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WEIGHTED LOCAL HARDY SPACES ASSOCIATED
TO SCHRODINGER OPERATORS

HUA ZHU AND LIN TANG

ABSTRACT. In this paper, we characterize the weighted local
Hardy spaces hf(w) related to the critical radius function p and
weights w € A%°°(R™) which locally behave as Muckenhoupt’s
weights and actually include them, by the local vertical maxi-
mal function, the local nontangential maximal function and the
atomic decomposition. Then, we establish the equivalence of the
weighted local Hardy space h,l)(w) and the weighted Hardy space
H} (w) associated to Schrodinger operators £ with w € AP (R™).
By the atomic characterization, we also prove the existence of fi-
nite atomic decompositions associated with hl(w). Furthermore,
we establish boundedness in hf(w) of quasi-Banach-valued sub-
linear operators.

1. Introduction

The theory of classical local Hardy spaces, originally introduced by Gold-
berg [14], plays an important role in various fields of analysis and partial
differential equations; see [6], [20], [23], [28], [29], [30] and their references. In
particular, pseudo-differential operators are bounded on local Hardy spaces
hP(R™) for p € (0,1], but they are not bounded on Hardy spaces HP(R™)
for p € (0,1]; see [14] (also [29], [30]). In [6], Bui studied the weighted local
Hardy space AP, (R™) with w € Ax(R™), where and in what follows, A,(R")
for p € [1,00] denotes the class of Muckenhoupt’s weights; see (7], [12], [15],
[23] for their definition and properties.
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In [19], Rychkov introduced and studied some properties of the weighted
Besov-Lipschitz spaces and Triebel-Lizorkin spaces with weights that are lo-
cally in A,(R™) but may grow or decrease exponentially, which contain Hardy
spaces. In particular, Rychkov [19] generalized some of theories of weighted
local Hardy spaces developed by Bui [6] to A'%¢(R™) weights, where A'%¢(R™)
weights denote local A (R™) weights which are non-doubling weights, and
Alec(R™) weights include A, (R™) weights. Recently, Tang [24] established
the weighted atomic decomposition characterization of the weighted local
Hardy space h?(R") with w € A°¢(R") via the local grand maximal func-
tion, and gave some criteria about boundedness of Bg-sublinear operators on
h? (R™) which was first introduced in [33]; meanwhile, Tang [24] also proved
that pseudo-differential operators are bounded on local Hardy spaces h? (R™)
for p € (0,1] by using the above criteria and main results in [25]. Further-
more, Yang—Yang [32] extended the main results in [24] to the weighted local
Orlicz-Hardy space he(R™) case.

On the other hand, the study of Schrédinger operator £L = —A+V recently
attracted much attention; see [1], [2], [3], [9], [10], [21], [27], [26], [31], [33],
[34], [35], [36]. In particular, J. Dziubariski and J. Zienkiewicz [9], [10] studied
Hardy space H} associated to Schrodinger operators £ with potential satis-
fying reverse Holder inequality. Recently, Bongioanni et al. [2] introduced
new classes of weights, related to Schrodinger operators £, that is, Ag*m(R”)
weight which are in general larger than Muckenhoupt’s (see Section 2 for no-
tions of Af:°°(R™) weight). Naturally, it is a very interesting problem whether
we can give an atomic characterization for weighted Hardy space H}(w) with
w e AP (R™).

The purpose of this paper is to give a positive answer. More precisely, we
first introduce the weighted local Hardy spaces hb(w) with A£->°(R") weights,
and establish the atomic characterization of the weighted local Hardy spaces
hb(w) with w € A2-°°(R") weights. Then, we establish the equivalence between
the weighted local Hardy spaces hll,(w) and the weighted Hardy space H}(w)
associated to Schrodinger operator £ with w € A)"°°(R™). In particular, it
should be pointed out that we cannot directly obtain the atomic characteriza-
tion of H}(w) with AJ">°(R") weights by using the methods in [9], [10], [11],
which forces us to use the above weighted local Hardy spaces h})(w) theory to
overcome the difficulty.

The paper is organized as follows. In Section 2, we review some notions and
notations concerning the weight classes Af¢(R™) introduced in [2], [27], [26].
In Section 3, we first introduce the weighted local Hardy space hﬁ, N (w) via
the local grand maximal function, and then the weighted atomic local Hardy
space hb%*(w) for any admissible triplet (p,q,s), (see Definition 3.3 below),
furthermore, we establish the local vertical and the local nontangential max-
imal function characterizations of hi’ y(w) via a local Calderén reproducing
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formula and some useful estimates established by Rychkov [19]. In Section 4,
we establish the Calderén—Zygmund decomposition associated with the grand
maximal function. In Section 5, we prove that for any given admissible triplet
(P14, 8)w, Iy (W) = h5T*(w) with equivalent norms. It is worth pointing out
that we obtain Theorem 5.5 by a way different from the methods in [14],
[6], but close to those in [4], [24], [32]. For simplicity, in the rest of this in-
troduction, we denote by hb(w) the weighted local Hardy space hi yw). In
Section 6, we apply the atomic characterization of the weighted local Hardy
spaces h;(w) to establish atomic characterization of weighted Hardy space
H}(w) associated to Schrédinger operator £ with A7 (R™) weights. In Sec-

tion 7, we prove that || - ”hﬁ'?i;f (w) and || - [lnz () are equivalent quasi-norms on
&y (w) with ¢ < oo, and we obtain criteria for boundedness of Bg-sublinear

operators in hb(w). We remark that this extends both the results of Meda—
Sjogren—Vallarino [17] and Yang—Zhou [33] to the setting of weighted local
Hardy spaces.

Throughout this paper, we let C' denote constants that are independent of
the main parameters involved but whose value may differ from line to line.
By A ~ B, we mean that there exists a constant C > 1 such that 1/C <
A/B < C. The symbol A < B means that A < CB. The symbol [s] for s € R
denotes the maximal integer not more than s. We also set N={1,2,...}
and Z; =NU{0}. The multi-index notation is usual: for a = (ai,...,an)
and 0% = (0/0g,)** -+-(0/0,,,)*". Given a function g on R", we let L, € Z
denote the maximal number such that g has vanishing moments up to the
order Ly, ie., [x%g(x)dz =0 for all multi-indices o with || < L,. If no
vanishing moments of g, then we put Ly, = —1.

2. Preliminaries

In this section, we review some notions and notations concerning the weight
classes Ag’G(R”) introduced in [2], [27], [26]. Given B = B(x,r) and A > 0,
we will write AB for the A-dilate ball, which is the ball with the same center
x and with radius Ar. Similarly, Q(z,r) denotes the cube centered at = with
side length r (here and below only cubes with sides parallel to the axes are
considered), and AQ(z,r) = Q(z, Ar). Especially, we will denote 2B by B*,
and 2Q) by Q*.

Let £L=—A+4V be a Schrodinger operator on R", n >3, where V #0 is a
fixed non-negative potential. We assume that V' belongs to the reverse Hélder
class RH,(R™) for some s > n/2; that is, there exists C = C(s,V) > 0 such

that
(ul?'/BV(a:)sdx)iSC'<|;/BV(I)d$>’
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for every ball B C R". Trivially, RH,(R") C RH,(R"™) provided 1 <p<g<
oo. It is well known that, if V € RH,(R™) for some g > 1, then there exists
€ > 0, which depends only on d and the constant C' in the above inequality,
such that V € RHy.(R™) (see [13]). Moreover, the measure V() dz satisfies
the doubling condition:

/ V(z)de < C/ V(z)dx.
B(y,2r) B(y,r)

With regard to the Schrédinger operator £, we know that the operators
derived from £ behave “locally” quite similar to those corresponding to the
Laplacian (see [8], [21]). The notion of locality is given by the critical radius
function

N up{ =/ IRCUE 1}.

Throughout the paper, we assume that V' £ 0, so that 0 < p(x) < oo (see [21]).
In particular, my (z) =1 with V =1 and my (z) ~ (1 + |z|) with V =|z|?.

LEMMA 2.1 (See [21]). There exist Co > 1 and ko > 1 so that for all
z,y €R",

—ko

) 2yl o =y o
22) o) (14 o) <) < ot (14 )

In particular, p(x) ~ p(y) when y € B(z,r) and r < Cp(z), where C is a
positive constant.

A ball of the form B(xz,p(x)) is called critical, and in what follows we
will call critical radius function to any positive continuous function p that
satisfies (2.2), not necessarily coming from a potential V. Clearly, if p is such
a function, so is Bp for any S > 0. As the consequence of the above lemma,
we acquire the following result.

LEMMA 2.2 (See [9]). There exists a sequence of points x; € R™, j > 1, such
that the family B; = B(xj,p(z;)), j > 1 satisfies:

(a) Uj B; =R"™.
(b) For every o > 1 there exist constants C' and Ny such that Zj XoB; <
CoNt,

In this paper, we write Wo(B) = (1 +r/p(x0))?, where 6 >0, 2o and r
denote the center and radius of B, respectively.

A weight always refers to a positive function which is locally integrable. As
in [2], we say that a weight w belongs to the class A2¢(R™) for 1 < p < oo, if
there is a constant C' such that, for all balls B

(W/Bw(y)dy) <\I,€(]_L13)|B|/Bw_f’ll(y)dy>p_1 <C.
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We also say that a nonnegative function w satisfies the A9"?(R™) condition if
there exists a constant C' such that

Myo(w)(z) < Cw(z), ae. zeR",
where

My f(r) = sup |B|/ |f |dy

r€EB \110
When V =0, we denote My f(x) by M f(x) (the standard Hardy—Littlewood
maximal function). It is easy to see that |f(z)| < Myof(z) < M f(z) for
a.e. x € R™ and any 6 > 0.

Clearly, the classes Az’g are increasing with 0, and we denote Ap> =
Uezo Ag’a. By Holder’s inequality, we see that Az’lo - Agf, if 1 <pp < pg < o0,
and we also denote A% = Up21 Ap°°. In addition, for 1 <p < oo, we denote
by p’ the adjoint number of p, i.e.,, 1/p+1/p' =1.

Since Uy(B) > 1 with 6 >0, then A, C Ag’e for 1 < p < oo, where 4,
denotes the classical Muckenhoupt weights; see [12] and [18]. Moreover, the
inclusions are proper. In fact, as the example given in [27], let § >0 and
0 <~ <48, it is easy to check that w(z) = (1+|z|)~ "+t ¢ A, = Up>1 A, and
w(z) dz is not a doubling measure, but w(x) = (1+ |z|)~+7) € A2¢ provided
that V =1 and Wg(B(z,7)) = (1 +7)°.

In what follows, given a Lebesgue meaburable set E and a weight w, |E| will
denote the Lebesgue measure of E and w(E) := [, w pw(x)dx. For any w € AL
the space L (R™) with p € (0, 00) denotes the set of all measurable functlons

f such that
1/p
£l e mny = </ |f(x)|pw(m) dx) < 00,
Rn

and L°(R") = L>(R"). The symbol L1,°°(R™) denotes the set of all measur-
able functions f such that

17t gy = sup{Aw({z €R": [ f(2)[ > A}) } < co.

We define the local Hardy—Littlewood maximal operator by

(2.3) Mlocf(x) = sup / |f ’dy
z€B(xo,r) |B|
r<p(zo)

We remark that balls can be replaced by cubes in definition of Ag’e and
My, since ¥(B) < ¥(2B) < 29¥(B). In fact, for the cube Q = Q(x,7), we
can also define Wy (Q) = (1+7/p(x0))?. Then we give the weighted bounded-
ness of My g.
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LEMMA 2.3 (See [27]). Let 1<p<oo, p =p/(p—1) and assume that
weE Ag’g. There exists a constant C >0 such that

My profllLe@ny < Cll fll e @n)-
Next, we give some properties of weights class Az’e for p>1.

LEMMA 2.4. Let w € AD™ =y, Ag’e for p>1. Then

(i) If 1 < p1 <p2 < oo, then Ape A”’

(11) w e Ap’ if and only if w™ P- T e Ap, , where 1/p+1/p' =1.

i) Ifwe AP *© 1<p<oo, then there exists € >0 such that w € A%

(iv) Let f e LIOC(R"), 0<6<1, then (Mygf)® € AP,

(v) Let 1 <p < oo, then we A if and only if w= wlwé_p
wi,ws € A/?OO

(vi) Forwe Az’e, Q =Q(z,r) and A > 1, there exists a positive constant C
such that

, where

w(MQ) < C(Tp(AQ)) NP (Q).

(vii) Ifp € (1,00) andw € AL (R™), then the local Hardy-Littlewood mazimal

operator M'° is bounded on LP (R™).

(viii) If w e APY(R™), then M is bounded from LL(R™) to LL>(R™).
Proof. (i)—(viii) have been proved in [2], [26]. O
For any w € A%:>°(R™), define the critical index of w by

(2.4) qo=inf{pe[l,00):we AL>(R")}.

Obviously, g, € [1,00). If g, € (1,00), then w ¢ AL->
The symbols D(R”) (Ofs (R") D'(R™) is the dual space of D(R™), and for
D(R™),D'(R™) and LP(R™), we have the following conclusions.

LEMMA 2.5. Let w € A% (R™), q., be as in (2.4) and p € (qu, >0].
(i) If £+ % =1, then D(R™) C LY _, (1) (R™).
(ii) L2(R™) C D'(R™) and the inclusion is continuous.

By the same method as the proof of Lemma 2.2 in [24], we can get
Lemma 2.5, and we omit the details here.
For any ¢, € DR"), let @i(x) =t "p(x/t) for ¢ >0 and ¥;(z) =
29mh(27 ) for j € Z. Tt is easy to see that we have the following results.
LEMMA 2.6 (See [24]). Let ¢ € D(R™) and [, o(x)dz=1.
(i) For any ® € D(R™) and f € D'(R"), ®*p, — P in D(R™) as t — 0, and
fxoe— fin D'(R™) ast — 0.
(ii) Let w e A%>® and q, be as in (2.3). If q € (qu,o0), then for any f €
LL(R™), f*ps— f in LL(R™) ast — 0.
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Now, let us introduce some local maximal functions. For N € Z, and
R € (0,00), let

Dy.r(R") = {go € D(R") : supp(¢) € B(0, R),

lellpy@n = sup 10%p(2)] < 1}.
S€zn lal<N

DEFINITION 2.7. Let N € Z;, R € (0,00) and f € D'(R™), the local non-
tangential grand maximal function of f is defined as:

(2.5) Muy.r(f)(@) =sup{|pr* f(2)|: | — 2| <27 < p(a), ¢ € Dn.r(R") },

and the local vertical grand maximal function of f is defined as:
(26) My r(f)(x)=sup{|ei* f(z)|:0< 27" < p(z),9 € Dy r(R") }.

For simplicity, we denote Dy, g(R"), /,\AVMR(f) and My r(f) as D% (R™),
MO, (f) and MY () when R =1, and as Dy (R"), My (f) and My (f) when
R =max{R;, Ry, R3} > 1 (in which Ry, Ry and Rj3 are defined as in the proof
of Lemma 4.2, 4.5 and 4.8). Obviously, for any N € Z; and x € R",

MR (f)(@) < My (f)(@) < My (f)(@)-
Here and in what follows, the space L (R") denotes the set of all locally

loc
integrable functions on R™. We have the following Proposition 2.8, which can

be proved by the same method as in [24, Proposition 2.2].
PROPOSITION 2.8. Let N > 2. Then
(i) For all f € L (R™)ND'(R™) and almost every v € R™,
|[f(2)] < MR (f)(z) S MO(f) ().
(ii) If w € ADP(R™) with p € (1,00), then f € LE(R™) if and only if f €
D'(R™) and MY (f) € LP(R™); moreover,
”fHLg(]R") ~ ||M9V(f)HLg(Rn)'

(i) If w e AP (R™), then MY is bounded from LL(R™) to L5 (R™).

3. Weighted local Hardy spaces

In this section, we introduce the weighted local Hardy spaces h/’; N (w) and
weighted atomic local Hardy space hg’q’s(w). Furthermore, we give several
equivalent characterizations of the weighted local Hardy spaces by a local
Calder6n reproducing formula and some properties of the weighted atomic
local Hardy space.

The weighted local Hardy space is defined as follows.
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DEFINITION 3.1. Let w € A2>°(R™), q,, be asin (2.4), p € (0,1] and Np,w =
[n(% —1)]42. For each N € N with N > N, ,, the weighted local Hardy space

P
is defined by

W n(w)={feD'(R"): Mn(f) € LE,(R") }.
Moreover, we define Hf”hZ,N(W) = My (H)llLe @ny-

For any integers N; and Ny with Ny > Ny > ]\7,,,“,, we have

h? N, (w) C h,lj,z\r2 (w) C h];,Nl (w),

£sNp,w
and the inclusions are continuous.

Now, we introduce the weighted local atoms and weighted atomic local
Hardy space.

DEFINITION 3.2. Let w € A2>*(R™), q,, be as in (2.4). A triplet (p,q, $)w
is called to be admissible, if p € (0,1], g € (qu,o0] and s € N with s >
[n(gw/p—1)]. A function a on R™ is said to be a (p, q, s),-atom if

(i) suppa C Q(z,r) and r < Lip(x),
(i) llallz @ny < (@977,
(iil) [pn a(x)z*dz =0 for all o € Z} with |a| <s, when Q = Q(z,7), r <
Lop(z),
where Ly = 4Cy(3v/n)*0, Ly =1/CZ(3y/n)*o*1 and Cy, ko are constant given
in Lemma 2.1. Moreover, for ¢ € (g,,00], a function a(z) is called a (p,q).-
single-atom if
||aHLg(]Rn)S [w(R”)]l/q_l/p-

DEFINITION 3.3. Let w € A2>*°(R"), q, be as in (2.4), and (p,q,s). be
admissible, we define the weighted atomic local Hardy space hb:%* (w) by the
set of all f € D'(R™) satisfying that

f= i Aia
i=0

in D'(R™), where {A;}iez, CC, D77, |\i|P < 0o and {a;}ien are (p,q,$)w-
atoms and ag is a (p,q)w-single-atom. Moreover, the quasi-norm of f €
hb:%(w) is defined by

00 1/p
1 llngas ) = inf{ lz |)\i|p] }
=0

It is easy to see that if triplets (p,q,s), and (p,q,5). are admissible and
satisfy § < g and § < s, then (p, ¢, s),-atoms are (p, G, §),-atoms, which implies
that hD?*(w) C hb?*(w) and the inclusion is continuous.

Next, we will give several equivalent characterizations of the weighted local
Hardy spaces hf;’ ~(w) by the following local maximal functions.
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DEFINITION 3.4. Let
(3.1) Yo € D(R™) with . Yo(x)dz #0.
For every x € R", there exists an integer j, € Z satisfying 277+ < p(z) <
2772+l "and then for j > j,, A, B €[0,00) and y € R", we define
mjapa(y)=(1+ 2j|y|)AzB|y\/p(z).
We define the local vertical maximal function of f associated to iy as

(3.2) o (f)(z —Sup|wo « f(2)],

J2Ja
the local tangential Peetre-type maximal function of f associated to g as

(3.3) e s(N@) = sup (o) * flz —y)|

J2jeyER M5 A B, (Y)

)

and the local nontangential maximal function of f associated to vy as
(3.4) Wo)y (M@= sup  [(Wo)i* f(y)],
lz—y|<2—t<p(x)

where [ € Z.

Obviously, for any x € R™, we have

g (f)(@) < (o)y (F)(x) Sv6ia.5(f)(@).
It should be pointed out that these local maximal functions were introduced
by Rychkov in [19] and Yang in [32].
We introduce a lemma on the local reproducing formula, which can be
deduced from Lemma 1.6 in [19], and we omit the details of its proof here.

LEMMA 3.5. Let 1y be as in (3.1), f € D'(R") and (z) = tho(x) —
(1/2™)po(x/2) for all x € R™. Then there exist vo,¢ € D(R™) such that for
any given integers j € Z and L € Z,, we have L, > L and

(35) f=(p0)j*Wo)j*f+ D erxtbn*f
k=j+1
in D'(R™).
LEMMA 3.6. Let 0 <1 < oo, ¥ be as in (3.3) and ¥(x) = o(x) —
(1/2™)1po(x/2). Then there exists a positive constant Ay depending only on
the support of Yo such that for any A € (Ag,00) and B € [0,00), there exists

a positive constant C depending only on n,r, vy, A and B, such that for all
fED(RY), 2,20 €ER™ and j > ju, (where 27920 < p(xg) <2720 1) we have

(3.6) |0y % f(2)]" < O 20 -RArghn [ flz—y)[" o

Py ™M, Ar,Br,z, (Y)
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Proof. By Lemma 3.5, we can find ¢o, ¢ € D(R") so that L, > A and (3.5)
is true. Hence, we have

(3.7) Yj* f=(po);* (Vo)j*thj = f+ Z Vi * ki * f.

k=j+1
The function t; * ¢ (k> j + 1) have support size < C277 and enjoy the
uniform estimate

(3.8) 195 * Q|| oo (rny < C20—F)A20m

which can be easily deduced by the moment condition on ¢ (see [19, (2.13)]).
Therefore, we may write
2(j—k)A2kn

(3.9) |¢J*‘Pk(9)| Scm (yeR”).

Putting (3.9) together with the similar estimate for (¢); * (¢); into (3.7)

gives (3.6) for r =1, and the case r > 1 follows by Holder’s inequality. To
obtain the case r < 1, we introduce the maximal functions

. . ES Xr —
Ma oy (z,j)= sup 20 k)Aw.
k> j,yeRn M A, B0 (Y)

The (3.6) with r =1 gives

310) 20O pa—y) | < €Y 20D [ TEZ Al

— M, A,B,z0 (2 — V)
and the right-hand side of (3.10) decreases as k increases. Hence, to get the
estimate for M4 g 4, (2, ), we may only consider (3.10) with k = j. Combining
with the elementary inequality

(3.11) M A Bz (2) <My A B2 (Y)Mk A Bz (2 — V),
we can get

(3.12)  Mapa(2,j)

oS guingen [l
- k=j mj?‘A’szO (Z)

— [y * f(x—2)|"
< COMapay(2,§) 77 20K Argkn A A2l
Py M, Ar,Br.o (2)

Considering |¢; * f(2)] < Ma Bz (x,7), (3.12) implies (3.6), if Ma B a,
(x,j) < oco. By [15, Proposition 2.3.4(a)], for any f € D'(R™), we have
Ma. Bz (x,5) <oo for all z € R™ and j > jg,, provided A > Ag, where Ag
is a positive constant depending only on the support of ¢g. This finishes the
proof. O
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For f € L _(R"), B€[0,00) and x € R", define

_ 1 -plzcul
(3.13) Kpf(w)= o [ 1F)7" 5 ay

and for the operator Kp, we have the following lemma:

LEMMA 3.7. Let p € (1,00) and w € Ag’e(R"), then there exist constants
C >0 and By = Bo(w,n) >0 such that for all B> By/p,

KB fllee ®n) < CIfllL @y,
for all f € LP(R™).
Proof. Tt is suffice to show that there exists a constant C' > 0 such that for
all B > By,
Kpf(z) <CMyypof(z),
then combining with Lemma 2.3, we get the boundedness of the operator Kp.
To control Kpgf(x), we argue as follows:

Kof(e) = oo [ 1w]2 ™5 dy

(p(x))"
— 1 _Blp z
B (p(x))n /yac|<p(az:)| |2 ( ) dy
1 plz—yl
e N

:m/— 1< )‘f(y)‘TB% w

oo 1 73%;;‘

k=0
= Il + 12.
For I, it is easy to get
C
L<——~7m [ |f(
Upo(B1)|B1l /g, |
in which By = B(z, p(x)) is a critical ball.
For I, we have
1 + 2k:+1)p 92kn 1
I, <C
2 Z 9B2* U, 0(2F1B)) [ 2FH1B, | Jyisr s, | £(

1+2k+1 p’92kn
<C (Z % My pof(x)

k=0
< CMypof(x),

where the sum converges when B > By/p. (|

y)|dy < C My, o f(2),

y)| dy



698 H. ZHU AND L. TANG

LEMMA 3.8. Let ¢y be as in (3.3) and r € (0,00). Then for any A €
(max{Ag,n/r},00) (where Ag is as in Lemma 3.6) and B € [0,00), there exists
a positive constant C, depending only on n,r,vy, A and B, such that for all
FE€D(RY), x eR™ and j > j, (where 277+ < p(x) <27 J=+1),

(W) a8(f)(@)] < OZ 20 =k)(Ar=n) Lyrloc(|(ypg) + f|") (2)

k=j
+ K (|(Wo)i = £]") (2)},

where

(¢0);‘<,A7B(f)($) = sup |(1/’0)j * f(x _ y)|

yerRn M5 ABz(Y)

for all x € R™.

Proof. First, we can get the stronger version of (3.8) by virtue of (3.11),
that is:

[(%0)5.4.8() ()]
C = (j—k)Arokn |(Yo)r * f(y)I"
= kZZJQ 2 /]R” mj,Ar,Br,rc(:C - y) dy
oy Q(j_k)w_n){w |(Wo)e* f)I"
= kzzj /|y—x<211 (1+2j|x7y|)AT

' |(vo)r * f(y)|"
27m i d
i /lym>2jm (27)|z — y|)Ar2Brlz—yl/p(z) Y

o0
=Cy UM 4 T}
k=j

Since 2779+ < p(z) <279+*L and j > j,, for I we have
- (Wole = I
9-i<|y—a|<a—ix (1+ 27|z —y[)A"
[(Yo)i * F(W)I"

+2j”/ .
ly—z|<2-7 (14 29[z —y[)Ar
=1 + 1.

dy

According to the definition of M f(x) (see (2.3)), for I, we have

I2S2j"/_ . |(o)r = f(y)|" dy < CM™(|(Wo)i * f|") (),
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and for I; we have

her s [ NSVl

I=jo+1Y 27 Sly—a|<271 (27 |z — y|)Ar

J 2Jim (2= 1n 1
< Z (2-D)Ar  (2-T+1)n /|y$<2_l+1|(w0)k*f | dy

I=jo+1
J on 1
< D s M (|Wo)e = £ @)
l=j-+1
< OM™(|(o)i * f|") (z)

where Ar > n. In addition, with regard to II, we have the following estimate,

1< R s | e 2

o Ko ([l 7))
< CKpr(|(wo)k = f|) (2)

where the last inequality is a consequence of the fact that j > j, and Ar > n.
This finishes the proof. U

<C

Now we can establish weighted norm inequalities of ¢q (f), ¥§* 5(f) and
M, r(f)-

THEOREM 3.9. Assume w € A% (R™), R € (0,00), p € (0,1], ¥ and q.
be as in (3.1) and (2.4). Let Ay = max{Agy,nq,/p}, B1 = Bo/p and Ny =
[2A1] 4+ 1, where Ay and By are defined as in Lemmas 3.6 and 3.7. Then for
any f € D'(R™), A€ (A1,00), B € (By,00) and integer N > Ny, there exists
a positive constant C, depending only on A, B, N, R,1y,w and n, such that

and
(3.15) HMN’R(f)HLZ(Rﬂ) SCH%ﬂf)HLa(Rny

Proof. We first prove (3.14). For A € (A;,00) and B € (B, 00), since Ay =
max{ Ay, nq,/p} and By = By/p, there exists ro € (0,p/q.,) such that A > n/rq
and Bro > By/q.. Then, for all z € R™ and j > j,, by Lemma 3.8, we get

(3.16)  [(0);ap(H)@)] <D 20 RAremm farloc(] (o), x £|™) ()

k=j

+ Kpro (| (o) * £]°) (@)}
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Thus, by (3.16) and

(Wo)k * f(2)] <9 (f)(2)

for any z € R™ and k > j,, we have

(317) w5l s(N@]" <M ([vd (H]") @) + Kpry ([05(N]") ().
Then by (3.17) we have

(3.18) / [Uo7a,5(f) (x)dx
N/n|{Mloc war ]TO)(.%)HP/TOLU(w)dx
+/ |{KBro([wg(f)]m)(ﬂi)}‘p/mw(x) dx
R

EIl +IQ

For Iy, as ro < p/qu, we have ¢ =p/ry > q, and w € A9>°(R"™), therefore by
Lemma 2.4(vii) we get

g1y [ (e (] @ @S [ )t
and for Is by Lemma 3.7 we get

B20) [ Ko (O] @ @ < [ o ()] et
which together with

(3.19) and
W (

N@) < o)y (F)(@) S 96,5 (@)
implies (3.14).

Next, we prove (3.15). For any v € Dy g(R™), v € R", | € Z (where [ satis-
fies 271 € (0, p(2))) and j > j, (where 277« < p(z) <279=*1) by Lemma 3.5,
we have

(3.21) Yok F =k (0o * (Po)j x F+ D ik prx b x f-
k=j+1
For any given ly € Z which satisfies 27% ¢ (0,p(x)), and z € R™ which
satisfies |z — x| <27, by (3.21) we have

oo

(3:22) |y, * f(2)] < |10 * (00)ie * (o )io * f(2)| + Z V0 * o1 * i * f(2)]

k=lp+1

< / I (2010 ()| (o) * (= — )| dy

S / o * 00(0) | [ * £z — )| dy

k=lo+1
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For Is, by

vinp(Na)= sup 102/ )

i>jeyeRn M5 A Bz (Y)
* — _
— s |(Y0)j * f(x — (y + 2 — 2))|
J>Jjz,yER™ m;jABz(Y+T—2)

w00 G =)

> jeyERn Mj A B2 (Y + 2 — z)’

we have

(Vo) * £z = y)| S U57a 5 (F)(@)mug,4,B.0(y + 2 = 2),
which together with

Mg, A,Ba(Y + T —2) <My A B2(T —2)Mi,4,8.:(Y),
and
o= 2|
Mg, a8, (x —2) = (14202 — 2[) 1255 <24,

deduces that

|(W0)iy * f (2 = 9)| S 22962, 5(F) (@)mug,4,8,2(y)-
Then, we get

B2 [ o (ool .m0 a5 (0(0).
For I, when k € Z, we have
[ * f(z = y)| < |(Wo)k * f(z—y)| + | (Wo)k—1 % f(z — y)|
and
Mi,A,B,z(Y+ o —2) <Mmi A B (T — 2)Mi,A,B2(Y)
since my a4, —2) S 2(k=lo)A " we can get
(o) * f(z—y)| U5 p(F)(@)mr a2y +x—2)
<Uoap(f)(@)my A B .(T—2)mi A B2 (y)
S 2570y 4 B2 ()05 5 () ().
We also have
|(o)k—1* f(z — )| 257004 4 o (WY 5(f) (@)
Thus,

D R e e P )

k=lp+1
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Therefore, we have

(3.23) |, * f(2)]

5{/ M0 * (20)10 () | Mg, 4,82 (y) dy

+ Y 2(’“*“’”‘/11@ hzo*sak(y)|mk,A,B,x(y)dy}wéf“A,B(f)(x)-

k=lo+1

Let supp(y¢o) C B(0,Rp), then supp((¢o);) C B(0,279Ry) for all j > j,.
Moreover, since supp(y) C B(0, R), we have supp(v;,) C B(0,27°R). Then,
we get supp (71, * (¢0)i,) € B(0,27"(Ro + R)) and

i (o] 5 [ ool bl =) ds 2 [ o (5) s 2

which implies that

(3.24) /]R V0 * (20)10 () | Mg, 4,8,2(y) dy

5210”/ (1 + 2% ]y|) 27 dy <1.
B(0,2-!0(Ro+R))

[ ‘F Wltll \/anibhillg mOlllentS l][) to ()1(1 ]\[7 y 9 ( . 3)
we ha\/e el b ” 2 ] ]
H )l[) * (pk” [oo R") < f!(l(] k)NQIOTL

for all k € Z with k >y + 1. Then, for ly > j,, N > 2A and supp(y, * ¢r) C
B(0,27% Ry +27*R), we get

o0

(3.25) Z 2(k_l°)A/ o * 21 (y) Mk, 4,0 (y) dy
k=lo+1 R

Z 2(k)7l0)A2(l07k)N2lg’n (27l0R0 + 271{)R)n
k=lp+1

x [142%(270 Ry +27FR)] 2B O Rot2  R)/o(x)

< Z 9(lo—k)(N=24) < 1
k=lo+1

Thus, by (3.23), (3.24) and (3.25), we have |y, * f(2)| S ¥5%a p(f)(z), and by
the arbitrariness of Iy > j, and z € B(z,27%), we can further obtain

(3.26) My .r(F)(@) S ¢o7a,5()(2),

which deduces (3.15) and finishes the proof of this theorem. O
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Here and in what follows, we define
(3.27) Npw = rrwux{]\~fp,w7 No}t,

where ]A\}pyw and Ny are respectively as in Definition 3.1 and Theorem 3.9.
Then we have the following equivalent characterizations of the weighted local
Hardy spaces.

THEOREM 3.10. Let w € A%>°(R™), 1o and Ny, be respectively as in (3.3)
and (3.27). Then for any f € D'(R™) and integer N > N, the following are
equivalent:

(3.28) ”thﬁ,N(w ~ ||MVN(f)HL5(Rn) ~ HMV?V(f)HL{;(Rn) ~ ||M9V(f)HLf,(R")‘

Proof. For any N > Ny, f € h}) y(w), Yy satisfy (3.3) and ¢y € Dy (R™).

by the definition of My(f), we get ¥ (f) < Mn(f) and hence ¢ (f) €
L? (R™). Suppose supp(t¢g) C B(0, R), then by (3.15), we have

(3.29) MR g gy S M98 D gy S 1F Iz )0
which combined with v (f) < My, r(f) infers that 9 (f) € L(R") and
196 (Dl 1, ey S 1F Mz (-
Then by the estimate
by (F) < (W0)3 (F) S46ia,5(F),
(3.14) and (3.15), we have (vo)%(f) € LP,(R"), My (f) € L?,(R") and
M8 L gy S T@)5 N oy S 16 D o -
Let 1y satisfy (3.3) and v; € D% (R™). Then by (3.15), we have
||MN(f)HL5(R") < Hw;r(f)HLg(]R")’
which combined with 9 (f) < M (f) and My (f) < My (f) infers
M) oy S MR
Then, by the definition of 4 y (w), we have f € h? \(w) and
£l @) S HMS)v(f)HLg(Rn)-

On the other hand, by the facts that M (f) < M?V(f) < ./WN(f) for any
f € D'(R™), we have

171182, 1 S MR oy < IMIO 150y < IME O] gy
which combined with (3.29) finishes the proof. O

By Theorems 3.9 and 3.10, we have the following corollary, and we omit
the details here.
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COROLLARY 3.11. Let w € A2>°(R"), 1o be as in (3.3), N, be as in
(3.27), A and B be as in Theorem 3.9. Then for any integer N > N,
fenl y(w) if and only if f € D'(R™) and ¢5*y p(f) € LE(R™); moreover,

||f||h,€,N(w) ~ H’(/)ac:kA,B(f) HL@(]R")'
Next, we give some basic properties of i) y(w) and hb%*(w).

PROPOSITION 3.12. Let w € A% (R™), p€ (0,1] and N, ., be as in (3.29).
For any integer N > Ny, the inclusion h \(w) < D'(R") is continuous.

Proof. First, for any « € B(0,p(0)), by Lemma 2.1, there exist Cp > 1 and
ko > 1, such that

2 )"
p(0) < Co (1 + m) p(x) < Co2™ p().

We take 71 = p(0)/Co2%*+t < min{p(z),p(0)}, then we have B(0,71) C
B(0,p(0)). In addition, for any = € B(0,r1), we also have |z| <r; < p(x).

Next, let f € h? y(w). For any given ¢ € D(R"), suppose that supp(p) C
B(0,R) with R € (0,00). Then by Theorem 3.9 and 3.10, we have

(00 =1F #B0)] < 1Blp piery _inE M (F)(a)

< Bl nce [0 (BO,7))] ™7 [ Mo (| p oy
< NB Dy [0 (BO)] U ls o

where MN,R(f) is as in (2.5) and @(z) = p(—=x) for all z € R™. This implies
f€D'(R™) and the inclusion is continuous. The proof is finished. O

PROPOSITION 3.13. Let w € A% (R™), p € (0,1] and N, be as in (3.29).
For any integer N > Ny, ,,, the space hin(w) is complete.

Proof. For any ¢ € Dy(R™) and {f;};en C D'(R™) such that {Zgzl fitjen
converges in D'(R™) to a distribution f, the series ) . f; * ¥(x) converges
pointwise to f # 1 (x) for each x € R™. Therefore,

(MN (ZMN (fi)(z ) Z My (fi)(z p for all x € R™,
i=1

and hence |[fllnr  w) <227 I fillz (w)-
In order to prove hp ~ (w) is complete, it suffices to prove that for every se-
quence {f;}jen with Hf] ||hz> (@) <277 and j € N, the series > jen [j converges

in i} n(w). In fact, since {Zizl fi}jen is a Cauchy sequence in A} y(w), by
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Proposition 3.12 and the completeness of D'(R™), {Egzl fi}jen is a Cauchy
sequence in D'(R™) as well and thus converges to some f € D'(R™). Thus,

%) p 0
Hf Zfz ok <> 270

i=j+1 e ) =it
as j — oo. This finishes the proof. O

N(W)

THEOREM 3.14. Let w € AZ>°(R™) and Ny, be as in (3.29). If (p,q,s).
is an admissible triplet and integer N > Ny, then

W= (w) ChY (W) ChY y(w),
and moreover, there exists a positive constant C' such that for all f € hg’qu(w),
Hf”hp N(w) = < ||f||hp Np w(w) < CHthﬁ‘q‘s(w)

Proof. 1t is suffices to prove hb%*(w) C hz’pr(w), and for any f €
hb-4%(w),
||f||h§‘NW(w) S llkas )

By Definition 3.3 and Theorem 3.10, we just need to prove that there exists
a positive constant C' such that

(3.30) HM?VW(a)HLg(Rn) <, for all (p,q),-single-atoms a,
and
(3.31) HM?VPM(G)HLP (&) <C, for all (p,q,s).-atoms a.

For (3.30), since q € (qu, 0], we get w € A2>(R"). Let a be a (p, q).-single-
atom. When w(R"™) = oo, by the definition of the single atom, we know that
a =0 for almost every x € R™. In this case, it is easy to obtain (3.30). When
w(R™) < oo, by Holder’s inequality, w € A%>°(R") and Proposition 2.8(i), we
get

245, @y = [ 1M, L (@)@) sl

< ( / M, (@) (@) (@) dx)p/q ( / (@) dg;)lp/q

< Cllallsy o [ (R)] 77
<C.

(Rn

For (3.31), let a be a (p,q,s),-atom supported in the cube Q = Q(xq,r).
We consider two cases of Q.
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The first case is when r < Lap(xg). Let Q= 24/n@Q, then we have

(3.32) /]R M8, (@) @) () do

/’MN,M (x)’pw(m)dx—i—/ ‘MNPW (x)’pw(a:)dx
=1+ I>.

For I, by Holder’s inequality and the properties of Ag’e(R") (see
Lemma 2.4(vii)), we have

(3.33) L < Ollallhy oy [0(@)] T < C.
For I, we claim that for x € QE
(334) MR _(a)(@) < ClQ|Cotm I/ [uw(@)] P

X |z — xo|_(S°+n+1)XB(zg,clp(zo))(37)7

where sg = [n(qu/p — 1)] and ¢; > 24/n is an constant independent of the
atom a. Indeed, for any 9 € D%, (R™) and 27! € (0, p(z)), let P be the Taylor
expansion of ¥ about (z — z¢)/2~! with degree so. By Taylor’s remainder
theorem, for any y € R™, we have

() ()

o z—y)+ (1 —0)(z —x0)\||zo —y ™"
<C Z ‘ (9 w ( 92—l 21 ?
\L17650+1

where 6 € (0,1). Since 27! € (0, p(x)) and z € Q°, we have supp(a * ¢y) C
B(aco,clp(xo)) and by a *1;(z) # 0 we have 27! > |z — x¢|/2. Then, for any
T € Q by the above estimates and Definition 3.2, we get

|a*1/)l x ‘
Y Tr — X
—~ > —P( 51 >‘dy}XB(wo,61p(w0))(x)

§2_1m{/ |a(y)|‘w<x

<C|Z‘—l‘o| eo+n+1){/‘ |l‘0— |so+1dy}XB(w0’clp(m0))( )

, 1/q'
scm#ﬁw"wmmﬂ(éw@ﬂqmw)

X |x — xo|_(so+n+1)XB(zo,Clp(I0)) (.’L‘)

S n n -1 —(s n
< CIQI Y/ [w(@)] M = |~ X gy eypten ()
which combined with the arbitrariness of ¢ € D (R") infers (3.34).
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Let Q; =2'/nQ with i € N and iy € N satisfying 2/r < c;p(z0) < 201y,
Since sg = [n(qw/p—1)], there exists qo € (qu,o0) such that p(so+n+1) > nqgo.
Then by Lemma 2.4, we have

ne | IMS, (@)(@)] (@) da
vnr<|z—zo|<cip(zo) Y

< C|Q[Psotntl)/n [w(Q)] |z — x| POty (2) da

_1/
Vvnr<|z—zo|<c1p(zo)

io
< Opplsotntl) [w(Q)] -1 Z/ |z — x0|*p(50+"+1)w(x) dx
i—0 Y Qi+1\ Qi

< OflQ)] Y 2 @) < €,
=0

which combine with (3.32) and (3.33) implies (3.31) in the first case.

For the case Lop(zg) <1 < Lip(zo), let Q* = Q(xo, car), in which cg > 1 is
a constant independent of atom a. Thus, by supp(./\/l?vp L(a)) CQ*, Holder’s
inequality and Lemma 2.4, we get ,

/R M, (@)@l d = /Q MY, (@) @) () da

«\11-p/
< Cllallf g gy [w(@7)]
<C.
The proof of Theorem 3.14 is complete. [

4. Calder6n—Zygmund decompositions

In this section, we establish the Calderén—Zygmund decompositions asso-
ciated with local grand maximal functions on weighted Euclidean space R™.
We follow the constructions in [23], [4] and [5].

In this section, we consider a distribution f satisfying that for all A > 0,

w({z eR™: My(f)(z) > A}) < o0.
For any given A > inf,cpn My (f)(x), set
D ={zeR": Mn(f)(z) > A},
which is a proper open subset of R™. As in [23], we give the usual Whitney
decomposition of 25. Thus there will be closed cubes Q;, and their interiors
distance from QE\, with Q\ =, Qi and
diam(Q;) < 27+ dist (Q;, 08) < 4diam(Q,).

In what follows, fix a =1 + 2~ (11+4n) and b=1+ 2-(1047) " and if we de-
note Q; = aQ;,Q; = bQ;, we have Q; C Q; C Q7. Moveover, Q) = J, @7,
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and {Q7}; have the bounded interior property, that is, each point in €y is
contained in at most a fixed number of {Q}};.

Take a function & € D(R™) such that 0 <& <1, supp(§) C aQ(0,1) and
€=1on Q(0,1). For z € R", set &(zx) =&((x — 2;)/l;), where x; is the
center of the cube Q; and I; is its sidelength. Then for any = € R", we
have 1 <), & (x) < M, where M is a fixed positive integer independent of z.
Let n; =&/(32;&5), then {n;}; can form a smooth partition of unity for
subordinate to the locally finite covering {Q;}; of Qy, that is, xo, = >, 7
with each n; € D(R™) supported in Q;.

Let s € Z4 be some fixed integer and P,(R™) denote the linear space of
polynomials in n variables of degrees no more than s. For each ¢ € N and
P e Ps(R™), set

1 1/2

(4.1) 1P = | 7y L [P P

Then (Ps(R™),| - ||;) is a finite dimensional Hilbert space. Let f € D'(R"),
then f can induce a linear functional on Ps(R™) by

1
P m————=(f, Pn;).
By the Riesz represent theorem, there exists a unique polynomial P; € Ps(R™)
for each 4 such that for any @ € Ps(R"),

(f,Qni) = (P;,Qni) = /n P;(2)Q(x)n;(x) da.

For each 4, define the distribution b; = (f — P;)n; when I; € (0, Lsp(z;))
(where Lz = 2%0Cy, x; is the center of the cube @Q;) and b; = fn; when
li € [L3p(z;),00).

We will show that for suitable choices of s and N, the series ), b; converge
in D’'(R™), and in this case, we define g= f — ", b; in D'(R").

The representation f =g+, b;, where g and b; are as above, is called a
Calderon—Zygmund decomposition of f of degree s and height A\ associated
with My (f).

In the following section, we give some lemmas. In Lemmas 4.1 and 4.2, we
give some properties of the smooth partition of unity {7; };. From Lemmas 4.3
to 4.6, we get some estimates for the bad parts {b;};. Lemmas 4.7 and 4.8
give some estimates of the good part g, and Corollary 4.10 shows the density
of LL(R™) N A} y(w) in kY y(w), where g € (qu,00).

LEMMA 4.1. There exists a positive constant C1 depending only on N, such
that for all i and [ <I;,

sup sup |0%n;(lz)| < Cy.
|a| <N z€R™
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Lemma 4.1 is essentially Lemma 5.2 in [4].

LEMMA 4.2. If l; < Lap(x;), then there exists a constant Co > 0 indepen-
dent of f € D'(R™), l; and A >0 so that

sup |P;(y)ni(y)| < C2A.
yeR™

Proof. As in the proof of Lemma 5.3 in [4]. Let my,...,my, (m=dimP;)
be an orthonormal basis of Ps with respect to the norm (4.1). we have

(4.2) Py _,é<flm /f(fﬂ)ﬂk(w)m(ﬂc) dw) Tk,

where the integral is understood as (f, 7Tk;’rh'>. Therefore,

o e 5 [ o

7,

> Q—zl/Q |7rk(a:)|2d1;:2"/QO |7~Tk(x)}2dx,

where 7y (7) = 7 (z; + l;z) and Q° denotes the cube of side length 1 centered
at the origin.

Since P, is finite dimensional, all norms on P, are equivalent, then there
exists Ay > 0 such that for all P € P,

1/2
sup sup |8aP(z)|<A1</ |P(z)|2dz> .
o] <s 2€bQ0 Q°

From this and (4.3), for k=1,...,m, we have

(4.4) sup sup |0°7(2)| < A2m/2,

|a|<szebQ0
Ifze 28+”nQ NQC, by Lemma 2.1, we have p(x;) < Co(1428T"n2Ls)" p(z),
then we let L = 1/Co(1 +28+mn 2L3)k0L3. For k=1,...,m, we define

92— kin
Qr(y) = me(z —27 )m(z —27kiy),

Jni
where z € 28T"nQ; N QO and 2% < ]le~Z < 27k+l Tt is easy to see that
supp @, C B(0, R;) where Ry =29t"n? /L, and || ®4||p, < A2 by Lemma 4.1.
Note that

(4.3) 1=

i [ F@man (@) e = (7« @0) ()

since 2% < Ll; < LLsp(z;) < p(z), then we have

‘ﬁ /f(l’)ﬂk(x)ni(x)dm

SMNf(2)|[Prllpy < A2
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By (4.2), (4.4) and the above estimate, we have

sup R(z)| <m2™2 A As ).
2€Q;]
Thus,
sup |Pi(2)ni(z)] < CaA.
z€R™
The proof is complete. O

By the same method, we can get the following lemma as Lemma 4.3 in [24],
and we omit the details here.

LEMMA 4.3. There exists a constant C3 >0 such that
(4.5) M3bi(z) <CsMpyf(x)  for z€Q;.

LEMMA 4.4. Suppose that Q CR"™ is bounded, convex, and 0 € ), and N
s a positive integer. Then there is a constant C' depending only on Q and N
such that for every ¢ € D(R™) and every integer s, 0 < s < N we have

sup sup |8aRy(z)| <C sup sup |8°‘¢(2)|,
2€Q |a|<N 2€y+Q s+1<|a|<N

where Ry is the remainder of the Taylor expansion of ¢ of order s at the point
y€R™.
Lemma 4.4 is Lemma 5.5 in [4].

LEMMA 4.5. Suppose that 0 < s < N. Then there exist positive constants
C4,Cs5 so that for i € N,

)\lzﬂ+s+1 ) .

(I + |@ — a;[)nts+t X{lo—zil<Cap(a)} () 2 ¢ Q7.

(4.6) M (b;)(z) <C

Moreover,

M (b)) (x) =0, ifxdQF andl; > Csp(x).

Proof. Since n; is supported in the cube Q;, and Q; is strictly contained
in QF, then if « ¢ QF and n;(y) # 0, there exists a positive constant Cy such
that |z — y| < |z — 2;] < Cy4|z — y|. On the other hand, take ¢ € DY (R"),
the support property of ¢ requires that p(z) > 27! > |z — y| > 271",
Hence, |z — x;] < 04270 I; < 2117 p(2) = Csp(z) and I; < C527.  Take
w € (227"nQ;) N QE, and we discuss the following two cases.

Case L. If Lzp(z;) <1; < C527' < Csp(x), then according to Lemma 2.1 we
have I; < C5Co(1+ Cy)*op(x;) and

lw — ]
p(i)

therefore, I; < a;p(w), where a; > 1 is a constant.

_kO
o) 2 G (14 20 e 2 6 (1 L) ™ ),
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Now we define I; = I;/a; < p(w) and take k; € Z such that 27% <[, <
27ki*1 then for ¢ € DY (R™), ¢(2) = ¢(27%2/271) and 27! < p(x) we have

(b * @) (z) = 21"/bi(z)gp(2l(w —z))dz
/b ¢(2% (z - 2)) dz
= 21"/bi(z)¢2ki(xfw) (2% (w — 2)) dz

in

where
®(2) = dats (g ()0 (0 = 2752), Pori (p ) (2) = B(2 + 2% (x — w)).

Obviously, supp® C B(0, Ry), where Ry = 2°t"n2a;. Since I; < C52~! and
|z — x;] < C427!, we have

2ln ln+s+1

< C .
n./\/le( w) < 0A2kn_cx(li+|x_xi‘)n+s+1

(4.7) ’(bl*cpl)(x)‘ 2k

Case IL. If [; < Lyp(x;) and ¢ € D (R™), taking j; € Z such that 279 <[; <
2771 then we define ¢(z) = ¢(27772/27!) and consider the Taylor expansion
of ¢ of order s at the point y = 27 (x — w):

s+2)= 3 T et k),

lorf<s

where R, denotes the remainder. Thus we get
(4.8) (b; % 1)( —QI"/b e (2" (z — 2)) dz
/b ¢(27"(x — 2)) dz
=2l / bi(2) Raii (o —w) (27 (w — 2)) dz
S
2 ”/Pi(z)m(z)R% (z—w) (27 (w — 2)) dz,

where

©(2) = Ryii (geuw) ()i (w—2772).
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Obviously, supp® C B, = B(0,R;). Applying Lemma 4.4 to ¢(z) =
©(27712/271), y = 2Ji(z — w) and B, we have

sup sup |6°‘Ry(z)|§C sup sup |8a¢(z)|

2€Bn |a|<N 2€Y+Bn s+1<|a|<N
2—Ji s+1 i .
<C sup (57 sup |8aap(2_3iz/2_ )|
2€y+B, \ 2 s+1<]a|<N

2—Ji s+l
o)
Notice that I; < C527! and |z — ;] < C427!, then by (4.8), we obtain
(4.9)  (bi*1)(x)

In )
< ol 5 )W)+ 2" [ 1P R (27 (0 = 2))

2ln
< - (0%
<O (Musw)|@]oy + Asup sup [0 Ry (%))
ln+s+1
<CA z .
T (i | et

By combining both cases, we obtain (4.6). O

LEMMA 4.6. Let w € A%>°(R™) and q, be as in (2.4). If pe (0,1], s >
n(gw/p—1)], N >s and N > N, then there exists a positive constant Cg
such that for all f € hY \(w), A > infyern My f(2) and i €N,

(4.10) /n (M?V(bl)(x))pw(x) dx < Cﬁ/ (MN(f)(x))pw(x) dx.

Q7

Moreover the series 3, b; converges in hf) y(w) and

an [ (MN(Z b)) wlode < Co [ (M (1)) ")

Proof. By the proof of Lemma 4.5, we know |z — z;| < Cyp(x), I
Csp(z) and p(x) < Co(1 + Cy)*op(z;), thus QF C azp(x;)Q?, where ay
2C0(1 + Cy)* max{Cy,Cs} and Q9 = Q(z;,1). Furthermore, we have

(4.12) /n (M?V(bl)(x))pw(x)dxg/ (M?V(bl)(x))pw(x)dx

Q7

A

+ / (M (b:) (@) w(z) da.
azp(z:)QI\QF

Notice that s > [n(q./p — 1)] implies 27 "(@tm2(s+n+1p 5 1 for sufficient

small 7 > 0. By Lemma 2.1(iii) with w € A2 (R"), Lemma 4.5 and
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Mn(f)(z) > X for all x € QF, we have

(4.13) / (M?V(bl)(x))pw(x) dz
azp(z:)Q\Q
ko

0 i )\ L pwx i
SZ/2’CQ’,‘\21€—1Q? (MN(bZ)( )) ( )d

ko
< Nw(Q)) Y [ tmrernrr T
k=0
<C [ (Myf(x) w(z)d,
Q7
where b=1+2-010+7) L e Z such that 2k0—1p]; < azp(x;) < 2~obl;.
Combining the last two estimates we obtain (4.10); furthermore, we have

> n(M%(bn(x))%m &
<CZ/ MNf (x)dxgC/Q(MN(JC)@))pw(x)dx,

which together with the completeness of h? \ (w) (see Proposition 3.13) implies
that 3, b; converges in hj y(w). Therefore, the series }-,b; converges in
D'(R™) and MY (32, b:)(z) <>, MY (b;) (), which gives (4.11). This finishes
the proof. O

LEMMA 4.7. Let w € A2°(R"™) and q,, be as in (2.4), s € Z+, and integer
N>2. If g€ (qu,00] and f € LL(R™), then the series Y, b; converges in
LL(R™) and there exists a positive constant C7, independent of f and A, such

that
HZV’H

Proof. The proof for ¢ = co is similar to that for ¢ € (q,,,00). So we only
give the proof for q € (g,,00). Set Fy ={i € N:l; > L3p(z;)} and F» =
{ieN:l; < L3p(x;)}. By Lemma 4.2, for i € F», we have

[ @t dw</QJ (@)l dx""/Q;‘Pi(x)m(x)‘qw(x)dx

i

</Q*| 2)|"w(w) da + X1 (Q7).

i

< Crll flle @n)-
L9 (R™)

For i € I, we have

/n ’bi(m)|qw(x) dx < /Q* ’f(a:)|qw(x) dz.

i
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By these, we obtain

3y MOCIREEE
= Z/ x)dx + Z/ dx

1€ F 1€ Fo
<3 / )do+C 3 New(Q))
1€ Fy

<Z/ ) dz + CAw(Q)

<C . ‘f(:c)|qw(x) dz.

Combining the above estimates with the fact that {b;}; have finite covering,
we obtain

’ < Crllfllpa (mmy-
LL(R™)

This finishes the proof. (]

LEMMA 4.8. If N >s>0 and ), b; converges in D'(R™), then there exists
a positive constant Cg, independent of f and X, such that for all x € R™,

My (9)(@) < MYy (f)(2)xqe (@)

ln+s+1
+CS>‘Z (it o — |)n+s+1X{lr wil<Cap(a)} (T) + CsAxa(2),

where x; is the center of Q; and Cy is as in Lemma 4.5.
Proof. For x ¢ ), since
MY (g)(x) S MY (F)(@) + > MR (bi) ()

by Lemma 4.5, we have

My (9)(@) < MY () (@)xqe(x)

ln+s+l
+C)\Z + ‘I n+s+1 X{|1' 931|<C4P(I)}( )

For x € Q, take k € N such that z € Q;. Let J={i e N:Q; N Q} #0}. Then
the cardinality of J is bounded by L. By Lemma 4.5, we have

ln+s+1

ZM%(b' <C)‘Z(l Flr—x Dn+s+1X{|I Iz\<C4P(1’)}( z).
igJ igJ
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We need to estimate the grand maximal function of g+ ZZ¢ sbi=f=>
Take ¢ € D, (R™) and [ € Z such that 0 < 27! < p(x), then we have

(4.14) (f - sz) *pi(x) = (f§) *pu(x (ZPm) * pi(x

icJ ieJ

= fx®(w (ZPm>*s&z

i€J

ZEJ

where w € (28+"nQ;) NQL, £ =1 — > iy Mi and
B(2) = o(z+ 24z —w))E(w—27"2).

Since for N > 2 there is a constant C' > 0 such that ||¢[/z1rn) < C for all
¢ € DY(R™) and by Lemma 4.1, we have

‘ (Z Pﬂh‘) * i (x)
ied

Finally, we estimate f  ®;(w). There are two cases: If 27! < 2-(1+n)]; then
f* ®;(w) =0, because ¢ vanishes in Q; and ¢, is supported in B(0,27%).
On the other hand, if 27! > 21471, then there exists a positive constant
az > 1 such that 27! < p(z) < azp(w). Take ®(z) = ®(x/2™) and m; € N
satisfying 271! < a3 < 2™1, then supp ® C B(0, R3) where Rz = 23(11+7) g5,
and || ®||p, < C. Therefore, 27!=™ < p(x)/a3z < p(w) and

|(f 5 @) (w)]| =27 | (f 5 Bpym, ) (w)| < CMy f(w)]|@]|pyy < CA

According to the above estimates, we have

<CA

’(f - sz) * | SO,
i€J
then we can get
(( > b )) <O
i€J
This finishes the proof of the lemma. U

LEMMA 4.9. Let w € AP (R™), q,, be as in (2.4), q € (qu, ), p € (0,1] and
N > Np .
(i) If N > s> [n(q/p —1)] and f € hb y(w), then MY (g) € LEL(R™) and
there exists a positive constant Cy, independent of f and X, such that

/n [M?V(g)(z)]qw(z) dx < Cg)\qu/ [MN(f)(a:)]pw(x) dx.

n

(ii) If N > 2 and f € LL(R"™), then g € L°(R™) and there exists a positive
constant Cho, independent of f and X, such that ||g||p= < CroA.
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Proof. Since f € hﬁ)N(w), by Lemma 4.6 and Proposition 3.12, >, b; con-
verges in both h? \(w) and D'(R"). Notice that s > [n(qu/p — 1)], by
Lemma 4.8 and the proof of Lemma 4.6, we get

[ (Mi(9)a) o) do

(n+s+1) q
<C”Z/ [l+|;v—x|)(”+5+1)XB(9“’“2P(1 »(@)| wlz)de

+C)\q/nXQ(x)w(m)dx—’_/Qc(MN(f)(f))qW(x)dx

<OV w(@)) + ON(@) + [ (M (1)) l)d
< CAw() + C)\qu/ (Mn(f)(2) w(z)dx
Qe

<GP /Rn (MN(f)(m))pw(ac) dz.

Thus, (i) holds.

Next, we prove (ii). If f € LL(R™), then g and {b;}; are functions. By
Lemma 4.7, we know that ). b; converges in LL(R™), and by Lemma 2.5(ii)
we know ). b; converges in D'(R™). If we denote

ng_zbi:f(l_zm) + Zpini:fXQG + Z-Pima
i i iEFy iEFy
by Lemma 4.3, we have |g(x)| < CA for all z € Q, and by Proposition 2.8(i),
we also have |g(z)| = |f(z)| < My f(z) < X for almost everywhere z € QF.
Therefore, ||g[| e (rn) < C10A which yields (ii). O

COROLLARY 4.10. Let w € A2>°(R™) and q,, be as in (2.4). If q € (¢, 00),
p€(0,1] and N > Ny, then hb \(w) N LEL(R") is dense in b)) (w).

Proof. Let f € Ry y(w). For any A > infyepn My f(2), let f=g* + 32, b
be the Calderén—Zygmund decomposition of f of degree s with [n(g,/p—1)] <
s < N and height X\ associated to My f. By Lemma 4.6, we have

|5+

Therefore, g* — f in th],N(w) as A — oo. Moreover, by Lemma 4.9, we

have MQ(¢g*) € LL(R™), which combined with Proposition 2.8(ii) infers
g* € LL(R™). Thus, Corollary 4.10 is proved. d

<C (M f(2)) w(z) da.
hi;,N(W) {zeR™: My f(z)>\}
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5. Weighted atomic decompositions of /) \(w)

In this section, we will establish the equivalence between hi’ n(w) and hb:®*
(w) by using the Calderén-Zygmund decomposition, and we will follow the
proof of atomic decomposition as presented by Stein in [22].

Let w e A% (R™),q., be as in (2.4), p€ (0,1], N > N, o, s = [n(qu/p — 1)]
and f € hj) y(w). Take mg € Z such that 20" <infyepn My f(z) < 270,
if infern My f(z) =0, write mg = —oo. For each integer m > mg consider
the Calderén—Zygmund decomposition of f of degree s and height \ = 2™
associated to My f, namely

(5.1) f=gm+> b,
ieN
and
Q= {zeR": My f(x)>2™}, QY =Qip.

In this section, we denote {Q;}:, {mi}i, {Fi}: and {b;}; as {Q"}si, {0},
{P™}; and {b]"};. The center and the sidelength of QT are respectively
denoted by z* and [".

As in Section 4, for all ¢ and m,

(5.2) > 0 =xq,,  supp(b") Csupp(n}") C Q"

{Q7*}; has the bounded interior property, and P/ satisfying that for any
P eP;(R"),

(5.3) (f, Pn")y = (P, Pn}").

For each integer m > mg and 4,5 € N, we define P

0.
projection of (f — Pm“)nl on Ps(R™) with respect to the norm

1 2
(] —— / P(@)[*n+ () da,
J n +1(y) dy R ‘ | J

]

as the orthogonal

that is, P;?}H is the unique element of Ps(R™) such that

64 (=Pl Pty = [ PR @PE) T @)
In what follows, we denote Q* = (1 + 2~ (10+n))Qm,

EP={ieN:l">p(2")/(2°n) }, Ef={i eN: 1" <p(2]")/(2°n)},
Ff={ieN:I["> Lyp(a") }, Fy ={i e N: " < Lsp(a]") },

where L3 = 2F0(C} is as in Section 4.
By the definition of P{’;H, we have

(5.5) PP 20 ifand only it QP N QYY" #0.
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The following Lemmas 5.1-5.3 can be proved by similar methods of Lemmas
5.1-5.3 in [24].

LEMMA 5.1. Notice that Q11 C Qpy, then

(i) IFQNQ " 20, then I+ < 24/nl and Q" € 25nQF € Q.
(ii) There exists a positive integer L such that for each i € N, the cardinality
of {eN:Q™nN ngH)* #(} is bounded by L.

LEMMA 5.2. There exists a positive constant C such that for all i,j € N

and integer m > mq with l;”“ < L3p($}’z+1),

(5.6) sup [P () (y)| < c2m
yER™

LEMMA 5.3. For any k € Z with m > my,

(X myp) -

ieN \je gt
where the series converges both in D'(R™) and pointwise.

Then we can give the weighted atomic decomposition for a dense subspace
of hY y(w) as follows.

LEMMA 5.4. Let w e A% (R"™), g, and N, be respectively as in (2.4)
and (3.29). If pe€ (0,1], s > [n(qu/p—1)], N >s and N > N, then for
any f € (LY (R™) ﬁh?N(w)), there exist numbers Ao € C and {\["}>k,.: CC,
(p, 00, 8)w-atoms {a" }in>me,i and a single atom ag such that

(5.7) =37 > Aal + Aoao,

m>mgy ¢

where the series converges almost everywhere and in D' (R™). Moreover, there
exists a positive constant C, independent of f, such that

(5.8) S+l < CliflIn ()
m>mgo,t

Proof. For f € (LL(R™)NhY y(w)), in the case mo = —oc and each m € Z,
f has a Calderén—Zygmund decomposition of degree s and height A = 2™
associated to My(f) as above, that is, f=g¢™ + >, 0. By Corollary 4.10
and Proposition 3.12, g™ — f in both h} y(w) and D'(R") as m — co. By
Lemma 4.9(i), [[9™ | g (&ny — 0 as m — —o0, and moreover, by Lemma 2.5(ii),
g™ — 0 in D'(R™) as m — —oo. Hence,

(5.9) F=> (g""-gm
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in D'(R™). Since supp(}_, b7*) C 2, and w(£2yy,) — 0 as m — 0o, then g™ — f
almost everywhere as m — oo, and (5.9) holds for almost everywhere. By

Lemma 5.3 and ), n;"b?”l =xq,, b;”“ = bmJr1 for all j, then we have

(5.10) g™tt—g™ = <f - Zb}ﬁ“) — (f = ZW)
] i
:Zlﬁ”—me*l +Z< Z m+177;n+1)
i i EFm+1
_ Z |:bm Z bm+1 Z Pﬂ"b-i—l m+1:| Z hm
]6F7n+1

It is easy to see that the series converges in both D’'(R™) and almost every-
where. Then, by the definitions of b7 and b}”“, when " < Lap(xl"), we
have

(5.11) hi* = fxee 0" = B0
+ Z ij-‘rln;nn;n-i-l + Z Pm+1 m+1’
jeF Tt jers !

and when I > L3p(z!"), we have

(512) h:n = fXQEanZm + Z ij+1nz’1n;7+1 + Z Pm+1 m+1.

jerm+1 JeFerl
We can get that for almost every z € QF, 11
|f(@)] < M (£)(@) <27,

by Proposition 2.8(i). Then, by Lemma 4.2, Lemma 5.1(ii), Lemma 5.2, (5.11)
and (5.12) we obtain that there exists a positive constant Cq; such that for
any ¢ € N,

(5.13) |y < Ci2™

2 gy
Next, we need to prove hl" is either a multiple of a (p, 00, s),,-atom or a finite
linear combination of (p, 00, s),-atom in the following two cases of i.

Case L. For i € EJ", I™ > p(2™)/25n. Clearly, " is supported in a cube

@{” that contains @** as well as all the Qg-mﬂ)* that intersect @;"*. In
fact, observe that if Q;"* N Q;mﬂ)* # (), by Lemma 5.1, we have ngﬂ)* C
26nQ™* C Q,,, thus, we set Q™ = 26pQ™*. Since 1(Q™) > 2p(z™), by the
same method of Lemma 3.1 in [27], @:” can be decomposed into finite disjoint
cubes {Q7 }1, such that Q7" = U}, meand 17 /4 < p(x) < Co(3y/n)*olT, for
some T € Qz’k =Q(x Z’k,ll’k), where Cy, kg are constants given in Lemma 2.1.
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Moreover, by Lemma 2.1, we also have I[, < Lip(z}7,) and I, > Lap(z],).
Therefore, let
thQnL

TkEC112m[W( Zlk)]l/p and aZLkE( T’“)ilzk 1 XQ7,

then suppay, C Q7% and [|a}[|Les ®n) < [W(QTk)]fl/p, hence each a}} is a
(p, 00, 8)-atom and hi* =370 ATy aly.

Case II. For i € Ef*, if j € ", we claim that Q7 N Qg.mﬂ)* =0. In
fact, if Q"™ N Q;mﬂ)* # (), by Lemma 5.1(i), we know l;”“ < 2%/nl™ then
we can deduce that I <1 /2,/n which is a contradiction, hence the claim is
true. Thus, we have

(5.14) B =(f =P = > fuitet = 0 (F =BT

jEF’"Jrl jeFénwrl
+ Z Pm+1 m+1
jerytt
m m—1 m+1 m m+1 m+1
=(f=Bmmy = > A =P — Pty
]€F7n+1

Let @m = 26nQ™*, then Z(Qm) < Lip(x*) and supp h™ C @:” Furthermore,
h" satisfies the desired moment conditions, which can be deduced from the
moment conditions of (f —P/™)n™ and (f — P;”H)n;’”rlm Pi’j;ﬂ ML Let

m =112 w(Q)]Y/? and al* = (A7) AT, then af" is a (p, 00, s),-atom.
Thus, by (5.9), (5.10), Case I and Case II, we have

F=> ( > (Zx,kazk) + ) A;"a;”>

meZ \icE}" ieEp

in both D'(R™) and almost everywhere. Moreover, by Lemma 2.4, we get

x| > [Shal|+ 3 per

kez LieEp Lk=1 icEn
<CZ?’”’”[Z [fiw + 2 w(é?)]
kEZ i€E Lk=1 i€Ep
x5 a3 )]
keZ ieBp icEy

<0y Y ()

meZ ieN
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<O 2 2Me(@)

meZ ieN

<C Y 2"Pw(Qp)

mEZ

<CIMu DIz gy = CIF IR oy

by which we can obtain (5.8) in the case mg = —oc.
Finally, when mg > —o0, since f € th(w), we know w(R"™) < co. By the
similar arguments, we have

o

(5.15) f= Z (g™ —g™) gm0 =F+gm.

m=myg

For the function f, we have the same (p, 00, s),, atomic decomposition:

(5.16) f= ) Arap,
m>mg,t
and
(5.17) Do D PP LCIflR
m>mo t€EN

For the function g™, by Lemma 4.9(ii), we have

(5.18) g™ HL;O(R"L) < (192" <2Ch0 xiGHRf“ My f(z),

where C1g is the same constant as in Lemma 4.9(ii).
Let Ao = C102"° [w(R™)]Y/? and ag = Ay g™, then

n —1
(5.19) laol poe mny < [w(R™)] P and |)\0|p§(2clo)p||f||ZZN(w)'

Hence, g™ = Agag and ag is a (p, 00),-single-atom, then by combining with
(5.15) and (5.16) we can obtain (5.7) in the case mg > —oo. Furthermore, by
(5.17) and (5.19), we get

S N < CIAE, o
m>mg 1€EN |

The proof of the lemma is complete. O

Next, we can establish the weighted atomic decompositions of h? y(w).

THEOREM 5.5. Let w € A%>°(R™), g, and Ny, be respectively as in (2.4)
and (3.29). If ¢ € (qu,o0], p € (0,1], and integers s and N satisfy N > Ny,
and N > s > [n(qu/p — 1)], then hp®*(w) = hy y(w) =hy (W) with equiv-
alent norms.
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Proof. First of all, it is easy to get that

B>t (w) C Wy (@) C By, (@) C I (@) C Ry (),

where 5 is an integer no less than s and N is an integer larger than N, and
the inclusions are continuous. Hence, we need to prove that for any N > s >
[n(qw/p — 1)), hy y(w) ChE>*(w), and for all f € hy y(w), [Ifllazes ) <

Clif Iz ()
For f € h! y(w), by Corollary 4.10, there exists a sequence of functions

{fm}men C (I}, n(w) N LEL(R™)) such that for all m € N,

(5.20) 1fmllne ) <27 llnz )

and f=> _yfm in h’;’N(w). By Lemma 5.4, for each m € N, f,, has an
atomic decomposition
fm= 3 Arap

€Ly
in D'(R") with
SN <Ol o
=
where {A"}icz, C C, {a]"}ien are (p,00,s),-atoms and ag’ is a (p,00).-
single-atom. Let

o= [w(Rn)]l/p Z |)\6”‘Ha6"||LSO(Rn) and  dp= (X)) ! Z Aotag,
m=1 m=1

then we have
Xodo = Y ATay!
m=1
and
ol s ey < [oo(®)] 77,

which implies that @g is a (p, 00),,-single-atom.
Since [|af' || e (rn) < (w(R™)) /P and

AT < Cllfmllig o) < C27 1l o

we obtain

|Ao| < C(Z Tm) 1f1l12 @) S ClFIRz @)s
m=1

moreover, we get

S S+ ol <0 52 Winlly o #1510 ) SOWT o

meN ieN meN
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Finally, we can obtain
F=3"3"Amal + Xodo € hE>" (w)
meN ieN
and
1flnzos @y S ClNF NIz w)-
The theorem is proved. O

For simplicity, from now on, we denote by hb (w) the weighted local Hardy
space h) y(w) when N > N, .

6. Atomic characterization of H}(w)

In this section, we apply the atomic characterization of the weighted local
Hardy spaces hy(w) with Af’o(R”) weights to establish atomic characteriza-
tion of weighted Hardy space Hé (w) associated to Schrodinger operator with
AP (R™) weights.

Let £L=—A+V be a Schrodinger operator on R", n > 3, where V € RH,, /5
is a fixed non-negative potential.

Let {T;}:~0 be the semigroup of linear operators generated by £ and
T;(z,y) be their kernels, that is,

(6.1) Tif(z)=e “f(x)= / Ty(z,y) f(y)dy, fort>0and fe L*(R").

n

Since Vis non-negative the Feynman—Kac formula implies that

(6.2) 0 < Ti(x,y) < Ty(w,y) = (4nt) "% exp (_%>

Obviously, by (6.2) the maximal operator
T* f(x) = sup|T, f ()]
>0
is of weak-type (1,1). A weighted Hardy-type space related to £ with A7 6 (R™)
weights is naturally defined by:
(6.3) Hp(w)={feLL,(R"): T*f(z) e L,(R")}, with

The H}(w) with w € A;(R™) has been studied in [16], [36]
Now let us recall some basic properties of kernels T;(x,y) and the opera-
tor T*.

LEMMA 6.1 (See [9]). For every l >0 there is a constant C; such that

(6.4) Ty(x,y) < Ci(1+ |z — yl/p(x)) e —y| ™,
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for xz,y € R™. Moreover, there is an € > 0 such that for every C' >0, there
exists C' so that

(6:5) [i(a9) ~ Tifo.y)] < ¢ AT,

for |z —y| < C'p(x).
Since Ty(x,y) is a symmetric function, we also have
7l —n n
(6.6)  Tu(z,y) <Ci(1+|x—yl/p(y) |o—y[™ forz,yeR"
LEMMA 6.2 (See [10]). There exist a rapidly decaying function w >0 and
a § >0 such that

)
6.7) T(es) — Tiley)| < (Tf)) w i — ),

where w ;(x) = t="2w(z/VT).

LEMMA 6.3 (See [11]). If V € RH (R™), s >n/2, then there exist § = §(s) >
0 and ¢ > 0 such that for every N >0, there is a constant C so that, for all

h| <Vt
(68) |Tt(m+h,y)—Tt(x,y)|

LEMMA 6.4 (See [2]). For 1 <p < oo the operator T* is bounded on LP(w)
when w € AD>(R™), and of weak type (1,1) when w e AP™(R™).

Let {ﬁ}Do be the semigroup of linear operators, and ﬁ(x,y) be their
kernels, that is,

T () = / Tiwy)fw)dy, fort>0.

In order to achieve the desired conclusions, we need the following estimates.

LEMMA 6.5. Let w € A]"°°(R™), then there exists a positive constant C' such
that for all f € h})(w),

(6.9) £ lln2 (@) SCHT,T(f)HL;(Rn),

where

Ty (f)@)= sup |Te(f)(@))-
0<t<p(x)



WEIGHTED LOCAL HARDY SPACES 725

Proof. Let h(z) = (47)~"/2e~1#1’/4_then it is easy to find that hy(z —y) =
Ti2(x,y). Now we take a nonnegative function ¢ € D(R™) such that ¢(x) =
h(z) on B(0,2), and we define ¢ (f)(x) as follows:

ey (f)(@)= sup |op* f(x)).

0<t<p(x)

Clearly, for any x € R", we have

(6.10) P (N)@) <y (),

see (3.4) for the definition of ™ (f)(z).
Let f € h(w). For every N >0, we have

H%T(f) - T;(f)HLL(R”)

<[ s fpofa) = b o) |ola) da

n 0<t<p(x)

-n r—Yy T —y
S/n <0<§1<1£)(:L’)t /n|f(y)|‘<p< t >_h( 7 >‘dy)w($)dx
_ -N
S/n (/n ’f(y)‘ojgg(w)t—n <1+ M) N dy)w(x)dx

< [ rel( [ ey (1422 ayar) ay
/]R" (/ ( p(z)

In the last inequality, we used the following facts that

sup t"(l ployl _y|)N < (p(a)) ™" (1 J s y'>N
0<t<p(x) t p(z)

provided that |z —y| > ¢ and N > 2n.
We now estimate the inner integral in the last inequality. In fact,

/n(p(x)) ( |x_y|>
:/m y|<p(y (1+ ) Nw(x)da:

+/.x_y|2p<y><p<f>> () e
=1+ 1I.

For I, since N is large enough and (2.2), we have

c ~
= ()" /Ix <o) w(z)dr < CWe(By)My,p(w)(y) < Cuw(y),

where By = B(y, p(y)).
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For II, by the same reason as above, we have

3 Nyl Nw(a) da
U<cz/|w TN LG R TR OL

3 2~y o7
<c o) (14 ) T ey Ve o
Z [z—y|~2ip(y) ( ) p(y)
> n ho(N-m) _
SCZ/ _ (P(y))N (1—1—2’) ko+1 (2’p(y)) Nw(as)dx
i—1 Y lz—yl~2ip(y)
i  Nimkg ]
<C 27") kot n/ w(zx)dx
P T
0  Ninkg
<CY (@) (142) Myp(w) ()
=1
<O (27) B () < Culy),
i=1

and the last inequality holds because the real number N is large enough.
Combining the above two estimates, we get

611) e () =T, (Dl gy @y <€ /R |f @)t dy = ClIf |z ooy

In addition, it is easy to get || f||L1 ®n) < ||T;f||Li}(Rn). Therefore, we obtain

612) [l ( < T (Dl gy + C s ey < TS ()

)HL}J(]R”) ||L&(lR")'

Finally, from Theorem 3.10, (6.10) and (6.12), it follows that
Hf”h})(ud) < CH<‘0+(f)HLL(R”) < CH‘F’;(f)HLg(Rn) < CHTv:(f)HL}U(R")’
which finishes the proof. O
For xz,y € R", set Ei(x,y) =Ty (x,y) — Tpo (x,y),

T (f)@)= sup [T(f)(2)] and EF(f)(x)= sup |E(f)(z)].
0<t<p(x) 0<t<p(x)

LEMMA 6.6. Let w € AP (R™). Then there exists a positive constant C
such that for all f € LL(R™),

1B (Dl 1 oy < Cll g -
Proof. By Lemma 2.2, it suffices to prove that for all j,

(6'13) HE;)"_(XB;f)HL&)(R’!L) < CHXB_;‘f”LL(R")a
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in which B; = B(z;, p(x;)). For any x € B;* and y € B, since p(y) ~ p(z;) ~
p(x) via Lemma 2.1, by (6.5) we have

)

., (Jz —yl/p(x))® C
B ) < O < oy

which implies that

/B sup ’Et(XB;f)|w($) dx

5 0<t<p(x)

lf ()l
=¢ B3* (/B* x — ‘n E(P( ))5 dy)w(l')dx
x)
3 @)
kZQ/I yl~2kp(ay) 1T = Y1 (p(25))® d )|f(y)|dy

(ZI ; QXBFM)ﬂwWy

k—72
1 ka (1+Co2 ) )>|f(y)!dy
k=—2

sc/ 9)|w(y) dy = Cllxs: Il @,
5;

For any x € (B;*)C and y € B, it is easy to see that p(z;) < |z — x| ~
|z — y|; in addition, by (2.2) and (6.7), we have 0 < t < p(z) <
@ = ay[Po/ Rt D (p(ay) /ot and - Ey(x,y) £ tV/Jle — yNTT o~
tN/|x — z;|N*" for any N > 0. Therefore, taking N > (ko + 1)6, we have

/ sup |Et(XB;f)|w(x)dx
(B

)0 0<t<p(x)

(p(;)) ™ | £ ()] >
C d d
= /(;“*)'3 </7 |a:—wj\n+WA5r1 y Jelw)dr
(p(;)) 7 w(z) )
C —d d
- /}‘(/(BJ*)G |z — =, |n+k0+1 2 )11l dy

By le—a;j|~2ip(a;) |2 — ;5 |”+ko+1

1=2
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—c / (Z (pla) 0T w(Blay, 2'p(;)) dx) 1)y

i=2 (2°p(x ))n+k0+1
<c (Z;—” (y)>|f(y)|dy

<C |f(y)|w(y)dy:C”XB;‘fHL}J(]R")a

B;

which completes the proof of (6.13) and hence the proof of this lemma. O

Next, we give several estimates about (p,q,s),-atoms and (p, q),-single-
atom, which are important for our conclusion.

LEMMA 6.7. Let a be a (p,q,s)w-atom, and suppa C Q(zo,7), then for any
z € (4Q)%, we have the following estimates:

(i) If Lop(xo) < v < Lup(ao), then for any M >0,

T a(r) < Ha”Ll(Rn)Wv
(ii) If r < Lap(xo) and |x — xo| < 2p(x0), then there exists 6 >0 such that

s
r
T a(z) S ”aHLl(RH)W’

(i) If r < Lap(zo) and |z —xo| > p(x0)/+/n, then there exists 6 >0 such that
for any M >0,

* < 7,.(5 p(xo) M
T a(r) S ||a||L1(Rn) 2z — |+

|z — x|

Proof. Tt Lap(xg) <1 < Lip(xg), since |z —y| ~ |z — 20| and p(y) ~ p(z0)
for z € (4Q)% and y € Q, by Lemma 6.1, for any M > 0, we have

Ta(o) < [ [Tl )] dy

s/@(u'xp(y)y') eyl a) dy

</ <1+ 'xx°'>M|xxo|“|a<y>|dy
~Jo p(xo)

p(xo)™ r
N ||CLHL1(R")W N HaHLl(R")W7

M

and then we obtain (i).



WEIGHTED LOCAL HARDY SPACES 729

If r < Lap(zp), by the moment condition of ¢ and Lemma 6.3, for any
M >0 and 3y’ € Q which satisfies |y — v/| < v/, we have

Tia(z) = /n Ti(z,y)aly) dy
- [ @)~ Tie et

L5 ) ot
L)) ) oo

where K > 0 is any real number.
For |z — zo| < 2p(z0), taking K = (n+ 6)/2, we obtain

Tia(o)% |, (%2_; (14 55) M(m —txoP)K‘“(y)‘ U

r § ¢ K
< () e —
<t () ()

5
r
= ||a||L1(Rn)W7

which implies (ii).
For |z — xo| > p(xg)/+/n, taking K = (n+ M + 6)/2, we obtain

o) [, (%)6f% 1+ p(ifo) M(m —txoP)K‘“(y)‘ w
< ||a||L1<Rn>(%)5tg (p(jf’)M(m)K
. OB

which finishes the proof of this lemma. O

LEMMA 6.8. Let w € AZ’Q(R") and a be a (p,q,s)w-atom, which satisfies
suppa C Q(xo,r). Then there exists a constant C such that:

lall L1 en) < ClQIw(Q) ™ /PWg(Q).
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Proof. If ¢ > 1, by Holder inequality and the definition of Ag"g (R™) weights,
we have

a’HLl(R"):/Q|a(a¢)‘w(x)1/qw(x)—1/qu

, 1/4¢'
< llall s @ ( /Q w(a) /de)

<w(@r ([ o)yl v ([ wtoree) Qe

< ClQRI(Q) 7y (Q).
If ¢=1, we have
w(Q) < ClQIT(Q) inf w(z),
which implies
7] o () < CIRIW(Q) 4 (Q).
Therefore, we get
lallzr@ny < llallpy @ o™ || e ) < ClRIW(Q) P T6(Q),

which finishes the proof. O

Combining above two lemmas with ¥y(Q) < 1, we can get the following
corollary.

COROLLARY 6.9. Let a be a (p,q,s)w-atom, and suppa C Q(zo,7). Then
for any x € (4Q)B, we have the following estimates:

(i) If Lap(xo) <7 < Lip(zg), then for any M >0,

Tala) Sl@ (! )MM,

|x — 20

(ii) If r < Lap(xo) and |x — xo| < 2p(x0), then there exists 6 >0 such that

Ta(e) Sw(@) 7 (- )M,

|z — |

(iii) If r < Lap(zo) and |z —xzo| > p(x0)/+/1, then there exists 6 >0 such that
for any M >0,

raw se@ () ()"

|z — o |z —

Next, we give the main theorem of this section.

THEOREM 6.10. Let 0#V € RH, /3 and w € AY™(R™). Then h}(w) =
H}(w) with equivalent norms, that is

[ lns oy ~ N )
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Proof. Assume that f € H}(w), by (6.7), we have
(6.14) ’f ‘ = hm |Tt )’

5
<T@+ Clim () M)
<T,()(@).
Then according to (6.14), Lemma 6.5 and 6.6, we get f € h)(w) and
e300 S 1T gy ST Oy o+ 15 D e
ST )HLL(R“) + 1 oy ey ST ()
SIT DN oy = 112 )

Conversely, we need to prove that 7* is bounded from hy(w) to L., (R™). By
Lemma 2.4 and Theorem 5.5, it suffices to prove that for any (1,¢,s),-atom
or (1,q),-single-atom a,

(6.15) 17" (@)| Ly gy S 1

HL}U(R")

where 1 <g<1+d/n.
If a is a (1, q),-single-atom, by Holder inequality and Lemma 6.4, we have

1T (@] ey < 1T7@)]] gy (R < Cllall o oy (R™) 7 S 1.
L(R™) & (R™)

If a is a (1,q,s),-atom and suppa C Q(xo,r) with r < Lip(xg), then we
have

|7 (a) <7 @) 11 4y + 1T (@) oy =1+11.

||LL((4Q)
For I, by Holder inequality, Lemmas 2.4 and 6.4, we get

|7 (a) < 7(@)]] 1 (40w (@@ < Cllal pg, @y w(4Q) 1/

C(w(4Q)/w(@Q) T < 1.

For I, if Lop(xo) <r < Lip(zo), by Lemma 2.4 and Corollary 6.9, taking
M > q(n+6) —n, we have

17 @) o Z g T @@

HL;(W)

2200

1 [e%e] r n+M
§$Z/27Q\27 1Q<|$—930|> w(z) d
< ﬁ i2—j(n+M)w(2jQ)
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. q0
27j(n+M)2j’qu <1+ 21 >
p(xo)

WA
NE

<.
Il
@

< 9—iln+M—ng—qb] < 1.

s

Il
w

J

if 7 < Lop(zo), then there exists Ny € Z such that 2No=1 /nr < p(z¢) <
2No /nr. Let us assume that Ny > 3, otherwise, we just need to consider
the I5 in the following decomposition:

IT*@)| 1 (agye) = <Z+ Z >/sz\Qj_lQT*(a)(ac)w(x)dxEIl+I2,

=3 j=No+l1

for Iy, since |z — zo| < 27y/nr < 2Noy/nr < 2p(x), ¥g(27Q) <37 and ¢ <
1+ 6/n, by Lemma 2.4 and Corollary 6.9, we get
No

L=Y /QJQ\QMQ T*(a)(z)w(z) dz

No

ﬁ Z/QJ'Q\QJ'lQ (ﬁ)nww(m) o

(—ZQ j(n+9) w(27Q)

Jj=3

< Z j[n+6—ngq] < 1
=3

for I, since |z — zg| > 277 1r > 2Nor > p(x0) /\/n, then

; - 0
Wy (27Q) < (27 Vnr/plao))”,
thus, taking M = g6, by ¢ <1+ 6/n, Lemma 2.4 and Corollary 6.9, we obtain

A

A
S

z

2

(oo}

L= Y /210\21‘ 1Q’T*(a)(x)w(z)dx

j=No+1

ﬁ j—]:fi-H /sz\zle (ﬁ) b ( |~”Cp(—x(ﬂ)c)o| > Mw(x) o

s £, e %)

A

j=No+1

< Y galnrional (3, (21Q)) ( ($0)>M§17

j=No+1
which finally implies (6.15) and finishes the proof. O
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7. Finite atomic decompositions

In this section, we prove that for any given finite linear combination of
weighted atoms when ¢ < oo, its norm in Y y(w) can be achieved by all its
finite weighted atomic decompositions. This extends the main results in [17]
to the setting of weighted local Hardy spaces.

DEFINITION 7.1. Let w € A2*°(R™) and (p, g, s),, be admissible as in Defi-
nition 3.2. Then h?'#7(w) is defined to be the vector space of all finite linear

combinations of (p,q,s),-atoms and a (p, ¢),-single-atom, and the norm of f
in A& (w) is defined by

k 1/p k
I £llnras ) = inf{ lz w’} f= NankeZy {N}, CC,
=0

p.fin
i=0
{a;}f_, are (p,q,s). atoms, and ag is a (p, q)w—single—atom}.

Obviously, for any admissible triplet (p, ¢, s),, atom and (p, ¢).-single-atom,

ho &y (w) is dense in hb®®(w) with respect to the quasi-norm [| - ||z ).

THEOREM 7.2. Let w € A% (R"™), q, be as in (2.4) and (p,q,$). be ad-
missible as in Definition 3.2. If q € (qu,0), then || - ”hﬁ’?if(w) and || - [nz(w)

: : P,q,5
are equivalent quasi-norms on h’g ' (w).

Proof. Obviously, by Theorem 5.5, we have hl'@"(w) C hb%*(w) = hb(w),
and for all f € h?%%(w), we have

p,fin
1 £11h2 @) < CNfllneas w)-

p,fin

Therefore, it suffices to prove that for every ¢ € (q,,,00) there exists a constant

C such that for all f € hlE 5 (w),

(7.1) [ £1lhz-as )y < Cllf IRz (w)-

o.fin
Suppose that f is in A& (w) with || f||nz () = 1. In this section, we take mg €
Z such that 2mo~1 <inf,cpn My f(z) < 2™0, and if inf,cpn My f(z) =0, we
write mg = —oo. For each integer m > my, set
Qp={zeR": My f(z) >2™},

where and in what follows N = N, . For f € (h) y(w) N LL(R™)), by
Lemma 5.4, there exist Ao € C, {\/"} >k, C C, a (p,00),-single-atom ag
and (p, 00, 8),-atoms {a)* }>m,,i, such that

(7.2) F=>0 Y Aral + doao

m>mg ¢

holds both in D'(R™) and almost everywhere.
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For any z € R", since R" =, 5, (€2m \ Qaxr+1), there exists j € Z such
that z € (€95 \ Q95+1). By the proof of Lemma 5.4, for all m > j, supp(al*) C
Q" CQy CQjyq. Then by (5.13) and (5.18), we have

> D ()

m>mgo 1

By f € LL(R™) and Proposition 2.8(ii), we have My (f)(z) € LL(R™), which
together with the Lebesgue dominated convergence theorem confers that

Z Z )\Zna;ﬂ + /\an

m>mgo 1%

+oao(@)| <C Y 2542 <OV <CMy(f)(@).

ko<k<j

converges to f in LL(R™).

Next, let us prove (7.1) for two cases of w.

Case I: For w(R™) = oo, since f € LI (R™), we know that mo = —oo and
ap(z) =0 for almost every x € R™ in (7.2). Thus, (7.2) can be written as

F=Y3 " Arar,
meZ 1

When w(R™) = oo, all (p,q),-single-atoms are 0, which implies that f has
compact support for f € hlE(w). Suppose supp(f) C Qo = Q(zo,70) and

Qo = Q(x0,71), in which 7, = Vnro + C2(1 4 R)*F1(1 + /nrg/p(x0))p(z0),
then for any ¢ € Dy(R"), z € R™\ Qg and 27 € (0, p(x)), we have

wef@= [ wle-pfedy
Q(zo,m0)
-/ Uil — 9) () dy =0.
B(z,Rp(z))NQ(z0,r0)
Hence, for any m € Z, ,,, C Qo, we have supp(Y ez 2 Aitai) C Qo.

For each positive integer K, let

Fg={(m,i):meZ,m>mg,i€N,|m|+i< K},

and

fr= > Alay.

(m,i)EFK
Then, we have fx converges to f in LI (R™), and for any given € € (0,1),
there exists a K¢ € N large enough such that supp(f — fx,)/e C Qo and

10 = Fro) el ey < [ @0)] 77

For Qq, since l(@o) =ry; > 2p(xp), we can decompose it into finite disjoint
cubes {Q,}; such that Qy = UjV:OI Q; and /4 < p(x) < Co(3y/n)*0l; for some



WEIGHTED LOCAL HARDY SPACES 735

x € Q; = Q(x;,l;). Moreover, each [; satisfies Lop(z;) <l; < Lip(x;). It is
clear that for ¢ € (g,,00) and p € (0,1] we have

107 = Frc)x@u el g ooy < (@07 < (@],

which together with supp((f — fx,)xq,/€) C Q; implies that (f — fr,)xq,/c
is a (p,q,$),-atom for j =1,2,..., Ny. Therefore,

f fKO +Z f fKo XQJ

is a finite weighted atom linear combination of f almost everywhere. Then
by taking e = No_l/p, we obtain

1 g o < > P+ Ner<c,
(m,i)EFK
which implies the Case 1.

Case II: For w(R™) < oo, f may not have compact support. As in Case I,
for any positive integer K, let

Z )\I”a;” + )\an
(m,i)eFk
and bx = f — fx. By above proof, we know that fx converges to f in L% (R™).
Thus, there exists a positive integer K7 € N large enough such that

b, HLg(Rn) < [M(R”)] 1/q—1/p_

Therefore, by, is a (p,q),-single-atom and f = fx, + bx, is a finite weighted
atom linear combination of f. By Lemma 5.4, we have

||f|Z£:?;;f<w><C< > |AZ”!”+A€)<C.

(m,i)€FK

Thus, (7.1) holds, and the theorem is proved. O

As an application of finite atomic decompositions, we establish bounded-
ness in hb(w) of quasi-Banach-valued sublinear operators.

As in [5], a quasi-Banach space space B is a vector space endowed with
a quasi-norm || - ||g which is nonnegative, non-degenerate (i.e., || f|]lg =0 if
and only if f =0), homogeneous, and obeys the quasi-triangle inequality, i.e.,
there exists a positive constant K no less than 1 such that for all f g € B,
1 +9lls < K (| £l + llglz)-

Let 8 € (0,1}, a quasi-Banach space Bg with the quasi-norm |- ||, is called

a (-quasi-Banach space if || f +9||g5 < ||f||§5 + ||9H1B35 for all f,g € Bg.
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For any given S-quasi-Banach space Bg with 8 € (0,1] and a linear space
Y, an operator T' from Y to Bg is said to be Bg-sublinear if for any f,g €Y
and \,v €C,

1T +vg)lls, < (NPT

and [|[T'(f) = T(9)lls, < IT(f — 9)llB,-

If T' is linear, then it is Bg-sublinear. Moreover, if Bg is a space of functions,
and T is nonnegative and sublinear in the classical sense, then T is also Bg-
sublinear.

THEOREM 7.3. Let w € A2®(R"),0<p< B <1, and B be a B-quasi-
Banach space. Suppose q € (qu,,00) and T : hz %(w) — Bg is a Bg-sublinear
operator such that

S =sup{||T(a)

B )1/,3

AT,

s,

HB[, cais a (p,q,8)w atom or (p,q)w-single-atom} < 00.

Then there exists a unique bounded Bg-sublinear operator T from hb(w) to Bg
which extends T.

Proof. For any f € hl&(w), by Theorem 7.2, there exist a set of numbers
{A\iYi2o CC, (p,q,8)w-atoms {a;};_; and a (p,q).-single-atom ag such that
f= Z;:o Aja; pointwise and

Sl <CIfIp

7=0

Then by the assumption, we have

1 1/p
<C Zp‘jp] <O fllnz(w)
=0

Since h'§7(w) is dense in 7D (w), a density argument gives the desired results.
O

1T,
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