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THE RATE OF CONVERGENCE ON
SCHRODINGER OPERATOR

ZHENBIN CAO, DASHAN FAN AND MENG WANG

ABSTRACT. Recently, Du, Guth and Li showed that the Schro-
dinger operator e satisfies lims— o eimf = f almost everywhere
for all f € H*(R?), provided that s > 1/3. In this paper, we dis-
cuss the rate of convergence on e**4 (f) by assuming more regu-
larity on f. At n =2, our result can be viewed as an application
of the Du—Guth—Li theorem. We also address the same issue on
the cases n =1 and n > 2.

1. Introduction

Let A be the Laplace operator and |A[*/2 be the fractional Laplacian de-
fined via the Fourier transform by

~

AP2F(€) = el F (&),

where f(€) denotes the Fourier transform of f. The solution of the free
Schrodinger equation

iug —Au=0, (z,t)eR" xR,
u(z,0) = f(z), zeR"
is given by
. 1 . 2y ~
A f(z) = / @ EHtEN) ££) de.
If f € L?*(R™), the Plancherel theorem yields the L?(R™) norm convergence

thj%Heim(f) - fHL2(Rn) =0.
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Concerning to the point convergence, it is not hard to see that there is an
L?(R") function f for which

lim "2 (f)(2) = f(x)
t—0
fails in a set of positive measure. On the other hand, we always have the

almost everywhere convergence (a.e. convergence) if f is sufficiently smooth,
say f € H*(R"™) for a large s > 0, where H® is the Sobolev space defined by

H*(R™) = {] € L2(R") ¢ | ey = I ey + (18172 ]| o ey < 00

In fact, using an interpolation on mix normed spaces and combining with the
Sobolev imbedding theorem, we can obtain the inequality

]| I T PPrees

suple
H t>0’ L2(R™)
if s >n/2. It then yields the almost everywhere convergence of e®2(f).

This observation raises to a natural question: Find the smallest s such that

(1) lim ¢*3(f)(2) = f(2)

for all f e H*(R™).

The above problem was originally posed by Carleson. In [3], Carleson
proved that the convergence is true if f € H*(R) and s > 1/4 by using meth-
ods of oscillatory integral. A few years later, Dahberg and Kenig in 1982 (see
[4]) showed that (1) could fail for s < 1/4 in any dimension. Hence, the re-
sults by Carleson, Dahberg and Kenig include that e®*2(f)(x) — f(z) a.e for
f € H*(R) if and only if s > 1/4, which completely solves the problem in the
case n=1.

When n > 2, the problem is much more involved, and it becomes one of the
most interesting and challenging research topic in harmonic analysis. Among
numerous research papers, in the following we list a few of them. Sjolin in
1987 (see [14]) and Vega in 1988 (see [18]) proved independently that (1)
holds in any dimension if s > 1/2. Their result was improved recently by
Bourgain in [1], in which Bourgain showed that (1) holds if s >1/2 — L.
On the other hand, Luca and Rogers in [11], [12], Demete and Guo in [5]
proved that s >1/2 — —= does not guarantee the validity of the inequality
in (1). Further, Bourgam in [2] improved this condition of necess1ty by giving
counterexamples to show that (1) could fail if s <1/2 — 55 +2 Also, more
research is focused on the case n =2, see Moyua, Vargas, Vega [13], Tao,
Vargas [17], Lee [10]. Particularly, in a most recent paper [6], Du, Larry and
Li obtained the almost everywhere convergence of e!*2(f)(x) for f € H*(R?)
if s > 1/3. Combining their result and Bourgain’s necessity criterion at n =2,
we know that, at n = 2, the Carleson’s problem is completely solved except
at the critical index s =1/3. We notice that the proof on the celebrated
theorem of Du, Guth and Li is very elegant and complicated, and it involves
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several new techniques and methods in analysis. For general n, Du—Guth—Li—
Zhang in [7] improved the sufficient condition to s > (n +1)/2(n + 2). Very
recently, Du—Zhang in [8] improved the sufficiently to the almost sharp range
s>n/2(n+1).

In this paper, we will not aim to pursue any improvement of known results
in this topic. Instead of it, we will seek the convergence speed of €2 (f)(x)
as t goes to 0, if f has more regularity. Precisely, suppose that we have built
lim;_,0 e (f)(z) — f(x) = 0 almost everywhere for f € H*(R"), whether or
not we have, for f € H5+%(R") and 6 >0,

A (D)) — f(x) = o(t%)?

First, we will study this issue on the case of dimension n = 2. As a non-trivial
consequence of the theorem of Du—Guth—Li, we have the following result.

THEOREM 1.1. If s>1/3 and 0 <§ < 2, then for all f € H*TI(R?)
e (f) (@) — f(z) =0(t"?), ae ast—0.

It is easy to see that the main theorem in [6] is consistent with Theorem 1.1
if we take § =0. Also, to obtain the approximation saturation of the operator
e*2 | we have the following proposition for any dimension n.

ProPOSITION 1.1. Let f be a Schwarz function. Then
(2) B (H)(x) = flx)=o(t), ae ast—0,
if and only if f(x) =0.

Proof. We prove the proposition using a contradiction argument. Assume

o~

(2) holds for a non-zero Schwarz function f(z). The Fourier transform f(¢)
must be a non-zero function on the frequency domain. Since

~

eim(f)(fc) — f(x) z/ (e—it|€\2 _ 1) (5)6“"5 de,

n

by Taylor’s expansion we have that

AN - 1@ >t [T e+ o)
By continuity, we have a ball B, (zo,r) and a positive number ¢ such that
[ lePT@e<a > e

for all x € By, (zo,7). It says that
|2 () () — f(2)| =t

in a set of positive measure, which contradicts to (2). O
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Secondly, we discuss the case for n = 1. It is known that (1) fails for s < 1/4.
On the other hand, if n > 1/4, Sj6lin in [15] showed that (1) remains true if
replacing eil2| by eitlA1*/?

result in this general case.

for any a > 1. We can build the corresponding

THEOREM 1.2. Ifs>1/4, a>1 and 0< 6 < a, then for all f € H*TO(R),
eitlar? (NHx) = flx)= o(ta/o‘), a.e. ast—0.
For general dimension n, we have the following result.
THEOREM 1.3. If s >n/2(n+1) and 0 <& < 2, then for all f € H*°(R™),
A (f)(x) — fx)=0(t"?), ae ast—0.

This paper is organized as follows. In Section 2, we introduce some nota-
tions and known results that we will use in the proofs. The proofs of Theo-
rem 1.1 and Theorem 1.2 are in Section 3 and Section 4, respectively. Finally,
in Section 5, we address the problem for general dimension n.

2. Notations and standard results

In this section, we introduce some notations and standard results related
to this context.

Throughout this paper, C'>1 and ¢ <1 denote positive constants, which
might be different at each of their occurrences. We write A < B to mean
that there exists C such that A < CB. Write A~ B if A<B and B<A. We
denote by p’ the Holder dual of p € [1,00], that is, 1/p+1/p’ = 1. The space of
all infinitely differentiable functions on R™ is denoted by C*°(R™). The space
of C* functions with compact support is denoted by C°(R™). The Schwarz
space S(R™) is the function space of all C* functions f whose all derivatives
are rapidly decreasing. We write the Lebesgue LP = LP(R™) and the Sobolev
space H® = H*(R"™) for simplify. Also, for the ball B, (z,r), we denote it
by B(zg,r) if it does not cause any confusion. Denote the annulus A(R) by
{€ e R™: |{| = R} for a positive R. For f € H*(R"), by the Littlewood—Paley
decomposition we may write

F=> 1
k=0

where the functions fj satisfy

supp fo C {€€R™: || <1}, supp fe CA(2%), [ fullze < 27%5|F ]l

To obtain the convergence results of Schrodinger operator, we need to in-
voke the following lemmas.
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LEMMA 2.1 ([6]). When n =2, for any € >0, there exists a constant C.
such that

[ sup o2
0<t<R

holds for all R>1 and f with supp fC A(1).
LEMMA 2.2 ([15]). When n=1, for all f € Hi(R),

[sup o2

0<t<1

<C.R°
sy < CR N lse

=< .
ey X 1L s

We also recall the Milhlin multiplier theorem. For a convolution operator
T (f) defined by

T (F)(€) = m(€) F (),

where m is the symbol (also called multiplier), if

[T () o 2 11

then we say that m is an L? multiplier.
LEMMA 2.3 (Milhlin multiplier theorem). Suppose that m : R™ — C satisfies
[VEm(e)] < [¢]7*,
for 0< k<5 +1. Then m is an LP multiplier for any 1 <p < oo.

LEMMA 2.4 (Van der Corput). Assume that a <b and set I =[a,b]. Let
F e C*>(I) be real-valued and assume that p € C*(I).

(i) Assume that |F'(x)| >~ >0 for x € I and that F' is monotonic on I.
Then

/: e (x) da| < c% (lw(b)| +/ab}z//(x)\ dx),

where C' does not depend on F', 1 or I.
(ii) Assume that |F"(x)| >~ >0 for x € I. Then

/abei”%(a:)dx < C#(!w(b)l +/abyw’(x)|dx),

where C' does not depend on F', ¢ or I.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we will study an associated maximal operator
R*(f)(w) = sup [R(f)(x)
0<t<1

)

where

ets ) — f(x
()0 = S0~ )

We then establish the following estimate for 58*(f).
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LEMMA 3.1. If s >1/3 and 0 < § < 2, then for all f € H*TO(R?),
Hm*(f)HLS(BQ(O,l)) = ||f||HS+5(]R2)~

Let us briefly describe how Lemma 3.1 implies Theorem 1.1. In fact, for
any M > 0, by scaling we have

su R ‘
Ho<t§II)\/12 Dl o 0,00y
et g 3 y1/3
- {/ e / o J(§em de dx}
By(0,M)lo<t<mz Jrz 1 /
2/3— (246 ettlel® 1 A 3 1/3
= M2/3-CF ){/ sup / Tf(f/M)eu'ﬁdf dm}
B»(0,1) [0<t<1 JR2 t
1/2

< M2/3—(2+5){/ |f(£/M)|2(1 + |€-|2)S+(S df}
R2
~ M3 fll e ).
Now fix A > 0. For any ¢ > 0, we choose a compactly supported C* function
g such that
)\61/3
If —QHHSM(R?) < SM-1/3"
By Taylor’s expansion we have that

"2 (g)(x) — g(x)
$6/2

<7972 [ 1ePglo)] de
R’VL
This shows that for any 0 <6 < 2,

1 €2 (0)@) — g(a)

t—0 $6/2 =0

holds uniformly on x € R".
Hence, we may write

Gl GEFCTR J

(S = )~ ~9)e) ‘ > A/QH

{x € B(0, M) : limsup

t—0

< HxEB(O,M) : sup
0<t<1

<(2) v

s (2
jM 143 ()\) ||f7g||?;_[5+6(R2)<€.

Since M is arbitrary, we obtain Theorem 1.1.
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We start to work with Lemma 3.1. By the Littlewood—Paley decomposition

F=> 1
k=0

where ﬁ) is supported in B(0,1) and ﬁ is supported in A(2%) for k > 1, and
they satisfy

I full 22y 22751l e oy -

By the Minkowski inequality, we have

HSR* ||L3(B201)) ZHm*(fk)HLS(BZ(o,D)'
k=0

Changing variables we see

Hm*(fk)HLS(Bg(O,l))

_o(
B»(0,1)
, ettlel® _ 1
_ 24k/32k6 / sup / f (zké-) Zzédf
Ba(0,2%)|0<t<22s Jpz 1972

1/2
17 24€) e = ([ 1T 26) )

= 27" full L2y = 27 KO £|] ress ey,

where fk(2kf) is supported on A(1).
Thus, if we can prove that, for all f with supp f C A(1) and any € > 0,

3 1/3
dx)

3 1/3
d:z:) .

et ok )i
i2%x-§
sup /R (2 e g

0<t<1

Note

o SRl

.

0<t<R

holds for all R > 1, then for s =1/3 + 2¢,
< 2k2 2k/32 1652216(-:Hf'”[_]s_*_d RQ)

<27k | £l 75 +5 (m2)-

Hi)‘i (fx) HL3(BZ(O 1) —

It yields

||9%*(f)||Ls(Bz(071)) = ZT“HJCHHM(W) Sl aovs 2y
k=0

The above discussion suggests that, to prove Lemma 3.1, it suffices to show
the following lemma.
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LEMMA 3.2. If0< 3 <2, then for all f with supp f C A(1) we have that

sup |Rq( ‘
HO<t£R‘ t | LS(B (0 R)) ||f||L2 R2
holds for all R > 1.
Proof. We write
su Ry ’
H0<t£R| f(f)| L3(B2(0,R))
<2, R 0 * 22,
0<t<1 L3(B2(0,R)) 1<t<R L3(B2(0,R))

Using the same argument as we treat 58*(fp), we have

R ‘ <S5 L < .
[z 1O 0y = g pLH PSR
Finally,
sup [R:(f)(2)] < [e"2 (@) + [F(@)]-
1<t<R

Thus Lemma 2.1 yields

itA |’

=R £l 2

H Sup |6 L3(B2(0,R)) —

1<t<R

and Bernstein’s theorem gives

IlfllsBaco,r)) = N fll2-

The proof of Lemma 3.2 is completed. U

4. Proof of Theorem 1.2

Without loss of generality, we may study only the case s =1/4, since the
proof for s > 1/4 is the same and it is simper. As the proof for the case n =2,
to prove Theorem 1.2, it suffices to show the following lemma.

LEMMA 4.1. If a>1 and 0 <8 < a, then for all f € Hit9(R),

AT () — f
sup —t5/0‘

0<t<1

- ”f” 146y
L2(B1(0,1)) HETR)

Proof. Take two cutoff functions ¥ and ® that ¥ 4+ & =1, where ¥ € §
satisfying U(&) =1 if || <1 and ¥(&) =0 if |¢] > 2. Hence

it|A|*/? _ (2713 R )
- (t]js)/im) /) :/Re 5/ 1‘f(f)e’5wd§

eit|§|°‘ 1/« i&x
:/Rwﬂﬁ F©)w(|e/og])eie de
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ettlgl” N ien
+/w(lfl F@)®([t/¢])e’ de
eitlgl” .
_/Wg(@‘l’qtl/aﬂ)el&dﬁ

SHET 1 1 ,
/o &x
—'—/]R |t1/ag]d g(§)¢(|t §|)6 dg
:Sf"5 (x,t) + Sy” g(as,t),

where g(x) = (I_sf)(x) and I_s means the fractional Laplacian.
First, we work with S®g(z, ). Since

sup |S7g(a,t)| < sup|g * K} ()],
0<t<1 t>0

1 T
1 _ 1
Ki(2) = 5K (W)

1 _ Z|E‘a zfz ‘€| ) ifx

where

and

Here w(§) satisfies
(07w) (&) = O(l¢l**7")

373

for any 8 € N by Taylor’s expansion. Using integration by parts (see [9]), we

get the bound

1 1
‘K (35)’ = W7
due to a > J. Hence,
sup |S5g(z,t)| = M(g)(2) = M(I_s(f))(x),

0<t<1

where M is the Hardy—Littlewood maximal function.
Hence,

[ sup Isiote.
0<t<1

L?(B1(0,1))

Now we deal with Sg"sg(x t),
zt\£| )
zt|§\ 1/« ix
/ ‘tl/a£|59 ([t g])e s dg

- /]R W@\(f)‘b(‘tl/aﬂ)ei&z de
=55"g(w,1) = ST g(w,1).

<M (s o < U llars 2SN
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We first consider S$°° g(x,t),

sup |Sg" gxt)|<bup|g>kK )|,
0<t<1

1 T
2 _ 2
Ki(2) = g5 K (m)

2 T (|£|) zfz
200) = [ Sgecae

Using the same argument in [9], we have that for any integer L > 0,

-1 <2
ra < [l el <2
’ ( )}_{kcL || > 2.

where

and

We can assume § > 0 (when 6 =0, it is the classical convergence result, see
[3]), then

0251!5 g(a,t)| = M(g)(x) = M (I-5(f)) ().

By the same method as we treat S g(z, 1),

S 0g(x,t ‘ =< s
Hoiggl\ F9@ D L oy S Ml
As to the term Sg"‘sg(m t), we will prove
1
sup / iwg+it|€|* CI)(|t /a§|) (5) d¢ = ”g” N
o<i<1|Jr RE ey

In fact, we prove the following stronger version,

- 2(11/7g)
o 115-‘,—”\5‘ FAU OS] _<
sup .
0<t§1/]R |t1/u§|5 (f) ||9||H4
i.e.
sup / sweritel” U)o toey el <
0<t<1|JR |t1/a§|6 L
Set

N /o 1
Rla)a) = [ e SEOTD1 e de.

then our aim is to prove
(3) 1R()][ 2 < llgllze-

Let p € C§°(R) be real-valued and assume that p(z) =1, |2| <1, and p(z) =0,
|z| > 2. We set py(x) = p(z/N) and

. /o
Ry (9)(x) = pn(x) /R sine+in(o)lel (@) E])

ey 6 (O30 ds.
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By the dominated convergence theorem, we only need to prove
@ RN @] = Nl

which is equivalent to show

(5) 175 (9)ll = =gl 5.
where R} denotes the adjoint of Ry.
We have

IR @)% = / IRy (9) (@) dar < / / K (y.2)||9@)||9(2)| dy d=,
where

O(|t(y)/¢€]) B(Jt(2)" /e
KN(%Z)=pzv(y)pzv(z)/]R i(y()yl)/%li) |§f|(z()1)/°‘€|il)

« =& EE DI, ()¢~ h de

and p = p?, pn(€) = p(§/N).
Now we claim that

(6) |Kn(y.2)| <y — 2|72,
If (6) holds, we have

IRy (@)% < / / ly— 2 *|g(v)||9(2)| dy dz

< / l90) Ty (191) () dy < gl 5 112 (191) |

= H9||i%- O

Now we prove the formula in (6). The following lemma is an analogue of
Lemma 1 in [16], with a slight difference.

LEMMA 4.2. Assume thata>1,0<d<a, be (0,1],de(0,1],1/2<s<1
and p € C§°(R). Then

s et ®BE) DA€ L (€ |
e pi7agp Javagp “(N)d§‘§0|x|ls

forxeR, teR and N =1,2,3,... Here the constant C may depend on s, §,
and o but not on b, d, x, t or N.

Proof. We only need to discuss the case for £ > 0. Letting I denote the
integral in the lemma, we have

— ix€+itl™ (I)(bl/ag) (I)(dl/ag) —s (é)
1= fLee ey i ()

e ROV B(dVoE) | (€
_/o T ey @y “(N>d5
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* weriten R(01/0€) D(dVE) <§>
+/$| 16 o (bl/ag)é (dl/af)éf dg

=A+B.
Noting the support of ®, we have b'/*¢ > 1 and d'/*¢ > 1, then
||~
|A] < 0/ £5d¢ = Ol
0
As to B, we assume first |z|* <t/2. Set F(§) = 2 +t£“, then
t
Fl(¢) =z 4tat™ ! = x<1 + —afo‘l).
x
For ¢ > |z|~! we have
t 1
—ag™! —z|'m* =22 > 2,
@ ||

so F’ is monotonic and |F’(§)| > |z|. Let

D) B(dE) L (€
@i/egy (@agp s " ( )

> 2ax|®

P(&) =

Since & > |z|7!, we have
[v(&)| < Clal*.
We also have
e DBV D(d o), (€
V(O =0 gy e E (N>

L (b ) B(dE) (
£

— b= (bl/a§)6+1 dl/aé‘ﬁg

+)
N
1@(61/“5) '(dVeg)

(bi/ag)s <dl/%>5£ (N)
1 (b ¢) dl/ag 3
(bl/aé‘) dl/a£5+1 (N>

—dd=

D) BV 1 (€
T gy <d1/%6§ <N

B8 Bd/og) L, (€
ey (dl/aféf (N

) /a o) /o/
UG pere [T U

<Claf [ 220
) ey o (V78
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1 9(d ) V), o
| dv o d =14
# el [t Gl 4+ o
S u’<£>‘d£+c g tde

+Clz|? N s

Ooq)l oo
oup [ dgre [ et

=1

Clzl® > / d C > 7sfld
el [ ilacro [ e
< Clx|*.

Using Lemma 2.4,
\ [ eroue dé‘ < Cppplel* =Claf ™,
|| =2

It remains to estimate the case for |x|* > t/2. We decompose the integral

to
/ P dE = e%du/ e%du/ ¢ de =By + By + By,
|z] =1 I I I3
where
t 1/(1—c)
{5>|x| 1|§<z(| |) }
t 1/(1_04) t 1/(1_0")
{s>|x| 1|l( ) sng(—) }
|| ||
and

L\ V-
{5>'x' 1'5>K(| ) }

Here [ > 0 is a small number and K is a large number.
When € € 14,

ta® t <tad® !

«=
|
=3
Q

I
Bl
A
|

then we have that
|F'(€)] =
which together with Lemma 2.4 implies

1
|B1] < C—
|z]

|z]° = Cla"™.
When € € I3,

taf* 1 > taK®~ 1| | aK* x| > 2|z,
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then we have that

|F'(&)] > |,
which together with Lemma 2.4 implies
1
|Bs| < Cﬂms =Clz|*t.
T

As to Bg, we have
F'"(€) = afa — 1)te> 2,
When ¢ € I, there exists a positive number ¢ to have

£\ (e=2)/(1-0)
) _ etl/(@=D) g (=2)/(a=1),

e za(
|z|
By the same method as we treat B, we see

s/(a—1)
lp(6)| < C( ! ) ,

||

t S/(O‘_l)
IGITE c(—) .
I ||
Using Lemma 2.4,

s/(a=1)
|By| < C~1/Cla=1) ||~ (a-2)/2(a-1) (@)

and

t
_ 25D/ (a1) | (2=a=25)/(2(a=1))

< O|z|s—De/(la=1)) 3| (2—a=25)/(2(a—1)
= Claf*™,
due to s >1/2 and |z|* > t/2. O
5. Case for general dimension
We firstly quote the almost sharp result from Du-Zhang in [8].

LEMMA 5.1 ([8]). When n > 1, for any € > 0, there exists a constant C.
such that

< C.R?™¥D +6||f||L2(R")

H sup }B“A(f)u

0<t<R

L2(B,(0,R))
holds for all R>1 and f with supp j?C A(1).

Via the same argument in Section 3 and Lemma 5.1, we can prove Theo-
rem 1.3. We write down the useful lemma and omit the details of the proof.

LEMMA 5.2. If s>n/2(n+1) and 0 <6 <2, then for all f € H*(R"),
||%*(‘f)“L2(Bn(O71)) = ||f||H5+5(]R")'
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LEMMA 5.3. If0< 8 <2, then for all f with supp f C A(1) we have that
[ s (300
0<t<R

holds for all R > 1.

<Rm+e‘|f”L2(R")

L?(Bn(0,R))

We are grateful to an anonymous referee for valuable suggestions on an
earlier version of this manuscript. Particularly, his suggestion helps us to for-
mulate Theorem 1.3 in the current version. Also, based on a famous result by
Bourgain [2], the referee’s comment leads us to believe that Theorem 1.3 is
sharp in the sense of the following statement.

For ¢ € (0,2), it fails to have, for arbitrary e > 0,

%Ex})(eitAf(x) - f(ar:))/?f%JrE =0, ae.

whenever f € H"/2(n+1)+0(Rn),
We are not able to prove this statement, so we post it as an unsolved
problem.

REFERENCES

[1] J. Bourgain, On the Schrodinger mazimal function in higher dimension, Proc. Steklov
Inst. Math. 280 (2013), no. 1, 46-60. MR 3241836
[2] J. Bourgain, A note on the Schrédinger mazimal function, J. Anal. Math. 130 (2016),
no. 1, 393-396. MR 3574661
[3] L. Carleson, Some analytic problems related to statistical mechanics, Euclidean har-
monic analysis, Lecture Notes in Mathematics, vol. 779, 1979, pp. 5-45. MR 0576038
[4] B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solu-
tions to the Schridinger equation, Harmonic analysis, Lecture Notes in Mathematics,
vol. 908, 1981, pp. 205-209. MR 0654188
[5] C. Demeter and S. Guo, Schrodinger mazimal function estimates via the pseudocon-
formal transformation, 2016; available at arXiv:1608.07640v1 [math.CA].
[6] X. Du, L. Guth and X. Li, A sharp Schridinger mazimal estimate in R2, Ann. of
Math. 186 (2017), no. 2, 607-640. MR 3702674
[7] X. Du, L. Guth, X. Li and R. Zhang, Pointwise convergence of Schrédinger solutions
and multilinear refined Strichartz estimates, 2018; available at arXiv:1803.01720.
MR 3842310
[8] X. Du and R. Zhang, Sharp L? estimate of Schrédinger mazimal function in higher
dimensions, 2018; available at arXiv:1805.02775V2 [math.CA].
[9] D. Fan and F. Zhao, Almost everywhere convergence of Bochner—Riesz means on some
Sobolev type spaces, 2016; available at arXiv:1608.01575v1 [math.FA].
[10] S. Lee, On pointwise convergence of the solutions to Schrédinger equations in R?, Int.
Math. Res. Not. 2006 (2006), 32597. MR, 2264734
[11] R. Luca and K. Rogers, An improved necessary condition for the Schrédinger mazimal
estimate, 2015; available at arXiv:1506.05325v1 [math.CA].
[12] R. Luca and K. Rogers, Coherence on fractals versus pointwise convergence for the
Schrédinger equation, Comm. Math. Phys. 351 (2017), no. 1, 341-359. MR 3613507
[13] A. Moyua, A. Vargas and L. Vega, Schrodinger mazimal function and restriction
properties of the Fourier transform, Int. Math. Res. Not. 1996 (1996), no. 16, 793—
815. MR 1413873


http://www.ams.org/mathscinet-getitem?mr=3241836
http://www.ams.org/mathscinet-getitem?mr=3574661
http://www.ams.org/mathscinet-getitem?mr=0576038
http://www.ams.org/mathscinet-getitem?mr=0654188
http://arxiv.org/abs/arXiv:1608.07640v1
http://www.ams.org/mathscinet-getitem?mr=3702674
http://arxiv.org/abs/arXiv:1803.01720
http://www.ams.org/mathscinet-getitem?mr=3842310
http://arxiv.org/abs/arXiv:1805.02775V2
http://arxiv.org/abs/arXiv:1608.01575v1
http://www.ams.org/mathscinet-getitem?mr=2264734
http://arxiv.org/abs/arXiv:1506.05325v1
http://www.ams.org/mathscinet-getitem?mr=3613507
http://www.ams.org/mathscinet-getitem?mr=1413873

380 Z. CAO, D. FAN AND M. WANG

[14] P. Sjolin, Regularity of solutions to the Schrédinger equation, Duke Math. J. 55 (1987),
no. 3, 699-715. MR 0904948
[15] P. Sjolin, LP mazimal estimates for solutions to the Schrédinger equation, Math.
Scand. 81 (1997), no. 1, 35-68. MR 1490774
[16] P. Sjolin, Mazimal estimates for solutions to the nonelliptic Schrodinger equation,
Bull. Lond. Math. Soc. 39 (2007), no. 3, 404-412. MR 2331567
[17] T. Tao and A. Vargas, A bilinear approach to cone multipliers II. Applications, Geom.
Funct. Anal. 10 (2000), no. 1, 216-258. MR 1748921
(18] L. Vega, Schriodinger equations: Pointwise convergence to the initial data, Proc. Amer.
Math. Soc. 102 (1988), no. 4, 874-878. MR 0934859
ZHENBIN CAO, DEPARTMENT OF MATHEMATICS, ZHEJIANG UNIVERSITY, HANGZHOU
310027, P.R. CHINA
E-mail address: 117350020zju.edu.cn
DASHAN FAN, DEPARTMENT OF MATHEMATIAL SCIENCES, UNIVERSITY OF WISCONSIN—
MILWAUKEE, MILWAUKEE, WI 53201, USA
E-mail address: fan@uwm.edu
MENG WANG, DEPARTMENT OF MATHEMATICS, ZHEJIANG UNIVERSITY, HANGZHOU
310027, P.R. CHINA

E-mail address: mathdreamcn@zju.edu.cn


http://www.ams.org/mathscinet-getitem?mr=0904948
http://www.ams.org/mathscinet-getitem?mr=1490774
http://www.ams.org/mathscinet-getitem?mr=2331567
http://www.ams.org/mathscinet-getitem?mr=1748921
http://www.ams.org/mathscinet-getitem?mr=0934859
mailto:11735002@zju.edu.cn
mailto:fan@uwm.edu
mailto:mathdreamcn@zju.edu.cn

	Introduction
	Notations and standard results
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Case for general dimension
	References
	Author's Addresses

