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Two of the most important renorming theorems in Banach space theory
is Enflo’s result [12] that a superreflexive Banach space can be renormed to
be uniformly convex, and Pisier’s result [19] that any superreflexive Banach
space can be renormed to be uniformly convex (resp. uniformly smooth) with a
pe modulus of uniform convexity (resp. uniform smoothness). Pisier’s
proof also gave an exact characterization of which power types were possible in
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ABSTRACT. For each ordinal £ and each 1 < ¢ < oo, we define the
notion of £-g-summable Szlenk index. When € =0 and g =1, this
recovers the usual notion of summable Szlenk index. We define
for an arbitrary weak*-compact set a transfinite, asymptotic ana-
logue o p, of the martingale type norm of an operator. We prove
that this quantity is determined by norming sets and determines
&-Szlenk power type and £-¢g-summability of Szlenk index. This
fact allows us to prove that the behavior of operators under the
o¢,p seminorms passes in the strongest way to injective tensor
products of Banach spaces. Furthermore, we combine this fact
with a result of Schlumprecht to prove that a separable Banach
space with good behavior with respect to the a¢ , seminorm can
be embedded into a Banach space with a shrinking basis and the
same behavior under ag ,, and in particular it can be embedded
into a Banach space with a shrinking basis and the same £-Szlenk
power type. Finally, we completely elucidate the behavior of the
a¢,p seminorms under ¢, direct sums. This allows us to give an
alternative proof of a result of Brooker regarding Szlenk indices
of ¢, and ¢o direct sums of operators.

1. Introduction
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terms of two isomorphic invariants of the space involving Walsh—Paley mar-
tingale difference sequences and their domination of (resp. domination by)
the canonical ¢, basis. Beauzamy [2] proved an operator version of Enflo’s
result: An operator is super weakly compact if and only if it can be renormed
to be uniformly convex. However, there is no operator version of Pisier’s re-
sult, since the automatic power type obtained by Pisier for Banach spaces
has to do with the submultiplicative nature of Haar type/cotype ideal norms
for Banach spaces, which are not submultiplicative for operators. The same
submultiplicative behavior of ideal norms and seminorms for spaces which are
not submultiplicative for operators is by now a well-observed phenomenon,
occurring with Rademacher, Gaussian, Haar, martingale, and the recently de-
fined asymptotic basic and asymptotic type and cotype. Since there are super
weakly compact operators which do not have non-trivial Haar type or cotype,
it has become standard to investigate the notions of subtype and subcotype of
operators, defined by whether or not the operator exhibits the worst possible
behavior with respect to a sequence of norms or seminorms. This practice has
been undertaken by Beauzamy [1] for Radmacher subtype and subcotype to
characterize when ¢; or ¢y is crudely finitely representable in an operator; by
Hinrichs [14] for Gaussian subcotype to characterize when ¢ is crudely finitely
representable in an operator; by Wenzel [22] for martingale and Haar subtype
and subcotype to characterize super weak compactness; and Draga, Kochanek,
and the author [10] to characterize when an operator is asymptotically uni-
formly smoothable, when ¢; is asymptotically crudely finitely representable
in an operator, and when ¢y is asymptotically crudely finitely representable
in an operator.

The notion of asymptotic uniform smoothability is also of significant inter-
est, and is fundamentally connected to the Szlenk index of a Banach space.
A Banach space admits an equivalent asymptotically uniformly smooth norm
if and only if its Szlenk index does not exceed w. This was shown by Knaust,
Odell, and Schlumprecht [15] for the separable case and Raja [20] for the gen-
eral case. Lancien, Prochazka, and Raja [17] proved a result analogous to that
of Knaust, Odell and Schlumprecht for separable Banach spaces having Szlenk
index not exceeding wé*?! for every countable ordinal £, and a non-separable,
operator version was proved in [9] for every (not necessarily countable) ordinal
€. Furthermore, Godefroy, Kalton, and Lancien [13] gave a precise renorming
theorem for a separable Banach space in terms of the Szlenk power type of
the Banach space. This was generalized to non-separable spaces and operators
in [7], as well as to higher ordinals in terms of the behavior of special convex
combinations of the branches of n-leveled weakly null trees where each level
has specified order. Further renorming results were established in [6], anal-
ogous to those of Pisier in [19]. More precisely, the existence of equivalent
norms with certain asymptotic properties was investigated in terms of special
convex combinations of the branches of w-leveled weakly null trees where each
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level has specified order. The downside of the renorming results from [6] is
that they are only produce non-trivial equivalent norms when an operator or
a space has some power type behavior of the e-Szlenk indices. That is, for a
fixed £, the results of [6] produce non-trivial equivalent norms for a Banach
space X or an operator A: X — Y if w®k. < S2(X,e) < wé(ke + 1) (resp.
Wik, < Sz(A,e) < wé(ke + 1)) where k. € N satisfies lim,_, o+ k. = oo but for
some 1 < ¢ < 00, sup,oe?k. < co. As was explained in [7], for £ =0, there
exists an operator A with Szlenk index w which does not have this power
type behavior, and for any £ > 0, there is a Banach space X with Szlenk in-
dex wtt! which does not have this power type behavior. This incompleteness
in the renorming theorems from [6] is the primary motivation to define the
notion of subtype and investigate the behavior of operators with respect to a
sequence of seminorms.

For each ordinal &, each 1 < p < oo, each n € N, and each operator
A: X =Y, we define the quantity o p,(A). The assignments ag p, will
act as our sequence of ideal seminorms. We will be interested in when an
operator satisfies sup,, ag pn(A) < 0o, which is trivial in the case p = 1. For
1 < p < 00, the worst possible behavior would be for the operator A to sat-
isfy limsup,, ag pn(A)/n'~Y/P >0, so our notion of subtype will be defined
by lim,, ag ., (A)/n*~1/P = 0. For each ordinal ¢ and 1 < p < oo, we let ¢,
denote the class of operators for which sup,, a¢ p n(A) < 00.

For each ordinal £ and each 1 < ¢ < 0o, we define what it means for an
operator A: X —Y and a weak*-compact subset K of a dual Banach space
X* to have &-g-summable Szlenk index, which generalizes to values of ¢ greater
than 1 and higher ordinals the important notion of summable Szlenk index
defined and studied in [13]. In what follows, we let ©, denote the class of
operators with Szlenk index not exceeding w¢ and for 1 < p < oo, T¢ p denotes
the class of £-p-asymptotically uniformly smoothable operators.

THEOREM 1.1. For every ordinal £ and 1 < p < oo, there exists an ideal
norm ag, on the class e, making (Ue p,ae ) a Banach ideal. Moreover,
if 1/p+1/q=1, the class ¢, coincides with the class of operators having
&-q-summable Szlenk index.

An operator A has Szlenk index not exceeding w¢Tt if and only if for some
(equivalently, every) 1< p < oo, lim,, ag pn(A)/n'~1/P =0.

Furthermore, for any 1 <r <p < oo,

De GRAer & Tep CRAep & Dy

=

The quantity ag ,(-) will be defined not only for operators, but for arbi-
trary, weak*-compact subsets of the dual of a Banach space. We prove the
following regarding the quantities ¢, on weak*-compact subsets of the dual
of a Banach space.
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THEOREM 1.2. Let X be a Banach space, K C X* weak*-compact, £ an
ordinal, and 1 <p < oo. Then ag ,(K) = ag p(abs o (K)).

Combining Theorem 1.2 with a result of Schlumprecht, we prove the fol-
lowing.

THEOREM 1.3. Suppose X is a Banach space having a separable dual.
Then there exists a Banach space W with a shrinking basis such that X is
isomorphically embeddable in W, for any countable ordinal £ and 1 < p < o0,
Pe(W) =pe(X), and if ag p(X) < 00, ag (W) < 00.

Given operators Ag: Xg — X1, A1 : X1 — Y7, there is an induced operator
Ay ® Ay 1 Xo ®. X1 — Yy ®. Y7 between the injective tensor products. By
the geometric Hahn-Banach theorem, (Ao ® A1)"(B(y,g_y;)-) is the weak™-
closed, convex hull of {z§ ® x7 : xf € A§By;, A] By }. This fact combined
with Theorem 1.2 and a combinatorial lemma yields the following.

THEOREM 1.4. Fix any 1 < q¢ < 00, any ordinal £, any operators A; : X; —
Y;,i=0,1. Then if Ay, A1 have £-q-summable Szlenk index, so does Ay ® Ay,
and pe(Ao ® A1) < max{pe(Ao), Pe(41)}-

In the non-trivial case in which Ag, A1 #0, Ag ® A1 has £-q-summable
Szlenk indez if and only if Ay, A1 do and pe(Ao® A1) = max{p¢(Ao), pe(41)}.

We also give a complete description of the behavior of the oy, seminorms
under finite £, direct sums of operators.

THEOREM 1.5. Fiz 1 < p < oo. Then for any finite set A, any ordinal &,
and any operators Ay : X\ — Y),

(@ (@) (@) )= mmeetan
£p(A) AEA £p(A)

AEA AEA
if 1<r<pand

or( @ (D) (@) ) =Tata
AEA AEA £p(A) AeA £p(A) AeA

if p<r<oo, where 1/r+1/s=1/p.

We recall that an operator A: X — Y is Asplund if for any finite, positive
measure space (2,3, 1), any B:Y — Lo (Q,%, 1), and any & > 0, there exists
S € 3 such that pu(S) > pu(2) —e and {fls: f € BA(Bx)} is relatively weakly
compact in Lo (€2, X, ). Brooker [3] showed that an operator is Asplund if
and only if its Szlenk index is an ordinal.

We also investigate the behavior of the a; , seminorms under infinite £, and
co directs sums of operators. In what follows, suppose that A is a non-empty
set and {Ay: X\ = Yy : A€ A} is a uniformly bounded collection of Asplund
operators. We offer a new proof of a result due to Brooker concerning the
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Szlenk index of diagonal operators between /,, direct sums. The method of our
proof is dual to Brooker’s method of proof, working with upper estimates on
convex combinations of weakly null trees in the spaces rather than derivations
in the dual. This result has many cases, so we isolate the following single case,
which we believe to be of the greatest interest.

THEOREM 1.6. Fiz p € {0} U (1,00) and suppose that at least one of
the operators (Ax)xea is non-compact. Then if DP : (Dycp X\)e,(a) —
(Baea Ya)e,(a) is the diagonal operator such that DP|x, = Ax, Sz(DP) =
supyep Sz(Ax) if and only if for every e > 0, supygcp Sz(Ax,e) <
supyea Sz(Ax), and otherwise Sz(DP) = (supycp Sz(Ar))w.

Here, if p=0, we replace the {,(A) direct sum with the c¢o(A) direct sum.

We also elucidate the values of a¢ ,(DP) (and therefore compute pe(DP))
for all values of p € {0}U[1,00] and 1 < v < 1 only in terms of the behaviors of
Sz(Ax,e) and ag (A)), thus completely describing the behavior of the ideal
norms and Szlenk power type of diagonal operators between £, direct sums in
terms of the ideal norms and Szlenk power types of the summands.

THEOREM 1.7. Fiz p € {0} U (1,00) and suppose Sz(D,) = ws*t! and
supyep Sz(Ax) = wS > 1. Then by Theorem 1.6, ( +1=¢& + 1 if and only
if there exists € > 0 such that supycy Sz(Ax, ) =w®, and otherwise ¢ =&+ 1.

If (+1=¢&+1, then for any 1 <r < oo, then ag (D) < oo if and only if
either p=0 or 1 <r <p<oo.

If (=&+1, then for any 1 <r < oo, then ag . (Dy) < oo if and only of one
of the three following conditions hold:

(i) p=0 and supyep e (Ax) < oo.
(i) 1<r<p<oo and supycy e r(Ax) < 0.
(iii) 1<p<r<o0, Y \eper(Ar)® < oo, and for any € >0, there exists a
finite subset T of A such that supyecp\y S2(Ax, €) < ws. Here, s is defined
by 1/r+1/s=1/p.

2. Combinatorial necessities

2.1. Trees of peculiar importance. For a set A, we let A<N = Uo_oA™
We denote the single member of A° by @. We order A<N\ AY by initial
segments, denoted by <. That is, s < (\;)7; if s = (\;)72, for some 1 < m < n.
A subset T of A<N \ A% will be called a tree if @ #s<teT implies s T.
Given a subset U of A<N, we let MAX(U) denote the subset of U consisting
of those members of U which are maximal with respect to the initial segment
relation. Given two members s, of A<V, we let s ~ ¢ denote the concatenation
of s and t.

We first define some trees which will be of significant importance for us.
These trees and the associated convex weights defined in the next paragraphs
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were first defined in [5]. We refer the interested reader to [5] for a more com-
plete presentation. Here we are interested only in presenting the details of
the construction necessary to prove our results. Given a sequence ((;)7; of
ordinals and an ordinal ¢, we let ¢ + ()P, = (¢ + ¢),. Given a set G of
sequences of ordinals and an ordinal ¢, we let (+ G ={(+1t:t € G}. For each
£ €Ord and n € N, we define a tree I'¢ ,, which consists of finite, decreasing
sequences of ordinals in the interval [0,wSn). We let

To1={(0)}.
If I'¢ 1 has been defined, we let A¢ 11 =T¢; and for 1 <neN and 1 <i<n,
we let

A{,n,i = {(wg(n — 1) +t1) Aeee A (wg(nf Z) +ti) 1 t; € ].—‘571,
t1,...,t;—1 € MAX(F&J)}

and [¢,, =i, A¢ni. If for some &, I, has been defined for each n € N,
we let Tepq 1 =Uo— Ten. If € is a limit ordinal and T'¢ ; has been defined for
every ¢ <&, we let
Peq = J (@ +Terrn).
¢<¢

Let us observe that for each ordinal ¢ and each n € N, the first member of
each sequence in I'¢ ,, is an ordinal which lies in the interval [w®(n —1),w’n).
Therefore the union I'¢q1 = UZO:1 I¢ is a totally incomparable union. We
refer to the sets A¢n1,...,A¢nn as the levels of I'¢ . The union I'¢; =
U<<5(wC +T¢411) when ¢ is a limit ordinal is also a totally incomparable
union.

We provide a brief, intuitive description of the trees constructed above.
We begin with a tree I'g;, which consists of a single node. Once we have
constructed I'¢ 1, the tree I'¢, consists of n levels. The first level of I'¢ ,, is
isomorphic to I'¢ ;. Then beneath each maximal node on a level ¢ <n, we
place another copy of I'¢ 1. The tree I'¢;1 1 is a totally incomparable union of
the n-leveled trees I'¢ ,,. Finally, when £ is a limit ordinal, I'¢ ; is just a totally
incomparable union of a cofinal subset of smaller trees.

We also recall the existence of functions Pe¢ ,, : I'¢ ,, — [0, 1] having the prop-
erty that for each ordinal £, each n € N, each 1 <i < n, and t € MAX(T'¢ ,,),

1= > Peals).

A&n’qjasgt

The functions P¢ ,, are quite easy to understand. The function Py ; is identi-
cally 1 on the single node contained in I'g ;. Since I'¢ ,, is obtained by “gluing”
together many copies of trees which are canonically isomorphic to I'¢ 1, we
define IP¢ ,, so that the canonical identification of each of these copies of I'¢;
also identifies the values of P¢ , on isomorphic copies of I'¢ ; with the values
of Peq on I'eq. For Tey11 = UZO:1 I'¢ n, we normalize the branches (that is
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Peqpialre, = n~1P¢ ). For a limit ordinal &, P¢ ; is defined in such a way that
its values on w¢ + I'¢c41,1 are equal to the values of Pey11 on I'¢4q1 via the
canonical identification.

For a directed set D, a set A, and a subset S of A<N'\ A°, we let

S.D = {()\j/lij)?zl : (Cj)?:l S S, Uj S D}
In particular, for an ordinal £, n € N, and 1 <i < n,
Aeni-D= {(ij"ﬁ)?zl : (Cj)?zl € A¢pisuj €D}
We define functions (which we also denote by P¢ ,,) on I'¢ ,.D by letting

Pe.n (s ui)5o1) =Pen((G)=1)-

We remark that for each ¢ and any directed set D, (wS + T¢y1,1).D is
canonically identifiable with I'¢c4q1.D. For any { and any n € N, A¢ , 1.D is
canonically identifiable with I'¢ ;.D. We often implicitly use these canonical
identifications without giving them specific names. Moreover, these canonical
identifications preserve the values of the functions P¢ ,,, as was shown in [5].

We last define what it means for a subset of I'¢,,.D to be a wnit. For
any ordinal £ and any n € N, A¢, 1.D is a unit. If for some n € N, every
ordinal &, and every 1 < k < n, the units in I'¢ ;.D are defined, we say a
subset U of I'¢ py1.D is a unit if either U = A¢ p41,1.D or if there exists
te MAX(Angrl)l.D) such that, if

j: {S S F€7n+1.D < S} — F€7n.D

is the canonical identification, j(U) is a unit in I'¢ ,.D

2.2. Cofinal and eventual sets. For a fixed directed set D, we now define
sets Q¢ . Each set Q¢ ,, will be a subset of the power set of MAX(I'¢ ,,.D).
Given € CT'g;.D, we can write

E={(0,u) :ue Dy}

for some Dy C D. Then we say £ € g1 if Dy is cofinal in D.

Now suppose that for a limit ordinal { and every ¢ <&, Q¢11,1 has been
defined. For each ¢ <&, let j¢ : (w® + I'¢41).D = T¢q1,10.D be the canonical
identification. Then a subset £ C MAX(T'¢ 1) lies in €¢ ; if there exists a cofinal
subset M of [0,€) such that for every ¢ € M, jc(€ "MAX((w® +T'¢41.D)) €
Qg1

Now suppose that for an ordinal £ and every n € N, €)¢ ,, has been defined.
Then we say &€ C MAX(T'¢y1,1.D) is a member of Q¢1q; if there exists a
cofinal subset M of N such that for every n € N, ENT¢,,.D € Qe .

Last, suppose that for an ordinal £, a natural number n, and each 1 <
i < n, Q¢,; has been defined. Suppose that £ C MAX(I'¢ ,,41.D) is given. For
each t € MAX(Ag ni), let Po={se€T¢,p1.D:t<s}, let j,: P, —T¢,.D be
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the canonical identification, and let j: A¢,1.D — I'¢1.D be the canonical
identification. Let

F = {t € MAX(Ag’nJ’,l)l.D) Dt (5 M MAX(Pt)) S Q§,n}

Then we say £ € Q¢ i1 if j(F) € Qeq.
We remark that an easy induction proof shows that MAX(I'¢ ,,.D) € Q¢ p,
for every £ an n, and if F C £ C MAX(T¢,.D) and F € Q¢ ,,, then € € Q¢ ..
We refer to the sets in ¢, as cofinal in I'¢,.D. We say a subset £ of
MAX(T¢ .D) is eventual if MAX(T'¢,,.D) \ € fails to be cofinal. Each unit
U CT¢p.D is canonically identifiable with I'z 1.D, and as such we can define
what it means for a subset of MAX(U) to be cofinal or eventual using the
identification with I'¢ 1.D.
We next recall some results from [6]. For the following results, we say
d:T¢pn.D—=T¢,.Dis a level map if
(i) for any @ <s<tel¢,.D, d(s) <d(t),
(ii) if U C Ag.D is a unit, then there exists a unit V' C Ag ,, ;.D such that
aU)cV.
Note that since I'¢ ;.D is a single unit, (ii) is vacuous in the case n = 1. Given
a level map d:T¢,.D —T¢,.D, we say e: MAX(I'¢ ,.D) = MAX(I'¢ ,,.D)
is an extension of d if for any ¢t € MAX(T¢ ,,.D), d(t) < e(t). Since T¢ ,.D is
well-founded, any level map d admits some extension. We define an extension

of a monotone map in the same way we define an extension of a level map.
We let II(T¢ ,.D) ={(s,t) €T'¢,,.D x MAX(I'¢ ,.D) : s < t}.

LEMMA 2.1. Suppose that £ is an ordinal, n € N, X is a Banach space,
and (v¢)ter .0 C X is weakly null.

(i) If € c MAX(T¢,n.D) is cofinal, there exists a level map d:T¢,.D —
Len.D with extension e such that (zqw))ter,,.p is weakly null and
e(MAX(T¢,,.D)) C €.

(i) For any k €N, if MAX(T'¢ ,.D) D& = Ule & € Q¢ ., then there exists
1< j <k such that & € Q¢ .

(iii) If F is a finite set and x :II(T¢ ,.D) — F is a function, then there exist
a level map d:T¢n.D — T¢pn.D with extension e and aq,...,0n € F
such that for any 1 <i<n and any A¢ n;.D > s <€ MAX(T¢,,.D), o =
F(d(s),e(t)), and such that (xqu))ter, ,,.p is weakly null.

(iv) If h:1(T¢ ».D) — R is bounded and if € C MAX(T'¢ ,,.D) is cofinal, then
for any § >0, there exist ai,...,a, € R and a level map d:1'¢,.D —
T¢ n.D with extension e such that e(MAX(T¢ ,.D)) C E, for each 1 <i <
n and each A¢p;.D > s <t€MAX(T¢,.D), h(d(s),e(t)) = a; — 6, and
for any t € MAX(T'¢ ,,.D),

Z Pen(s)h(s,e(t)) <6+ Zai.

F<s<e(t)
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REMARK 2.2. Items (i) and (ii) together yield that if MAX(T¢,.D) =
Ule &, then there exist 1 < j <k and a level map d:I'¢,,.D —I'¢ ,.D with
extension e such that (24 )ier, ,.p is weakly null and e(MAX(T'¢ ,.D)) C &;.
A typical application of this result will be to have a real-valued function
h:MAX(T'¢,,.D) = C CR, where C' is compact. We may then fix § >0 and
a finite cover F1i,...,Fy of C by sets of diameter less than 6. We then let
&; denote those t € MAX(I'¢ ,.D) such that h(t) € F;. We may then find d,
e, and j as above and obtain (24 )ter,,.p Weakly null such that for every
t € MAX(T¢1.D), h(e(t)) € Fj;.

Similarly, we will often apply (iii) to a function h; : II(T'¢ ,.D) - C C R,
where C' is compact, by first covering C by F1,..., Fj of sets of diameter less
than . We then define h(s,t) to be the minimum j < k such that hy(s,t) € Fj.

3. Szlenk index

Given a Banach space X, a weak*-compact subset K of X*, and € > 0,
we let s.(K) denote the set of those z* € K such that for every weak*-
neighborhood V of z*, diam(V N K) > . We then define the transfinite deriva-
tions by

and if £ is a limit ordinal,

SE(K) = [ sS(K).
¢<¢
For convenience, we define s¢(K) = K for each € <0. We let Sz(K,¢) be the
minimum ¢ such that s&(K) = &, assuming such an ordinal exists. If no such
ordinal exists, we write Sz(K,¢) = co. We let Sz(K) =sup.-(Sz(K,¢), with
the agreement that Sz(K) = oo if Sz(K, &) = oo for some € > 0. Given an op-
erator A: X =Y, we let Sz(A,e) = Sz(A*By~,¢e) and Sz(A) = Sz(A*By-).
Given a Banach space X, we let Sz(X,e) = Sz(Ix,¢e) and Sz(X) = Sz(Ix).
Given an ordinal £, 1 < ¢ < oo, and M >0, we say K has M-£-g-summable
Szlenk index if for any e1,...,&, > 0 such that s‘g’f sf (K)#@, > el <
M. We say K has &-g-summable Szlenk index if it has M-&-g-summable
Szlenk index for some M > 0. Given an operator A: X — Y, we say A has
&-g-summable Szlenk index if A* By does, and we say the Banach space X
has £&-summable Szlenk index if Iy does. The notion of 0-1-summable Szlenk
index has been previously defined in [13], and it is quite important to the non-
linear theory of Banach spaces and renorming theory. For £ >0 or 1 < g < oo,
the notion of £-g-summable Szlenk index is new.
Suppose X is a Banach space and K C X* is weak*-compact and non-
empty. By a standard compactness argument, Sz(K,e) > wén for each n € N
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would imply Sz(K,¢e) > w*n. Therefore, Sz(K) < wé*! implies that for every
£ >0, we have Sz(K,e) <wn for some n € N. Then if Sz(K) < wtH!, we let
Sz¢(K,e) be the smallest n € N such that Sz(K,e) < w®n. For this K, we
define the &-Szlenk power type pe(K) by

pe(K) :=limsup log Sz¢(K. )
e—0+ | 10g(€)‘
This value need not be finite. We note that if Sz(K) < w®, Sz (K,e) =1
for all € > 0, whence p¢(K) = 0.For completeness, we write pg(K) = oo if
S2(K) > wstt
We remark that if K has M-£-g-summable Szlenk index, then p¢(K) <gq.
Indeed, for any € > 0, if n < Sz (K, ¢),

o 52N (K) =5 s (K,
and efn =3 el < M7 From this it follows that

log Sz¢ (K, £) <log(1+ M7/e%),

13

whence oz Sos( B
lim sup —2 224" ze(Koe)
eso+ |log(e)]
We also recall the following fact. This fact was shown by Lancien [16] in
the case that K = Bx«.

ProposITION 3.1 ([7, LEMMA 3.8]). Let X be a Banach space, K C X*
weak* -compact and conver, & an ordinal.
(i) If for some € >0, Sz(K,e) > w®, then Sz(K,e/n) > win.
(i) If w® < Sz(K) <wstl, then Sz(K) = wttl,
(iii) If S2(K) > w® then pe(K) > 1.

COROLLARY 3.2. If X is a Banach space and K C X* is a weak™-compact,
convex, non-empty set, then either Sz(K) = oo or there exists an ordinal &

such that Sz(K) = w®.

4. The quantities og p ,(K)

Given a directed set D and (z¢)ser,,.p C X, if t € MAX(T'¢ ,.D), there
exist @ =19 < --- <t, =t such that t;, € MAX(A¢ . ;.D) for each 1 <i < n.
We then let

2= Z Pe n(s)xs €co(xs 1t <s<ty).
ti—1<s<t;
This notation should reference the underlying collection (z¢)ser,.,.p, but the
notation will not cause confusion.

Let X be a Banach space and let K C X* be weak*-compact. For z € X,
let rx(z) =0 if K =@, and otherwise let rx (z) = max,~cx Rex*(z). For an
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ordinal £, 1 <p < oo, and n € N, we let ag¢, ,(K) be the infimum of those
a > 0 such that for any directed set D, any (a;)?; € K", and any weakly null
(7¢)tere.,.0 C Bx,

n
o (S0t ) <allonn
{EMAX(Te D) <¢_1 a“%) < of|(a:)izy

We let ag p,(K) =sup,, ag pn(K). Let ¢, (K) be the infimum of those § >0
such that for any directed set D and any weakly null (z)¢cr, ,.0 C Bx,

"1
inf —2t) <.
teMA)lg(ng,n.D) 'K <Z nZ’>

i=1

n
ep

REMARK 4.1. It is an easy consequence of [4, Theorem 2.2] is that if
X is a Banach space, K C X* is weak*-compact, £ is an ordinal, n € N,
>0, Sz(K,e) >w'n, and D is any weak neighborhood basis at 0 in X,
then for any 0 < 4§ < ¢/4, there exist a weakly null collection (2¢)ser,,.p C
Bx and (z})iemax(r.,,.py C K such that for each @ <s <t € MAX(T¢,.D),
Rezf(zs) > 0. In particular, 6¢ ,,(K) > ¢e/4.

Conversely, it follows from [4, Theorem 2.2] and [5, Corollary 5.3] that if
O 1(K) > ¢, sj(f(K) # @ for any 0 <eg <e.

REMARK 4.2. For later convenience, the definition of oy, considers all
weakly null collections indexed by any directed set D. However, in the defini-
tion of ag pp could be taken to include only weakly null collections indexed
by I'¢n.D1, where D; is some fixed weak neighborhood basis at 0 in X. We
will freely use this fact throughout. In order to see why this holds, fix a scalar
sequence (a;)?_; and a positive number a. If we have

n
tEMA)i(I(llt:g,"‘D)TK (; aizf) < a”(“i)?:l”g;

for every directed set D and every weakly null collection (xt)tepw, p C Bx,
then we obviously have it whenever D = D;. For the converse, if there ex-
ists a directed set D and a weakly null collection (Uﬂt)terf ..p C Bx such
that infyenvax(re.,.0) 7K (D aizf) > all(a:)j tllen, we may define a map
¢:T¢ n.D1 — T D such that, with uy =4, (’U,t)tepsm/'[)l C By is weakly
null and for every t € MAX(T'¢ ,,.D1),

n
Yo T Pls zal o,
i=1  Agn.i.D

whence

teMAX D1) (Z i Z P{,n(S)%)

=1 AE,n,i~Dl
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> it iz
tEMAgng,nDﬁK@a )

=1
> au(ai)?:l

n*
ZP

The previous remark will be useful, for example, when considering direct
sums. If A;: X7 — Y] and As: Xo — Y5 are operators, we may wish to con-
sider agypwn(Al DA : X1 D Xo— Y D) YQ) If g < aE,p,n(Al)a we will find
a directed set D; and a weakly null collection (x{)cr, . .p, C Bx, to wit-
ness that oy < a¢pn(A1). Similarly, if as < ogpn(A2), we will find a di-
rected set Dy and a weakly null collection (#7)ser, ..., C Bx, to witness that
Qg < ¢ p.n(Az). By the definition, we do not have control over Dy or Ds, and
the fact that D; need not be equal to Ds is problematic. We will use Remark
4.2 to deduce that, in both cases, we can take Dy = Dy = D, where D is a
fixed weak neighborhood basis at 0 in X; &, Xo.

One inconvenience of the definitions of ¢, and 6, is that they involve
special convex combinations, and the convex coefficient on a vector depends
upon its position in the tree. Therefore even if we know that

a< inf rK E a;z; |,
teMAX(Te -

if d:T¢pn.D—T¢,.D is alevel map such that (zqq))ier, ,,.p is weakly null,
we do not know that

“ <tEMAX(F5 . D) (Z Z ailPe,n (8)2q( ))

i=1t>s€Ae n,i-D

Initially this prevents us from using our combinatorial lemmas to stabilize
certain quantities for members of a given tree (2¢):er,,,.p Which was chosen
to witness that o < ce ., (K). But suppose that (a;)]—; are non-negative reals
and that we have numbers bq,...,b, such that Z?:l a;b; > a, a weakly null
collection (z¢)ser, ,.p C Bx, and a collection (z});emax(r, ,..p) C K such that
for every 1 <i<nand A¢ ;. D> s<teMAX(T¢,.D), Rez;(xs) > b;. Then
for any level map d:I'¢,.D —T¢,.D, any extension e of d, any 1 <7< n,
and A¢pi.D > s <t € MAX(I'¢n.D), Reaf, (a(s)) = bi. Therefore for any
te MAX(T¢ ».D),

TK (Z Z ainvn(s)xd(s)>

1=1e(t)2s€A¢ n,i- D

n
Te(t) (Z > aiﬂ”&n(S)l‘d(s))

i=1e(t)2s€EA¢ n,i. D
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n
> Zazbl > Q.
=1

Therefore if we have a map f: Bx — M into a compact metric space
M, we may apply Lemma 2.1 to the function F :II(I'¢,.D) — M given
by F(s,t) = f(zs) to deduce that for any § > 0, there exist wi,...,w, €
M, a level map d: I'¢n.D = I'c,.D, and an extension e of d such
that das(F(d(s),e(t)), @) = dy(f(zaes)), @i) <6 for each 1 <i<n and
each A¢p D 35 <t € MAX(I'¢,.D), and the collections (24 )iere.,.D;
($Z(t))teMAX(FE,n‘D) C K can be used as described above to deduce that

f P '
@s tEMA)l(nl“s - D) (Z Z a; f,n(s)ﬂfd(s)>

i=1e(t)2s€N¢ n,i-D

Thus we can replace the collection (z¢)ter, ,.p With (24))ter,.,,.p without
losing the inequality coming from the definition of o, or ¢, while sta-
bilizing the function f on each level of the collection. This is the primary
motivation for the next theorem.

THEOREM 4.3. Let X be a Banach space, K C X* weak*-compact, 1 <p <
0.
(i) For a € R, the following are equivalent:
(a) agpn(K)>a.
(b) There ezist non-negative scalars (a;)j—y € Bey, a directed set D, a
weakly null collection (t)ter, .0 C Bx, and o/ > a such that

{t € MAX(T¢ D) : 7k <Z aﬂf) > o/}
i=1
s cofinal.

(c) There ezist non-negative scalars (a;)j—y € Ben, a directed set D,
a weakly null collection (zt)ter, ,.p C Bx, (¥})iemax(e.,..0) C K,
and non-negative real numbers by,...,b, such that a < Z? 1 asb;
and for each 1 <i<n and each Agnl D> s <teMAX(T¢,.D),
Rex}(xs) = b;.
(i) agpn(K) =0 for some n €N if and only if o¢ pn(K)=0 for all n € N if
and only if Sz(K) < wt.
(iii) If R >0 is such that K C RBx~, ag pn(K)<n'~YPR.

weak ™

(iv) agpn(K)=agpn(abs co (K)).

Proof. (i) First assume there exist o’ > a, a directed set D, non-negative
scalars (a;), € By, and a weakly null collection (7¢)tere.,.p0 C Bx such that

£ = {t € MAX(T¢,,.D) : 7k (Z aizf> > O/}
i=1
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is cofinal. For every t € MAX(I'¢ ,,.D), fix z; € K such that

n n
Rexy g a2l | =rx E a2} .
i=1 i=1

Define h : II(I'¢ ,.D) = R by h(s,t) = Rex;(a;zs), where A¢,; 2 s <t €
MAX(T¢ .D). Fix a positive number § such that d(n + 1) < o’ — a. By
Lemma 2.1(iv), there exists a level map d:T¢,.D —T'¢,.D with extension
e: MAX(T¢,,.D) — £ and scalars by,...,b,, € R such that (zqu))ier,,..p is
weakly null, for each 1 <¢<n and each A¢p;.D 3 s <t e MAX(T¢,.D),
Rea ) (aizaw)) 2 by — 6, and for each t € MAX(I'¢,,.D),

o <al <Z aizg@)) = > Pea(s)h(s.e(t) <o+ > b
i=1

i=1 F<s<e(t)

By relabeling, we assume d(t) =t and e(t) = t. Furthermore, by replacing
x; with 0 for any 1 <4< n such that ) — 6 <0 and t € A¢,;.D, we may
assume z; = 0 for any such ¢ and i. We then let b; =0 provided b; — § <0,
and b; = (b} — §)/a; if b; — 6 > 0. Note that the condition b; — ¢ > 0 implies
b; > 0. Then

. t * t
n
22 Z Pe n(s)Rexf (a;xs)

i=1 A¢ pn,iD5<t

n

22(%}2—5) >a —(n+1)5>a.
=1

Now assume there exist a directed set D, non-negative scalars (a;);_, € Ben,
and a weakly null collection (z)¢er, ,.p C Bx such that

n

inf  rg Eaizf > a.
tele n.D —1
i—

Then for any o’ such that
n
inf r a;zl | >ad >a
tGFgwn.D K(z; 7 7,) )
i—

{t S MAX(Fg’nD) TK (Z CL@Z?) > a/} = MAX(F&HD)
=1

is cofinal.
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Obviously the condition in the previous paragraph implies that ag p , (K) >
a. Conversely, suppose there exists (a;)"; € K", a directed set D, and a
weakly null collection (2¢)ser, ,.p C Bx such that

n

By positive homogeneity of 7, we may assume (a;)i_; € Sgz. For each 1 <
i < n, fix a unimodular scalar €; such that a;/e; = |a;|. For each 1 <i<n and
each t € A¢ . ;.D, let a5 :=¢e;z;. For t e MAX(T'¢ .. D), let

= > Peals)as

A¢ n,i-D3s<t
Then for each t € MAX(T¢ ,,.D),

n n
t) gt
T a;zi | =rg lailz;" |
i=1 i=1

Since (2§ )¢er, ,,.p C Bx is weakly null, this finishes (i).

(ii) The main theorem of [4] can be stated as: cg p 1(K) =0 if and only if
Sz(A) < wt. The rest of (ii) follows from the fact that that (e, (K))S2, is
non-decreasing and the obvious fact that ag p ., (K) < nog p1(K).

(iii) This is obvious from Holder’s theorem.

(iv) We let T={e€K:lg|=1} and TK = {ez*: e € T,z* € K}. We first
show that o p . (K) = agpn(TK). Since rx < 11, g pn(K) < g pn(TK).
Fix o < agn,p(TK), non-negative scalars (a;)j_y € By, b1,...,b, € R such
that o < > | a;b;, a directed set D, a weakly null collection (z¢)tere.,,.0 C
Bx, and a collection (e:7)iemax(re.,.p) C TK such that for every 1<i<n
and every A¢,,;.D > s<te MAX(T¢,.D),

b; < Reesxf(zs).
We may fix such constants, vectors, and functionals by (i). Here, the collection

(stx:)teMAX(Fg,n-D) cTK

is written such that |e;] =1 and x} € K for all t e MAX(T'¢ ,.D). Fix R>0
such that K C RBx~ and § > 0 such that nRé+a < Y., a;b;. Fix a finite -
net (g;)¥_; of T. For each 1 <i <k, let & = {t € MAX(I'¢ ,,.D) : |e; — 4| < 6}
By Lemma 2.1, we may relabel and assume there exists a single € € T such
that |e — e <6 for all t € MAX(T¢ ,.D). Let ¢; = b; — RJ, so that

iaici > iaibi —nRé > a.

Note that for each 1 <7< n and each A¢ni-D3s<te MAX(T¢ ,.D),
>b

Rext(z—:xt)kRestxt(xt) le —ed|||lxe]] = bi — RO = ¢.
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We now appeal to (i) to deduce that ag,,(K) > a. This shows that
g pn(K) = g pn(TK).
We now note that for any weak*-compact set L of X™, rp = regwear (1),
whence
g (L) = g (0" (L)),
If L=TK, then
weak ™

abs co (K) =co"* (L),
and

weak™ —_weak*
agpn(absco " (K)) = agpn (@ (L)) = agpa(L)
=g pn(TK) = agpn(K). U

REMARK 4.4. In Theorem 4.3(i), we showed that in order to check the
values of ag p, (K), it is sufficient to check only over sequences (a;);_; € Sen
of non-negative, real scalars. We now note that it is sufficient to check only
over positive, real scalars by density of {(a;)j_, € £} : a; >0} in {(a;){—, € £} :

REMARK 4.5. We note that a weak*-compact set K C X* is norm compact
if and only if ag p 1 (K) =0 for some 1 < p < oo if and only if ey p 1 (K) =0 for
every 1 < p < oo if and only if for any weakly null net (x)) C Bx, rx(xx) — 0.

The results contained in Theorem 4.6 have similar proofs to those contained
in Theorem 4.3, so we omit them.

THEOREM 4.6. Let X be a Banach space, K C X* weak®-compact.
(i) Oen(K) =0 for some n €N if and only if 6¢ n(K) =0 for all n € N if
and only if Sz(K) < wt.

(ii) If R>0 is such that K C RBx+, ¢ n(K) <R.

(iii) Oc.(K) = 0¢n(abs co " (K)).

(iv) For 8 € R, 0 n(K) > 0 if and only if there exist a directed set D, a
weakly null collection (x4)ier, .0 C Bx, (2})temax(re.,.0) C K, and real
numbers by,...,b, such that On < Z?:l b; and for each 1 <i<n and
each A¢ i.D > s <t € MAX(T¢ ,.D), Rez}(zs) 2 b;.

PrROPOSITION 4.7. Let X be a Banach space and let K C X* be weak*-
compact. The assignment wsn — 0¢ ,(K) is continuous and non-increasing
from {wn: & € Ord,n € N} into R. That is, if wSm < wén (which happens
if and only if ( <& and either ( <& or (=& and m < n), then O¢,(K) <
Oc,m(K), and for any ordinal &,

Oc1,1(K) =inf{b¢ ,,(K) :n € N}
and if £ is a limit ordinal,

O¢ 1 (K) =inf{0c n(K): ( <&neN} =inf{fc11(K): ¢ <&}
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Proof. In order to see that wsn + ¢ ,,(K) is non-increasing, it is sufficient
to show that for any ordinal £ and n € N,

(i) O ny1(K) < Ogn(K),
(i) Oet1,1(K) < O n (K),
(iii) for any limit ordinal A > ¢, 0 1(K) < 8ep1,1(K).

Let us show (i). Suppose ¥ < 6¢ n41(K), a directed set D, a weakly
null collection (z¢)¢er,.,,,.0 C Bx, and non—negative numbers by, ...,bn11
such that Z?Jrll nb ;>0 and for each 1 <i<n+1 and AepniD > s <
t € MAX(T¢ nt1.D), Rexf(zs) > b;. Now for each 1<i<n + 1, let T; =
{1,...,n+1}\ {i}. We note that for any 1 <i<n+1, ZjeT,; 7 e n(K).
Indeed, by Lemma 2.1, there exists a level map d:I'¢,,.D — I'¢ ,,41.D such
that d(A¢.rn,;.D) C Ag py1,;.D for each j < i and d(A¢,, ;.D) C Ag pt1,j4+1.D
for 7 >14. Then if e is any extension of d,

b, , »
S f o | <Oen(K).
Z n tEMA)l(I(ng D)Reme(t <Z Z Dn La( )) O.n(K)

JET; J=le(t)>s€A¢ n ;-
Then
n+1 n+1
U< Z n + 1 z; Z (n —1— 1)n
i=1jeT;
n+1 n+1
n+1§;g; n+1§:%”
=0 o (K).

This yields (i).
Now if ¥ < 0¢11,1(K), we may fix a weakly null collection (z¢)ter,,,,.n0 C
Bx such that

inf ’I“K P 1, 1 ) > 1.

Now since Pey1,1(s) =n"'P¢ ,(s) for each s € T¢ ,,.D,

< inf P s
el K (Z 5+1,1(S)$)

s<t
< inf r P s\
teMAX(I'¢.,,.D) K(; e+1,1(8) s)
= inf Pe (s)z. |
teMAX(T¢ p, (g t>S€Az§:n b £,n( ) s)

Therefore (4)iemax(r.,,.p) Witnesses that ¢ <0 ,,(K), which yields (ii).
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For (iii), we argue as in (ii), noting that there is a canonical map
JjiTer11.D—=Tx1.D such that P§+171(t) = Pk7l(j(t)) for any t € Pepi1.D.
Thus any collection witnessing that ¥ < 0 1(K) has a subset witnessing that
¥ <Oeq11(K).

It follows from what we have already shown that for any ordinal &,

9§+171(K) < 1nf{951n(K) ne N}

Now if ¥ <inf{f¢ ,(K):n € N}, for a fixed weak neighborhood basis D in X
at 0 and for each n € N, we may fix (2¢)ser, ,,.p C Bx such that

- 1
0 inf —P¢ s
<teMA>1<r(1F5,n.D)TK (Z Z n (s)x)

1=1 t}SEAgyn’i.D

v

inf K E P5+1 1 .CCg
tEMAX(F5+1 1- D)ﬂFs n-D s<t

Then (24)tere,y,.0 = (T)tey= 1e.,.p Witnesses that ¥ < 0gy1,1(K). This
yields that
Oc 1,1 (K) =inf{f¢ ,(K):neN}.

It also follows from what we have shown that for a limit ordinal &,

0571([()ginf{9<+171(K):C<f} mf{GCn <<§,HEN}
We argue similarly to the previous paragraph to deduce the reverse inequality.
For ¥ <inf{f¢1,1(K): ( <&}, we may fix a weak neighborhood basis D at
0 in X and for each ¢ < § a weakly null collection (})ter,,,,.p0 C Bx such
that

9 < inf r P

EMAX (T 11.D) (; c+11( )
Now if je: (w¢ + Tep11).D — Tep11.D is the canonical identification,
(%) )tere.,.p witnesses that ¥ < 0¢ 1 (K). O

COROLLARY 4.8. Let £ be an ordinal, 1 <p,q< oo with 1 <p and 1/p+
1/¢g=1, X a Banach space, and K C X* weak*-compact.
(i) inf, O¢ ,(K) = limsup,, ag p.n(K)/n'/9.
(ii) Sz(K) <w tt if and only if inf,0¢ ,,(K) =0 if and only if

limsup,, agp.(K)/n'/?=0.

Proof. (i) First note that inf,, 0¢ ,,(K) = lim,, 6¢ ,,(K), since (04, (K))o>;
is non-increasing.

Since ||(1/n)1,

Bx,
inf E a,
tGMAPI(I(ng,n < “ ) agpn(K)/n

o= 1/n'/4, it follows that for any weakly null (2¢)ser, ., C
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Thus ¢, (K) < ag pn(K)/nt/9, and
inf O¢ ,, (K) < limsup,, ¢ p.n (K).
Now to obtain a contradiction, assume

inf 0 ,, (K) < ¥ < 0 <limsup,,ae p ., (K).

Let R > 0 be such that K C RBx-. Fix Ny € N such that 0 ,,(K) <9 for
all n > N7 and fix Ny so large that Ny < (0 — 19)N21/q/R. Now fix n > Ny
such that o, (K)/n'/? > 6. There exist a sequence of non-negative scalars
(a;)j—1 € Bep, scalars by, ..., b, € [0, R] such that On'/1 <31 a;b;, adirected
set D, a weakly null (z;)ier,,.p C Bx, and a collection (7} );emax(re.,.n) C
K such that for every 1 <¢<n and each A¢,;.D>s<te MAX(T'¢,.D),
Rexj(zs) 2 b;. Now let S={i<n:b; =29} and let T={1,...,n}\ S. Then

On'/ gRZaH—ﬁZai

€S €T
< R‘S| + ||(ai)i€TH£LT\19|T|1/q
< R|S| +9nt/.

From this it follows that |S| > (6 — 9)n'/9/R > Ny.

There exists a map d : I'¢ |g|.D — I'¢ ,,.D such that, if S = {s; <--- <s/g/},
d(A¢,s1,i-D) C Agon,s;-D, and such that (z4(s))ser, o0 is weakly null. Let
e : MAX(T¢ |g/.D) — MAX(T¢ ,.D) be any extension of d. Then for any
(s,t) € H(T¢,5-D), Rex} ) (zay) = 0. The collection (wq))ier,, 5.0 yields
that 0¢ 5/ (K) > 0, a contradiction.

(i) By Proposition 4.7 and Theorem 4.6, Sz(K) < w®*! if and only if
limn 957n (K) = infn 957n (K) = 954_1,1 (K) =0.

The equivalence of the last two conditions follows from (i). O

REMARK 4.9. From Corollary 4.8, it follows that if a¢ ,(K) =a < oo for
some 1 < p < oo, S2(K) <wtT'. Indeed, lim, ag p ,(K)/n'/9 <lim, a/n'/? =
0.

We will need the following. The first part of the proposition is contained
in [7, Proposition 3.5], although not stated in precisely this way. The second
part of the following proposition follows immediately from the first.

ProrosiTION 4.10. If X is a Banach space, K C X* is weak*-compact,
bi,...,b, are non-negative scalars, and if there exists a directed set D, a weakly
null collection (z¢)ter, .0 C Bx, and (asZ‘)tEMAX(Fg’”_D) C K such that for
every 1 <i<n and each A¢,;.D>s<teMAX(T¢,.D), Rez}(zs) > b;.
Then for any 0 < <1,

13 3
Szbl "'Szbn(K) #@.
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For ¢ >0, m € N such that Sz(K,e) < w*m and (z¢)tere.,,.0 C Bx,
(l't)teMAx(ngn.D) CK, and by,...,b, are as above,

[{i<n:b;>e}| <

THEOREM 4.11. Let X be a Banach space, £ an ordinal, and let K C X*
be weak* -compact.

(i) If ¢=max{pe(K),1} and 1/p+1/q=1,
p=sup{r € [1,00] : ag ,(K) < o0}.
(ii) If1<g<oo and 1/p+1/q=1, K has {-q-summable Szlenk indez if and
only if ae p(K) < 0.

Proof. (i) Let = sup{r € [1,00] : a¢ ,(K) < oo} and let 1/a+1/5=1.
The fact that 8 < p follows from the proof of the main theorem of [7]. For
the reverse inequality, if p=1, p < 8 and we have 8 =p. So assume 1 < p.
Fix 1 <r <p and let 2s =7 + p. In the proof, r’, s’ denote the conjugate
exponents to r,s, respectively. Let C' = 2?21@%75%)1 < oo. Fix R > 0 such
that K C RBx-. It follows easily from the definition of p¢(K) that there
exists €1 € (0,1) such that for every 0 < e <ey, Sze(K,¢) < 1/e%. Let m =
1/e5" and C; = Rm!/™ 4+ 2V/5'm!/"" C. Now fix n € N, non-negative scalars
(ai)iey, @ < agpn(K), (xt)ier, .0 C Bx, functionals (});emax(re.,.0) C K,
and by,...,b, C [0, R] such that >, a;b; > a and for each 1 <i <n and each
AeniD>os<e MAX(Fg n-D), Rexj(xs) = b;. For each [ € N, let

{z n:b; € (127 512<]}

and let
={i<n:b; € (e1,R]}.

By Proposition 4.10, since Sz¢(K,e1271%") <1/(,27V)* = m2l, it fol-
lows that |S;| <m2'. Since Sz(K,e1) <m, |So| < m. Now let

=2

JESo

=32

JES
Then [ly5lle,, = |So*/" < m!/™" and for each [ € N,

and for each [ € N, let

*

vill,, =27 S <2 9 =t

0,
Let ,
y =Ry + 2173 (2 )y
leN
and note that ,
Hy*”e , < le/r’ +21/s’m1/r 0201
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Furthermore,

a< Xn:aibi < Z a;b; + i Z ab; <y* <i a¢6i>
i=1 i=1

€S0 I=1i€S,
<@,
Therefore, ag¢ (K) < Ch.

(ii) Assume that K fails to have {-g-summable Szlenk index. Then for
any M > 0 there exist e1,...,6, > 0 such that s?f -~-s§j (K) # @ and
>oi1(e:/5)9 > M4. Then arguing as in [4, Lemma 3.4], we may fix a weak
neighborhood basis D at 0 in X, (z¢)ter, ,.p C Bx, and (2} )iemax(re.,..n) C
K such that for each 1 <i<n and each A¢,;.D>s<teMAX(T¢,.D),
Rezj(xs) > &;/5. Now fix a1,...,a, C[0,1] such that [|(a;)i;[le; =1 and
S aiei/5= (31 (:/5)9)Y9 > M. From this, it follows that
Zaizf
i=1
We therefore deduce that ag ,(K) = oco.

Now if a < ag,p,n (K), there exist a sequence of positive scalars (a;)i_; € Ben
and a weakly null collection (.Tt)terg ..p C Bx such that

a< inf rK E a;z;
teMAX(De -

Then there exist non-negative scalars by, ..., b, € R such that a < Z?:l b; and
for each 1 <i<n and each A¢,;.D>s<teMAX(T¢,.D), Rex;(ajzs) >
b;. Fix 0 <t <1 such that o < ¢ > 1 ;b;. Then by Proposition 4.10,

S’l/Jbl/al o wan/an (K) # 2. Now

a<¢zbi=¢zai(bi/a0
=1 =1 § l/q ) 1/q
<9 (as)izy ||gg <Z(bi/ai)q> <Y <Z(bi/ai)q> :

« K)> inf
&pin(K) teMAX(T¢,,,.D)

>iaiei/5>M.
=1

i=1 i=1
From this it follows that K does not have a-£-g-summable Szlenk index.
Therefore if o¢ ,(K) =00, K does not have {-g-summable Szlenk index. O

COROLLARY 4.12. Let X be a Banach space, £ an ordinal, K C X* weak*-
compact.

(i) For 1 < q¢ < oo, K has &-g-summable Szlenk index if and only if

weak ( )

abs co does.

(ii) pe(abs co" ™ (K)) = max{pe(K), 1}.
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Proof. Let 1/p+1/q=1. Then og¢ p »(K) = a¢ p n(abs o (K)) by The-
orem 4.3, whence a¢,(K) < oo if and only if ag,(abs o (K)) < oc.
By Theorem 4.11(ii), the former condition is equivalent to K having &-¢-

summable Szlenk index and the latter is equivalent to abs coweak* (K) having
&-g-summable Szlenk index.
We deduce (ii) using (i) together with Theorem 4.11(i). O

5. Banach ideals

In this section, we let Ban denote the class of all Banach spaces over K.
We let £ denote the class of all operators between Banach spaces and for
X,Y € Ban, we let £(X,Y) denote the set of operators from X into Y. For
Jc £and X,Y € Ban, we let J(X,Y)=TNL(X,Y). We recall that a class
J is called an ideal if

(i) for any W, X,Y,Z € Ban, any C € £(W,X), Be€ J(X,Y), and A €
L£(Y,Z), ABC €7,

(i) Ix €7,

(iii) for each X,Y € Ban, J(X,Y) is a vector subspace of £(X,Y).

We recall that an ideal J is said to be

(i) closed provided that for any X,Y € Ban, J(X,Y) is closed in £(X,Y)
with its norm topology,

(ii) injective provided that for any X,Y,Z € Ban, any A: X — Y, and any
isomorphic (equivalently, isometric) embedding j : Y — Z such that jA €
J, A€,

(iii) surjective provided that for any W, XY € Ban, any A: X — Y, and
any surjection (equivalently, quotient map) ¢ : W — X such that Aq € 7,
Aed.

If 7 is an ideal and ¢ assigns to each member of J a non-negative real value,
then we say ¢ is an ideal norm provided that

(i) for each X,Y € Ban, ¢ is a norm on J(X,Y),
(ii) for any W, X,Y,Z € Ban and any C € £(W,X), Be J(X,Y), A€
I, Z), (ABC) < [|A[l«(B)[|C],

(iii) for any X,Y € Ban, any x € X, and any y € Y, v(z @ y) = ||z||||y]|-

If 7 is an ideal and ¢ is an ideal norm on J, we say (J,¢) is a Banach ideal
provided that for every X,Y € Ban, (J(X,Y),¢) is a Banach space.

Fix an ordinal £, 1 <p < oo, and let 1/p+ 1/g=1. For an operator A:
X =Y, let ag ,(A) = ||A|| + ae p(A). Let 2 ,, denote the class of all operators
A with £-g-summable Szlenk index.

THEOREM 5.1. For any ordinal & and 1 <p < 0o, the class (U¢ p,aep) is a
Banach ideal.
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Proof. Fix Banach spaces X,Y. We first show that ag, satisfies the tri-
angle inequality. Fix A, B: X — Y, a directed set D, a weakly null collection
(7¢)tere.,,.0 C Bx, and a scalar sequence (a;);-; € ng. Fix aa > g pn(A)
and ap > ag pn(B). Then the sets

Ea= {t € MAX(T¢,,.D) : AZaizf

/N

Q

bS
—

and

5B:{tEMAX(I‘§,n.D): BZaizf <a3}

are eventual. From this, it follows that £4 NEp # &. Then for any s € E4NEp,

(A+ B) Zz (A+B) Za,

From this we deduce the triangle inequality for g ,, and therefore for ac .
From here it is easy to see that a¢,, is a norm on £(X,Y).

Now fix a Banach space Z and fix A: X =Y. For B:Y — Z, a directed
set D, n € N, a scalar sequence (a;)/", € By, and a weakly null collection

(zt)tere ..0 C Bx,

BAZaz AZZ

From this it follows that ag¢ ,(BA) < ||B|lag,p(A). For B: Z — X, a directed
set D, n € N, a scalar sequence (a;)!, € Bg;, and a weakly null collection

(zt)tere,..0 C Bx,

inf

<aa+ap.
teMAX(T¢,,.D)

inf

< ||B]| inf
teEMAX (T, -

I|B A
ol | Bllagpn(4).

n

ABsz

i=1

< inf b inf
b>[|B| teMAX(T¢.,.D)

< inf bag,q(A
pmE boepn(4)

= |Bllag p.n(A)-

From this it follows that a¢ ,(AB) < || Bl|ag p.

Since g p(A) =0 whenever A is a compact operator, we deduce that 2 ,,
is an operator ideal and a¢ ;, is an ideal norm.

We last show completeness. Fix a sequence (Ag)52, of a¢ ,-Cauchy opera-
tors from X to Y. This is also a norm Cauchy sequence, which must converge

in norm to some A : X — Y. We note that since og j ,, is Lipschitz continuous
on £(X,Y),

inf
teEMAX(T¢ . D)

AZb ' Bz}

i=1

e p(A) = st:bp g pn(A) = sup hm o pn(Ag) < sup hm ag p(Ag)
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= limsup o p(A) < 00
k

and
limsup ag ,(A — A;) =limsup;ce (A — 4;)
!

= limsup sup lim sup, ae p.n (Ar — A1)

l n

< limsupsup, limsupy e ,(Ar — 4;)
!

= lim sup limsup c¢ , (A, — A;) =0. O
! k
REMARK 5.2. We have already shown that ©; C ¢ , C D¢qq. It is con-
tained in Section 7 of [7] that each of these inclusions is proper. Furthermore, it
is contained in Section 7 of [7] that for any ordinals &, ¢ and any 1 < p, ¢ < 00,
Ae p # A g unless (€,p) =((,q), f E<Corif E=¢ and p>q, Wep, CTAe g,
and ngyq - ‘3:57;0 C 91571,.

REMARK 5.3. It is easy to see that the class of £-asymptotically uniformly
flattenable operators, denoted by T¢ o in [6], is contained in A, for every
1 < p < oo. It was shown there in [6, Proposition 6.5] that for any ordinal &,
there exists a Banach space X such that T¢ (X, X) contains an operator
which cannot be renormed to be £-p-AUS for any 1 < p < co. This example
also shows that none of the classes 2l¢ , is closed.

Brooker [3] showed that for any ordinal &, the class of all operators with
Szlenk index not more than w® is a closed operator ideal. An argument similar
to that of Theorem 5.1 allows us to provide another proof of this fact which
is dual to Brooker’s proof.

THEOREM 5.4. For any ordinal £, the class D¢ of operators with Szlenk
index not exceeding wt is a closed operator ideal.

Proof. Arguing as in Theorem 5.1, one proves that 8¢ ; defines a seminorm
on £(X,Y) for each pair X,Y of Banach spaces. Furthermore, 6¢1(A4) =0
for all compact operators and ¢ 1(ABC) < ||A]|0¢,1(B)||C|| for any Banach
spaces W, Z and any operators C: W — X, B: X —-Y,and A:Y — Z. Last,
by Theorem 4.6(ii), 6¢ 1 is 1-Lipschitz. From these facts, it follows that the
class of all operators A with 6¢1(A) =0 is a closed operator ideal. But by
Theorem 4.6(i), this is precisely the class of operators with Szlenk index not
exceeding w¢. O

PROPOSITION 5.5. For any ordinal { and any 1 < p < oo, Ae , and D¢ are
injective and surjective.

We need the following easy piece.
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PROPOSITION 5.6. Suppose q: W — X is a quotient map, (xx)xep, C Bx
is weakly null, and v is a weak neighborhood of 0 in W. Then for any b > 2,
there exist A € D1 and w € bBy Nv such that qw = x.

Proof. By replacing v with a subset, we may assume v is convex and sym-
metric. Fix > 2 and § > 0 such that é By C %v and 2+ 36 < b. For each A,
fix uy € (1 + 0)Bw such that quy = x. By passing to a subnet, we may as-
sume that (uy)xep, is weak*-convergent to some u** € (14 §)Byy««, and that
Un, — U, € %v for all A1, A2 € Dy. Since (x))rep, is weakly null, there exist a
finite set F'C Dy and 2 =), paxzy € co(xy : A € F) such that |z| <J. We
may fix u € 0 By C %v such that gu =. Then let w=wuy, — ZAGF axuy + u.
Then

lwl <T+0+ ) ax(1+48)+d6=2+35<b,
AEF
QW=2T), — T+ T =1y,
and
w:ZaA(u,\l—uA)—l—wE%v—&—%v:v. 0
AEF

Proof of Proposition 5.5. Injectivity is easy, since for any operator A : X —
Y and any isometric isomorphism j:Y — Z, clearly ¢ pn(jA) = ag¢pn(A)
and 0¢ ,,(jA) =0¢ ,(A) for all ordinals &, all 1 <p < oo, and all n e N.

For surjectivity, we will show that if A: X — Y is an operator and
q: W — X is a quotient map, then ¢ , n(A) < 20 p . (Ag), and a similar argu-
ment will yield that 6 ,,(A) < 26¢ ,(Ag) for any ordinal &, any 1 < p < oo, and
any n € N. Fix a < ag pn(A), a directed set D, (b;)i; € Sgz, and a weakly null
collection (x¢)ser, .0 C Bx such that infenax(re.,.p) 4D i biz| > a.
Fix b> 2 such that inf;eniax(r,,.0) |AY i bib~'2}|| > a/2. Let Dy be any
weak neighborhood basis at 0 in W. We may now recursively apply Proposi-
tion 5.6 to deduce the existence of some collection (IUt)tE[‘g,n_Dl C bBy and a
length-preserving monotone map ¢ :I'¢ ,.D1 — I'¢ ,,.D such that

() if (¢, vi)k ) = (i, wi)ky, then ¢ =mn; for all 1 <i <k,

(ii) qw; = x4y for all t € T¢ .Ds.

Indeed, if ¢t = s ~ ((,v) € I'¢ ,.D1 and either s = & or ¢(s) has been de-
fined to have property (i), we apply Proposition 5.6 to the weakly null net
(Tp(s)~(c,u))uep to deduce the existence of some u; € D and w; € bBw Nv
such that qu; = T4 (s)~(¢,uy)- We then let ¢(t) = ¢(s) ~ (¢, u1).

Note that for any t € MAX(T¢ ,,.D1) and any 1 <i < |t], ¢(t];) = ¢(¢)]; and
Pen(¢(tli)) = Pen(tli), whence

qui Z Pgm(s)b_lws = zn:bi Z Pg,n(s)b_lxs
i=1

i=1 t2s€MNg n,i-D1 ¢(t)=2s€Ae n,i.D
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and

inf
teMAX(Te,n.D1)

Aqu Z Pe ()b 1wy

=1 t>8€A5,nyi.D1

AZb > Pe . (s)b~ s

i=1  ¢(t)2s€A¢n D

= inf > af2.

teMAX (T n.D)

Since (b wy)ter,.,.p, is weakly null and a < ag . (A) was arbitrary, we are
done. O

REMARK 5.7. Note that if u is any weak neighborhood of 0 in ¢; and
if m € N, there exist m <i < j, i, € N such that %(ei — e;) € u. From this
we can easily deduce that 6¢,(¢1) =1 for all ordinals £ and all n € N, and
g pn(f1) =n'1/P for all ordinals ¢, all 1 < p < oo, and all n € N. Indeed,
for any weak neighborhood basis D at 0 in ¢;, we may recursively define for
t€l'¢,.D avector xy = %(eit —e;,) such that for all t € T'¢ ,. D, iy < ji, if s,t €
Len.D and s <t, js <i¢, and if ¢ = (¢, u4)7oy, T4 € un. Then (v4)ier, ,, C By,
is weakly null and || Y"1 a;2f||¢, = >0, |a;] for all scalar sequences (a;);.

From this, one can also deduce that if A: X — Y is an operator, Z is
a subspace of X which isomorphic to ¢;, and if A|z is an isomorphic em-
bedding, then infecorafe,1(A) > 0. Indeed, we first fix isomorphisms o :
lh— Z, B:A(Z) — ¢y such that Iy, = fAa, so that O¢1(Alz: Z — A(Y)) >
0e1(Te))/lallllB] = 1/llall 8] by the ideal property. Now if j : A(Z) - ¥ is
the inclusion, it is clear that

65$1(A X = Y) > 9§,I(A|Z = Y) = 95’1 (A|Z 7 —)A(Z))
6. Applications of Corollary 4.12

In this section, we prove an embedding result together with a result con-
cerning injective tensor products.

COROLLARY 6.1. Fiz a countable ordinal §& and 1 < g < oo. Let X be a
separable Banach space.

(i) If pe(X) < g, then there exists a Banach space W with a shrinking basis
such that pe(W) <q and X embeds isomorphically into W.

(ii) If X has £-q-summable Szlenk index, then there exists a Banach space
W with shrinking basis having &-q-summable Szlenk index such that X
embeds isomorphically into W.

Proof. Schlumprecht [21] proved that if X* is separable, after renorming X,
there exist a weak*-compact set B* C Bx+, a Banach space Z with shrinking
FDD which contains a subspace isometric to X, a subset B* of Bz«, and a
map I* : B* — B* such that

weak™

(i) abs co (B*) = By,
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(ii) for any n € N and any &1,...,&, >0,

I (s o520 (BY)) C 82525 (B).
The construction of the space Z is the main construction of [21], while the
estimate in (ii) follows from [21, Lemma 5.5]. Then for a countable ¢ and
1 < ¢ < o0, either property pe(-) < ¢ or having §-¢g-summable Szlenk index
passes from Bx« to B*, since B* C Bx~, from B* to B* by (ii) above and
Theorem 4.11, and from B* to Bz« by Corollary 4.12.

Now if (F,)52; is the FDD of Z, by a technique of Pelczynski [18], for
each n € N we may fix a finite dimensional space H, such that F,, is 2-
complemented in E,, = F,, ® H, and E, has a basis with basis constant not
exceeding 2. Then if H = (6,2, Hy)c, and if W = Z @& H, W has a shrinking
basis and has pe(W) < ¢ (resp. &-g-summable Szlenk index) if Z has this
property. Here we are using Theorem 4.11 together with Theorem 5.1 and the
fact that pe(H) < po(H)=1<¢q and a¢ ,(H) < ap,o0(H) < 1. O

In [11], the question was posed as to whether having summable Szlenk
index passes to injective tensor products of Banach spaces. This question was
answered in the affirmative in [8]. In Corollary 6.4, we generalize that result
to £-g-summable Szlenk index.

Let us recall that the injective tensor product is the closed span in £(Y*, X)
of the operators x ® y: Y* — X, where z ® y(y*) = y*(y)x. For i = 0,1, if
A;: X; —Y; is an operator, we may define the operator Ag® A; : Xo ®. X1 —
Yy @ Y1. This operator is given by Ag ® A;(u) = AguA} : Y — Yy. Given
subsets Ko C X, K1 C X, we let

[Ko,Kl] = {1‘6 ®ZET 11'3 € K(),J,'T S Kl} C (XO ®5 Xl)*
We observe that the map
X())k @))(iK DKygx K> (IS,LCT) H!L‘S ®1’T S [Ko,Kl]

is weak*—weak™ continuous if Ky, K; are bounded. We recall that any non-zero
ordinal ¢ can be uniquely written as £ = w& +---+wé" for some & > --- > &,.
One obtains such a representation by first writing £ in its Cantor normal form

E=wrmy + -+ wFmy
for some g1 > --- > ¢, and m; € N, and then writing w®m; =w® + --- + w®.

LEMMA 6.2. Suppose that for i=0,1, A;: X; = Y; is a non-zero operator.
Let R =max{||Ao||, || A1]|}. For any & >0, any € > 0, any finite set J, and any
weak” -compact sets Ko ; C X5, K1, CX{, jeJ,

WS k4w Ky, WELL 4 wbn
S§<U[Ko,ij1,j])C U [seum T (Ko ) st (K y)],

jed kitli=1
jeJ

where & =W 4 fwhn &1 = =&, and it is understood that k;,1; € {0,1}.
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Proof. To obtain a contradiction, assume the lemma does not hold, and
let £ > 1 be the minimum ordinal for which the statement fails. Write £ =
WS Wb £ > > €, We consider three cases.

Case 1: £, =0. Then wé =1 and £ =( + 1, where ( =W’ +--- 4+ w1 if
n>1and ( =0 if n=1. Then by the inductive hypothesis applied to (,

Sﬁ(U [KotjaKl,jD

jeJ
=Se<8§<U[K0,j7K1,j])>
jeJ
WS ey ot wSn—1k,, 4 W e wbn =17, 4
C e U [35/41% (Ko.,3):5./4r (K1) )-
ki+l;=1
jeJ

By [8, Proposition 5.1],

1y 4o twsn—1Fk, 1] 4 fwin—1],,
55< U [5:/4}31 wén 1(K07j),s“;/4R1 wtn 1(K1,j)]>

k;i+1;=1
jeJ

Ep—
C U s (semtet e K ),

st )

- Wil k4 Fwink, WL 4 fwbin,
= U [35/41%1 (Ko.3):824r (K1),
ki+li=1
jeJ
a contradiction. Here we are using the convention that if n = 1, the first union
is taken only over j € J and

1k 4 dwln—1
WSk 4w kn_1 _ )
Sc/4R (Ko,j) = Ko,

and
WLl wn 1L,

Se/4AR (K1) = Ky
Case 2: &, is a limit ordinal. Fix

* WSl e wbn—1 44,6
u GSE(U[KO,%KL]']) = n g e <U[K0,jaK1,j])~
jeJ (<&n jeJ

Then for every ¢ < &, there exist (kf)?zl € {0,1}" and j. € J such that, with
1§ =1-k,

€1k< 57171’1@( kS §1lC énfllC (919
* w i+ tw no1Tw kg wrtlptetw no1Tw
T € [85 (Ko,j<)785 (Kl,jg)]'
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Then there exist a cofinal subset M of [0,&,), j € J, and (k;)"q, (1), €
{0,1}" such that k; = kS, I; =15, and jc = j for all ¢ € M. Then
ut e ﬂ Wikt w1k, 14w ky (K()’j),3:}51ll+m+w£n71l”71+w<ln(KL]')}~
ceM
Now for each ¢ € M, we may fix

W kg w1k, 1 +wk, .
730( €s (KO,J)

and
1] 4+ dwlin—1 S
LCT’C S 8‘: bl e n-1tw ln(KLj)

such that xac ® 37;{’< =u*. Then if

weak”
(z5,27) € m {(xé,gamik,g)::“<<€M} C(Xo® X1)",
n<én

wt=af @] € [se e (I ), s e (1)),

Since this holds for any u* € SS(U]'EJ[KOJ, K j]), we reach a contradiction.
Case 3: &, is a successor ordinal, say £, =( + 1. Fix

* Wil 4 dwSn—1405m
u GSS(U[KOJ’KL]']> = ﬂ g e <U[K0,j7K1,j])~
jeJ meN jeJ
Then for every m € N, there exist j,, € J, (™)™, (I™)*; € {0,1}""! and
Py dm C {0,...,m} with p,, + ¢ =m and k" + 17" =1 such that

X WS ET w1 R 4wl pyy, WS ST 40l g,
S l:SE ( 9 9F (

KOJ() S Klyjc)]'

Then there exist a cofinal subset M of N, j € J, and (k;)"=' € {0,1}"~! such
that k; = k™ and j,, = j for allm € M. Let k,, =1 and I, = 0 if {p,, : mm € M}
is unbounded, and otherwise let k, =0 and [,, = 1. Then

ut e m 51k1+ w1k, 14wt (Ko ;), 8 w4 w1, 4wt (K, )]
meM

X

Now for each m € M, we may fix

* 1k 4odwbn—1k, 1 4wS
xo,me‘s;} 1 w n—1TW an(KO )

and
wél En—1
331 ES Iy twSn—11, 14w qm(Kvlj)

such that zg ,, ® 27 ,,, = u*. Then if

(z5,27) m{ LY s 5 ) l<m€M} C (Xo® X1)",
leN

3 &n 3 &n
[ Pt b (g ), 527 ottt ()G ).

)

uwr=z5®@2] €
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Since this holds for any u* € Sg(UjeJ[K07j,K1,j]), we reach a contradiction.
0

Iterating the previous result immediately yields the following.

COROLLARY 6.3. Suppose that fori=0,1, A; : X; = Y; is a non-zero oper-
ator. Let R =max{| Aoll, ||A1]|}. For any ordinals &1,...,&n, any 1,...,6, >
0, any finite set J, and any weak*-compact sets Ko ; C X5, K1,; C X7, j€J,

w& LL)E7L
s o Se. (U [K07j,K1,j]>
jeJ
wélkl &nk K w €1, £nl K
c U [851/41?,"' sn/4R( 0.4); Sey /AR Se, /4R( 1,5)]-
jeJ
COROLLARY 6.4. Fix an ordinal & and 1 < g < oo. Let Ag: Xg— Yo, A1
X1 =Y, be operators and let Ag ® A; : Xo @ X1 — Yo ®. Y7 be the induced
operator. Then if Ag, A1 have £-q-summable Szlenk index, so does Ay ® Aj.

Proof. If either operator is the zero operator, the result is trivial. As-
sume Ag, A1 # 0 and let R = max{||Ao||, ||41]|}. Suppose Ay (resp. A;) has
My (resp. M;)-&-g-summable Szlenk index. Let K = [AjByy, AfBy]. Sup-
pose €1,...,6, > 0 are such that s §~~~s g( K) # @. Then by Corollary

6.3, there exist (k;);_; € {0,1}" such that s /IZIR - 5574R(A*BY0 ) # @ and
$(1—k1) wé(1—ky)

521/43 o Ss /AR (A*BYO*) # . Then

> ki(ei/AR)" < M
=1
and
> (1= ki)(ei/4R)T < MY,

whence
n

> el <49RI (MG + M),

i=1
and K has 4R(M{ + M{)'/4-summable Szlenk index. Since co™*** (K) =
(Ao ® Al)*B(Y()@EYl)* by the Hahn—Banach theorem, Corollary 4.12 yields
that Ag ® A1 has £-g-summable Szlenk index. O

In light of Theorem 4.11, Corollary 6.4 also offers another proof that having
&-Szlenk power type not exceeding ¢ also passes to injective tensor products,
which was shown in [11] in the case £ =0 and in the general case in [6].
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7. Direct sums

In the final section, we are concerned with the behavior of the Szlenk in-
dex and a¢, under ¢, and ¢y direct sums. More specifically, we will have
some set A and some collection (Ay : Xy — Y))xea of Asplund operators
such that supycy [|[Aa|l < co. To avoid incredible inconvenience, for a sub-
set T of A, we agree that fo(Y) shall mean c¢o(T). We may then define
Ep = (GBAEA X)\)EP(A) and F, = (69)\6/\ Y)\)gp(/\) for p € {O} U [I,OO] We also
define for each subset Y C A the projections Py : E, = E,, Qv : F}, = F}, by
Pr(za)rea = (Ix(AN)za)rea and Qr(ya)rea = (Ix(M)ya)aea. For A€ A, we
let Py = Ppyy and Qx = Qyx}. For each p € {0} U[1,00], we then identify Xy
with P)\(Ep) and YA with Q,\(Fp).

Given p,r € {0} U [1,00] such that either 1 <p <r < oo or r=0 and
p<oo, and T C A, we wish to study the behavior of the Szlenk index and
ag . seminorms of the operators DY : E, — F, given by D" (zx)xea =
(1r(N)Axza)rea. For A€ A, we let DY = Df{)’;}. Note that ag s, (DY) =
ag s n(Ay) for any p,r,s in the appropriate ranges. Of course, we are inter-
ested in the cases in which the operator DY’ is Asplund. We first delineate

the cases in which the operator DY is Asplund.
(1) p=r=1and (| Ax[[)xea € co(A).

(2) p=r=o00 and (||Ax[)rea € co(A).

(3) r=0and p < 0.

(4) 1<p<r<oo, 1<r, and p < co.

We first remark that for any finite subset T of A,

At~ n (DI{JT) =0t~y n (@ A)\ : (@ X)\) — (@ Y)\) >
£p(7T) AEY £-(7)

AeX A€Y
T ( } /\> T )
(1) AeY £-(7)

for any 1 <y < oo, any n € N, and any ordinal . Therefore, we may freely
identify D%" with the operators between finite direct sums.
We isolate the following easy consequence of Hélder’s inequality.

P
and

ben (D7) = e, (D r: (D11,

AEY AEY P

Fact 7.1. Suppose 1 <r <~y < oo, and 1/y+ 1/s=1/r. Then for any
n €N and any scalar sequence ()4,

H (vi)iey om = SUP{ || (05 Bi)iy

Facr 7.2. Fiz 1 < p,r,y < oo with p <r. For any natural numbers
m,n, any scalar sequence (c;)ity, any (b;)7—; € Ben, and any (ai;)i; ;= €

m : (51)?:1 S ng;}
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Bey, ()
)i : <r
baa:: ) m < ||(al)z:1||zg"o T,
H(H(Oéz gau)J_lneg)z:lHé;n X {H(ai)ﬁl o Y>T and % + % = %

Proof. Suppose v <. Let a = |[(a;)j%,[|¢m. Then using Minkowski’s in-
equality,

o 1 P [ (o P

<MM0M%HLWJLNW

a5

N

e‘n,

Now assume that v > r. Then

1N Bsais)iiller)iZalley = 1 Bsll @)l ) sl
<l @illC@i)iall g ) e
H ] 1||é“ 1.

N

Since % + % = %, Fact 7.1 yields that
1l (@ibsais)izall gy )iall e < )il O

Before we state the next theorem, we recall that, given a Banach space
X, (z)ter.,.p0 C X, and t € MAX(T'¢ ,), the sequence (z})j; is the convex
block sequence defined by

2h = Z Pe n(s)xs

Athriasét
THEOREM 7.3. Suppose T C A is a finite set and R > 0 is such that ||Ax| <
R for all N€ A. Fiz 1 < p,r,y < oo with p<r and ordinals &,¢.

(i) Let 1/r+1/s=1. If \€ A is such that ¢ ,,(DY") <e, then for any di-
rected set D, any n € N, and sequence (b;)"_; of non-negative scalars,
any weakly null (v¢)ier,,.p C Bg,, any sequence of positive scalars
(ai)izy € Ben such that ||Pxz¢|| < a; for all 1 <i<mn, and any &' >

el|(biai) =y llep + Rm /5 ||(biaq) Py [len,
< 5’}

{t € MAX(T¢,.D) : HDi’T S bizt
i=1

is eventual.
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(i) Let s be such that 1/r+1/s=1. If m € N is such that 0 ,,(Ax) <e
for all X € Y, then for any directed set D, any n € N, any weakly null
(7¢)tere ...0 C BE,, and any non-negative scalars (b;);y,

D’”sz

=1

inf 5” )ie 1||gn+Rm1/S|| )iz 1”@"

teMAX(T¢ 1m.D)

and and for any &1 > e||(0:)y [l + Bm /|| (bi) iy [leg

<€1}

e, (1) = [ N@eatdherlom s <
¥ |(ae~(Ax))rexlle,ry:  v>7r and % + % = %

{t € MAX(T¢ D) : HD@T' > bz

is eventual.

(iii)

Before we prove the theorem, we prove a single instance of a stabilization
technique, variants of which will be used several times in the remainder of
this work.

LEMMA 7.4. Suppose o < g n(DY"). Then there exist a directed set D,
a sequence of non-negative scalars (b;)"_, € Sgg,, real numbers cq,...,cp,, vec-
tors (a})aer,---,(a%)rer € (0,00)T, a weakly null collection (x4)ier,.,.p C
Bg,, and functionals (yf)teMAX(pgm_D) C Brx with the following properties:

(i) Yr bici>a

(i) for each 1<i<n, [[(a})rexlle,(r) < 1L,
(iii) for each A€ Y, each 1 <i<n, and each t € A¢ , ;.D, ||Paz]| < af,
(iv) for each 1 < i< n and each A¢p;.D > s <t e MAX(T¢,.D),

Rey; (D¥"zs) > ¢,
(v) for any ex > agqn (ANl (a}bi)iy llen
< 5/\}
s eventual.

Proof. Fix 0 < ¢ <1 such that o < ¢ae . (DY"). Fix (2})ter,.,..0 C Bg,,
(27 )teMAX(Te...D) C Brx, (bi)i; € S@n non-negative scalars (¢;)?_; such that
Yo 1bcz>oz/¢ and for any 1 <i<n and A¢,;.D>s<teMAX(T¢,.D),
Rezj(x}) > ¢;. Now fix a finite subset F' of By (y) such that for every
(a\)aer € @By, (1), there exists (ax)rex € F such that || < ax, and such that
for each (ax)rer € F and A € T, ay > 0. Now define f:T'¢,,.D — F by letting

f(t) be any member (ay)xer of F such that for each A € A, ¢||Pax}|| < ax. By
Lemma 2.1, there exist a level map d:I'¢,.D —I'¢ ,,.D, an extension e of d,

n

Di’r Z bj th

j=1

{t € MAX(T¢ 4.n.D) : ‘
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and for each 1 <i < n some (a}) ey € F such that ¢||P,\x:i(t) | <al forallte
A¢pni.D and A€ Y. Now let z; = (bxd(t) and yt = ze(t) for t e MAX(T¢ ,,.D).
We now note that for any ex > ag y.n(Ax)[[(a}i)i: ez,

n
DY bzt < 6>\}
=1

r . j P)\xs
:{teMAX(FE,%n.D):HD? S > biadPenl(s) =

j=1t>s€A¢ n,;.D A

{t € MAX(T¢ . D

<€>\}

must be eventual. O

Proof of Theorem 7.3. (i) If it were not true, after relabeling, we can
assume there exist (y;)iemax(r.,.np) C Brs, c1,...,cq € [0,00) such that
i bici > el|(biag) Py lep + Bm/#||(bja;)7_;|len and for each 1 <i< n and
Aeni-Des<teMAX(T¢,.D), Rey/(Pxxzs) > ¢;. Now let T ={i <n
cifa; >¢e} and S={1,...,n} \ T. We note that |T| < m. If it were not so,
we could find some [y <--- <, {; €T, and a level map d:I'¢ ,,.D — I'¢ ,,.D
such that d(A¢ m,i.D) C A¢ny,.D and such that (z4¢))ter, ,,.p is weakly null.
Now if z} = alzlxd(t) for t € Agm,i-D, (z})ier,,,.p is weakly null and if e is
any extension of d, it

€= 0cm (DY) > inf m™ Rey, Z > Pem(s)zs

teMAX(T .D)
€ (T¢.m- i=112s€N¢ m,i. D

min{c;/a; :i €T}
>
m

a contradiction. Note also that for any 1 <7< n, if we fix A¢ ;. D3s<te
MAX(T¢ ,,.D),

¢i/ai < Rey? (DY 2s/as) < i | Ax I Pas | fas < R

> e,

Then

o —l—le/SH bia;)rq

EHba” 1

on <Zb ci= Zal
*Zaz i +Za1

€S

<€Za1b +RZ&1 i

€T

’L

N

5—:”( ibi)
EH( b))

€T Hzl(T)
n Rm1/5||(aibi)?=1||w7

Vsl

N

Z"

a contradiction.



CONCERNING ¢-SUMMABLE SZLENK INDEX 415

(ii) Fix a sequence (b;)j_, of non-negative scalars and €1 > €||(b;)7—, [lep +
Rm/#||(b;)"_ 1 ||en. To obtain a contradiction, we assume that there exist a
directed set D and a weakly null collection (It)tergn. p C Bg, such that

>61}

is cofinal. By replacing €7 with a strictly smaller value which still exceeds
ell(b) 1y [lep + B[ (b;)", ||, applying Lemma 2.1 and the remark follow-
ing it, and relabeling, we may assume that

n
p,T E t
i=1

and there exist ci,...,¢, € [0, R], (¥)iemax(r..,..p) C Br: such that g, <
Yo bic; and for any 1 <i<n and A¢p,;.D 2 s <te MAX(I¢,.D),
Rey; (zs) =Rey; (Pras) = ¢;. Fix 0 < ¢ < 1 such that e; <> | ¢pb;c;. Argu-
ing as in Lemma 7.4, we may stabilize, relabel, and assume that there exists
(@ix)i=1 xer € Ben (1,()) such that for each 1 <7< n, each t € A¢n;.D, and
each A € T, ¢||Pxx¢|| < a;xn. Now fix ¢’ > 0 such that

{t € MAX(T¢.,.D) : HD’;’T S izt

inf
teMAX(T¢,,.D)

+Rm1/b||

1 —NE >€H

izt [l .

For each A€ T,

g)\ = {t S MAX(FC’nD) . HDK’T Zbld)zf < < + €||(b¢aij)?:1||@

=1

+Rm1/5’|(biaij)?:1”€?}

is eventual by (i). Then if ¢ € [,y Ex, by Minkowski’s inequality,

D@erz

<ne +5||(|| bia;x)r

o)

+ Bm! (| (sain)i ;)

)i 1||en + B! (bill (@i )rex) 2 M, o) ||f
—s—le/SH

<ne’ +e| (bil|(

<né —&—aH( i)

Z‘n, En ’

a contradiction.

(ifi) If o < ag (DY), we may fix (24)ier,.p C Bg,, (a})rer € Bin,
i=1,...,n, (x?)teMAX(pm,D) C Bp» to satisfy the conclusions of Lemma 7.4.
Now for each A € T, fix ex > agyn(AN)[[(a)bi)iq [l and ¢t € MAX(D¢ ,.D)
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such that for each A € T, [[DY" Y7 b;z!|| <en. For each A € T, the set £, of
t € MAX(I¢,,. D) satisfying this inequality is eventual, so (] .y Ex # @. Then

Dy" Zb z| < ||D% zn: b2t
i=1

i=1
>)\€T

Since we may do this for any e) > ag ., (Ax)||(ak b)) 1llen, we deduce that

a < || ([[ (e yn(Ax)asbi) . [ n)

By Fact 7.2, the last quantity cannot exceed ||(0457%n(A>\))>\6T||400(T) if either
r=0 or v <7, and cannot exceed ||(c¢ yn(Ax))rer|le,(r) if 1 <7 <7 and
1/y+1/s=1/r. Here we are using the fact that £y(T) =l (T) since T is
finite.

For convenience, let us assume Y ={1,...,m}. Fix 0 < ¢ < p <1 and
k € N such that for each i € T, a¢ ., 1(A4;) > pae,(A;). Let D be a weak
neighborhood basis at 0 in X. For each ¢ € T, we may fix ( ;’)j:l € Sgr and

(z)tere .0 C Bg, such that x} = Pz} for all t € T¢ ,.D and

k
Df’rz Z bP{k( )

j=1t>2s€N¢ ,;.D

By Fact 7.1, there exists (¢;)iey € S[m such that

||<a§»v(A )Cl)z 1||zm ||(a§»’7(Ai)):il||€;"'

Now for 1 <i<m and 1< j <k, 1et dii—1)kyj = cibi and note that
||( )z 1gmk—1 For 1 < z<m 1 < k, and tEAgmkzl)k+gD we
may write t = 51 ~ (w&(k(m — 1)) + ), where 51 € MAX(A¢ i, (i—1)5-D) if
i>1and s; =@ if i =1, and where s € I'¢ ,,.D. We then let x; = u}. Then
(%¢)tere i.0 C Bp, is weakly null and

a< inf
seMAX(T¢ ».D)

i=1

< lenrexlly, vy

43

inf
teEMAX(T¢ x.D)

> poe (A;).

mk
inf DE" g d;zt
teMAX(T¢ pmi-D)

¢H ciog (A ))1

m

= (bH(aéﬁ(Ai)) -

This yields that ag(D%") > ¢|(ce,y(Ai))i%y|les, . Since this holds for any
0< ¢ <1, we deduce that ag (DY) > ||(ce(A;))M™ O

In the following, if for each A € A, ) € [0, 00], we let [[(ax)xeallr, (a) = 00 if
either oy = oo for some A € A or if ay € [0,00) for all A and (aa)ren & €s(A).
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COROLLARY 7.5. (4) Djl\’1 is Asplund if and only if (Ax)aea € co(A), in
which case
Sz(D[l\’l) =sup Sz(Ay)
AEA

and for any 1 <y < oo, agﬁ(D/l\’l) = [|(ae v (Ar))ren
1.

0.(A); where 1/y+1/s =

(ii) D™ is Asplund if and only if (Ax)aea € co(A), in which case
Sz(Dy™) = sup Sz(Ay)
AEA

and for any 1<y <00, ag (D) = [[(ae 4 (Ax))aeallec (a)-

Proof. (1) If (J]JAxl)aea € oo(A) \ co(A), then D}X’l preserves an isomorph
of £1 and Sup¢cora 0571(D/1\’1) > 0. Now if (||Ax|)aca € co(A), then D' lies
in the norm closure of {Dy': Y C A finite}. By the norm closedness of
{B:E, — F,:Sz(B) <supycp Sz(A\)} and the fact that for any finite T C A,
Sz(Dy") = maxyer Sz(Ay), Sz(Dy') < supyep Sz(Ay). By the ideal prop-
erty, the reverse inequality holds. Furthermore, if 1/ 4 1/s =1, Theorem 7.3
yields that for any finite subset YT of A,

O,y (Di"l) = H (O‘&V(AA)),\eT

By the norm continuity of ag ., ,, and since D" lies in the norm closure of
{DY": Y C A finite},

¢ ym (D[l\’l) < sup{agmn (D}r’l) :TCA ﬁnite}
< supf{ag 4 (D%gl) : T C A finite} = || (ce,(An))

£5(0)°

AeAlle (ay:
Taking the supremum over n € N, we deduce that
ag (D) < [ (e (AN) yen 0.(A)
By the ideal property,
gy (D/l\’l) > sup{ag - (D%ﬁl) :T C A finite} = H (0‘677(14/\)),\@ £(A)’

giving equality.
(ii) We argue similarly, except Theorem 7.3 gives

Qg y (Dﬁofopo) = H (O‘&’y(AA))AeAHem(T)

for any finite subset of Y. Here, we are using that either (Ay)xea € co(A), or
D3 preserves an isomorph of /5. O

THEOREM 7.6. Suppose that p,r are as in one of the cases (3) or (4). If
r=0, suppose 1 <y< oo and if 1 <r < oo, suppose 1 <y <r. Then for any
ordinal ¢,

g (DR) < sup || Ax| + sup ., (A1):
AEA AEA
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Proof. We prove that

acyn (DY) < sup | Al + sup ¢~ (Ax)

by induction on n € N. Let §=supycp | Axll, @ =supyep e, (A4r).

The n =1 case is trivial, since a¢ 1 (DY) < B< B+ a.

Assume the result holds for n € N and fix ¥ < a¢,nt1(DY"). Fix
(b)) € Bynsr and a weakly null collection (%¢)ter¢ nyr.0 C Bp, such
that ¥ < infiemaxr, ,...0) DR Znﬂ biz!|. Fix 0 < ¢ <1 such that 9 <
infrenmax(re.n, .0y IDY S0 big2t]|. Fix 6 > 0. Fix t € MAX(A¢,nq1,1.D)
and a finite subset T of A such that ||D£<ﬂT >e<t Pont1(s)ws|| < 6. Argu-
ing as in Lemma 7.4, we may stabilize, relabel, and assume that there exist
(ug,v) ) € Byn (s2) such that for any 2<i<n+1 and any t € A¢pp1,4.D,
@|| Pyt <wu; and @[ Pa\yz¢|| <wv;. This may be done so that the property

n+1
9 < inf DR’ bipz!
teMAX (¢ ny1-D) A Zl ld) !

i=

is retained. Let uy =1 and vy =0, so that (ui,vi)?jll € Bgnﬂ(p).
hed D
Now using the identification of I'¢ ,,.D with {s € I'¢ ,41.D :t < s} and the
fact that

ac(DF") =] (ac,v(AA)),\eTHem(r) Sa

by Theorem 7.3, we deduce using the inductive hypothesis that each of the
subsets of MAX(T'¢ ;,41.D)
en+1 }

&= {s:t<s,
n+1
3{s:t<5, D" bz || <6+ Bur + o (biws) nHHen}
=1
i1
3{s:t<s7 D%sziéﬁzf

n+1 P Z
D < DE" b; X
{s s, || DY Z i Ui ”

n+1

D" Z bioz|| <

i=1

+(B+ ) H (b))t

<5+l (b ”“ngn}

<5+l (b Hm}

=2
n+1
&= {s 1t <s, || Dy Z bigz} || <20+ (B + a)|(bsvi)i He;‘“}
i=1
n+1
) {s 1t <s, | Dy Z bipz; +(B+ CY)H(bz'Ui)?:JrllHez“ }
=2
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:{s:t<8, 61}“}

is eventual. Here we are using the fact that for any ¢ < s € MAX(T'¢ p41.D),
74 = u<t Pens1(Wza, [DY 21| < B, and || Dy 27| < 6.

If r=0, let 1 = 0o, and otherwise let r; =r. Now for any s € & N &,,
Minkowski’s inequality and the fact that p <r; give that

n+1 P s
A\Y%;
DT 7
DA E bl"l)i
i—2 i

+ (B+ a) || (bivi) [

n+l n+1 n+1
9 < ||DR" Z bioz! ( DE" Z bigz ||, || DRy Z bizs )
i=1 i=1 = 2
<55+ 0 O O
<30+ (B+ )| (ull s 0, >"“>|¢n+1
<30+ (B+ a) || (bal| (us, vi) He?)nHHW“ 30+ B+a.
Since 6 >0 and O < a¢ y,n+1(DY") were arbitrary, we are done. O

COROLLARY 7.7. In either of cases (3), (4),

Sz(DR") < (supSz(A,\)>

Proof. Ifr =0, let ¥ = oo, and otherwise let v = r. Let sup,c, S2(A4) = w®.
Then for every A € A, a¢ 4,1(Ax) = ag 4(Ax) =0, whence

ag (DY) < sup [ A < o0

by Theorem 7.6. By Remark 4.9, Sz(D}") < w®! = wiw. O

COROLLARY 7.8. Suppose p,r are as in either case (3) or case (4). For
any ordinal C,

inf supﬂgm(A)\): mf Hgm(D ) O¢ 41, 1(DA )
meN e

In particular, for an ordinal & > 0,
inf{0¢1(D}y) : T CA finite} =0
if and only if for every € > 0, there exist a finite subset T of A, an ordinal

¢ <&, and m € N such that supycy 0¢,m (Ax) < € if and only if for every e > 0,
there exists a finite subset T of A such that supycp\y Sz(Ax,€) < wt.

Proof. If r =0, let v = oo, and otherwise let v =r. Let 1/y+ 1/s=1.
Note that since r # 1, v # 1, so s < co. It follows from Proposition 4.7
that inf,,en O¢ (DY) = 0c41,1(DY"), and it follows from the fact that 0 .,
is an ideal seminorm that inf,,enysupyep Ocm(Ax) <infenbem(DR"). Fix
e1 > inf,, supycp Oc.m(Ax). Let m € N and e9,¢ be such that g1 >ep > >
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Oc,m(Ay) for all A€ A. Let R=supy¢, [|Ax|| and fix n €N, 6 > 0 such that
RmY/5/nl/s < ey —e, 6+ R/n'/* <1 —eo, and § + &+ Rm/* /nl/5 < ey.

Fix a weakly null collection (xt)tef‘(’nQ.D C Bg,. Let To =9, ty =@, and
fix any t; € MAX(A¢ »2,,.D). Now suppose we have chosen t; < --- <ty
and finite sets Y7 C --- C Tp_1 C A such that for each 1 <i <k, t; €
MAX(A¢ 2 in-D),

n
HDi\% > Y Bl <o

=(i—1)n+1 tiQSGAC)WQ)j‘D

and
n
HD’“T A Rl <an
j=(G—-1)n+1 ti>S€A<,n2,j-D
Now since we may identify
kn
{SG U A(,nQ,j'D:tkfl <S}

j=(k—1)n+1

with I'¢ ,.D, by Theorem 7.3, there exists ¢, € MAX(A¢ 2 kp-D) such that

kn

D%Z,l Z Z n*1PC7nz (s)xs

j=(k—1)n+1tp>s€A, 2 ,.D

<6+6H(1/n)?=1}Z,L+Rm1/s|| (1/m)fall
1/s
:6+5+RH%;<52
n

Here we are using that ¢ = Eﬁ. Fix T C A finite such that Tp_; C T} and

These completes the recursive construction. Let ¢t =t,, and for each 1 <7 < n,
let F; =Y;\T;_1. Foreach 1 <i<n,let z; =n"1 Zti71<s<ti P¢ n2(s)xs. Then

oS <o B
i=1 i=
||Dpr 7IZPT11+PF+PA\T]

’I’L_1 E PFizi
i=1

kn
DP7

AT Z Z n_IIP’Cynz (s)xs

J=(k=)n+1tp2s€A, 2

< 4.

»J

<ex+
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<52+R/n1/s+5<51.
From this it follows that
inf{fcx(DY") : k € N} < 2 (DY) <ey.
Since €1 > infrensupyeca Oc.x(Ax) was arbitrary,

inf sup e (Ay) > inf O, (DPT).
Jnf sup ¢m(Ax) = inf fcm (DY)

The last statement follows immediately from the previous statements. [
We now eliminate a trivial case. The proof is obvious, so we omit it.

PROPOSITION 7.9. Suppose that supycp Sz(Ax) = 1. Assume that p,r
are as in one of cases (3), (4) above. Then DY" is compact, 6y 1(DY") =
ap~(DR") =0 for all1 <y < oo, and Sz(DY") =1 if and only if (]|Ax||)rea €
co(A). If (||Ax])aen € loo(A) \ co(A), then Sz(DY") =w,

00,1 (DY) = mf{[| DYs [ : T C A finite} >0
and
(1) if =0 or r =00, ag,(DX")=001(DY") < oo for any 1 <~ < oo,
(i) if 1<p<r<ooand 1<r, ap,(DY")=001(DR") for all 1 <~y <7 and
ap(DR") =00 for all r <~ < o0.
The next theorem incorporates Brooker’s result about the Szlenk index,

but also includes new information regarding the behavior of the 8¢ ,,(A))
quantities, which are only indirectly related to Sz(Ajy,¢).

THEOREM 7.10. Suppose p,r are as in either case (3) or case (4) and

sup Sz(Ay) =w® > 1.
AEA

The following are equivalent.

(i) Sz(DR") =wt.

(ii) For every e >0, supycp Sz(Ay,e) < wb.
(iil) inf{supyep Ocm(Ar): (<& meN}=0.

Proof. (i)=>(iii) If S2(D}") = w, then by Proposition 4.7 and the fact that
0¢ m is an ideal seminorm,
0= 9571 (Dﬁ’r) = inf{ﬂg,m (D%T) (<& me N}
> inf{sup9§7m(A,\) (<& me N} > 0.
AEA

(ii))=>(1) We first remark that Sz(DY") > w®. Indeed, for any ¢ < ¢,
there exists A € A such that Sz(A4y) > w®, so O1(DR") = 6¢1(Ay) >0, and
Sz(DR") > wt. Since Sz(DY") must be of the form w? for some v, it follows
that Sz(DR") > wt.
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If £ is a successor, say £ =7+ 1, then by Proposition 4.7 and Corollary 7.8,
0= inf{sup@c’m(A)\) (<Eme N} = inf{sup@nym(AA) tme N}
AEA AEA
= 977""171 (Dﬁ’r) - 9571 (D%T)’

so Sz(DY") < wh.

Now if £ is a limit, then by Proposition 4.7, for any & > 0, there exist
¢ <& meN such that supyep 0¢m(Ax) <e. Then by Corollary 7.8, and
Proposition 4.7, ¢ 1 (DY) < 0¢41,1(DY") < e. Since this holds for any & > 0,
gg’l(Dp’T) =0.

(ii)=(iii) Fix € >0 and ¢ <&, m € N such that Sz(Ay,e/3) < wSm for
all A€ A. Fix n € N such that Rm/n < 2¢/3, where R =sup,c, HAAH Now
if A € A is such that 6 ,(Ay\) > ¢, there exist a directed set D, a weakly
null collection (z¢)ter, .0 C Bg,, functionals (y;‘)tel\/mx(p< ..D) C By, and
real numbers by,...,b, such that Zl 1 nl > ¢ and for each 1 <i<n and
Aeni-Dos<te MAX(T¢n.D), Reyf(xs) = b;. Let T ={i <n:b; >2/3}
and fix 1/2 <1 < 1. We claim that |T'| < m. If it were not so, we could find
a level map d:I'¢ . D — I'¢ ,.D such that (xd(t))tEFC’m,D is weakly null and
d(A¢m,i) CA¢ oy, -D, where [y <--- <lp,, l; €T. Then if e is any extension of
d, the collections (z4x))tere.,..D; (y:(t))teMAX(Fg,m.D) witness that

%] # Sﬁ; Swgl (A)\BY ) D) S:’D;E/iﬂ (A;BY;) D) 36/3 (A)\By*)

a contradiction. Thus supycp 0¢.n(Ax) <&, whence
inf{sup&c,m(A)\) (<€ me N} =
AEA

(iii)=(ii) We recall that if for some A € A, € >0, ( € Ord, and m € N,
Sz(Ayx,e) > wSm, then 6¢,,(Ay) > e/4. From this, it follows that since
inf{supycp(Axr) : ¢ <& m e N} <e/4, there exist ( <& and m € N such that
Sz(Ay,e) SwSm < w® for all A € A. O

We next elucidate the behavior of ag ,(DY") for cases (3) and (4).

THEOREM 7.11. Suppose that p,r are as in either case (3) or case (4).
Suppose that Sz(DY") = w ! and supyep Sz(Ay) = wS.

If (=&, ag (DY) < oo if and only if either
(i) r=0, or
(ii)) 1<y<r.

If (=¢&+1, ag (DY) < oo if and only if either

(i) r=0 and (04577(14)\)))\61\ EEOO(A),
(i) 1<y<r<oo and (ag~(Ax))rea € lo(A), or
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(iii) 1<r <y < oo, inf{ef)l(Dx’\T) T C A finite} =0, and

(a€,’7<A/\)))\€A € ES(A)’
where 1/y+1/s=1/r.

Proof. First suppose that Sz(DY") = w*! and supycy Sz(Ay) = ws. By
Theorem 7.6, if r=0or 1<p<r<oocand 1 <y<r,

g (DY) <sup [|Ax|l + sup ae »(Ax) = sup [ Ax]| < oo,
AEA AEA AEA

since o (Ax) =0 for each A € A. Now suppose that 1 <p <r <~ and let
1/y +1/s =1/r. By Theorem 7.10, since Sz(DX") > supycp Sz(A)), this
means

1nf{§up9,,m(A>\) n<§,m€N} >e>0.
€A

Then for any n € N, we may partition A into sets Aq,..., A, such that for each
1<i<n, inf{sup)\eA Onm(Ax) :n <& m €N} > ¢, whence ¢ 1 (DY) > ¢ for
each 1 <i < n. Then we may find (It)ter‘g ..p C B, weakly null such that
for any 1 <i<n, infienmax(re.,.0) DX Z@Se/\s_’m' Pe . (s)zs|| > ¢ and for
any t € A¢ p;.D, p = Pp,a¢. Then

a D) > inf
e (DX7) > teMAX(T¢,,,.D)

DR" Z
i=1
This yields that ag (DY) =o0 if 1<p<r <n.
Now suppose Sz(DR") = sup,cp Sz(Ax) = wttt. Then if either 7 =0 or
1<p<r<ooand 1<vy<r, by Theorem 7.6,

SUP g~ (Ax) < ag, “/(Dp 7n) sup [|Ax|| + sup g (Axr),
e AEA AEA

so that ag (DR") < oo if and only if supycy ae(Ax) < oo.

We now assume that 1 <p<r<+y<oo and 1/y+ 1/s=1/r. We
will show that a¢ (DY) < oo if and only if (ag(Ax))rea € €s(A) and
inf{Hg)l(Dp’\T ): T C A finite} = 0. First suppose that (ag(Ax))rea € £s(A)
and inf{f¢ 1 (DY : T C A finite} = 0. Then for any finite subset T of A and

AT
n € N, by Theorem 7.3,
gy (DY) < gy (DFT) + g in (Dﬁ’\rr)
< [[(agq(A0) ) Jr”af,’v,l(Dﬁ’\TT)
S H (O‘E ~(Ax) ) £, (A) + naéml(Di’\rT)'

Taking the infimum over T C A and then the supremum over n € N yields
that o, (DY) < [[(0g4(Ar)) ) < 00.
Now assume that one of the conditions

(07 (A2)) yep € Ls(N),
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inf{9571 (D%\T

): T CA finite} =0
fails. If (cg v(Ax))aea € £s(A), then by Theorem 7.3,

e (D7) = sup{ag o (DY) : T C A finite} = || (ag,(Ar)) = 0.

Now assume that inf{é)gyl(DﬁfT) T C A finite} > 2¢ > 0. Fix n € N, a weak
neighborhood basis D at 0 in E,, and § > 0 such that nd < en'/", where 1/r +
1/r" =1. Let To = @. Since ¢ 1(DY") > 2e, we may, by identifying A¢ ,, 1.D
with T'¢1.D, fix a weakly null collection (z¢)iea,, .0 C Bg, such that
infyemax(ae., ..0) 1D Dot IP’E n(s)xs|| > 2e. For each t € MAX(A¢ p,,1.D),
fix a finite set Y¢ such that || D} AT > s<t Pen(8)xs| <e. Now assume that for
some i < n, a weakly null collection (xt)teU’,l Ac.n.;.p has been chosen. Sup-
pose also that for each 1 < j <14 and each t € MAX(Ag,nJ—. ), a finite subset
T, has been chosen such that if ¢t > s € MAX(A¢ ,, x.D) for some 1<k < j,
T, C Yy, and

<eE.

HD‘/’\’\Tt Z Pe  (w)zy,

A&n’j.DBu<t

For each t € MAX(A¢ , ;.D), since 9571(Df\& ) > 2¢, by identifying T'¢ 1.D
with {s € A¢ niy1.D:t < s}, we may fix a collection (24)¢<seac.,..s1.0 C BE,

such that Py\y,zs =5 and

inf{ HDi’r Z Pe , (u)x

t<u<s

t<se MAX(A§7n7i+1)} > 2¢.

Now for each s € MAX(A¢  i+1) such that t < s, fix a finite set T, C A such
that T, C T, and

HD’X\TY Z Pe n(u)z

t<u<s

This completes the recursive choice of a weakly null collection (xt)tepm, pC
Bg,. Now for any t € MAX(I'¢ ,.D), let @ =19 <t; <--- <t, be such that
t; € MAX(A¢,n,;.D) foreach 1 <i<nandlet @ C Yy C--- <Yy beasin the
choice of (z5)ser,,.p- Now let F; =Yy, \ Ty, ,, z; = Zfzse/\g,n,i.D Pe o (s)xs,
and note that

n
p,T E p,7 E
‘DA Zi DA PFiZz'
i=1

i=1
From this it follows that

ZHDA\Y zZ >2ent/" —né>ent/".

-

ae (DY) = supen "

4\'—‘
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