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INVARIANT CR MAPPINGS BETWEEN HYPERQUADRICS

DUSTY GRUNDMEIER, KEMEN LINSUAIN AND BRENDAN WHITAKER

Abstract. We analyze a canonical construction of group-
invariant CR Mappings between hyperquadrics due to D’Angelo.

Given source hyperquadric of Q(1,1), we determine the signature

of the target hyperquadric for all finite subgroups of SU(1,1). We

also extend combinatorial results proven by Loehr, Warrington,

and Wilf on determinants of sparse circulant determinants. We

apply these results to study CR mappings invariant under finite
subgroups of U(1,1).

1. Introduction

The goal of this paper is to examine properties of group-invariant Cauchy-
Riemann (CR) mappings, especially as relating to unitary groups with indef-
inite metric. A fundamental problem in CR geometry and higher dimensional
complex analysis is to determine whether given two real hypersurfaces, M
and N in Cn and CN respectively, there exists a non-constant (smooth) CR
mapping f :M →N (see, for instance, [4], [1], [8]). In general, there are no
such mappings; however for spheres and hyperquardrics (defined below) many
such inequivalent mappings can exist. In recent years progress on this problem
has led to the emerging field of CR complexity theory (see, for instance, the
recent work of D’Angelo and Xiao in [6] and the references therein).

A natural starting point for this problem is to study mappings between
spheres and hyperquadrics. Let S2m−1 be the unit sphere in Cm, and define

Received March 15, 2018; received in final form July 31, 2018.
The third author would like to acknowledge support from the Second Year Transforma-

tional Experience Program, the Honors and Scholars Enrichment Grant, and the Under-
graduate Student Government’s Academic Enrichment Grant at the Ohio State University.

2010 Mathematics Subject Classification. 32V20, 15A15, 05A15, 32H35.

321

c©2019 University of Illinois

http://www.ams.org/msc/


322 D. GRUNDMEIER, K. LINSUAIN AND B. WHITAKER

the hyperquadric with signature pair (a, b) as

Q(a, b) =

{
z ∈Ca+b :

a∑
i=1

|zi|2 −
a+b∑

j=a+1

|zj |2 = 1

}
.

Note Q(a,0) = S2a−1. Since there are many inequivalent mappings f :
Q(a, b)→Q(A,B) (for appropriate choices of a, b,A,B), it is reasonable to ask
for the f to satisfy additional constraints. In the present paper, we focus on
the problem of constructing group-invariant mappings between hyperquadrics.

CR mappings invariant under finite group actions yield many interesting
connections with other areas of mathematics, including number theory, com-
binatorics, algebraic geometry, and representation theory (see, for instance,
[14], [3], [4], [6], [7], [11], [12] and the references therein). In this case, let Γ be
a finite subgroup of an indefinite unitary group SU(a, b) or U(a, b) (defined
precisely in Section 2). We are interested in CR mappings satisfying

f :Q(a, b)→Q(A,B) and f ◦ γ = f for all γ ∈ Γ.

The problem of constructing group-invariant CR mappings has attracted
substantial interest over the years (see [8], [9], [10], [2], [3], [4], [11], [12],
[13], [6], [7] and the references therein). D’Angelo and Lichtblau [5] gave a
canonical construction of invariant-polynomial CR mappings, and they used
this construction to study the CR spherical space form problem. The first
author [11], [12] found the target hyperquadric for this canonical construction
for all subgroups of SU(2). In the present paper, we build on this work in the
case of the source hyperquadric Q(1,1).

The fundamental approach in this paper is to use the canonical construction
of invariant CR mappings given in [5]. Let Γ be a finite subgroup of the
indefinite unitary group U(a, b), and define

〈z,w〉b =
a∑

j=1

zjwj −
a+b∑

j=a+1

zjwj .

Following the construction in [5] of an invariant, Hermitian-symmetric poly-
nomial, we introduce

ΦΓ(z, z) = 1−
∏
γ∈Γ

(
1− 〈γz, z〉b

)
.

Expanding the product and diagonalizing the underlying matrix of coeffi-
cients gives

ΦΓ(z, z) =
∥∥F (z)

∥∥2 − ∥∥G(z)
∥∥2,

where F and G are Γ-invariant, linearly-independent, holomorphic polynomi-
als. Let N+(Γ) and N−(Γ) denote the numbers of components of F and G



INVARIANT CR MAPPINGS BETWEEN HYPERQUADRICS 323

respectively. Therefore, ΦΓ generates an associated Γ-invariant CR-mapping
φΓ given by

φΓ = F ⊕G :Q(a, b)→Q
(
N+(Γ),N−(Γ)

)
.

We define S(Γ) = (N+(Γ),N−(Γ)) to be the signature pair of ΦΓ or the target
hyperquadric of the associated CR mapping φΓ. In the general case of an
arbitrary finite group Γ, the resulting matrix of coefficients of ΦΓ is often
very large and difficult to diagonalize explicitly; however, some groups give
a sparse or diagonal matrix, allowing interesting results to be proven. For
instance, in [11] the first author shows that the target hyperquadric associated
to the binary icosahedral group of order 120 has 40 positive eigenvalues and
22 negative eigenvalues.

Even in the case of cyclic subgroups, the combinatorics is interesting and
difficult. Let Γp;q1,q2 be the cyclic subgroup of order p in U(1,1) generated by

s=

(
ωq1 0
0 ωq2

)
,

where ω is a pth primitive root of unity and p, q1, and q2 have no common fac-
tor. We assume q1 and q2 are minimally chosen and 0≤ q1 ≤ q2 < p. The first
main result gives the exact signature pair for all finite subgroups of SU(1,1).

Theorem 1. If Γ is a subgroup of order p in SU(1,1), then the signature
pair is given by

S(Γ) =

(
2,

p

2

)
if p is even,

(
1,

p+ 1

2

)
if p is odd.

For a general cyclic subgroup Γp,q1,q2 ⊂ U(1,1), a more delicate combina-
torial analysis is required. Loehr, Warrington, Wilf [14] used circulant deter-
minants in order to study the case Γp;1,q2 ⊂ U(2). In [14], they posed the
problem of generalizing their results to the general case Γp;q1,q2 . We adapt
and extend their arguments to complete the story of Γp;q1,q2 in Theorem 2.
The underlying strategy follows the ideas of Loehr, Warrington, and Wilf in
[14].

Theorem 2. Suppose gcd(p, q1, q2) = 1. In the polynomial

Φp,q1,q2(z, z) = 1−
p∏

j=1

(
1− |z1|2ωq1j − |z2|2ωq1j

)
,

the monomials Crs|z1|2r|z2|2s which appear are exactly those for which
p|(rq1 + sq2), and the coefficients Crs of these monomials are positive if and
only if gcd(q1, q2,

rq1+sq2
p ) is odd.

This result can then be applied to estimate the signature pairs for the
subgroups of Γp;q1,q2 ⊂ U(1,1). In this case, we study the positivity ratio
N+

N where N = N+ +N−. Theorem 3 gives the asymptotic behavior of the
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positivity ratio for the source hyperquadric Q(1,1), and Theorem 4 gives the
behavior in the case of the source sphere Q(2,0) = S3.

Theorem 3. For Γp;q1,q2 ⊂ U(1,1) the asymptotic positivity ratio is given
by

lim
p→∞

N+(Γp;q1,q2)

N(Γp;q1,q2)
=

{
q1q2+1
4q1q2

for q1 odd and q2 odd,
q1(q2−q1)+1
4q1(q2−q1)

for q1 odd and q2 even.

Furthermore,

lim
p→∞

N+(Γ2p−1;q1,q2)

N(Γ2p−1;q1,q2)
=

q2(q2 − q1) + 1

4q2(q2 − q1)
for q1 even and q2 odd

and

lim
p→∞

N+(Γ2p;q1,q2)

N(Γ2p;q1,q2)
=

3q2(q2 − q1)− 1

4q2(q2 − q1)
for q1 even and q2 odd.

Theorem 4. For Γp;q1,q2 ⊂ U(2) the asymptotic positivity ratio is given by

lim
p→∞

N+(Γp;q1,q2)

N(Γp;q1,q2)
=

⎧⎪⎪⎨
⎪⎪⎩

3q1(q2−q1)+1
4q1(q2−q1)

for q1 odd and q2 even,
3q1q2+1
4q1q2

for q1 odd and q2 odd,
3q2(q2−q1)−1
4q2(q2−q1)

for q1 even and q2 odd,

and hence

lim
q1→∞

lim
q2→∞

lim
p→∞

N+(Γp;q1,q2)

N(Γp;q1,q2)
=

3

4
.

The paper is organized as follows. In Section 2, we use D’Angelo’s construc-
tion to prove Theorem 1. In Section 3, we will extend the results of [14] to
prove Theorem 2. This generalization will allow us, in Section 4, to determine
signature pairs for a general finite subgroup of U(1,1) and prove Theorems 3
and 4.

2. Results from SU(1,1)

In this section, we recall some background material and prove Theorem 1.
We begin by giving precise definitions for the indefinite unitary groups U(1,1)
and SU(1,1); namely,

U(1,1) =
{
A ∈GL(2,C) :A∗JA= J

}
where J =

[
1 0
0 −1

]
, and

SU(1,1) =
{
A ∈ U(1,1) : detA= 1

}
.

Let Γ be a finite subgroup of the indefinite unitary group SU(1,1). Simon
proves in [15, Thm. 10.4.15] that every compact subgroup of U(1,1) is Abelian.
This theorem can be used to determine the finite subgroups Γ in U(1,1). Since
the only simple Abelian groups are the cyclic groups of prime order, the finite
subgroups of U(1,1) must be these groups and their direct products. In the
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case of SU(1,1) we can further refine our restrictions by noting that the group
is isomorphic to SL(2,R) as proven by Simon in [15, Prop. 10.4.1]. It is well
known that the only finite subgroups of SL(2,R) are cyclic. Thus, we can
restrict our attention to the problem of cyclic groups in SU(1,1) for the rest
of this section. First, consider the case of a cyclic group of order p. Recall that
in U(1,1), these groups can be considered as generated by the matrix

s=

[
ωq1 0
0 ωq2

]
.

Here ω is a primitive pth root of unity and q1, q2, p have no common factor.
Without loss of generality, we assume that q1 and q2 are chosen minimally. For
instance, the parameters (p; q1, q2) = (7; 1,2) generates the same subgroup as
(p; q1, q2) = (7; 2,4). Thus, we assume q1 and q2 have no common factor. Since
the determinant of s must equal one in the SU(1,1) case, q1 + q2 must equal
p. We can then simplify to the generator s below without loss of generality:

s=

[
ω 0
0 ωp−1

]
.

Using the diagonal form of the generator s allows us to simplify the invariant
Hermitian polynomial ΦΓ as follows:

ΦΓ(z, z) := Φp;1,p−1(z, z) = 1−
∏
γ∈Γ

(
1− 〈γz, z〉1

)

= 1−
p∏

j=1

(
1−wj |z1|2 +wj(p−1)|z2|2

)
=
∑
α,β

Cαβz
αzβ ,

where Cαβ is the matrix of coefficients. We illustrate this approach with an
example. Let p= 2, then

Φ2;1,1(z, z) = 1−
∏
γ∈Γ

(
1− 〈γz, z〉

)
= z1

2z21 − 2z1z2z1z2 + z2
2z22 .

In matrix form this expands to:

Φ2;1,1(z, z) =

⎡
⎣ z1

2

z1z2
z2

2

⎤
⎦
T ⎡
⎣1 0 0
0 −2 0
0 0 1

⎤
⎦
⎡
⎣ z21
z1z2
z22

⎤
⎦ .

Since the eigenvalues of this matrix are 1, 1, and −2, the resulting signature
pair for the cyclic group of order 2 in SU(1,1) is (2,1). The associated CR
mapping is given by

φ :Q(1,1) 
→Q(2,1), φ(z1, z2) =
(
z21 , z

2
2 ,
√
2z1z2

)
.

We move on to the general case of an arbitrary cyclic subgroup of SU(1,1).
It is here useful to adapt results for cyclic subgroups of SU(2) from [2], [11],
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[12]. D’Angelo [2] gave an explicit expression for Φp;1,p−1 for cyclic subgroups
of SU(2); namely,

Φp;1,p−1(z, z) = 1−
p∏

j=1

(
1− ωj |z1|2 − ωj(p−1)|z2|2

)

= |z1|2p + |z2|2p +
� p

2 �∑
j=1

(−1)j−1kj |z1|2j |z2|2j

for some positive (explicit) coefficients kj . We can modify this result to the
SU(1,1) case by changing the necessary signs in the expression to get

1−
p∏

j=1

(
1−wj |z1|2 +wj(p−1)|z2|2

)

= |z1|2p + (−1)p|z2|2p +
� p

2 �∑
j=1

(−1)j(−1)j−1kj |z1|2j |z2|2j .

Simplifying the powers of −1 then yields Φp;1,p−1 in SU(1,1) in the following
form

Φp;1,p−1(z, z) = |z1|2p + (−1)p|z2|2p −
� p

2 �∑
j=1

kj |z1|2j |z2|2j .

From this final expression, we determine the signature pairs for all cyclic
subgroups of SU(1,1):

S(Γ) =

(
2,

p

2

)
for p even,

(
1,

p+ 1

2

)
for p odd.

This result is summarized in Theorem 1.

3. Proof of Theorem 2

In this section, we recall and extend a combinatorial approach to ΦΓ due
to Loehr, Warrington, and Wilf [14]. In particular, they gave a combinatorial
method for determining information about the coefficients of the invariant
polynomial ΦΓ for cyclic subgroups Γ of U(2). Replacing |z1|2 and |z2|2 with
x and y, respectively, we introduce the following notation for ΦΓp;q1,q2

:

(3.1) Φp;q1,q2(x, y) = 1−
p−1∏
j=0

(
1− xωq1j − yωq2j

)
.

In particular, Loehr, Warrington, and Wilf determined the signs of the co-
efficients of 1− Φp;q1,q2(x, y) in the cases where either of the pairs (p, q1) or
(p, q2) are coprime. They posed the general problem of determining the signs
for arbitrary p, q1, q2 in [14]. We give a complete answer to their question in
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this section by adapting and extending their techniques. We prove the set to
which their results apply is the following{

(p, q1, q2) : gcd(p, q1, q2) = 1
}
;

this result is Theorem 2.
This section relies on two insights from [14] in order to provide information

about the coefficients of Φp;q1,q2(x, y). Let ap;q1,q2(r, s) denote the coefficient

of xrys in Φp;q1,q2(x, y). We define l = rq1+sq2
p as the weight of the mono-

mial ap;q1,q2(r, s)x
rys. The first is to express the product expansion (3.1) as

the determinant of a 3-line circulant matrix. The second is to compute this
determinant by counting permutations with certain fixed points.

We pause to consider the smallest case not covered by [14]. For example,

Φ6;2,3(x, y) = 2x3 − x6 + 3y2 + 6x3y2 − 3y4 + y6.

In this case, we have (p, q1, q2) = (6,2,3) in which gcd(6,2) = 2 > 1 and
gcd(6,3) = 3 > 1, thus neither of the pairs are coprime, but gcd(6,2,3) = 1.
The weight one terms are 2x3 and 3y2; the weight two terms are −x6, 6x3y2,
and −3y4; the weight three term is y6. Notice that the odd weight terms are
all positive, and the even weight terms alternate in sign, as predicted by the
Loehr, Warrington, Wilf condition (as stated in Theorem 2).

3.1. Setup. In order to set up the combinatorial argument used in the proof
of Theorem 2, we first express the polynomial Φp;q1,q2 as the determinant of
a 3-line p× p square circulant matrix. Recall an n× n circulant matrix is of
the form

circ(c1, . . . , cn) =

⎛
⎜⎜⎜⎜⎜⎝

c1 c2 · · · cn−1 cn
cn c1 · · · cn−2 cn−1

...
. . .

c3 c4 · · · c1 c2
c2 c3 · · · cn c1

⎞
⎟⎟⎟⎟⎟⎠ .

A well-known property of circulant matrices is the following formula for the
determinant (see [16] for a proof of this formula and other properties of cir-
culant matrices):

det
(
circ(c1, . . . , cn)

)
=

n∏
j=1

(
c1 + c2ω

j + · · ·+ cnω
(n−1)j

)
,

where ω is primitive nth root of unity. Finally define

dj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, j = 1,

−x, j = q1 + 1,

−y, j = q2 + 1,

0, otherwise.
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Thus, we can express Φp;q1,q2 as a circulant determinant:

Φp;q1,q2(x, y) = 1− det(Cp;q1,q2),

where Cp;q1,q2 = circ(d1, . . . , dp).

3.2. Computing the determinant of Cp;q1,q2 . We expand the determinant
of the n× n matrix C = [aij ]:

(3.2) det(C) =
∑
σ∈Sn

sign(σ)a1,σ(1)a2,σ(2) · · ·an,σ(n).

We illustrate the case where (p, q1, q2) = (6,2,3). Here we have

det(C6;2,3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −x −y 0 0
0 1 0 −x −y 0
0 0 1 0 −x −y
−y 0 0 1 0 −x
−x −y 0 0 1 0
0 −x −y 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Following [14], we introduce the set of permutations Tp;q1,q2(r, s) contribut-
ing to the monomial xrys in det(Cp;q1,q2). We reproduce the definition below
from [14].

We define the Tp;q1,q2(r, s) as the set of all permutations σ with

• p− r− s fixed points (0-steps);
• r values of j where σ(j)− j is congruent to q1 mod p (q1-steps);
• s values of j where σ(j)− j is congruent to q2 mod p (q2-steps).

The set T6;2,3(3,2), for example, contains the following permutations:

(24635), (13524), (13624), (13625), (14635), (14625),

and corresponds to the coefficient of the monomial 6x3y2 in the polynomial
Φ6;2,3(x, y).

We show that each permutation in Tp;q1,q2(r, s) has the same cycle structure
when we restrict ourselves to the condition that gcd(p, q1, q2) = 1. It is essential
to the argument that we show identical cycle structure within Tp;q1,q2(r, s),
since this allows us to say that all permutations in Tp;q1,q2(r, s) have the same
sign, which gives us ∣∣Tp;q1,q2(r, s)

∣∣= ∣∣ap;q1,q2(r, s)∣∣,
as well as a method for determining the signs of the coefficients.

Furthermore, in everything that follows, we restrict ourselves to the case
where both of the pairs (p, q1) and (p, q2) have common factors, since when
either of these pairs are coprime, we have a situation equivalent to one in
which q1 = 1, which is covered in [14]. Since we assume q1 and q2 are chosen
minimally, we also assume q1 and q2 are coprime.
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3.3. Cycle structure. We proceed similarly to [14] and adapt some of their
notation, making slight modifications to allow for an arbitrary value for q1.
We note here that Lemmas 5, 6, and 10 are straightforward extensions of
Lemmas 7, 8, and 12 of [14]. Lemmas 5 and 6 are only stated, since their
proofs follow simply by replacing appropriate values of 1 with q1 in the proofs
from [14].

Let σ ∈ Tp;q1,q2(r, s). We decompose σ into disjoint cycles of length greater
than 1 to exclude fixed points:

σ =C1C2 · · ·Ck.

We let Ci be represented by (xi;wi), where xi is an arbitrary point in our
cycle, the “starting point”, and wi is a word (in this case an ri + si-tuple)
which specifies each of the “steps”, in order, within Ci. Here, we define ri
and si as the number of q1-steps and q2-steps in Ci. We define wi(x) = wix ,
that is, the xth component of wi. For example, if wi = (2,3,2,2,3), then
wi(5) = 3,wi(3) = 2, etc. So we have:

wi =
(
wi(1),wi(2), . . . ,wi(ri + si)

)
.

We define

σt(xi)≡ xi +
t∑

j=1

wi(j) (mod p),

where t is a non-negative integer. As in [14], we take our mod p statement to
indicate a restriction to values from 1 to p as opposed to 0 to p− 1.

Lemma 5. If Tp;q1,q2(r, s) is nonempty, then p|(rq1 + sq2).

Lemma 6. If Tp;q1,q2(r, s) is nonempty, then gcd(ri, si, li) = 1 for 1≤ i≤ k.

Recall that we defined our modulo operation on the set [p] = {1,2, . . . , p}.
Let m ∈ Z such that 1 ≤ m ≤ p − 1, and define j = lcm(m,p)

m . Now let
x1, x2, . . . , xn ∈ [p].

Definition 7. We say the sequence (x1, x2, . . . , xn) is m-ordered on [p] if:

• 3≤ n≤ j.
• xi ≡ xj (mod gcd(p,m)) ∀i, j.
• In the clockwise traversal of [p] via m-steps, starting with x1, we hit xi

before xj if and only if i < j.

We let 3 ≤ n ≤ j because our definition is not meaningful with less than
three points (any two points which satisfy the second condition would be m-
ordered). The second condition is due to the fact that our traversal by m-steps
will not hit any element of [p] which is not in the same equivalence class as
x1 modulo gcd(p,m). We also note here that our definition of m-ordered is
invariant under rotations about the set [p].
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Lemma 8. If σ ∈ Tp;q1,q2(r, s), and gcd(p, q1, q2) = 1, we must have r1 =
r2 = · · ·= rk and s1 = s2 = · · ·= sk.

Proof. The proof follows the structure of the corresponding proof in [14].
We simply adapt their notation and approach to accommodate arbitrary val-
ues of q1.

We let Ck, Cl be two distinct, nontrivial cycles in Tp;q1,q2(r, s). We write
Ck = (xk,wk) and group the q1-steps in wk preceding each q2-step such that:

wk =
(
qρ1

1 , q2, . . . , q
ρsk
1 , q2

)
,

where
∑

i ρi = rk. Note that use of exponents in wk represents a series of
“steps” in a row within the word. We wish to show that sl = sk.

We first argue that sl ≥ sk. If sk = 0, there is nothing to prove, so we
assume sk ≥ 1, that is we assume Ck contains at least one q2-step. We will
proceed by partitioning the points in [p] fixed by Ck into sets which we will
define in terms of the q2-steps, {ei}, and the images of the q2-steps, {di}.

So we set d1 = xk, and e1 =Cρ1

k (x). If sk > 1, further define di =Ck(ei−1),
ei =Cρi

k (di), for 1≤ i≤ rk.
We assert that there exists a unique permutation U such that for all x in

the set {
x ∈ [p] : (ej , x, dU(j)) is q1-ordered

}
,

x is not in {dj}. In other words, we assert that for each q2-step (e point), we
have a d point which is “hit” first when we traverse [p] in q1-steps starting from
the given e point. Our assertion could only be false if there exists an x ∈ {ei}
such that x �≡ di (mod gcd(p, q1)) for each i. But we know by construction of
{ei} that x=C

ρj

k (dj) for some j which implies that x≡ dj (mod gcd(p, q1)),
since x is obtained from dj entirely by q1-steps within Ck, so the assertion
holds.

Now we define

(3.3) Vj =
{
x ∈ [p] : (ej , x, dU(j)) is q1-ordered

}
.

These are the points in [p] not hit by Ck when we move via q1-steps starting
with ej , stopping before the first d point encountered (dU(j)). We know all
points in Vj must be fixed by Ck by definition of U .

We also define functions π, f , g as:

π(x) = x+ q2 (mod p),

f(x) = x− q1 (mod p),

g(x) = x+ q1 (mod p),

and the set Wj as:

Wj =
{
y ∈ [p] :

(
f
(
π(ej)

)
, y, g(ej+1)

)
is q1-ordered

}
(3.4)

=
{
y ∈ [p] :

(
f(dj+1), y, g(ej+1)

)
is q1-ordered

}
.
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We use the functions f , g to specify the endpoints of the interval [dj+1, ej+1]⊂
[p]. Note that Ck(x) �= x holds for each x ∈Wj , and for every j by definition
of ej .

We claim that for each x ∈ Vj , if π(x) ∈Ck, π(x) ∈Wj . So let x ∈ Vj such
that π(x) ∈Ck. Note that all points x in Vj must be such that (ej , x, dU(j)) is
q1-ordered. Then we know that (π(ej), π(x), π(dU(j))) = (dj+1, π(x), π(dU(j)))
must also be q1-ordered since the q1-ordered condition is invariant under a
rotation about [p]. Note

Wj ∪ Vj+1 =
{
x ∈ [p] :

(
f(dj+1), x, dU(j+1)

)
is q1-ordered

}
,

which means π(x) is in Wj ∪ Vj+1 which in turn implies that π(x) is in Wj

since all points in Vj+1 are fixed by Ck.
We also claim that for each x such that C(x) = x, there exists a Vj such

that x ∈ Vj .
For each x ∈ [gcd(q1, p)], there exists an ej such that ej ≡ x (mod gcd(q1,

p)), since we know we have at least a single q2-step, and to complete the cycle,
we must return to the same equivalence class modulo gcd(q1, p). Thus, since
q1, q2 coprime, we know there exists an ej for each element of [gcd(q1, p)].

Now let Ck(x) = x. Then because there exists an ej such that ej ≡
x (mod gcd(q1, p)), we know x is in

⋃
j Vj since by construction of the Vj

sets,
⋃

j Vj partitions all points congruent to some ej modulo gcd(q1, p).
Also since the Vj sets do not overlap, we know x lies within in a unique

Vj . So let Cl(x) �= x which implies Ck(x) = x which gives us that x is in Vj

for a unique j. Now if x is a q1-step of Cl, Cl(x) is in Vj as well, since q1 �= q2
and Ck, Cl disjoint. If x is a q2-step of Cl, we know (ej , x, dU(j)) is q1-ordered
which tells us (π(ej), π(x), π(dU(j))) = (dj+1, π(x), π(dU(j))) is also q1-ordered.
Then as noted above, (dj+1, π(x), π(dU(j))) being q1-ordered tells us that π(x)
is in Wj ∪ Vj+1, which implies that π(x) is in Vj+1. Iterating, we see that x
orbits through all Vj ’s which implies sl ≥ sk. Arguing with the roles of Ck, Cl

switched, sk = sl.
Now we also know that rkq1 + skq2 = λkp and rlq1 + skq2 = λlp, since we

assumed σ was in Tp;q1,q2(r, s), and we have the result of Lemma 5. Then
rk − rl = (λk − λl)p. Since sk = sl > 0, we know 0≤ rk, rl < p, thus

−p < rk − rl < p.

Since we know p | (rk − rl), we conclude that rk = rl. �

Example 9. We consider a permutation σ ∈ T24;3,16(16,6). We have σ =
C1C2, where

(3.5)
C1 = (20,23,2,18,21,24,3,19,22,1,4),

C2 = (7,10,13,5,8,11,14,6,9,12,15),
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and the two fixed points of σ are 16 and 17. We write C1 in the form (xi;wi)

C1 =
(
20; q21q2q

3
1q2q

3
1q2
)
=
(
20; 32 · 16 · 33 · 16 · 33 · 16

)
,

and observe that r1 = 8 and s1 = 3. We also have from definitions of di, ei in
Lemma 8 that

(3.6)
(d1, d2, d3) = (20,18,19),

(e1, e2, e3) = (2,3,4).

Also, the permutation U defined in Lemma 8 written in one-line notation,
happens to be the identity permutation, since dU(1) = 20, dU(2) = 18, dU(3) =
19. We now write out the Vj sets

(3.7)

V1 = {5,8,11,14,17},
V2 = {6,9,12,15},
V3 = {7,10,13,16},

observing that they partition all elements of [24] not hit by C1. We also write
out the Wj sets

(3.8)

W1 = {18,21,24,3},
W2 = {19,22,1,4},
W3 = {20,23,2}.

Note that for any x in some Vj , if x is a 16-step in some cycle Ci, i �= 1, then
we must have that Ci(x) is in Vk for k �= j. Take x = 15, for example, and
suppose 15 is a 16-step of Ci. Then Ci(15) = 7, and 7 is in V3. Indeed this is
the case in C2.

Lemma 10. If σ is in Tp;q1,q2(r, s), and gcd(p, q1, q2) = 1, we must have that
k = gcd(r, s, l), ri = r/k, si = s/k, for all i, and all elements of Tp;q1,q2(r, s)

have identical cycle structure. Subsequently, sgn(σ) = (−1)r+s+gcd(r,s,l).

Proof. Recall that we defined k to be the number of disjoint cycles in
our permutation σ = C1C2 · · ·Ck. Let gcd(p, q1, q2) = 1 and let σ be in

Tp;q1,q2(r, s). We know
∑k

i=1 ri = r and
∑k

i=1 si = s, so the result of Lemma 8
gives us that ri = r/k and si = s/k for all i. Then for each i,

li =
riq1 + siq2

p
=

rq1+sq2
p

k
=

l

k
.

Now Lemma 6 gives us that gcd(ri, si, li) = 1. Then:

k = k gcd(ri, si, li) = gcd(kri, ksi, kli) = gcd(r, s, l).

Also note that the sign of σ is the parity of the quantity p− c where c denotes
the total number of cycles in σ, including 1-cycles. Recall that we have p−r−s
1-cycles, which gives us

sgn(σ) = (−1)p−(k+(p−r−s)) = (−1)r+s+gcd(r,s,l). �
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We are now able to formulate the following combinatorial formula for the
coefficients, which is an extension of a result from Section 2 of [14].

Lemma 11. Given gcd(p, q1, q2) = 1, if ap;q1,q2(r, s) is defined as the coeffi-
cient of xrys in Φp;q1,q2(x, y),

ap;q1,q2(r, s) = (−1)gcd(r,s,l)+1
∣∣Tp;q1,q2(r, s)

∣∣.
Proof. Lemma 10 gives us two new pieces of information about the coeffi-

cients ap;q1,q2(r, s). First is the following equality:

(3.9)
∣∣Tp;q1,q2(r, s)

∣∣= ∣∣ap;q1,q2(r, s)∣∣.
Our determinant formula gave us that the absolute value of a(r, s) is equal to
the absolute value of the sum of the signs of the permutations in T . However,
we now know that the signs of permutations in T are uniquely determined by
p, q1, q2, r, s, which implies all the signs of the permutations in T are the
same, hence the above equality (3.9). Furthermore we now have a formula for
the signs of the elements of T , and so we can give a complete formula for the
coefficients. Since Φ is defined as 1− det(CΦ), we have the desired result

ap;q1,q2(r, s) = (−1)(−1)r+s
∣∣Tp;q1,q2(r, s)

∣∣(−1)r+s+gcd(r,s,l)(3.10)

= (−1)gcd(r,s,l)+1
∣∣Tp;q1,q2(r, s)

∣∣.
Thus if the weight l is odd, gcd(r, s, l) is odd, and hence ap;q1,q2(r, s)> 0. If
the weight l is even, gcd(r, s, l) alternates between even and odd, and hence
ap;q1,q2(r, s) alternates sign. �

3.4. Construction of elements in Tp;q1,q2(r, s). We have shown in
Lemma 5 that Tp;q1,q2(r, s) being nonempty implies p | (rq1 + sq2). Because of
equation (3.10) and the result of Lemma 5, we have

(3.11) ap;q1,q2(r, s) �= 0⇒ p | (rq1 + sq2).

However, we’d like to say precisely when our coefficients are nonzero. Thus,
this section will serve to prove the converse of (3.11) (note this is generally not
true in the higher dimensional setting; see [12] for an example). The lemmas
and theorems required to prove this follow in the same fashion as in [14], and
we omit the proofs that follow immediately from their analogues in [14]. We
use their notation as much as possible to allow the reader to easily compare.

So we assume rq1+ sq2 = lp and gcd(r, s, l) = 1. Recall that k = gcd(r, s, l),
so k = 1 means we are constructing a permutation σ which should consist of
only a single cycle. We define the lattice path

(3.12) ν =
[
ν0 = (0,0), ν1, ν2, . . . , νr+s = (r, s)

]
,

where either νi − νi−1 = (1,0) or νi − νi−1 = (0,1) for i < 0.
Let v be an (r+ s)-tuple in {q1, q2}r+s with exactly r q1’s and s q2’s. Note

that {q1, q2}r+s is an r+ s-dimensional vector space which implies each of v’s
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components must be either a q1 or a q2. If νi − νi−1 = (1,0), we let the ith
entry in v be a q1. Else we have νi− νi−1 = (0,1), in which case we set the ith
entry to a q2. We will show that (x;v) is a well-defined element of Tp;q1,q2(r, s)
for all x in [p].

We recursively define ν with νi = (xi, yi):

(3.13) νi =

{
nui + (1,0) if sxi ≤ ryi,

nui + (0,1) if sxi ≤ ryi.

We omit the proof of the following lemma since it is exactly the same as it
appears in [14].

Lemma 12. Given ν constructed as above, let 0 �= i, j ≤ r + s and write
νi = (xi, yi) and νj = (xj , yj). If b= yj − yi and a= xj −xi, then |(as− br)| ≤
r+ s− 1.

Lemma 13. If gcd(p, q1, q2) = 1, and a, b, r, s, p, q1, q2 are integers such
that p | (aq1 + bq2) and p | (rq1 + sq2), then sa− rb= 0 or |sa− rb| ≥ p.

Proof. When q1 or q2 is 1, the result appears in [14], so we assume q1, q2 > 1.
Let aq1 + bq2 =mp and rq1 + sq2 = lp. Then

|saq1 − rbq1|= |saq1 + sbq2 − sbq2 − rbq1|
=
∣∣s(aq1 + bq2)− b(rq1 + sq2)

∣∣= ∣∣p(sm− bl)
∣∣,

which implies

|sa− rb|=
∣∣∣∣p(sm− bl)

q1

∣∣∣∣.
We claim q1 | (sm− bl). Suppose for contradiction that q1 � (sm− bl). Then

sm− bl= q1γ + δ,

where γ, δ are integers, and 0< δ < q1. Observe

q2(sm− bl) = q2(q1γ + δ) = q1(al− rm)

which implies

q2δ = q1(al− rm− q2γ).

But since gcd(q1, q2) = 1 and q1 �= 1, we must have q1 | δ, which is a contra-
diction since we said that 0< δ < q1. Thus, we must have that q1 | (sm− bl).

This implies (sm−bl)
q1

is an integer. Since this integer is either 0 or at least 1,

we have the desired result because

|sa− rb|=
∣∣∣∣p(sm− bl)

q1

∣∣∣∣. �

The proofs of Lemmas 14 and 15 are omitted since they are in [14].

Lemma 14. (x;v) is a well-defined cycle with r q1-steps and s q2-steps.
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Now let gcd(r, s, l) = k > 1. Consider (x;v) where v is determined by the
lattice path ν from (0,0) to (r/k, s/k) constructed at the beginning of the
section. Lemma 14 tells us that (x;v) is a valid cycle.

Lemma 15. Let k = gcd(r, s, l) and ν be as above and then define Cj =
(1+ (j − 1)(q2 − q1);v). Then

σ =C1C2 · · ·Ck

is a well-defined element of Tp;q1,q2(r, s).

Combining the results of Lemmas 10 and 15, and again recalling the sign
convention Φ = 1− det(CΦ) now gives the result summarized in Theorem 2.

4. Results for U(1,1)

For the more general case of U(1,1), we turn back to the more general
cyclic group Γp;q1,q2 generated by

s=

[
wq1 0
0 wq2

]
.

Here again, we are restricting ourselves to the case of minimal q1, q2. For this
case, the invariant polynomial gives a slightly different expression; namely,

Φp;q1,q2(z, z) = 1−
∏
γ

(
1− 〈γz, z〉1

)

= 1−
p∏

j=1

(
1−wjq1 |z1|2 +wjq2 |z2|2

)
.

As given by Theorem 2 the coefficients in a related polynomial are subject to
a number of conditions. For the polynomial:

Φp;q1,q2(z, z) = 1−
∏
γ

(
1− 〈γz, z〉

)

= 1−
p∏

j=1

(
1−wjq1 |z1|2 −wjq2 |z2|2

)
.

The coefficients Crs|z1|2r|z2|2s that are non-zero are exactly those where p
divides ra+ sb, and Crs is positive if and only if gcd(r, s, ra+sb

p ) is odd. We

can then use the transformation:

|z2|2 = y, y→−y

to adapt Theorem 2 for the case of U(1,1).

Lemma 16. Defining Nl as the number of terms of weight l the following
inequalities hold ∣∣∣∣Nl(Γp;q1,q2)−

lp

q1q2

∣∣∣∣≤ 1
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when 1≤ l≤ q1 and ∣∣∣∣Nl(Γp;q1,q2)−
(q2 − l)p

q2(q2 − q1)

∣∣∣∣≤ 1

when q1 + 1≤ l≤ q2.

Proof. Fix p, q1, q2. We want to count the number of non-negative integer
solutions (r, s) such that rq1 + sq2 = lp and r + s≤ p where 1≤ l ≤ q2. Note

that r = lp−sq2
q1

, so r is an integer for one out of every q1 values of s. Also note

that the two lines rq1 + sq2 = lp and r+ s= p intersect at the point:

r =
(q2 − l)p

q2 − q1
, s=

(l− q1)p

q2 − q1
.

We can then split the proof into two cases: 1≤ l ≤ q1 and q1 + 1≤ l ≤ q2. In
the case that 1≤ l≤ q1 we have the intersection point occurring at a negative
value of s, so we start the count at s = 0. The number of non-zero terms is
then within 1 of

lp
q2

− 0

q1
=

lp

q1q2
.

In the case where q1 + 1≤ l≤ q2 the number of non-zero terms is within 1 of

lp
q2

− (l−q1)p
q2−q1

q1
=

(q2 − l)p

q2(q2 − q1)
. �

Lemma 17. Define Nodd and N even as the number of odd and even weight
terms, respectively. When p is large, the asymptotic behavior is given by

N(Γp;q1,q2)∼
p

2
.

Furthermore,

lim
q1→∞

lim
q2→∞

lim
p→∞

Nodd(Γp;q1,q2)

N(Γp;q1,q2)
= lim

q1→∞
lim

q2→∞
lim
p→∞

N even(Γp;q1,q2)

N(Γp;q1,q2)
.

Proof. Using the results from the previous lemma, we can sum the number
of terms of each weight l for 1 ≤ l ≤ q2 to approximate the ratios. Thus,
N(Γp;q1,q2) is within q2 of

q1∑
l=1

lp

q1q2
+

q2∑
l=q1+1

(q2 − l)p

q2(q2 − q1)
=

p

2
.

Similarly we can approximate the numbers of even and odd weight terms. The
exact sums depend on the parity of q1 and q2, but the asymptotic behavior
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of the ratios N+/N and N−/N is the same in each case. We illustrate the
computation with q1 and q2 both odd below. By Lemma 16

N even(Γp;q1,q2)∼
q1−1

2∑
l=1

2lp

q1q2
+

q2−1
2∑

l=
q1+1

2

(q2 − 2l)p

q2(q2 − q1)
=

p(q1q2 − 1)

4q1q2
,

Nodd(Γp;q1,q2)∼
q1−1

2∑
l=0

(2l+ 1)p

q1q2
+

q2−1
2∑

l=
q1+1

2

(q2 − (2l+ 1))p

q2(q2 − q1)
=

p(q1q2 + 1)

4q1q2
.

Thus, in the limit where p, q1, q2 go to infinity, there will be an equal
number of even and odd weight terms. �

Proofs of Theorems 3 and 4. To complete the proof of Theorem 3, we
break down the possible values of p, q1, q2 into 4 cases.

• Case 1: q1 odd and q2 odd. We are looking at r, s such that rq1 + sq2 = lp.
Applying the transformation |z2|2 →−|z2|2 allows us to apply results from
Theorem 2. We then know that a term is positive if and only if s+gcd(r, s, l)
is odd. For l even, r and s must be even also, leading to all negative terms.
For odd weight l, half the terms have even s and are thus negative, and half
of the terms have odd s and are thus positive. In summary, we are left with
only half the odd weight terms as positive, so with Lemmas 16 and 17 we
can then calculate the asymptotic positivity ratio. By Lemma 17, we have

Nodd(Γp;q1,q2)∼
q1−1

2∑
l=0

(2l+ 1)p

q1q2
+

q2−1
2∑

l=
q1+1

2

(q2 − (2l+ 1))p

q2(q2 − q1)
=

p(q2q1 + 1)

4q1q2
.

Since all even weight terms are negative and odd weight terms alternate in

sign, we have N+

N = Nodd

2N . Furthermore, by Lemma 17, we have N+

N ∼ Nodd

p ,

which gives

lim
p→∞

N+(Γp;q1,q2)

N(Γp;q1,q2)
=

(q2q1 + 1)

4q1q2
.

• Case 2: q1 odd and q2 even. This case proceeds exactly analogous to case
1, giving half the odd weight terms as positive. Using Lemmas 16 and 17,
we can then get:

Nodd(Γp;q1,q2)∼
q1−1

2∑
l=0

(2l+ 1)p

q1q2
+

q2
2 −1∑

l=
q1+1

2

(q2 − (2l+ 1))p

q2(q2 − q1)

=
p(q1(q2 − q1) + 1)

4q1(q2 − q1)
.
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Since all even weight terms are negative and odd weight terms alternate

in sign, we have N+

N = Nodd

2N , and hence the asymptotic positivity ratio is

again given by Nodd

2N ∼ Nodd

p , which gives

lim
p→∞

N+(Γp;q1,q2)

N(Γp;q1,q2)
=

q1(q2 − q1) + 1

4q1(q2 − q1)
.

• Case 3: p odd, q1 even and q2 odd. In the case that q2 is odd, it is important
to distinguish the parity of the order p. For this case, we can follow a similar
argument from Theorem 2 to get half the even weight terms as positive.
Using Lemmas 16 and 17, we then get

N even(Γp;q1,q2)∼
q1
2∑

l=1

2lp

q1q2
+

q2−1
2∑

l=
q1
2 +1

(q2 − 2l)p

q2(q2 − q1)
=

p(q2(q2 − q1) + 1)

4q2(q2 − q1)
.

Since all odd weight terms are negative and even weight terms alternate in

sign, we have N+

N = Neven

2N . Thus the asymptotic positivity ratio is given by
Neven

2N ∼ Neven

p , and hence

lim
p→∞

N+(Γp;q1,q2)

N(Γp;q1,q2)
=

q2(q2 − q1) + 1

4q2(q2 − q1)
.

• Case 4: p even, q1 even and q2 odd. We are looking at r, s such that
rq1 + sq2 = lp. From Theorem 2, we know that a term will be positive if
and only if s+gcd(r, s, l) is odd. For odd l, s must be even, so all the terms
are positive. For even l, s must still be even, but now the terms with even
r are negative. So we get half the even weight terms are negative. Using
Lemmas 16 and 17, we then get

N even(Γp;q1,q2)∼
q1
2∑

l=1

2lp

q1q2
+

q2−1
2∑

l=
q1
2 +1

(q2 − 2l)p

q2(q2 − q1)
=

p(q2(q2 − q1) + 1)

4q2(q2 − q1)
.

Since all odd weight terms are positive and even weight terms alternate in

sign, we have N+

N = 1− Neven

2N . Thus the asymptotic positivity ratio is given

by (1− Neven

2N )∼ (1− Neven

p ), and hence this gives

lim
p→∞

N+(Γp;q1,q2)

N(Γp;q1,q2)
= 1− q2(q2 − q1) + 1

4q2(q2 − q1)
=

3q2(q2 − q1)− 1

4q2(q2 − q1)
.

For the proof of Theorem 4, we can proceed similarly, but now with only 3
cases.

• Case 1: q1 odd and q2 even. Now we can proceed directly from Theorem 2.
Recall that rq1 + sq2 = lp and a term is positive if and only if gcd(r, s, l)
is odd. For odd weight l, all the terms are positive. For even weight l, the
terms with odd s are positive and even s are negative. So we end up with
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half the even weight terms as negative. Using Lemmas 16 and 17, we then
get

N even(Γp;q1,q2)∼
q1−1

2∑
l=1

2lp

q1q2
+

q2
2∑

l=
q1+1

2

(q2 − 2l)p

q2(q2 − q1)
=

p(q1(q1 − q2) + 1)

4q1(q1 − q2)
.

Since all odd weight terms are positive and even weight terms alternate in

sign, we have N+

N = 1− Neven

2N . Since the asymptotic positivity ratio is given

by (1− Neven

2N )∼ (1− Neven

p ), this gives

lim
p→∞

N+(Γp;q1,q2)

N(Γp;q1,q2)
= 1− (q1(q1 − q2) + 1)

4q1(q1 − q2)
=

3q1(q2 − q1) + 1

4q1(q2 − q1)
.

• Case 2: q1 odd and q2 odd. This case proceeds analogous to case 1, where
half the even weight terms are negative. Using Lemmas 16 and 17, we then
get

N even(Γp;q1,q2)∼
q1−1

2∑
l=1

2lp

q1q2
+

q2−1
2∑

l=
q1+1

2

(q2 − 2l)p

q2(q2 − q1)
=

p(q1q2 − 1)

4q1q2
.

Since all odd weight terms are positive and even weight terms alternate in

sign, we have N+

N = 1− Neven

2N . Since the asymptotic positivity ratio is again

given by (1− Neven

2N )∼ (1− Neven

p ), this gives

lim
p→∞

N+(Γp;q1,q2)

N(Γp;q1,q2)
= 1− q1q2 − 1

4q1q2
=

3q1q2 + 1

4q1q2
.

• Case 3: q1 even and q2 odd. This case proceeds analogous to cases 1 and 2,
where half the even weight terms are negative. Using Lemmas 16 and 17,
we then get

N even(Γp;q1,q2)∼
q1
2∑

l=1

2lp

q1q2
+

q2−1
2∑

l=
q1
2 +1

(q2 − 2l)p

q2(q2 − q1)
=

p(q2(q1 − q2)− 1)

4q2(q1 − q2)
.

Since all odd weight terms are positive and even weight terms alternate in

sign, we have N+

N = 1− Neven

2N . Since the asymptotic positivity ratio is again

given by (1− Neven

2N )∼ (1− Neven

p ), this gives

lim
p→∞

N+(Γp;q1,q2)

N(Γp;q1,q2)
= 1− q2(q1 − q2)− 1

4q2(q1 − q2)
=

3q2(q2 − q1)− 1

4q2(q2 − q1)
. �
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