only if for any weakly null net (xλ)⊂BX , rK(xλ)→ 0.

The results contained in Theorem 4.6 have similar proofs to those contained
in Theorem 4.3, so we omit them.

Theorem 4.6. Let X be a Banach space, K ⊂X∗ weak∗-compact.

(i) θξ,n(K) = 0 for some n ∈ N if and only if θξ,n(K) = 0 for all n ∈ N if
and only if Sz(K) � ωξ.

(ii) If R � 0 is such that K ⊂RBX∗ , θξ,n(K)� R.

(iii) θξ,n(K) = θξ,n(abs co
weak∗

(K)).
(iv) For θ ∈ R, θξ,n(K) > θ if and only if there exist a directed set D, a

weakly null collection (xt)t∈Γξ,n.D ⊂BX , (x∗
t )t∈MAX(Γξ,n.D) ⊂K, and real

numbers b1, . . . , bn such that θn <
∑n

i=1 bi and for each 1 � i � n and
each Λξ,n,i.D � s � t ∈MAX(Γξ,n.D), Rex∗

t (xs)� bi.

Proposition 4.7. Let X be a Banach space and let K ⊂ X∗ be weak∗-
compact. The assignment ωξn �→ θξ,n(K) is continuous and non-increasing
from {ωξn : ξ ∈Ord, n ∈ N} into R. That is, if ωζm � ωξn (which happens
if and only if ζ � ξ and either ζ < ξ or ζ = ξ and m � n), then θξ,n(K) �
θζ,m(K), and for any ordinal ξ,

θξ+1,1(K) = inf
{
θξ,n(K) : n ∈N

}
and if ξ is a limit ordinal,

θξ,1(K) = inf
{
θζ,n(K) : ζ < ξ,n ∈N

}
= inf

{
θζ+1,1(K) : ζ < ξ

}
.
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Proof. In order to see that ωξn �→ θξ,n(K) is non-increasing, it is sufficient
to show that for any ordinal ξ and n ∈N,

(i) θξ,n+1(K) � θξ,n(K),
(ii) θξ+1,1(K) � θξ,n(K),
(iii) for any limit ordinal λ > ξ, θλ,1(K)� θξ+1,1(K).

Let us show (i). Suppose ϑ < θξ,n+1(K), a directed set D, a weakly
null collection (xt)t∈Γξ,n+1.D ⊂ BX , and non-negative numbers b1, . . . , bn+1

such that
∑n+1

i=1
bi

n+1 > ϑ and for each 1 � i � n + 1 and Λξ,n,i.D � s �
t ∈ MAX(Γξ,n+1.D), Rex∗

t (xs) � bi. Now for each 1 � i � n + 1, let Ti =

{1, . . . , n+ 1} \ {i}. We note that for any 1 � i � n+ 1,
∑

j∈Ti

bi
n � θξ,n(K).

Indeed, by Lemma 2.1, there exists a level map d : Γξ,n.D → Γξ,n+1.D such
that d(Λξ,n,j .D) ⊂ Λξ,n+1,j .D for each j < i and d(Λξ,n,j .D) ⊂ Λξ,n+1,j+1.D
for j � i. Then if e is any extension of d,

∑
j∈Ti

bj
n

� inf
t∈MAX(Γξ,n.D)

Rex∗
e(t)

(
n∑

j=1

∑
e(t)�s∈Λξ,n,j .D

n−1xd(s)

)
� θξ,n(K).

Then

ϑ <

n+1∑
j=1

bj
n+ 1

=

n+1∑
i=1

∑
j∈Ti

bj
(n+ 1)n

=
1

n+ 1

n+1∑
i=1

∑
j∈Ti

bj
n

� 1

n+ 1

n+1∑
i=1

θξ,n(K)

= θξ,n(K).

This yields (i).
Now if ϑ < θξ+1,1(K), we may fix a weakly null collection (xt)t∈Γξ+1,1.D ⊂

BX such that

inf
t∈MAX(Γξ+1,1.D)

rK

(∑
s�t

Pξ+1,1(s)xs

)
> ϑ.

Now since Pξ+1,1(s) = n−1Pξ,n(s) for each s ∈ Γξ,n.D,

ϑ < inf
t∈MAX(Γξ+1,1.D)

rK

(∑
s�t

Pξ+1,1(s)xs

)

� inf
t∈MAX(Γξ,n.D)

rK

(∑
s�t

Pξ+1,1(s)xs

)

= inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

1

n

∑
t�s∈Λξ,n,i.D

Pξ,n(s)xs

)
.

Therefore (xt)t∈MAX(Γξ,n.D) witnesses that ϑ < θξ,n(K), which yields (ii).
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For (iii), we argue as in (ii), noting that there is a canonical map
j : Γξ+1,1.D → Γλ,1.D such that Pξ+1,1(t) = Pλ,1(j(t)) for any t ∈ Γξ+1,1.D.
Thus any collection witnessing that ϑ < θλ,1(K) has a subset witnessing that
ϑ < θξ+1,1(K).

It follows from what we have already shown that for any ordinal ξ,

θξ+1,1(K)� inf
{
θξ,n(K) : n ∈N

}
.

Now if ϑ < inf{θξ,n(K) : n ∈N}, for a fixed weak neighborhood basis D in X
at 0 and for each n ∈N, we may fix (xt)t∈Γξ,n.D ⊂BX such that

ϑ < inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

∑
t�s∈Λξ,n,i.D

1

n
Pξ,n(s)xs

)

= inf
t∈MAX(Γξ+1,1.D)∩Γξ,n.D

rK

(∑
s�t

Pξ+1,1(s)xs

)
.

Then (xt)t∈Γξ+1,1.D = (xt)t∈
⋃∞

n=1 Γξ,n.D witnesses that ϑ � θξ+1,1(K). This
yields that

θξ+1,1(K) = inf
{
θξ,n(K) : n ∈N

}
.

It also follows from what we have shown that for a limit ordinal ξ,

θξ,1(K)� inf
{
θζ+1,1(K) : ζ < ξ

}
= inf

{
θζ,n(K) : ζ < ξ,n ∈N

}
.

We argue similarly to the previous paragraph to deduce the reverse inequality.
For ϑ < inf{θζ+1,1(K) : ζ < ξ}, we may fix a weak neighborhood basis D at
0 in X and for each ζ < ξ a weakly null collection (x′

t)t∈Γζ+1,1.D ⊂ BX such
that

ϑ < inf
t∈MAX(Γζ+1,1.D)

rK

(∑
s�t

Pζ+1,1(s)x
′
s

)
.

Now if jζ : (ωζ + Γζ+1,1).D → Γζ+1,1.D is the canonical identification,
(xj(t))t∈Γξ,1.D witnesses that ϑ� θξ,1(K). �

Corollary 4.8. Let ξ be an ordinal, 1 � p, q � ∞ with 1< p and 1/p+
1/q = 1, X a Banach space, and K ⊂X∗ weak∗-compact.

(i) infn θξ,n(K) = limsupnαξ,p,n(K)/n1/q .
(ii) Sz(K) � ωξ+1 if and only if infnθξ,n(K) = 0 if and only if

limsupnαξ,p,n(K)/n1/q = 0.

Proof. (i) First note that infn θξ,n(K) = limn θξ,n(K), since (θxi,n(K))∞n=1

is non-increasing.
Since ‖(1/n)ni=1‖�np = 1/n1/q , it follows that for any weakly null (xt)t∈Γξ,n

⊂
BX ,

inf
t∈MAX(Γξ,n.D)

rK

(
1

n

n∑
i=1

zti

)
� αξ,p,n(K)/n1/q.
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Thus θξ,n(K) � αξ,p,n(K)/n1/q , and

inf
n
θξ,n(K)� limsupnαξ,p,n(K).

Now to obtain a contradiction, assume

inf
n
θξ,n(K)< ϑ< θ < limsupnαξ,p,n(K).

Let R > 0 be such that K ⊂ RBX∗ . Fix N1 ∈ N such that θξ,n(K) < ϑ for

all n � N1 and fix N2 so large that N1 � (θ − ϑ)N
1/q
2 /R. Now fix n � N2

such that αξ,p,n(K)/n1/q > θ. There exist a sequence of non-negative scalars

(ai)
n
i=1 ∈B�np

, scalars b1, . . . , bn ∈ [0,R] such that θn1/q <
∑n

i=1 aibi, a directed

set D, a weakly null (xt)t∈Γξ,n.D ⊂BX , and a collection (x∗
t )t∈MAX(Γξ,n.D) ⊂

K such that for every 1 � i � n and each Λξ,n,i.D � s � t ∈ MAX(Γξ,n.D),
Rex∗

t (xs)� bi. Now let S = {i� n : bi � ϑ} and let T = {1, . . . , n} \ S. Then

θn1/q � R
∑
i∈S

ai + ϑ
∑
i∈T

ai

� R|S|+
∥∥(ai)i∈T

∥∥
�
|T |
p

ϑ|T |1/q

� R|S|+ ϑn1/q.

From this it follows that |S| � (θ− ϑ)n1/q/R � N1.
There exists a map d : Γξ,|S|.D→ Γξ,n.D such that, if S = {s1 < · · ·< s|S|},

d(Λξ,|S|,i.D) ⊂ Λξ,n,si .D, and such that (xd(s))s∈Γξ,|S|.D is weakly null. Let

e : MAX(Γξ,|S|.D) → MAX(Γξ,n.D) be any extension of d. Then for any
(s, t) ∈ Π(Γξ,|S|.D), Rex∗

e(t)(xd(t)) � θ. The collection (xd(t))t∈Γξ,|S|.D yields

that θξ,|S|(K)� θ, a contradiction.

(ii) By Proposition 4.7 and Theorem 4.6, Sz(K) � ωξ+1 if and only if
limn θξ,n(K) = infn θξ,n(K) = θξ+1,1(K) = 0.

The equivalence of the last two conditions follows from (i). �

Remark 4.9. From Corollary 4.8, it follows that if αξ,p(K) = α <∞ for

some 1< p � ∞, Sz(K) � ωξ+1. Indeed, limnαξ,p,n(K)/n1/q � limnα/n
1/q =

0.

We will need the following. The first part of the proposition is contained
in [7, Proposition 3.5], although not stated in precisely this way. The second
part of the following proposition follows immediately from the first.

Proposition 4.10. If X is a Banach space, K ⊂X∗ is weak∗-compact,
b1, . . . , bn are non-negative scalars, and if there exists a directed set D, a weakly
null collection (xt)t∈Γξ,n.D ⊂ BX , and (x∗

t )t∈MAX(Γξ,n.D) ⊂ K such that for
every 1 � i � n and each Λξ,n,i.D � s � t ∈ MAX(Γξ,n.D), Rex∗

t (xs) � bi.
Then for any 0<ψ < 1,

sω
ξ

ψb1 · · ·s
ωξ

ψbn(K) �=∅.
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For ε > 0, m ∈ N such that Sz(K,ε) � ωξm and (xt)t∈Γξ,n.D ⊂ BX ,
(x∗

t )t∈MAX(Γξ,n.D) ⊂K, and b1, . . . , bn are as above,∣∣{i � n : bi > ε}
∣∣ � m.

Theorem 4.11. Let X be a Banach space, ξ an ordinal, and let K ⊂X∗

be weak∗-compact.

(i) If q =max{pξ(K),1} and 1/p+ 1/q = 1,

p= sup
{
r ∈ [1,∞] : αξ,r(K)<∞

}
.

(ii) If 1� q <∞ and 1/p+1/q = 1, K has ξ-q-summable Szlenk index if and
only if αξ,p(K)<∞.

Proof. (i) Let β = sup{r ∈ [1,∞] : αξ,r(K) < ∞} and let 1/α + 1/β = 1.
The fact that β � p follows from the proof of the main theorem of [7]. For
the reverse inequality, if p = 1, p � β and we have β = p. So assume 1 < p.
Fix 1 � r < p and let 2s = r + p. In the proof, r′, s′ denote the conjugate

exponents to r, s, respectively. Let C =
∑∞

l=1(2
1
r′ −

1
s′ )l <∞. Fix R � 0 such

that K ⊂ RBX∗ . It follows easily from the definition of pξ(K) that there

exists ε1 ∈ (0,1) such that for every 0 < ε � ε1, Szξ(K,ε) � 1/εs
′
. Let m =

1/εs
′

1 and C1 = Rm1/r′ + 21/s
′
m1/r′C. Now fix n ∈ N, non-negative scalars

(ai)
n
i=1, α< αξ,p,n(K), (xt)t∈Γξ,n.D ⊂BX , functionals (x∗

t )t∈MAX(Γξ,n.D) ⊂K,

and b1, . . . , bn ⊂ [0,R] such that
∑n

i=1 aibi >α and for each 1� i � n and each
Λξ,n,i.D � s �∈MAX(Γξ,n.D), Rex∗

t (xs) � bi. For each l ∈N, let

Sl =
{
i � n : bi ∈ (ε12

− l
s′ , ε12

1−l
s′ ]

}
and let

S0 =
{
i � n : bi ∈ (ε1,R]

}
.

By Proposition 4.10, since Szξ(K,ε12
−l/s′) � 1/(ε12

−l/s′)s
′
=m2l, it fol-

lows that |Sl| � m2l. Since Sz(K,ε1) �m, |S0| � m. Now let

y∗0 =
∑
j∈S0

e∗j

and for each l ∈N, let

y∗l =
∑
j∈Sl

2−l/r′e∗j .

Then ‖y∗0‖�r′ = |S0|1/r
′ � m1/r′ and for each l ∈N,∥∥y∗l ∥∥�r′
= 2−l/r′ |Sl|1/r

′ � 2−1/r′m1/r′2l/r
′
=m1/r′ .

Let
y∗ =Ry∗0 + 21/s

′ ∑
l∈N

(
2

1
r′ −

1
s′

)l
y∗l

and note that ∥∥y∗∥∥
�r′

� Rm1/r′ + 21/s
′
m1/r′C =C1.
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Furthermore,

α<

n∑
i=1

aibi �
∑
i∈S0

aibi +

∞∑
l=1

∑
i∈Sl

aibi � y∗

(
n∑

i=1

aiei

)

� C1

∥∥(ai)ni=1

∥∥
�r
.

Therefore, αξ,r(K) �C1.
(ii) Assume that K fails to have ξ-q-summable Szlenk index. Then for

any M > 0 there exist ε1, . . . , εn > 0 such that sω
ξ

ε1 · · ·sωξ

εn (K) �= ∅ and∑n
i=1(εi/5)

q >Mq . Then arguing as in [4, Lemma 3.4], we may fix a weak
neighborhood basis D at 0 in X , (xt)t∈Γξ,n.D ⊂BX , and (x∗

t )t∈MAX(Γξ,n.D) ⊂
K such that for each 1 � i � n and each Λξ,n,i.D � s � t ∈ MAX(Γξ,n.D),
Rex∗

t (xs) � εi/5. Now fix a1, . . . , an ⊂ [0,1] such that ‖(ai)ni=1‖�np = 1 and∑n
i=1 aiεi/5 = (

∑n
i=1(εi/5)

q)1/q >M . From this, it follows that

αξ,p,n(K)� inf
t∈MAX(Γξ,n.D)

∥∥∥∥∥
n∑

i=1

aiz
t
i

∥∥∥∥∥ �
n∑

i=1

aiεi/5>M.

We therefore deduce that αξ,p(K) =∞.
Now if α< αξ,p,n(K), there exist a sequence of positive scalars (ai)

n
i=1 ∈B�np

and a weakly null collection (xt)t∈Γξ,n.D ⊂BX such that

α< inf
t∈MAX(Γξ,n.D)

rK

(
n∑

i=1

aiz
t
i

)
.

Then there exist non-negative scalars b1, . . . , bn ∈R such that α<
∑n

i=1 bi and
for each 1 � i � n and each Λξ,n,i.D � s � t ∈ MAX(Γξ,n.D), Rex∗

t (aixs) �
bi. Fix 0 < ψ < 1 such that α < ψ

∑n
i=1 bi. Then by Proposition 4.10,

sω
ξ

ψb1/a1
· · ·sωξ

ψbn/an
(K) �=∅. Now

α< ψ

n∑
i=1

bi = ψ

n∑
i=1

ai(bi/ai)

� ψ
∥∥(ai)ni=1

∥∥
�np

(
n∑

i=1

(bi/ai)
q

)1/q

� ψ

(
n∑

i=1

(bi/ai)
q

)1/q

.

From this it follows that K does not have α-ξ-q-summable Szlenk index.
Therefore if αξ,p(K) =∞, K does not have ξ-q-summable Szlenk index. �

Corollary 4.12. Let X be a Banach space, ξ an ordinal, K ⊂X∗ weak∗-
compact.

(i) For 1 � q < ∞, K has ξ-q-summable Szlenk index if and only if

abs co
weak∗

(K) does.

(ii) pξ(abs co
weak∗

(K)) =max{pξ(K),1}.
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Proof. Let 1/p+1/q = 1. Then αξ,p,n(K) = αξ,p,n(abs co
weak∗

(K)) by The-

orem 4.3, whence αξ,p(K) < ∞ if and only if αξ,p(abs co
weak∗

(K)) < ∞.
By Theorem 4.11(ii), the former condition is equivalent to K having ξ-q-

summable Szlenk index and the latter is equivalent to abs co
weak∗

(K) having
ξ-q-summable Szlenk index.

We deduce (ii) using (i) together with Theorem 4.11(i). �

5. Banach ideals

In this section, we let Ban denote the class of all Banach spaces over K.
We let L denote the class of all operators between Banach spaces and for
X,Y ∈Ban, we let L(X,Y ) denote the set of operators from X into Y . For
I⊂ L and X,Y ∈Ban, we let I(X,Y ) = I ∩ L(X,Y ). We recall that a class
I is called an ideal if

(i) for any W,X,Y,Z ∈ Ban, any C ∈ L(W,X), B ∈ I(X,Y ), and A ∈
L(Y,Z), ABC ∈ I,

(ii) IK ∈ I,
(iii) for each X,Y ∈Ban, I(X,Y ) is a vector subspace of L(X,Y ).

We recall that an ideal I is said to be

(i) closed provided that for any X,Y ∈Ban, I(X,Y ) is closed in L(X,Y )
with its norm topology,

(ii) injective provided that for any X,Y,Z ∈Ban, any A :X → Y , and any
isomorphic (equivalently, isometric) embedding j : Y → Z such that jA ∈
I, A ∈ I,

(iii) surjective provided that for any W,X,Y ∈ Ban, any A : X → Y , and
any surjection (equivalently, quotient map) q :W →X such that Aq ∈ I,
A ∈ I.

If I is an ideal and ι assigns to each member of I a non-negative real value,
then we say ι is an ideal norm provided that

(i) for each X,Y ∈Ban, ι is a norm on I(X,Y ),
(ii) for any W,X,Y,Z ∈ Ban and any C ∈ L(W,X), B ∈ I(X,Y ), A ∈

I(Y,Z), ι(ABC)� ‖A‖ι(B)‖C‖,
(iii) for any X,Y ∈Ban, any x ∈X , and any y ∈ Y , ι(x⊗ y) = ‖x‖‖y‖.

If I is an ideal and ι is an ideal norm on I, we say (I, ι) is a Banach ideal
provided that for every X,Y ∈Ban, (I(X,Y ), ι) is a Banach space.

Fix an ordinal ξ, 1 < p � ∞, and let 1/p + 1/q = 1. For an operator A :
X → Y , let aξ,p(A) = ‖A‖+αξ,p(A). Let Aξ,p denote the class of all operators
A with ξ-q-summable Szlenk index.

Theorem 5.1. For any ordinal ξ and 1< p � ∞, the class (Aξ,p,aξ,p) is a
Banach ideal.
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Proof. Fix Banach spaces X,Y . We first show that αξ,p satisfies the tri-
angle inequality. Fix A,B :X → Y , a directed set D, a weakly null collection
(xt)t∈Γξ,n.D ⊂ BX , and a scalar sequence (ai)

n
i=1 ∈ B�np

. Fix αA > αξ,p,n(A)

and αB >αξ,p,n(B). Then the sets

EA =

{
t ∈MAX(Γξ,n.D) :

∥∥∥∥∥A
n∑

i=1

aiz
t
i

∥∥∥∥∥ � αA

}

and

EB =

{
t ∈MAX(Γξ,n.D) :

∥∥∥∥∥B
n∑

i=1

aiz
t
i

∥∥∥∥∥ � αB

}

are eventual. From this, it follows that EA∩EB �=∅. Then for any s ∈ EA∩EB ,

inf
t∈MAX(Γξ,n.D)

∥∥∥∥∥(A+B)

n∑
i=1

zti

∥∥∥∥∥ �
∥∥∥∥∥(A+B)

n∑
i=1

aiz
s
i

∥∥∥∥∥ � αA + αB .

From this we deduce the triangle inequality for αξ,n, and therefore for aξ,n.
From here it is easy to see that aξ,p is a norm on L(X,Y ).

Now fix a Banach space Z and fix A :X → Y . For B : Y → Z, a directed
set D, n ∈ N, a scalar sequence (ai)

n
i=1 ∈ B�np

, and a weakly null collection

(xt)t∈Γξ,n.D ⊂BX ,

inf
t∈MAX(Γξ,n.D)

∥∥∥∥∥BA

n∑
i=1

aiz
t
i

∥∥∥∥∥ � ‖B‖ inf
t∈MAX(Γξ,n.D)

∥∥∥∥∥A
n∑

i=1

zti

∥∥∥∥∥ � ‖B‖αξ,p,n(A).

From this it follows that aξ,p(BA) � ‖B‖aξ,p(A). For B : Z →X , a directed
set D, n ∈ N, a scalar sequence (ai)

n
i=1 ∈ B�np

, and a weakly null collection

(xt)t∈Γξ,n.D ⊂BX ,

inf
t∈MAX(Γξ,n.D)

∥∥∥∥∥AB
n∑

i=1

zti

∥∥∥∥∥ � inf
b>‖B‖

b inf
t∈MAX(Γξ,n.D)

∥∥∥∥∥A
n∑

i=1

b−1Bzti

∥∥∥∥∥
� inf

b>‖B‖
bαξ,p,n(A)

= ‖B‖αξ,p,n(A).

From this it follows that aξ,p(AB)� ‖B‖aξ,p.
Since αξ,p(A) = 0 whenever A is a compact operator, we deduce that Aξ,p

is an operator ideal and aξ,p is an ideal norm.
We last show completeness. Fix a sequence (Ak)

∞
k=1 of aξ,p-Cauchy opera-

tors from X to Y . This is also a norm Cauchy sequence, which must converge
in norm to some A :X → Y . We note that since αξ,p,n is Lipschitz continuous
on L(X,Y ),

αξ,p(A) = sup
n

αξ,p,n(A) = sup
n

lim
k

αξ,p,n(Ak) � sup
n

lim
k

αξ,p(Ak)
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= limsup
k

αξ,p(Ak)<∞

and

limsup
l

aξ,p(A−Al) = limsuplαξ,p(A−Al)

= limsup
l

sup
n

limsupkαξ,p,n(Ak −Al)

� limsup
l

supnlimsupkαξ,p(Ak −Al)

= limsup
l

limsup
k

αξ,p(Ak −Al) = 0. �

Remark 5.2. We have already shown that Dξ ⊂ Aξ,p ⊂Dξ+1. It is con-
tained in Section 7 of [7] that each of these inclusions is proper. Furthermore, it
is contained in Section 7 of [7] that for any ordinals ξ, ζ and any 1< p, q � ∞,
Aξ,p �= Aζ,q unless (ξ, p) = (ζ, q), if ξ < ζ or if ξ = ζ and p > q, Aξ,p ⊂ Aζ,q ,
and Aξ,q ⊂ Tξ,p ⊂Aξ,p.

Remark 5.3. It is easy to see that the class of ξ-asymptotically uniformly
flattenable operators, denoted by Tξ,∞ in [6], is contained in Aξ,p for every
1< p � ∞. It was shown there in [6, Proposition 6.5] that for any ordinal ξ,

there exists a Banach space X such that Tξ,∞(X,X) contains an operator
which cannot be renormed to be ξ-p-AUS for any 1 < p <∞. This example
also shows that none of the classes Aξ,p is closed.

Brooker [3] showed that for any ordinal ξ, the class of all operators with
Szlenk index not more than ωξ is a closed operator ideal. An argument similar
to that of Theorem 5.1 allows us to provide another proof of this fact which
is dual to Brooker’s proof.

Theorem 5.4. For any ordinal ξ, the class Dξ of operators with Szlenk
index not exceeding ωξ is a closed operator ideal.

Proof. Arguing as in Theorem 5.1, one proves that θξ,1 defines a seminorm
on L(X,Y ) for each pair X,Y of Banach spaces. Furthermore, θξ,1(A) = 0
for all compact operators and θξ,1(ABC) � ‖A‖θξ,1(B)‖C‖ for any Banach
spaces W,Z and any operators C :W →X , B :X → Y , and A : Y → Z. Last,
by Theorem 4.6(ii), θξ,1 is 1-Lipschitz. From these facts, it follows that the
class of all operators A with θξ,1(A) = 0 is a closed operator ideal. But by
Theorem 4.6(i), this is precisely the class of operators with Szlenk index not
exceeding ωξ. �

Proposition 5.5. For any ordinal ξ and any 1� p � ∞, Aξ,p and Dξ are
injective and surjective.

We need the following easy piece.
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Proposition 5.6. Suppose q :W →X is a quotient map, (xλ)λ∈D1 ⊂BX

is weakly null, and v is a weak neighborhood of 0 in W . Then for any b > 2,
there exist λ ∈D1 and w ∈ bBW ∩ v such that qw = xλ.

Proof. By replacing v with a subset, we may assume v is convex and sym-
metric. Fix b > 2 and δ > 0 such that δBW ⊂ 1

2v and 2 + 3δ < b. For each λ,
fix uλ ∈ (1 + δ)BW such that quλ = xλ. By passing to a subnet, we may as-
sume that (uλ)λ∈D1 is weak∗-convergent to some u∗∗ ∈ (1+ δ)BW∗∗ , and that
uλ1 −uλ2 ∈ 1

2v for all λ1, λ2 ∈D1. Since (xλ)λ∈D1 is weakly null, there exist a
finite set F ⊂D1 and x=

∑
λ∈F aλxλ ∈ co(xλ : λ ∈ F ) such that ‖x‖< δ. We

may fix u ∈ δBW ⊂ 1
2v such that qu= x. Then let w = uλ1 −

∑
λ∈F aλuλ + u.

Then

‖w‖� 1 + δ+
∑
λ∈F

aλ(1 + δ) + δ = 2+ 3δ < b,

qw = xλ1 − x+ x= xλ1 ,

and

w =
∑
λ∈F

aλ(uλ1 − uλ) +w ∈ 1

2
v+

1

2
v = v. �

Proof of Proposition 5.5. Injectivity is easy, since for any operator A :X →
Y and any isometric isomorphism j : Y → Z, clearly αξ,p,n(jA) = αξ,p,n(A)
and θξ,n(jA) = θξ,n(A) for all ordinals ξ, all 1� p � ∞, and all n ∈N.

For surjectivity, we will show that if A : X → Y is an operator and
q :W →X is a quotient map, then αξ,p,n(A) � 2αξ,p,n(Aq), and a similar argu-
ment will yield that θξ,n(A) � 2θξ,n(Aq) for any ordinal ξ, any 1 � p �∞, and
any n ∈N. Fix α< αξ,p,n(A), a directed set D, (bi)

n
i=1 ∈ S�np , and a weakly null

collection (xt)t∈Γξ,n.D ⊂ BX such that inft∈MAX(Γξ,n.D) ‖A
∑n

i=1 biz
t
i‖ > α.

Fix b > 2 such that inft∈MAX(Γξ,n.D) ‖A
∑n

i=1 bib
−1zti‖> α/2. Let D1 be any

weak neighborhood basis at 0 in W . We may now recursively apply Proposi-
tion 5.6 to deduce the existence of some collection (wt)t∈Γξ,n.D1 ⊂ bBW and a
length-preserving monotone map φ : Γξ,n.D1 → Γξ,n.D such that

(i) if φ((ζi, vi)
k
i=1) = (ηi, ui)

k
i=1, then ζi = ηi for all 1� i � k,

(ii) qwt = xφ(t) for all t ∈ Γξ,n.D1.

Indeed, if t = s � (ζ, v) ∈ Γξ,n.D1 and either s = ∅ or φ(s) has been de-
fined to have property (i), we apply Proposition 5.6 to the weakly null net
(xφ(s)�(ζ,u))u∈D to deduce the existence of some u1 ∈ D and wt ∈ bBW ∩ v
such that qwt = xφ(s)�(ζ,u1). We then let φ(t) = φ(s) � (ζ, u1).

Note that for any t ∈MAX(Γξ,n.D1) and any 1� i � |t|, φ(t|i) = φ(t)|i and
Pξ,n(φ(t|i)) = Pξ,n(t|i), whence

q

n∑
i=1

bi
∑

t�s∈Λξ,n,i.D1

Pξ,n(s)b
−1ws =

n∑
i=1

bi
∑

φ(t)�s∈Λξ,n,i.D

Pξ,n(s)b
−1xs
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and

inf
t∈MAX(Γξ,n.D1)

∥∥∥∥∥Aq
n∑

i=1

bi
∑

t�s∈Λξ,n,i.D1

Pξ,n(s)b
−1ws

∥∥∥∥∥
= inf

t∈MAX(Γξ,n.D)

∥∥∥∥∥A
n∑

i=1

bi
∑

φ(t)�s∈Λξ,n,i.D

Pξ,n(s)b
−1xs

∥∥∥∥∥ >α/2.

Since (b−1wt)t∈Γξ,n.D1 is weakly null and α< αξ,p,n(A) was arbitrary, we are
done. �

Remark 5.7. Note that if u is any weak neighborhood of 0 in �1 and
if m ∈ N, there exist m< i < j, i, j ∈ N such that 1

2 (ei − ej) ∈ u. From this
we can easily deduce that θξ,n(�1) = 1 for all ordinals ξ and all n ∈ N, and

αξ,p,n(�1) = n1−1/p for all ordinals ξ, all 1 � p � ∞, and all n ∈ N. Indeed,
for any weak neighborhood basis D at 0 in �1, we may recursively define for
t ∈ Γξ,n.D a vector xt =

1
2 (eit −ejt) such that for all t ∈ Γξ,n.D, it < jt, if s, t ∈

Γξ,n.D and s < t, js < it, and if t= (ζi, ui)
n
i=1, xt ∈ un. Then (xt)t∈Γξ,n

⊂B�1

is weakly null and ‖
∑n

i=1 aiz
t
i‖�1 =

∑n
i=1 |ai| for all scalar sequences (ai)ni=1.

From this, one can also deduce that if A : X → Y is an operator, Z is
a subspace of X which isomorphic to �1, and if A|Z is an isomorphic em-
bedding, then infξ∈Ord θξ,1(A) > 0. Indeed, we first fix isomorphisms α :
�1 → Z, β : A(Z)→ �1 such that I�1 = βAα, so that θξ,1(A|Z : Z → A(Y )) �
θξ,1(I�1)/‖α‖‖β‖ = 1/‖α‖‖β‖ by the ideal property. Now if j : A(Z)→ Y is
the inclusion, it is clear that

θξ,1(A :X → Y ) � θξ,1(A|Z : Z → Y ) = θξ,1
(
A|Z : Z →A(Z)

)
.

6. Applications of Corollary 4.12

In this section, we prove an embedding result together with a result con-
cerning injective tensor products.

Corollary 6.1. Fix a countable ordinal ξ and 1 � q < ∞. Let X be a
separable Banach space.

(i) If pξ(X) � q, then there exists a Banach space W with a shrinking basis
such that pξ(W ) � q and X embeds isomorphically into W .

(ii) If X has ξ-q-summable Szlenk index, then there exists a Banach space
W with shrinking basis having ξ-q-summable Szlenk index such that X
embeds isomorphically into W .

Proof. Schlumprecht [21] proved that if X∗ is separable, after renormingX ,
there exist a weak∗-compact set B∗ ⊂BX∗ , a Banach space Z with shrinking
FDD which contains a subspace isometric to X , a subset B∗ of BZ∗ , and a
map I∗ : B∗ →B∗ such that

(i) abs co
weak∗

(B∗) =BZ∗ ,
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(ii) for any n ∈N and any ε1, . . . , εn > 0,

I∗
(
sω

ξ

ε1 · · ·sωξ

εn

(
B∗)) ⊂ sω

ξ

ε1/5
· · ·sωξ

εn/5

(
B∗).

The construction of the space Z is the main construction of [21], while the
estimate in (ii) follows from [21, Lemma 5.5]. Then for a countable ξ and
1 � q < ∞, either property pξ(·) � q or having ξ-q-summable Szlenk index
passes from BX∗ to B∗, since B∗ ⊂ BX∗ , from B∗ to B∗ by (ii) above and
Theorem 4.11, and from B∗ to BZ∗ by Corollary 4.12.

Now if (Fn)
∞
n=1 is the FDD of Z, by a technique of Pe
lczyński [18], for

each n ∈ N we may fix a finite dimensional space Hn such that Fn is 2-
complemented in En = Fn ⊕Hn and En has a basis with basis constant not
exceeding 2. Then if H = (

⊕∞
n=1Hn)c0 and if W = Z⊕H , W has a shrinking

basis and has pξ(W ) � q (resp. ξ-q-summable Szlenk index) if Z has this
property. Here we are using Theorem 4.11 together with Theorem 5.1 and the
fact that pξ(H) � p0(H) = 1 � q and αξ,p(H) � α0,∞(H) � 1. �

In [11], the question was posed as to whether having summable Szlenk
index passes to injective tensor products of Banach spaces. This question was
answered in the affirmative in [8]. In Corollary 6.4, we generalize that result
to ξ-q-summable Szlenk index.

Let us recall that the injective tensor product is the closed span in L(Y ∗,X)
of the operators x ⊗ y : Y ∗ → X , where x ⊗ y(y∗) = y∗(y)x. For i = 0,1, if
Ai :Xi → Yi is an operator, we may define the operator A0⊗A1 :X0 ⊗̂εX1 →
Y0 ⊗̂ε Y1. This operator is given by A0 ⊗ A1(u) = A0uA

∗
1 : Y ∗

1 → Y0. Given
subsets K0 ⊂X∗

0 , K1 ⊂X∗
1 , we let

[K0,K1] =
{
x∗
0 ⊗ x∗

1 : x
∗
0 ∈K0, x

∗
1 ∈K1

}
⊂ (X0 ⊗̂ε X1)

∗.

We observe that the map

X∗
0 ⊗X∗

1 ⊃K0 ×K1 �
(
x∗
0, x

∗
1

)
�→ x∗

0 ⊗ x∗
1 ∈ [K0,K1]

is weak∗–weak∗ continuous ifK0,K1 are bounded. We recall that any non-zero
ordinal ξ can be uniquely written as ξ = ωξ1 + · · ·+ωξn for some ξ1 � · · ·� ξn.
One obtains such a representation by first writing ξ in its Cantor normal form

ξ = ωε1m1 + · · ·+ ωεkmk

for some ε1 > · · ·> εk and mi ∈N, and then writing ωεimi = ωεi + · · ·+ ωεi .

Lemma 6.2. Suppose that for i= 0,1, Ai :Xi → Yi is a non-zero operator.
Let R=max{‖A0‖,‖A1‖}. For any ξ > 0, any ε > 0, any finite set J , and any
weak∗-compact sets K0,j ⊂X∗

0 , K1,j ⊂X∗
1 , j ∈ J ,

sξε

(⋃
j∈J

[K0,j ,K1,j ]

)
⊂

⋃
ki+li=1

j∈J

[
sω

ξ1k1+···+ωξnkn

ε/4R (K0,j), s
ωξ1 l1+···+ωξn ln
ε/4R (K1,j)

]
,

where ξ = ωξ1 + · · ·+ωξn , ξ1 � · · · � ξn and it is understood that ki, li ∈ {0,1}.
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Proof. To obtain a contradiction, assume the lemma does not hold, and
let ξ � 1 be the minimum ordinal for which the statement fails. Write ξ =
ωξ1 + · · ·+ ωξn , ξ1 � · · ·� ξn. We consider three cases.

Case 1: ξn = 0. Then ωξn = 1 and ξ = ζ + 1, where ζ = ωξ1 + · · ·+ ωξn−1 if
n > 1 and ζ = 0 if n= 1. Then by the inductive hypothesis applied to ζ,

sξε

(⋃
j∈J

[K0,j ,K1,j ]

)

= sε

(
sζε

(⋃
j∈J

[K0,j ,K1,j ]

))

⊂ sε

( ⋃
ki+li=1

j∈J

[
s
ωξ1k1+···+ωξn−1kn−1

ε/4R (K0,j), s
ωξ1 l1+···+ωξn−1 ln−1

ε/4R (K1,j)
])

.

By [8, Proposition 5.1],

sε

( ⋃
ki+li=1

j∈J

[
s
ωξ1k1+···+ωξn−1kn−1

ε/4R (K0,j), s
ωξ1 l1+···+ωξn−1 ln−1

ε/4R (K1,j)
])

⊂
⋃

ki+li=1
j∈J

[
skn
ε

(
s
ωξ1k1+···+ωξn−1kn−1

ε/4R (K0,j)
)
,

sln
(
s
ωξ1 l1+···+ωξn−1 ln−1

ε/4R (K1,j)
)]

=
⋃

ki+li=1
j∈J

[
sω

ξ1k1+···+ωξnkn

ε/4R (K0,j), s
ωξ1 l1+···+ωξn ln
ε/4R (K1,j)

]
,

a contradiction. Here we are using the convention that if n= 1, the first union
is taken only over j ∈ J and

s
ωξ1k1+···+ωξn−1kn−1

ε/4R (K0,j) =K0,j

and

s
ωξ1 l1+···+ωξn−1 ln−1

ε/4R (K1,j) =K1,j .

Case 2: ξn is a limit ordinal. Fix

u∗ ∈ sξε

(⋃
j∈J

[K0,j ,K1,j ]

)
=

⋂
ζ<ξn

sω
ξ1+···+ωξn−1+ωζ

(⋃
j∈J

[K0,j ,K1,j ]

)
.

Then for every ζ < ξn, there exist (k
ζ
i )

n
i=1 ∈ {0,1}n and jζ ∈ J such that, with

lζi = 1− kζi ,

x∗ ∈
[
s
ωξ1kζ

1+···+ωξn−1kζ
n−1+ωζkζ

n
ε (K0,jζ ), s

ωξ1 lζ1+···+ωξn−1 lζn−1+ωζ lζn
ε (K1,jζ )

]
.
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Then there exist a cofinal subset M of [0, ξn), j ∈ J , and (ki)
n
i=1, (li)

n
i=1 ∈

{0,1}n such that ki = kζi , li = lζi , and jζ = j for all ζ ∈M . Then

u∗ ∈
⋂
ζ∈M

[
sω

ξ1k1+···+ωξn−1kn−1+ωζkn
ε (K0,j), s

ωξ1 l1+···+ωξn−1 ln−1+ωζ ln
ε (K1,j)

]
.

Now for each ζ ∈M , we may fix

x∗
0,ζ ∈ sω

ξ1k1+···+ωξn−1kn−1+ωζkn
ε (K0,j)

and

x∗
1,ζ ∈ sω

ξ1 l1+···+ωξn−1 ln−1+ωζln
ε (K1,j)

such that x∗
0,ζ ⊗ x∗

1,ζ = u∗. Then if

(
x∗
0, x

∗
1

)
∈

⋂
μ<ξn

{(
x∗
0,ζ , x

∗
1,ζ

)
: μ < ζ ∈M

}weak∗

⊂ (X0 ⊕X1)
∗,

u∗ = x∗
0 ⊗ x∗

1 ∈
[
sω

ξ1k1+···+ωξnkn
ε (K0,j), s

ωξ1 l1+···+ωξn ln
ε (K1,j)

]
.

Since this holds for any u∗ ∈ sξε(
⋃

j∈J [K0,j ,K1,j ]), we reach a contradiction.
Case 3: ξn is a successor ordinal, say ξn = ζ + 1. Fix

u∗ ∈ sξε

(⋃
j∈J

[K0,j ,K1,j ]

)
=

⋂
m∈N

sω
ξ1+···+ωξn−1+ωζm

(⋃
j∈J

[K0,j ,K1,j ]

)
.

Then for every m ∈ N, there exist jm ∈ J , (kmi )ni=1, (l
m
i )ni=1 ∈ {0,1}n−1 and

pm, qm ⊂ {0, . . . ,m} with pm + qm =m and kmi + lmi = 1 such that

x∗ ∈
[
s
ωξ1km

1 +···+ωξn−1km
n−1+ωζpm

ε (K0,jζ ), s
ωξ1 lm1 +···+ωξn−1 lmn−1+ωζqm
ε (K1,jζ )

]
.

Then there exist a cofinal subset M of N, j ∈ J , and (ki)
n−1
i=1 ∈ {0,1}n−1 such

that ki = kmi and jm = j for all m ∈M . Let kn = 1 and ln = 0 if {pm :m ∈M}
is unbounded, and otherwise let kn = 0 and ln = 1. Then

u∗ ∈
⋂

m∈M

[
sω

ξ1k1+···+ωξn−1kn−1+ωζpm
ε (K0,j), s

ωξ1 l1+···+ωξn−1 ln−1+ωζqm
ε (K1,j)

]
.

Now for each m ∈M , we may fix

x∗
0,m ∈ sω

ξ1k1+···+ωξn−1kn−1+ωζpm
ε (K0,j)

and

x∗
1,m ∈ sω

ξ1 l1+···+ωξn−1 ln−1+ωζqm
ε (K1,j)

such that x∗
0,m ⊗ x∗

1,m = u∗. Then if

(
x∗
0, x

∗
1

)
∈

⋂
l∈N

{(
x∗
0,m, x∗

1,m

)
: l <m ∈M

}weak∗

⊂ (X0 ⊕X1)
∗,

u∗ = x∗
0 ⊗ x∗

1 ∈
[
sω

ξ1k1+···+ωξnkn
ε (K0,j), s

ωξ1 l1+···+ωξn ln
ε (K1,j)

]
.
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Since this holds for any u∗ ∈ sξε(
⋃

j∈J [K0,j ,K1,j ]), we reach a contradiction.
�

Iterating the previous result immediately yields the following.

Corollary 6.3. Suppose that for i= 0,1, Ai :Xi → Yi is a non-zero oper-
ator. Let R=max{‖A0‖,‖A1‖}. For any ordinals ξ1, . . . , ξn, any ε1, . . . , εn >
0, any finite set J , and any weak∗-compact sets K0,j ⊂X∗

0 , K1,j ⊂X∗
1 , j ∈ J ,

sω
ξ1

ε1 · · ·sωξn

εn

(⋃
j∈J

[K0,j ,K1,j ]

)

⊂
⋃

ki+li=1
j∈J

[
sω

ξ1k1

ε1/4R
· · ·sω

ξnkn

εn/4R
(K0,j), s

ωξ1 l1
ε1/4R

· · ·sω
ξn ln

εn/4R
(K1,j)

]
.

Corollary 6.4. Fix an ordinal ξ and 1 � q <∞. Let A0 :X0 → Y0, A1 :
X1 → Y1 be operators and let A0 ⊗A1 :X0 ⊗̂ε X1 → Y0 ⊗̂ε Y1 be the induced
operator. Then if A0,A1 have ξ-q-summable Szlenk index, so does A0 ⊗A1.

Proof. If either operator is the zero operator, the result is trivial. As-
sume A0,A1 �= 0 and let R = max{‖A0‖,‖A1‖}. Suppose A0 (resp. A1) has
M0 (resp. M1)-ξ-q-summable Szlenk index. Let K = [A∗

0BY ∗
0
,A∗

1BY ∗
1
]. Sup-

pose ε1, . . . , εn > 0 are such that sω
ξ

ε1 · · ·sωξ

εn (K) �= ∅. Then by Corollary

6.3, there exist (ki)
n
i=1 ∈ {0,1}n such that sω

ξk1

ε1/4R
· · ·sω

ξkn

εn/4R
(A∗

0BY ∗
0
) �=∅ and

s
ωξ(1−k1)
ε1/4R

· · ·sω
ξ(1−kn)

εn/4R
(A∗

1BY ∗
0
) �=∅. Then

n∑
i=1

ki(εi/4R)q � Mq
0

and
n∑

i=1

(1− ki)(εi/4R)q � Mq
1 ,

whence
n∑

i=1

εqi � 4qRq
(
Mq

0 +Mq
1

)
,

and K has 4R(Mq
0 + Mq

1 )
1/q-summable Szlenk index. Since coweak∗

(K) =
(A0 ⊗ A1)

∗B(Y0⊗̂εY1)∗
by the Hahn–Banach theorem, Corollary 4.12 yields

that A0 ⊗A1 has ξ-q-summable Szlenk index. �

In light of Theorem 4.11, Corollary 6.4 also offers another proof that having
ξ-Szlenk power type not exceeding q also passes to injective tensor products,
which was shown in [11] in the case ξ = 0 and in the general case in [6].
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7. Direct sums

In the final section, we are concerned with the behavior of the Szlenk in-
dex and αξ,p under �p and c0 direct sums. More specifically, we will have
some set Λ and some collection (Aλ : Xλ → Yλ)λ∈Λ of Asplund operators
such that supλ∈Λ ‖Aλ‖ < ∞. To avoid incredible inconvenience, for a sub-
set Υ of Λ, we agree that �0(Υ) shall mean c0(Υ). We may then define
Ep = (

⊕
λ∈ΛXλ)�p(Λ) and Fp = (

⊕
λ∈Λ Yλ)�p(Λ) for p ∈ {0} ∪ [1,∞]. We also

define for each subset Υ⊂ Λ the projections PΥ : Ep →Ep, QΥ : Fp → Fp by
PΥ(xλ)λ∈Λ = (1Υ(λ)xλ)λ∈Λ and QΥ(yλ)λ∈Λ = (1Υ(λ)yλ)λ∈Λ. For λ ∈ Λ, we
let Pλ = P{λ} and Qλ =Q{λ}. For each p ∈ {0} ∪ [1,∞], we then identify Xλ

with Pλ(Ep) and Yλ with Qλ(Fp).
Given p, r ∈ {0} ∪ [1,∞] such that either 1 � p � r � ∞ or r = 0 and

p <∞, and Υ ⊂ Λ, we wish to study the behavior of the Szlenk index and
αξ,γ seminorms of the operators Dp,r

Υ : Ep → Fr given by Dp,r
Υ (xλ)λ∈Λ =

(1Υ(λ)Aλxλ)λ∈Λ. For λ ∈ Λ, we let Dp,r
λ = Dp,r

{λ}. Note that αξ,s,n(D
p,r
λ ) =

αξ,s,n(Aλ) for any p, r, s in the appropriate ranges. Of course, we are inter-
ested in the cases in which the operator Dp,r

Λ is Asplund. We first delineate
the cases in which the operator Dp,r

Λ is Asplund.

(1) p= r = 1 and (‖Aλ‖)λ∈Λ ∈ c0(Λ).
(2) p= r =∞ and (‖Aλ‖)λ∈Λ ∈ c0(Λ).
(3) r = 0 and p <∞.
(4) 1� p � r � ∞, 1< r, and p <∞.

We first remark that for any finite subset Υ of Λ,

αξ,γ,n

(
Dp,r

Υ

)
= αξ,γ,n

(⊕
λ∈Υ

Aλ :

(⊕
λ∈Υ

Xλ

)
�p(Υ)

→
(⊕

λ∈Υ

Yλ

)
�r(Υ)

)

and

θξ,n
(
Dp,r

Υ

)
= θξ,n

(⊕
λ∈Υ

Aλ :

(⊕
λ∈Υ

Xλ

)
�p(Υ)

→
(⊕

λ∈Υ

Yλ

)
�r(Υ)

)

for any 1 � γ � ∞, any n ∈ N, and any ordinal ξ. Therefore, we may freely
identify Dp,r

Υ with the operators between finite direct sums.
We isolate the following easy consequence of Hölder’s inequality.

Fact 7.1. Suppose 1 � r < γ � ∞, and 1/γ + 1/s = 1/r. Then for any
n ∈N and any scalar sequence (αi)

n
i=1,∥∥(αi)

n
i=1

∥∥
�ns

= sup
{∥∥(αiβi)

n
i=1

∥∥
�nr

: (βi)
n
i=1 ∈B�nγ

}
.

Fact 7.2. Fix 1 � p, r, γ � ∞ with p � r. For any natural numbers
m,n, any scalar sequence (αi)

m
i=1, any (bj)

n
j=1 ∈ B�nγ , and any (aij)

mn
i=1,j=1 ∈
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B�n∞(�mp ),

∥∥(∥∥(αibjaij)
n
j=1

∥∥
�nγ

)m
i=1

∥∥
�mr

�
{
‖(αi)

m
i=1‖�m∞ : γ � r,

‖(αi)
m
i=1‖�ms : γ > r and 1

γ + 1
s = 1

r .

Proof. Suppose γ � r. Let α = ‖(αi)
m
i=1‖�m∞ . Then using Minkowski’s in-

equality, ∥∥(∥∥(αibjaij)
n
j=1

∥∥
�nγ

)m
i=1

∥∥
�mr

� α
∥∥(∥∥(bjaij)nj=1

∥∥
�nγ

)m
i=1

∥∥
�mr

� α
∥∥(

|bj |
∥∥(aij)mi=1

∥∥
�nγ

)n
j=1

∥∥
�mr

� α
∥∥(bj)nj=1

∥∥
�nγ

� α.

Now assume that γ > r. Then∥∥(∥∥(bjaij)nj=1

∥∥
�nγ

)m
i=1

∥∥
�mγ

=
∥∥(

bj
∥∥(aij)mi=1

∥∥
�mγ

)n
j=1

∥∥
�nγ

�
∥∥(

bj
∥∥(aij)mi=1

∥∥
�mp

)n
j=1

∥∥
�nγ

�
∥∥(bj)nj=1

∥∥
�nγ

� 1.

Since 1
γ + 1

s = 1
r , Fact 7.1 yields that∥∥(∥∥(αibjaij)

n
j=1

∥∥
�nγ

)m
i=1

∥∥
�mr

�
∥∥(αi)

m
i=1

∥∥
�ms

. �

Before we state the next theorem, we recall that, given a Banach space
X , (xt)t∈Γζ,n.D ⊂X , and t ∈MAX(Γξ,n), the sequence (zti)

n
i=1 is the convex

block sequence defined by

zti =
∑

Λζ,n,i�s�t

Pξ,n(s)xs.

Theorem 7.3. Suppose Υ⊂ Λ is a finite set and R � 0 is such that ‖Aλ‖�
R for all λ ∈ Λ. Fix 1� p, r, γ � ∞ with p � r and ordinals ξ, ζ .

(i) Let 1/r+ 1/s= 1. If λ ∈ Λ is such that θζ,m(Dp,r
λ ) � ε, then for any di-

rected set D, any n ∈ N, and sequence (bi)
n
i=1 of non-negative scalars,

any weakly null (xt)t∈Γζ,n.D ⊂ BEp , any sequence of positive scalars
(ai)

n
i=1 ∈ B�np such that ‖Pλxt‖ � ai for all 1 � i � n, and any ε′ >

ε‖(biai)ni=1‖�n1 +Rm1/s‖(biai)ni=1‖�nr ,{
t ∈MAX(Γζ,n.D) :

∥∥∥∥∥Dp,r
λ

n∑
i=1

biz
t
i

∥∥∥∥∥ � ε′

}

is eventual.
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(ii) Let s be such that 1/r + 1/s = 1. If m ∈ N is such that θζ,m(Aλ) � ε
for all λ ∈ Υ, then for any directed set D, any n ∈ N, any weakly null
(xt)t∈Γζ,m.D ⊂BEp , and any non-negative scalars (bi)

n
i=1,

inf
t∈MAX(Γξ,m.D)

∥∥∥∥∥Dp,r
Υ

n∑
i=1

biz
t
i

∥∥∥∥∥ � ε
∥∥(bi)ni=1

∥∥
�n1

+Rm1/s
∥∥(bi)ni=1

∥∥
�nr

and and for any ε1 > ε‖(bi)ni=1‖�n1 +Rm1/s‖(bi)ni=1‖�nr ,{
t ∈MAX(Γξ,m.D) :

∥∥∥∥∥Dp,r
Υ

m∑
i=1

biz
t
i

∥∥∥∥∥ � ε1

}

is eventual.
(iii)

αξ,γ

(
Dp,r

Υ

)
=

{
‖(αξ,γ(Aλ))λ∈Υ‖�∞(Υ) : γ � r,

‖(αξ,γ(Aλ))λ∈Υ‖�s(Υ) : γ > r and 1
γ + 1

s = 1
r .

Before we prove the theorem, we prove a single instance of a stabilization
technique, variants of which will be used several times in the remainder of
this work.

Lemma 7.4. Suppose α < αξ,γ,n(D
p,r
Υ ). Then there exist a directed set D,

a sequence of non-negative scalars (bi)
n
i=1 ∈ S�nγ , real numbers c1, . . . , cn, vec-

tors (a1λ)λ∈Υ, . . . , (a
n
λ)λ∈Υ ∈ (0,∞)Υ, a weakly null collection (xt)t∈Γξ,n.D ⊂

BEp , and functionals (y∗t )t∈MAX(Γξ,n.D) ⊂BF∗
r
with the following properties:

(i)
∑n

i=1 bici >α
(ii) for each 1� i � n, ‖(aiλ)λ∈Υ‖�p(Υ) � 1,

(iii) for each λ ∈Υ, each 1� i � n, and each t ∈ Λξ,n,i.D, ‖Pλxt‖� aiλ,
(iv) for each 1 � i � n and each Λξ,n,i.D � s � t ∈ MAX(Γξ,n.D),

Rey∗t (D
p,r
Υ xs)� ci,

(v) for any ελ >αξ,γ,n(Aλ)‖(aiλbi)ni=1‖�nγ ,{
t ∈MAX(Γξ,γ,n.D) :

∥∥∥∥∥Dp,r
λ

n∑
j=1

bjz
t
j

∥∥∥∥∥ � ελ

}

is eventual.

Proof. Fix 0< φ < 1 such that α < φαξ,γ,n(D
p,r
Υ ). Fix (x′

t)t∈Γξ,n.D ⊂BEp ,
(z∗t )t∈MAX(Γξ,n.D) ⊂BF∗

r
, (bi)

n
i=1 ∈ S�nγ

, non-negative scalars (ci)
n
i=1 such that∑n

i=1 bici > α/φ and for any 1 � i � n and Λξ,n,i.D � s � t ∈MAX(Γξ,n.D),
Re z∗t (x

′
s) � ci. Now fix a finite subset F of B�p(Υ) such that for every

(a′λ)λ∈Υ ∈ φB�p(Υ), there exists (aλ)λ∈Υ ∈ F such that |a′λ| � aλ, and such that
for each (aλ)λ∈Υ ∈ F and λ ∈Υ, aλ > 0. Now define f : Γξ,n.D→ F by letting
f(t) be any member (aλ)λ∈Υ of F such that for each λ ∈ Λ, φ‖Pλx

′
t‖� aλ. By

Lemma 2.1, there exist a level map d : Γξ,n.D→ Γξ,n.D, an extension e of d,



414 R. M. CAUSEY

and for each 1� i � n some (aiλ)λ∈Υ ∈ F such that φ‖Pλx
′
d(t)‖� aiλ for all t ∈

Λξ,n,i.D and λ ∈Υ. Now let xt = φx′
d(t) and y∗t = z∗e(t) for t ∈MAX(Γξ,n.D).

We now note that for any ελ >αξ,γ,n(Aλ)‖(aiλbi)ni=1‖�nγ ,{
t ∈MAX(Γξ,γ,n.D) :

∥∥∥∥∥Dp,r
λ

n∑
j=1

bjz
t
j

∥∥∥∥∥ � ελ

}

=

{
t ∈MAX(Γξ,γ,n.D) :

∥∥∥∥∥Dp,r
λ

n∑
j=1

∑
t�s∈Λξ,n,j .D

bja
j
λPξ,n(s)

Pλxs

ajλ

∥∥∥∥∥ � ελ

}

must be eventual. �

Proof of Theorem 7.3. (i) If it were not true, after relabeling, we can
assume there exist (y∗t )t∈MAX(Γζ,n.D) ⊂ BF∗

r
, c1, . . . , cn ∈ [0,∞) such that∑n

i=1 bici > ε‖(biai)ni=1‖�n1 + Rm1/s‖(biai)ni=1‖�nr and for each 1 � i � n and
Λζ,n,i.D ∈ s � t ∈ MAX(Γζ,n.D), Rey∗t (Pλxs) � ci. Now let T = {i � n :
ci/ai > ε} and S = {1, . . . , n} \ T . We note that |T | < m. If it were not so,
we could find some l1 < · · ·< lm, li ∈ T , and a level map d : Γζ,m.D→ Γζ,n.D
such that d(Λζ,m,i.D)⊂ Λζ,n,li .D and such that (xd(t))t∈Γζ,m.D is weakly null.

Now if x′
t = a−1

li
xd(t) for t ∈ Λξ,m,i.D, (x′

t)t∈Γζ,m.D is weakly null and if e is
any extension of d, it

ε� θζ,m
(
Dp,r

λ

)
> inf

t∈MAX(Γζ,m.D)
m−1Rey∗e(t)

m∑
i=1

∑
t�s∈Λζ,m,i.D

Pζ,m(s)xs

� min{ci/ai : i ∈ T}
m

> ε,

a contradiction. Note also that for any 1 � i � n, if we fix Λζ,n,i.D � s � t ∈
MAX(Γζ,n.D),

ci/ai �Rey∗t
(
Dp,r

λ xs/ai
)

�
∥∥y∗t ∥∥‖Aλ‖‖Pλxs‖/ai � R.

Then

ε
∥∥(biai)ni=1

∥∥
�n1

+Rm1/s
∥∥(biai)ni=1

∥∥
�nr

<

n∑
i=1

bici =

n∑
i=1

aibi
ci
ai

=
∑
i∈S

aibi
ci
ai

+
∑
i∈T

aibi
ci
ai

� ε

n∑
i=1

aibi +R
∑
i∈T

aibi

� ε
∥∥(aibi)ni=1

∥∥
�n1

+R
∥∥(aibi)i∈T

∥∥
�1(T )

� ε
∥∥(aibi)ni=1

∥∥
�n1

+Rm1/s
∥∥(aibi)ni=1

∥∥
�nr
,

a contradiction.
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(ii) Fix a sequence (bi)
n
i=1 of non-negative scalars and ε1 > ε‖(bi)ni=1‖�n1 +

Rm1/s‖(bi)ni=1‖�nr . To obtain a contradiction, we assume that there exist a
directed set D and a weakly null collection (xt)t∈Γζ,n.D ⊂BEp such that{

t ∈MAX(Γζ,n.D) :

∥∥∥∥∥Dp,r
Υ

n∑
i=1

biz
t
i

∥∥∥∥∥ > ε1

}

is cofinal. By replacing ε1 with a strictly smaller value which still exceeds
ε‖(bi)ni=1‖�n1 +Rm1/s‖(bi)ni=1‖�nr , applying Lemma 2.1 and the remark follow-
ing it, and relabeling, we may assume that

inf
t∈MAX(Γζ,n.D)

∥∥∥∥∥Dp,r
Υ

n∑
i=1

biz
t
i

∥∥∥∥∥ � ε1

and there exist c1, . . . , cn ∈ [0,R], (y∗t )t∈MAX(Γζ,n.D) ⊂ BF∗
r

such that ε1 <∑n
i=1 bici and for any 1 � i � n and Λζ,n,i.D � s � t ∈ MAX(Γζ,n.D),

Rey∗t (xs) = Rey∗t (PΥxs)� ci. Fix 0< φ< 1 such that ε1 <
∑n

i=1 φbici. Argu-
ing as in Lemma 7.4, we may stabilize, relabel, and assume that there exists
(aiλ)

n
i=1,λ∈Υ ∈B�n∞(�p(Υ)) such that for each 1 � i � n, each t ∈ Λζ,n,i.D, and

each λ ∈Υ, φ‖Pλxt‖� aiλ. Now fix ε′ > 0 such that

ε1 − nε′ > ε
∥∥(bi)ni=1

∥∥
�n1

+Rm1/s
∥∥(bi)ni=1

∥∥
�nr
.

For each λ ∈Υ,

Eλ :=

{
t ∈MAX(Γζ,n.D) :

∥∥∥∥∥Dp,r
λ

n∑
i=1

biφz
t
i

∥∥∥∥∥ � ε′ + ε
∥∥(biaij)ni=1

∥∥
�n1

+Rm1/s
∥∥(biaij)ni=1

∥∥
�nr

}

is eventual by (i). Then if t ∈
⋂

λ∈Υ Eλ, by Minkowski’s inequality,

ε1 �
∥∥∥∥∥Dp,r

Υ

n∑
i=1

biz
t
i

∥∥∥∥∥
� nε′ + ε

∥∥(∥∥(biaiλ)ni=1

∥∥
�n1

)
λ∈Υ

∥∥
�r(Υ)

+Rm1/s
∥∥(∥∥(biaiλ)ni=1

∥∥
�nr

)
λ∈Υ

∥∥
�r(Υ)

� nε′ + ε
∥∥(

bi
∥∥(aiλ)λ∈Υ

∥∥
�r(Υ)

)n
i=1

∥∥
�n1

+Rm1/s
∥∥(

bi‖(aiλ)λ∈Υ

)n
i=1

∥∥
�r(Υ)

‖�nr
� nε′ + ε

∥∥(bi)ni=1

∥∥
�n1

+Rm1/s
∥∥(bi)ni=1

∥∥
�nr
,

a contradiction.
(iii) If α < αξ,γ,n(D

p,r
Υ ), we may fix (xt)t∈Γξ,n.D ⊂ BEp , (aiλ)λ∈Υ ∈ B�np ,

i= 1, . . . , n, (x∗
t )t∈MAX(Γξ,n.D) ⊂BF∗

r
to satisfy the conclusions of Lemma 7.4.

Now for each λ ∈ Υ, fix ελ > αξ,γ,n(Aλ)‖(aiλbi)ni=1‖�nγ and t ∈MAX(Γξ,n.D)
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such that for each λ ∈Υ, ‖Dp,r
λ

∑n
i=1 biz

t
i‖� ελ. For each λ ∈Υ, the set Eλ of

t ∈MAX(Γξ,n.D) satisfying this inequality is eventual, so
⋂

λ∈Υ Eλ �=∅. Then

α < inf
s∈MAX(Γξ,n.D)

∥∥∥∥∥Dp,r
Υ

n∑
i=1

biz
s
i

∥∥∥∥∥ �
∥∥∥∥∥Dp,r

Υ

n∑
i=1

biz
t
i

∥∥∥∥∥
=

∥∥∥∥∥
(∥∥∥∥∥Dp,r

λ ‖
n∑

i=1

biz
t
i

∥∥∥∥∥
)

λ∈Υ

∥∥∥∥∥
�Υr

�
∥∥(ελ)λ∈Υ

∥∥
�r(Υ)

.

Since we may do this for any ελ >αξ,γ,n(Aλ)‖(aiλbi)ni=1‖�nγ , we deduce that

α �
∥∥(∥∥(

αξ,γ,n(Aλ)a
i
λbi

)n
i=1

∥∥
�nγ

)
λ∈Υ

∥∥
�r(Υ)

.

By Fact 7.2, the last quantity cannot exceed ‖(αξ,γ,n(Aλ))λ∈Υ‖�∞(Υ) if either
r = 0 or γ � r, and cannot exceed ‖(αξ,γ,n(Aλ))λ∈Υ‖�s(Υ) if 1 � r < γ and
1/γ + 1/s = 1/r. Here we are using the fact that �0(Υ) = �∞(Υ) since Υ is
finite.

For convenience, let us assume Υ = {1, . . . ,m}. Fix 0 < φ < ϕ < 1 and
k ∈ N such that for each i ∈ Υ, αξ,γ,k(Ai) � ϕαξ,γ(Ai). Let D be a weak
neighborhood basis at 0 in X . For each i ∈Υ, we may fix (bij)

k
j=1 ∈ S�kγ

and

(xi
t)t∈Γξ,k.D ⊂BEp such that xi

t = Pix
i
t for all t ∈ Γξ,k.D and

inf
t∈MAX(Γξ,k.D)

∥∥∥∥∥Dp,r
i

k∑
j=1

∑
t�s∈Λξ,k,j .D

bijPξ,k(s)x
i
s

∥∥∥∥∥ � φαξ,γ(Ai).

By Fact 7.1, there exists (ci)i∈Υ ∈ S�mγ
such that∥∥(

αξ,γ(Ai)ci
)m
i=1

∥∥
�mr

=
∥∥(

αξ,γ(Ai)
)m
i=1

∥∥
�ms

.

Now for 1 � i � m and 1 � j � k, let d(i−1)k+j = cib
i
j and note that

‖(di)mk
i=1‖�mk

γ
= 1. For 1 � i � m, 1 � j � k, and t ∈ Λξ,mk,(i−1)k+j .D, we

may write t = s1 � (ωξ(k(m − i)) + s), where s1 ∈ MAX(Λξ,mk,(i−1)k.D) if

i > 1 and s1 = ∅ if i = 1, and where s ∈ Γξ,k.D. We then let xt = ui
s. Then

(xt)t∈Γξ,mk.D ⊂BEp is weakly null and

inf
t∈MAX(Γξ,mk.D)

∥∥∥∥∥Dp,r
Υ

mk∑
i=1

diz
t
i

∥∥∥∥∥ � φ
∥∥(

ciαξ,γ(Ai)
)m
i=1

∥∥
�mr

= φ
∥∥(

αξ,γ(Ai)
)m
i=1

∥∥
�sm

.

This yields that αξ,γ(D
p,r
Υ ) � φ‖(αξ,γ(Ai))

m
i=1‖�sm . Since this holds for any

0< φ< 1, we deduce that αξ,γ(D
p,r
Υ ) � ‖(αξ,γ(Ai))

m
i=1‖�ms . �

In the following, if for each λ ∈ Λ, αλ ∈ [0,∞], we let ‖(αλ)λ∈Λ‖�s(Λ) =∞ if
either αλ =∞ for some λ ∈ Λ or if αλ ∈ [0,∞) for all λ and (αλ)λ∈Λ /∈ �s(Λ).
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Corollary 7.5. (i) D1,1
Λ is Asplund if and only if (Aλ)λ∈Λ ∈ c0(Λ), in

which case
Sz

(
D1,1

Λ

)
= sup

λ∈Λ
Sz(Aλ)

and for any 1� γ � ∞, αξ,γ(D
1,1
Λ ) = ‖(αξ,γ(Aλ))λ∈Λ‖�s(Λ), where 1/γ+1/s=

1.
(ii) D∞,∞

Λ is Asplund if and only if (Aλ)λ∈Λ ∈ c0(Λ), in which case

Sz
(
D∞,∞

Λ

)
= sup

λ∈Λ
Sz(Aλ)

and for any 1� γ � ∞, αξ,γ(D
∞,∞
Λ ) = ‖(αξ,γ(Aλ))λ∈Λ‖�∞(Λ).

Proof. (i) If (‖Aλ‖)λ∈Λ ∈ �∞(Λ) \ c0(Λ), then D1,1
Λ preserves an isomorph

of �1 and supξ∈Ord θξ,1(D
1,1
Λ ) > 0. Now if (‖Aλ‖)λ∈Λ ∈ c0(Λ), then D1,1

Λ lies

in the norm closure of {D1,1
Υ : Υ ⊂ Λ finite}. By the norm closedness of

{B :Ep → Fr : Sz(B) � supλ∈Λ Sz(Aλ)} and the fact that for any finite Υ⊂ Λ,

Sz(D1,1
Υ ) = maxλ∈Υ Sz(Aλ), Sz(D

1,1
Λ ) � supλ∈Λ Sz(Aλ). By the ideal prop-

erty, the reverse inequality holds. Furthermore, if 1/γ+1/s= 1, Theorem 7.3
yields that for any finite subset Υ of Λ,

αξ,γ

(
D1,1

Υ

)
=

∥∥(
αξ,γ(Aλ)

)
λ∈Υ

∥∥
�s(Υ)

.

By the norm continuity of αξ,γ,n, and since D1,1
Λ lies in the norm closure of

{D1,1
Υ : Υ⊂ Λ finite},
αξ,γ,n

(
D1,1

Λ

)
� sup

{
αξ,γ,n

(
D1,1

Υ

)
: Υ⊂ Λ finite

}
� sup

{
αξ,γ

(
D1,1

Υ

)
: Υ⊂ Λ finite

}
=

∥∥(
αξ,γ(Aλ)

)
λ∈Λ

∥∥
�s(Λ)

.

Taking the supremum over n ∈N, we deduce that

αξ,γ

(
D1,1

Λ

)
�

∥∥(
αξ,γ(Aλ)

)
λ∈Λ

∥∥
�s(Λ)

.

By the ideal property,

αξ,γ

(
D1,1

Λ

)
� sup

{
αξ,γ

(
D1,1

Υ

)
: Υ⊂ Λ finite

}
=

∥∥(
αξ,γ(Aλ)

)
λ∈Λ

∥∥
�s(Λ)

,

giving equality.
(ii) We argue similarly, except Theorem 7.3 gives

αξ,γ

(
D∞,∞

Υ

)
=

∥∥(
αξ,γ(Aλ)

)
λ∈Λ

∥∥
�∞(Υ)

for any finite subset of Υ. Here, we are using that either (Aλ)λ∈Λ ∈ c0(Λ), or
D∞,∞

Λ preserves an isomorph of �1. �

Theorem 7.6. Suppose that p, r are as in one of the cases (3) or (4). If
r = 0, suppose 1 � γ � ∞ and if 1 � r � ∞, suppose 1 � γ � r. Then for any
ordinal ζ,

αζ,γ

(
Dp,r

Λ

)
� sup

λ∈Λ
‖Aλ‖+ sup

λ∈Λ
αζ,γ(Aλ).
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Proof. We prove that

αζ,γ,n

(
Dp,r

Λ

)
� sup

λ∈Λ
‖Aλ‖+ sup

λ∈Λ
αζ,γ(Aλ)

by induction on n ∈N. Let β = supλ∈Λ ‖Aλ‖, α= supλ∈Λαξ,γ(Aλ).
The n= 1 case is trivial, since αζ,γ,1(D

p,r
Λ )� β � β + α.

Assume the result holds for n ∈ N and fix ϑ < αζ,γ,n+1(D
p,r
Λ ). Fix

(bi)
n+1
i=1 ∈ B�n+1

γ
and a weakly null collection (xt)t∈Γζ,n+1.D ⊂ BEp such

that ϑ < inft∈MAX(Γζ,n+1.D) ‖Dp,r
Λ

∑n+1
i=1 biz

t
i‖. Fix 0 < φ < 1 such that ϑ <

inft∈MAX(Γζ,n+1.D) ‖Dp,r
Λ

∑n+1
i=1 biφz

t
i‖. Fix δ > 0. Fix t ∈ MAX(Λζ,n+1,1.D)

and a finite subset Υ of Λ such that ‖Dp,r
Λ\Υ

∑
s�t Pζ,n+1(s)xs‖ < δ. Argu-

ing as in Lemma 7.4, we may stabilize, relabel, and assume that there exist
(ui, vi)

n+1
i=2 ∈ B�n∞(�2p)

such that for any 2 � i � n+ 1 and any t ∈ Λξ,n+1,i.D,

φ‖PΥxt‖< ui and φ‖PΛ\Υxt‖< vi. This may be done so that the property

ϑ < inf
t∈MAX(Γζ,n+1.D)

∥∥∥∥∥Dp,r
Λ

n+1∑
i=1

biφz
t
i

∥∥∥∥∥
is retained. Let u1 = 1 and v1 = 0, so that (ui, vi)

n+1
i=1 ∈B�n+1

∞ (�2p)
.

Now using the identification of Γζ,n.D with {s ∈ Γζ,n+1.D : t < s} and the
fact that

αζ,γ

(
Dp,r

Υ

)
=

∥∥(
αζ,γ(Aλ)

)
λ∈Υ

∥∥
�∞(Υ)

� α

by Theorem 7.3, we deduce using the inductive hypothesis that each of the
subsets of MAX(Γζ,n+1.D)

E1 :=
{
s : t < s,

∥∥∥∥∥Dp,r
Υ

n+1∑
i=1

biφz
s
i

∥∥∥∥∥ � δ+ (β + α)
∥∥(biui)

n+1
i=1

∥∥
�n+1
γ

}

⊃
{
s : t < s,

∥∥∥∥∥Dp,r
Υ

n+1∑
i=1

biφz
s
i

∥∥∥∥∥ � δ+ βu1 + α
∥∥(biui)

n+1
i=2

∥∥
�nγ

}

⊃
{
s : t < s,

∥∥∥∥∥Dp,r
Υ

n+1∑
i=2

biφz
s
i

∥∥∥∥∥ � δ+ α
∥∥(biui)

n+1
i=2

∥∥
�nγ

}

⊃
{
s : t < s,

∥∥∥∥∥Dp,r
Υ

n+1∑
i=2

biuiφ
PΥz

s
i

ui

∥∥∥∥∥ � δ+ α
∥∥(biui)

n+1
i=2

∥∥
�nγ

}
,

E2 :=
{
s : t < s,

∥∥∥∥∥Dp,r
Λ\Υ

n+1∑
i=1

biφz
s
i

∥∥∥∥∥ � 2δ+ (β + α)
∥∥(bivi)n+1

i=1

∥∥
�n+1
γ

}

⊃
{
s : t < s,

∥∥∥∥∥Dp,r
Λ\Υ

n+1∑
i=2

biφz
s
i

∥∥∥∥∥ � δ+ (β + α)
∥∥(bivi)n+1

i=1

∥∥
�n+1
γ

}
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=

{
s : t < s,

∥∥∥∥∥Dp,r
Λ

n+1∑
i=2

bivi
PΛ\Υz

s
i

vi

∥∥∥∥∥ � δ+ (β + α)
∥∥(bivi)n+1

i=1

∥∥
�n+1
γ

}

is eventual. Here we are using the fact that for any t < s ∈MAX(Γζ,n+1.D),
zs1 =

∑
u�t Pζ,n+1(u)xu, ‖Dp,r

Υ zs1‖� β, and ‖Dp,r
Λ\Υz

s
1‖< δ.

If r = 0, let r1 = ∞, and otherwise let r1 = r. Now for any s ∈ E1 ∩ E2,
Minkowski’s inequality and the fact that p � r1 give that

ϑ <

∥∥∥∥∥Dp,r
Λ

n+1∑
i=1

biφz
s
i

∥∥∥∥∥ =

∥∥∥∥∥
(∥∥∥∥∥Dp,r

Υ

n+1∑
i=1

biφz
s
i

∥∥∥∥∥,
∥∥∥∥∥Dp,r

Λ\Υ

n+1∑
i=1

biφz
s
i

∥∥∥∥∥
)∥∥∥∥∥

�2r

� 3δ+ (β + α)
∥∥(∥∥(biui)

n+1
i=1

∥∥
�n+1
γ

,
∥∥(bivi)n+1

i=1

∥∥
�n+1
γ

)∥∥
�2r1

� 3δ+ (β + α)
∥∥(

bi
∥∥(ui, vi)

∥∥
�2r1

)n+1

i=1

∥∥
�n+1
γ

� 3δ+ (β + α)
∥∥(

bi
∥∥(ui, vi)

∥∥
�2p

)n+1

i=1

∥∥
�n+1
γ

� 3δ+ β + α.

Since δ > 0 and ϑ < αζ,γ,n+1(D
p,r
Λ ) were arbitrary, we are done. �

Corollary 7.7. In either of cases (3), (4),

Sz
(
Dp,r

Λ

)
�

(
sup
λ∈Λ

Sz(Aλ)
)
ω.

Proof. If r = 0, let γ =∞, and otherwise let γ = r. Let supλ∈Λ Sz(Aλ) = ωξ.
Then for every λ ∈ Λ, αξ,γ,1(Aλ) = αξ,γ(Aλ) = 0, whence

αξ,γ

(
Dp,r

Λ

)
� sup

λ∈Λ
‖Aλ‖<∞

by Theorem 7.6. By Remark 4.9, Sz(Dp,r
Λ ) � ωξ+1 = ωξω. �

Corollary 7.8. Suppose p, r are as in either case (3) or case (4). For
any ordinal ζ,

inf
m∈N

sup
λ∈Λ

θζ,m(Aλ) = inf
m∈N

θζ,m
(
Dp,r

Λ

)
= θζ+1,1

(
Dp,r

Λ

)
.

In particular, for an ordinal ξ > 0,

inf
{
θξ,1

(
Dp,r

Λ\Υ
)
: Υ⊂ Λ finite

}
= 0

if and only if for every ε > 0, there exist a finite subset Υ of Λ, an ordinal
ζ < ξ, and m ∈N such that supλ∈Υ θζ,m(Aλ) � ε if and only if for every ε > 0,
there exists a finite subset Υ of Λ such that supλ∈Λ\Υ Sz(Aλ, ε)<ωξ.

Proof. If r = 0, let γ = ∞, and otherwise let γ = r. Let 1/γ + 1/s = 1.
Note that since r �= 1, γ �= 1, so s < ∞. It follows from Proposition 4.7
that infm∈N θζ,m(Dp,r

Λ ) = θζ+1,1(D
p,r
Λ ), and it follows from the fact that θζ,m

is an ideal seminorm that infm∈N supλ∈Λ θζ,m(Aλ) � infm∈N θζ,m(Dp,r
Λ ). Fix

ε1 > infm supλ∈Λ θζ,m(Aλ). Let m ∈ N and ε2, ε be such that ε1 > ε2 > ε >
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θζ,m(Aλ) for all λ ∈ Λ. Let R = supλ∈Λ ‖Aλ‖ and fix n ∈ N, δ > 0 such that

Rm1/s/n1/s < ε2 − ε, δ+R/n1/s < ε1 − ε2, and δ+ ε+Rm1/s/n1/s < ε2.
Fix a weakly null collection (xt)t∈Γζ,n2 .D ⊂BEp . Let Υ0 =∅, t0 =∅, and

fix any t1 ∈ MAX(Λζ,n2,n.D). Now suppose we have chosen t1 < · · · < tk−1

and finite sets Υ1 ⊂ · · · ⊂ Υk−1 ⊂ Λ such that for each 1 � i < k, ti ∈
MAX(Λζ,n2,in.D),∥∥∥∥∥Dp,r

Λ\Υi

in∑
j=(i−1)n+1

∑
ti�s∈Λζ,n2,j .D

Pζ,n2(s)xs

∥∥∥∥∥< δ

and ∥∥∥∥∥Dp,r
Υi−1

n−1
in∑

j=(i−1)n+1

∑
ti�s∈Λζ,n2,j .D

Pζ,n2(s)xs

∥∥∥∥∥ < ε2.

Now since we may identify{
s ∈

kn⋃
j=(k−1)n+1

Λζ,n2,j .D : tk−1 < s

}

with Γζ,n.D, by Theorem 7.3, there exists tk ∈MAX(Λζ,n2,kn.D) such that∥∥∥∥∥Dp,r
Υk−1

kn∑
j=(k−1)n+1

∑
tk�s∈Λζ,n2,j .D

n−1Pζ,n2(s)xs

∥∥∥∥∥
� δ+ ε

∥∥(1/n)nj=1

∥∥
�n1

+Rm1/s
∥∥(1/n)nj=1

∥∥
�nγ

= δ+ ε+R
m1/s

n1/s
< ε2.

Here we are using that �nr = �nγ . Fix Υk ⊂ Λ finite such that Υk−1 ⊂Υk and∥∥∥∥∥Dp,r
Λ\Υk

kn∑
j=(k−1)n+1

∑
tk�s∈Λζ,n2,j

n−1Pζ,n2(s)xs

∥∥∥∥∥ < δ.

These completes the recursive construction. Let t= tn and for each 1� i � n,
let Fi =Υi\Υi−1. For each 1� i � n, let zi = n−1

∑
ti−1<s�ti

Pζ,n2(s)xs. Then∥∥∥∥∥Dp,r
Λ

n2∑
j=1

n−2zti

∥∥∥∥∥ =

∥∥∥∥∥Dp,r
Λ n−1

n∑
i=1

zi

∥∥∥∥∥
=

∥∥∥∥∥Dp,r
Λ n−1

n∑
i=1

[PΥi−1 + PFi + PΛ\Υi
]zi

∥∥∥∥∥
� ε2 +

∥∥∥∥∥n−1
n∑

i=1

PFizi

∥∥∥∥∥+ δ
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� ε2 +R/n1/s + δ < ε1.

From this it follows that

inf
{
θζ,k

(
Dp,r

Λ

)
: k ∈N

}
� θζ,n2

(
Dp,r

Λ

)
< ε1.

Since ε1 > infk∈N supλ∈Λ θζ,k(Aλ) was arbitrary,

inf
m∈N

sup
λ∈Λ

θζ,m(Aλ)� inf
m∈N

θζ,m
(
Dp,r

Λ

)
.

The last statement follows immediately from the previous statements. �

We now eliminate a trivial case. The proof is obvious, so we omit it.

Proposition 7.9. Suppose that supλ∈Λ Sz(Aλ) = 1. Assume that p, r
are as in one of cases (3), (4) above. Then Dp,r

Λ is compact, θ0,1(D
p,r
Λ ) =

α0,γ(D
p,r
Λ ) = 0 for all 1� γ � ∞, and Sz(Dp,r

Λ ) = 1 if and only if (‖Aλ‖)λ∈Λ ∈
c0(Λ). If (‖Aλ‖)λ∈Λ ∈ �∞(Λ) \ c0(Λ), then Sz(Dp,r

Λ ) = ω,

θ0,1
(
Dp,r

Λ

)
= inf

{∥∥Dp,r
Λ\Υ

∥∥ : Υ⊂ Λ finite
}
> 0

and

(i) if r = 0 or r =∞, α0,γ(D
p,r
Λ ) = θ0,1(D

p,r
Λ )<∞ for any 1� γ � ∞,

(ii) if 1 � p � r <∞ and 1< r, α0,γ(D
p,r
Λ ) = θ0,1(D

p,r
Λ ) for all 1 � γ � r and

α0,γ(D
p,r
Λ ) =∞ for all r < γ � ∞.

The next theorem incorporates Brooker’s result about the Szlenk index,
but also includes new information regarding the behavior of the θζ,m(Aλ)
quantities, which are only indirectly related to Sz(Aλ, ε).

Theorem 7.10. Suppose p, r are as in either case (3) or case (4) and

sup
λ∈Λ

Sz(Aλ) = ωξ > 1.

The following are equivalent.

(i) Sz(Dp,r
Λ ) = ωξ.

(ii) For every ε > 0, supλ∈Λ Sz(Aλ, ε)<ωξ.
(iii) inf{supλ∈Λ θζ,m(Aλ) : ζ < ξ,m ∈N}= 0.

Proof. (i)⇒(iii) If Sz(Dp,r
Λ ) = ωξ, then by Proposition 4.7 and the fact that

θζ,m is an ideal seminorm,

0 = θξ,1
(
Dp,r

Λ

)
= inf

{
θζ,m

(
Dp,r

Λ

)
: ζ < ξ,m ∈N

}
� inf

{
sup
λ∈Λ

θζ,m(Aλ) : ζ < ξ,m ∈N
}

� 0.

(iii)⇒(i) We first remark that Sz(Dp,r
Λ ) � ωξ. Indeed, for any ζ < ξ,

there exists λ ∈ Λ such that Sz(Aλ) > ωζ , so θζ,1(D
p,r
Λ ) � θζ,1(Aλ) > 0, and

Sz(Dp,r
Λ )> ωζ . Since Sz(Dp,r

Λ ) must be of the form ωγ for some γ, it follows
that Sz(Dp,r

Λ )� ωξ.
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If ξ is a successor, say ξ = η+1, then by Proposition 4.7 and Corollary 7.8,

0 = inf
{
sup
λ∈Λ

θζ,m(Aλ) : ζ < ξ,m ∈N
}
= inf

{
sup
λ∈Λ

θη,m(Aλ) :m ∈N
}

= θη+1,1

(
Dp,r

Λ

)
= θξ,1

(
Dp,r

Λ

)
,

so Sz(Dp,r
λ ) � ωξ.

Now if ξ is a limit, then by Proposition 4.7, for any ε > 0, there exist
ζ < ξ,m ∈ N such that supλ∈Λ θζ,m(Aλ) < ε. Then by Corollary 7.8, and
Proposition 4.7, θξ,1(D

p,r
Λ ) � θζ+1,1(D

p,r
Λ ) � ε. Since this holds for any ε > 0,

θξ,1(D
p,r
Λ ) = 0.

(ii)⇒(iii) Fix ε > 0 and ζ < ξ, m ∈ N such that Sz(Aλ, ε/3) � ωζm for
all λ ∈ Λ. Fix n ∈ N such that Rm/n < 2ε/3, where R = supλ∈Λ ‖Aλ‖. Now
if λ ∈ Λ is such that θζ,n(Aλ) > ε, there exist a directed set D, a weakly
null collection (xt)t∈Γζ,n.D ⊂ BEp , functionals (y∗t )t∈MAX(Γζ,n.D) ⊂ BY ∗

λ
, and

real numbers b1, . . . , bn such that
∑n

i=1
bi
n > ε and for each 1 � i � n and

Λζ,n,i.D � s � t ∈ MAX(Γζ,n.D), Rey∗t (xs) � bi. Let T = {i � n : bi > 2ε/3}
and fix 1/2< ψ < 1. We claim that |T |<m. If it were not so, we could find
a level map d : Γζ,m.D→ Γζ,n.D such that (xd(t))t∈Γζ,m.D is weakly null and
d(Λζ,m,i)⊂ Λζ,n,li .D, where l1 < · · ·< lm, li ∈ T . Then if e is any extension of
d, the collections (xd(t))t∈Γζ,m.D, (y∗e(t))t∈MAX(Γζ,m.D) witness that

∅ �= sω
ζ

ψεlm
· · ·sωζ

ψεl1

(
A∗

λBY ∗
λ

)
⊃ sω

ζ

ψ2ε/3

(
A∗

λBY ∗
λ

)
⊃ sω

ζm
ε/3

(
A∗

λBY ∗
λ

)
,

a contradiction. Thus supλ∈Λ θζ,n(Aλ)� ε, whence

inf
{
sup
λ∈Λ

θζ,m(Aλ) : ζ < ξ,m ∈N
}
= 0.

(iii)⇒(ii) We recall that if for some λ ∈ Λ, ε > 0, ζ ∈ Ord, and m ∈ N,
Sz(Aλ, ε) > ωζm, then θζ,m(Aλ) � ε/4. From this, it follows that since
inf{supλ∈Λ(Aλ) : ζ < ξ,m ∈ N}< ε/4, there exist ζ < ξ and m ∈ N such that
Sz(Aλ, ε)� ωζm<ωξ for all λ ∈ Λ. �

We next elucidate the behavior of αξ,γ(D
p,r
Λ ) for cases (3) and (4).

Theorem 7.11. Suppose that p, r are as in either case (3) or case (4).
Suppose that Sz(Dp,r

Λ ) = ωξ+1 and supλ∈Λ Sz(Aλ) = ωζ .
If ζ = ξ, αξ,γ(D

p,r
Λ )<∞ if and only if either

(i) r = 0, or
(ii) 1� γ � r.

If ζ = ξ + 1, αξ,γ(D
p,r
Λ )<∞ if and only if either

(i) r = 0 and (αξ,γ(Aλ))λ∈Λ ∈ �∞(Λ),
(ii) 1� γ � r � ∞ and (αξ,γ(Aλ))λ∈Λ ∈ �∞(Λ), or
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(iii) 1� r < γ � ∞, inf{θξ,1(Dp,r
Λ\Υ) : Υ⊂Λ finite}= 0, and(

αξ,γ(Aλ)
)
λ∈Λ

∈ �s(Λ),

where 1/γ + 1/s= 1/r.

Proof. First suppose that Sz(Dp,r
Λ ) = ωξ+1 and supλ∈Λ Sz(Aλ) = ωξ. By

Theorem 7.6, if r = 0 or 1 � p� r �∞ and 1� γ � r,

αξ,γ

(
Dp,r

Λ

)
� sup

λ∈Λ
‖Aλ‖+ sup

λ∈Λ
αξ,γ(Aλ) = sup

λ∈Λ
‖Aλ‖<∞,

since αξ,γ(Aλ) = 0 for each λ ∈ Λ. Now suppose that 1 � p � r < γ and let
1/γ + 1/s = 1/r. By Theorem 7.10, since Sz(Dp,r

Λ ) > supλ∈Λ Sz(Aλ), this
means

inf
{
sup
λ∈Λ

θη,m(Aλ) : η < ξ,m ∈N
}
> ε> 0.

Then for any n ∈N, we may partition Λ into sets Λ1, . . . ,Λn such that for each
1 � i � n, inf{supλ∈Λi

θη,m(Aλ) : η < ξ,m ∈N}> ε, whence θξ,1(D
p,r
Λi

)> ε for
each 1 � i � n. Then we may find (xt)t∈Γξ,n.D ⊂ BEp weakly null such that
for any 1 � i � n, inft∈MAX(Γξ,n.D) ‖Dp,r

Λi

∑
t�s∈Λξ,n,i.D

Pξ,n(s)xs‖> ε and for

any t ∈ Λξ,n,i.D, xt = PΛixt. Then

αξ,γ,n

(
Dp,r

Λ

)
� inf

t∈MAX(Γξ,n.D)

∥∥∥∥∥Dp,r
Λ

n∑
i=1

zti

∥∥∥∥∥ � εn1/s.

This yields that αξ,γ(D
p,r
Λ ) =∞ if 1 � p � r < γ.

Now suppose Sz(Dp,r
Λ ) = supλ∈Λ Sz(Aλ) = ωξ+1. Then if either r = 0 or

1� p � r � ∞ and 1� γ � r, by Theorem 7.6,

sup
λ∈Λ

αξ,γ(Aλ) � αξ,γ

(
Dp,r

Λ

)
� sup

λ∈Λ
‖Aλ‖+ sup

λ∈Λ
αξ,γ(Aλ),

so that αξ,γ(D
p,r
Λ )<∞ if and only if supλ∈Λαξ,γ(Aλ)<∞.

We now assume that 1 � p � r < γ � ∞ and 1/γ + 1/s = 1/r. We
will show that αξ,γ(D

p,r
Λ ) < ∞ if and only if (αξ,γ(Aλ))λ∈Λ ∈ �s(Λ) and

inf{θξ,1(Dp,r
Λ\Υ) : Υ ⊂ Λ finite}= 0. First suppose that (αξ,γ(Aλ))λ∈Λ ∈ �s(Λ)

and inf{θξ,1(Dp,r
Λ\Υ : Υ⊂ Λ finite}= 0. Then for any finite subset Υ of Λ and

n ∈N, by Theorem 7.3,

αξ,γ

(
Dp,r

Λ

)
� αξ,γ,n

(
Dp,r

Υ

)
+ αξ,γ,n

(
Dp,r

Λ\Υ
)

�
∥∥(

αξ,γ(Aλ)
)
λ∈Υ

∥∥
�s(Υ)

+ nαξ,γ,1

(
Dp,r

Λ\Υ
)

�
∥∥(

αξ,γ(Aλ)
)
λ∈Λ

∥∥
�s(Λ)

+ nθξ,γ,1
(
Dp,r

Λ\Υ
)
.

Taking the infimum over Υ ⊂ Λ and then the supremum over n ∈ N yields
that αξ,γ,(D

p,r
Λ ) � ‖(αξ,γ(Aλ))λ∈Λ‖�s(Λ) <∞.

Now assume that one of the conditions(
αξ,γ(Aλ)

)
λ∈Λ

∈ �s(Λ),
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inf
{
θξ,1

(
Dp,r

Λ\Υ
)
: Υ⊂ Λ finite

}
= 0

fails. If (αξ,γ(Aλ))λ∈Λ /∈ �s(Λ), then by Theorem 7.3,

αξ,γ

(
Dp,r

Λ

)
� sup

{
αξ,γ

(
Dp,r

Υ

)
: Υ⊂ Λ finite

}
=

∥∥(
αξ,γ(Aλ)

)
λ∈Λ

∥∥
�s(Λ)

=∞.

Now assume that inf{θξ,1(Dp,r
Λ\Υ) : Υ⊂Λ finite}> 2ε > 0. Fix n ∈N, a weak

neighborhood basis D at 0 in Ep, and δ > 0 such that nδ < εn1/r, where 1/r+
1/r′ = 1. Let Υ∅ =∅. Since θξ,1(D

p,r
Λ )> 2ε, we may, by identifying Λξ,n,1.D

with Γξ,1.D, fix a weakly null collection (xt)t∈Λξ,n,1.D ⊂ BEp such that
inft∈MAX(Λξ,n,1.D) ‖Dp,r

Λ

∑
s�t Pξ,n(s)xs‖ > 2ε. For each t ∈ MAX(Λξ,n,1.D),

fix a finite set Υt such that ‖Dp,r
Λ\Υt

∑
s�t Pξ,n(s)xs‖< ε. Now assume that for

some i < n, a weakly null collection (xt)t∈
⋃i

j=1 Λξ,n,j .D
has been chosen. Sup-

pose also that for each 1 � j � i and each t ∈MAX(Λξ,n,j .D), a finite subset
Υt has been chosen such that if t > s ∈MAX(Λξ,n,k.D) for some 1 � k < j,
Υs ⊂Υt, and ∥∥∥∥Dp,r

Λ\Υt

∑
Λξ,n,j .D�u�t

Pξ,n(u)xu

∥∥∥∥< ε.

For each t ∈ MAX(Λξ,n,i.D), since θξ,1(D
p,r
Λ\Υt

) > 2ε, by identifying Γξ,1.D

with {s ∈ Λξ,n,i+1.D : t < s}, we may fix a collection (xs)t<s∈Λξ,n,i+1.D ⊂BEp

such that PΛ\Υt
xs = xs and

inf

{∥∥∥∥Dp,r
Λ

∑
t<u�s

Pξ,n(u)xu

∥∥∥∥ : t < s ∈MAX(Λξ,n,i+1)

}
> 2ε.

Now for each s ∈MAX(Λξ,n,i+1) such that t < s, fix a finite set Υs ⊂ Λ such
that Υt ⊂Υs and ∥∥∥∥Dp,r

Λ\Υs

∑
t<u�s

Pξ,n(u)xu

∥∥∥∥ < ε.

This completes the recursive choice of a weakly null collection (xt)t∈Γξ,n.D ⊂
BEp . Now for any t ∈MAX(Γξ,n.D), let ∅ = t0 < t1 < · · · < tn be such that
ti ∈MAX(Λξ,n,i.D) for each 1� i � n and let ∅⊂Υt1 ⊂ · · ·<Υtn be as in the
choice of (xs)s∈Γξ,n.D. Now let Fi =Υti \Υti−1 , zi =

∑
t�s∈Λξ,n,i.D

Pξ,n(s)xs,

and note that∥∥∥∥Dp,r
Λ

∑
i=1

zi

∥∥∥∥ �
∥∥∥∥∥Dp,r

Λ

n∑
i=1

PFizi

∥∥∥∥∥−
n∑

i=1

∥∥Dp,r
Λ\Υti

zi
∥∥ � 2εn1/r − nδ > εn1/r.

From this it follows that

αξ,γ

(
Dp,r

Λ

)
� sup

n
εn

1
r− 1

γ =∞. �
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