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EXPONENTIAL CONVERGENCE FOR SOME SPDES
WITH LÉVY NOISES

YULIN SONG AND TIANGE XU

Abstract. In this paper, we generalize the Malliavin calculus
for jump processes in the infinite-dimensional setting and obtain

an integration by parts formula for jump processes on Hilbert

spaces. By using this formula, we investigate derivative formula

and exponential convergence for SPDEs driven by purely jump
processes.

1. Introduction and main results

1.1. Introduction. Stochastic partial differential equations (SPDEs) driven
by Lévy noises have been extensively studied in recent years; see [1], [2], [14],
[17], [18], [19], [16], [21], [25] and references therein. For diffusions, the de-
rivative formulas [7] (also called Bismut–Elwealthy–Li formula [13]) is a quite
useful tool in various aspects such as functional inequalities [32], heat kernel
estimates [7], strong Feller properties [10] and so on. Due to these various
applications, many scholars have paid much attention to the analogous de-
rivative formula for jump processes. For finite-dimensional jump processes,
we refer to [3], [4], [20], [33], [35] etc. In most of these references, the Lévy
measures of forced noises are always required to having absolutely continu-
ous (parts) lower bounds w.r.t. the Lebesgue measure whose shift-invariance
property plays an essential role. But in infinite-dimensional setting, there is
no Lebesgue measure available. In [34], the authors investigated the strong
Feller and coupling properties for linear SDEs driven by non-cylindrical Lévy
processes on a Banach space equipped with a nice reference measure, which
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has quasi-invariance property. By Galerkin’s approximation, a derivative for-
mula was established in [28] for semilinear SPDEs forced by by non-cylindrical
Lévy processes. However, the representation of the formula in [28] is cumber-
some. So one aim of this work is to give a succinct formulation of derivative
formula for a modified transitional probability function.

As an application of the derivative formula, we will study the long-time
asymptotic behaviors of SPDEs with jumps (see Theorem 2 below). For this
topic, in finite-dimensional case, the algebraic or exponential convergence of
Lévy processes and SDEs forced by Lévy processes were studied in [8], [26],
[27], [15], [22] and references therein. When the nonlinear terms of SPDEs
forced by cylindrical α-stable processes were bounded and Lipschitz continu-
ous, exponential convergence were derived in [22], [24] and [23]. For stochastic
Burgers equations, the exponential convergence was discussed in [12]. The
exponential convergence for nonlinear SPDEs driven by non-cylindrical pure
jump processes was also discussed in [28]. Another aim of this paper is to give
the exponential convergence for SPDEs with Lévy noises.

1.2. Preliminaries. Let (H, 〈·, ·〉) be a separable Hilbert space and μ be
a Gaussian measure on H with covariance operator Q, which is nonnegative,
symmetric and with trace class. Its square root, denoted by Q

1
2 , is a non-

negative and symmetric Hilbert–Schmidt operator. Let ImQ
1
2 be the image

space of Q
1
2 , i.e., ImQ

1
2 = {Q 1

2 x|x ∈ H}. As is known, ImQ
1
2 is a Hilbert

space with the induced inner product

〈x, y〉0 :=
〈
Q− 1

2 x,Q− 1
2 y
〉
, x, y ∈ ImQ

1
2 ,

where Q− 1
2 is the pseudo inverse of Q in the case that it is not one-to-one,

that is, for h ∈ ImQ
1
2 ,

Q− 1
2h= x, if Q

1
2 x= h and ‖x‖= inf

{
‖y‖ :Q 1

2 y = h
}
.

As is known, the Gaussian measure μ has quasi-invariant property under the
shift z �→ z + h for any h ∈ ImQ

1
2 (see Theorem 2.21 in [9]), that is, μ(·+ h)

and μ are mutually absolutely continuous. The Randon–Nikodym derivative
of μ(·+ h) w.r.t. μ is

ϕ(z,h) :=
μ(dz + h)

μ(dz)
= exp

{
〈h, z〉0 −

1

2
〈h,h〉0

}
, μ-a.s.(1)

Denote the eigenvectors of Q by {ek}k∈N, which can consist of an orthonormal
basis of H.

Let W be the space of all càdlàg functions from [0,∞) to H vanishing
at 0, which is endowed with the Skorohod topology. The σ-algebra B(W)
is generated by all of the open sets of W. Let P

1 be a probability measure
on W such that the coordinate process Lt(w) = w(t) is a Lévy process with
characteristic measure ν. Let P

2 be another probability measure on W such
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that the coordinate process Zt(w) = wt is also a Lévy process with Lévy
measure νZ satisfying

∫
H
|z|2νZ(dz) <∞. Throughout this paper, for Lévy

measure ν, we assume that

(Hν) There exists a Fréchet differentiable function ρ : H → (0,∞) with
bounded derivative such that

ν(dz) = ρ(z)μ(dz), λ := ν(H) ∈ (0,+∞), and

∫
H

|z|2ν(dz)<∞.

Define a probability space as

(Ω,F ,P) :=
(
W×W,B(W)×B(W),P1 × P

2
)
.

Let {Ft}t≥0 be the filtration generated by L and Z. Denote the jump measure

of L byN(dz,dt). Ñ(dz,dt) :=N(dz,dt)−ν(dz)dt is the martingale measure.
Let Nt :=N([0, t]×H) stand for the associated counting process.

In this paper, we consider the following stochastic equation on H

(2)

{
dXt =AXt dt+ F (Xt)dt+ dLt + dZt,

X0 = x,

where A : D(A) ⊂H→ H is an adjoint, unbounded and linear operator gen-
erating a C0-semigroup {St}t≥0 and F : H → H is bounded and Lipschitz
continuous. Then the mild solution of Eq. (2) exists uniquely (see [21, Theo-
rem 9.7]) and can be formulated as

Xx
t = S(t)x+

∫ t

0

S(t− s)F
(
Xx

s

)
ds+

∫ t

0

S(t− s)dLs(3)

+

∫ t

0

S(t− s)dZs.

Let {Pt(x, ·)}t≥0 and {Pt}t≥0 be the transition probability measures and tran-
sition semigroups respectively.

Now we give some notations for later use. Let B(H) be the σ-algebra gener-
ated by all of the open subsets of H. For i= 1,2, we employ Ci

b(H,H) (Ci
b(H))

to denote the family of H-valued (real-valued) ith Fréchet differentiable func-
tions f such that f and its derivatives are bounded and continuous. Let Bb(H)
be the Banach space of bounded Borel-measurable functions f :H→ R with
the supremum norm ‖f‖∞ := supy∈H |f(y)|. Let P(H) be the set of probabil-
ities on (H,B(H)). Recall that the total variation distance between two finite
measures μ1, μ2 is defined by

‖μ1 − μ2‖Var :=
1

2
sup

f∈Bb(H),‖f‖∞≤1

∣∣μ1(f)− μ2(f)
∣∣.

The norm of a linear bounded operator P :H→H is defined by

‖P‖ := sup
y∈H,|y|=1

|Py|.
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We define the operators {P 1
t }t≥0 which were first introduced in [31] as

P 1
t f(x) := E

{
f
(
Xx

t

)
I[Nt≥1]

}
, x ∈H, t≥ 0, f ∈ Bb(H),(4)

where I[Nt≥1] is an indicator function.

1.3. Main results. We list the hypotheses for Equ. (2):

• (HA) A is a dissipative operator defined by

A=
∑
k≥1

(−γk)ek ⊗ ek,(5)

for 0< γ1 ≤ γ2 ≤ · · · ≤ γk ≤ · · · and γk →∞ as k→∞.

• (HSQ) ImS(t)⊂ ImQ and
∫ t

0
‖Q−1S(s)‖ds <∞ hold for any t > 0.

We have the following main results.

Theorem 1. Let F ∈ C1
b (H,H) with ∇F Lipschitz continuous. Assume

(Hν), (HA) and (HSQ) hold. Then for f ∈C2
b (H) and ξ ∈H,

∇ξP
1
t f(x) =−E

{
f
(
Xx

t

)I[Nt≥1]

Nt
(6)

×
∫ t

0

∫
H

(〈
z,Q−1Jsξ

〉
+
〈
∇ logρ(z), Jsξ

〉)
Ñ(dz,ds)

}
,

where Jtξ is the derivative of Xx
t w.r.t. the initial value x along the direction ξ.

Remark 1. Compared with Theorem 1.2 in [28], this modified formula is
much succinct. Meanwhile, the technical conditions of the Lévy measure ν are
also relaxed. The price we pay here is the loss of strong Feller property of Pt.
Fortunately, this formula can be applied to prove the following exponential
convergence of Pt.

Theorem 2. Let F be a Lipschitz continuous function with Lipschitz con-
stant ‖F‖Lip. Assume (Hν), (HA) and (HSQ) hold. If γ1 > ‖F‖Lip and

limt→∞

∫ t
0
‖Q−1S(s)‖2 ds

t <∞, then there exists a constant C > 0 such that for
x and y ∈H,∥∥Pt(x, ·)− Pt(y, ·)

∥∥
Var

≤C
(
1 + |x− y|

)
exp

{
− λ(γ1 − ‖F‖Lip)
λ+ γ1 − ‖F‖Lip

t

}
.(7)

Remark 2. According to Theorem 16.2 in [21], there is a unique invariant
measure Ξ for (3). Integrating both sides of (7) w.r.t. Ξ(dy), we immediately
have ∥∥Pt(x, ·)−Ξ

∥∥
Var

≤C
(
1 + |x|

)
exp

{
− λ(γ1 − ‖F‖Lip)
λ+ γ1 − ‖F‖Lip

t

}
, ∀x ∈H.(8)

We should point out that the exponential convergence (8) is not the same with
the one discussed in [21, Theorem 16.2], since here we use the total variation
norm not the so-called Fortet-Mourier norm (see [21, Definition 16.2]).
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Example 1. Consider the following stochastic semilinear equation on D =
[0, T ]d with d≥ 1 and the Dirichlet boundary condition:

(9)

⎧⎪⎨⎪⎩
dX(t, ξ) = [ΔX(t, ξ) + F (X(t, ξ))] dt+ dZt(ξ),

X(0, ξ) = x(ξ),

X(t, ξ) = 0, ξ ∈ ∂D,

where {Zt} is a square integrable Lévy processes valued on H := L2(D) and
F :H→H is Lipschitz continuous. It is clear that Δ with a Dirichlet boundary
condition has the following eigenfunctions

ek(ξ) =

(
2

π

) d
2

sin(k1ξ1) sin(k2ξ2) · · · sin(kdξd), k ∈N
d, ξ ∈D.

It is known that Δek =−|k|2ek, i.e.
γk = |k|2 = k21 + k22 + · · ·+ k2d, for all k ∈N

d.

We study the dynamics defined by (9) in the space H= L2(D) with orthonor-
mal basis {ek}k∈Nd . For 0 < δ < 1

2 , the fractional power (−Δ)δ of −Δ is
defined by

(−Δ)δ =
1

Γ(δ)

∫ ∞

0

t−δS(t)dt,

where Γ is the Euler function. Due to Proposition A.12 in [9], we have S(t)H⊂
D((−Δ)δ) and for any t > 0,∥∥(−Δ)δS(t)

∥∥≤Cδt
−δ

for a suitable positive constant Cδ . If the operator Q is defined as Q :=
((−Δ)δ)−1, then we have S(t)H⊂ ImQ. Moreover,

lim
t→∞

∫ t

0
‖Q−1S(s)‖2 ds

t
≤ lim

t→∞

C2
δ

∫ t

0
s−2δ ds

t
= lim

t→∞

C2
δ t

1−2δ

t
= 0.

The rest of this paper is organized as follows: in Section 2, we shall investi-
gate an integration by parts formula for jump processes in infinite-dimensional
case; the proofs of the main results will be presented in Section 3.

2. Integration by parts formula

The Malliavin calculus has played an important role in many fields as one
of powerful tools in infinite-dimensional analysis. An integration by parts
formula, which plays an important role in Malliavin calculus, can be used to
derive the derivative formula. In finite-dimensional case, the integration by
part formulas for jump processes was studied in [6], [5], [4], [20], [30], [29] and
so on. But so far, there are few references studying the formula for pure jump
processes in infinite-dimensional case.
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2.1. Girsanov’s theorem. Denote

V0 =
{
V : Ω× [0, T ]→ ImQ

∣∣
V is predictable and sup

ω∈Ω
sup
t≤T

∣∣Q−1V (ω, t)
∣∣<∞

}
,

and

V=

{
V : Ω× [0, T ]→ ImQ

∣∣∣
V is predictable and

∫ T

0

E
(∣∣Q−1V (·, t)

∣∣+ ∣∣V (·, t)
∣∣2)dt <∞

}
.

In the following, we will drop “ω” in V for the sake of writing. For any
V ∈V, define a perturbed random measure Nε by

Nε
(
Γ× [0, t]

)
=

∫ t

0

∫
H

IΓ
(
z + εV (s)

)
N(dz,ds), Γ ∈ B(H).(10)

For ε > 0, let

λε(t, z) := ϕ
(
z, εV (t)

)ρ(z + εV (t))

ρ(z)
, ∀z ∈H,∀t ∈ [0, T ],(11)

where ϕ is defined by (1). Let

Θε
t := exp

{∫ t

0

∫
H

logλε(s, z)N(dz,ds)−
∫ t

0

∫
H

(
λε(s, z)− 1

)
ν(dz)ds

}
.(12)

Recalling that ν is a finite measure, by Itô’s formula we can easily check that
{Θε

t ,Ft}t≤T is a uniformly integrative martingale. Moreover, Θε
t can also be

written as

Θε
t = 1+

∫ t

0

∫
H

Θε
s−
(
λε(s, z)− 1

)
Ñ(dz,ds).(13)

By Girsanov’s theorem (see [11, Theorem 12.21]), there exists a probability
measure P

ε such that

dPε

dP

∣∣∣∣
Ft

=Θε
t , t≤ T.(14)

Then we have the following results.

Lemma 3. Let (Hν) hold. Then for any V ∈ V, ν is the characteristic
measure of Nε(dz,dt) under P

ε.

Proof. For any bounded test function φ : [0, T ]×H→R, define

Y ε
t := exp

{∫ t

0

∫
H

φ(s, z)Nε(dz,ds)

}
, Gε

t := Y ε
t Θ

ε
t .(15)
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By Itô’s formula, we have

Y ε
t = exp

{∫ t

0

∫
H

φ(s, z)Nε(dz,ds)

}
(16)

= exp

{∫ t

0

∫
H

φ
(
s, z + εV (s)

)
N(dz,ds)

}
= 1+

∫ t

0

∫
H

Y ε
s−
(
eφ(s,z+εV (s)) − 1

)
N(dz,ds),

and [
Y ε,Θε

]
t
=

∫ t

0

∫
H

Y ε
s−Θ

ε
s−
(
eφ(s,z+εV (s)) − 1

)(
λε(s, z)− 1

)
N(dz,ds).(17)

It follows from (16), (17) and Itô’s formula that

Gε
t = 1+

∫ t

0

∫
H

Y ε
s− dΘε

s +

∫ t

0

∫
H

Θε
s− dY ε

s +
[
Y ε,Θε

]
t

= 1+

∫ t

0

∫
H

Y ε
s− dΘε

s +

∫ t

0

∫
H

Θε
s−Y

ε
s−
(
eφ(s,z+εV (s)) − 1

)
N(dz,ds)

+

∫ t

0

∫
H

Y ε
s−Θ

ε
s−
(
eφ(s,z+εV (s)) − 1

)(
λε(s, z)− 1

)
N(dz,ds)

= 1+

∫ t

0

Y ε
s− dΘε

s +

∫ t

0

∫
H

Gε
s−
(
eφ(s,z+εV (s)) − 1

)
λε(s, z)N(dz,ds).

By (13) and (11), we arrive at

EGε
t = 1+E

∫ t

0

∫
H

Gε
s−
(
eφ(s,z+εV (s)) − 1

)
λε(s, z)N(dz,ds)

= 1+E

∫ t

0

∫
H

Gε
s

(
eφ(s,z+εV (s)) − 1

)
ϕ
(
z, εV (s)

)ρ(z + εV (s))

ρ(z)
ρ(z)μ(dz)ds

= 1+E

∫ t

0

∫
H

Gε
s

(
eφ(s,z+εV (s)) − 1

)
ϕ
(
z, εV (s)

)
ρ
(
z + εV (s)

)
μ(dz)ds

= 1+E

∫ t

0

∫
H

Gε
s

(
eφ(s,z+εV (s)) − 1

)
ρ
(
z + εV (s)

)
μ
(
dz + εV (s)

)
ds

= 1+

∫ t

0

∫
H

(
eφ(s,z) − 1

)
ρ(z)μ(dz)EGε

s ds.

Therefore,

EGε
t = exp

{∫ t

0

∫
H

(
eφ(s,z) − 1

)
ν(dz)ds

}
.
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Combining this with (14) and (15), we have

E
ε exp

{∫ t

0

∫
H

φ(s, z)Nε(dz,ds)

}
= exp

{∫ t

0

∫
H

(
eφ(s,z) − 1

)
ν(dz)ds

}
.

That is, ν(dz) is the characteristic measure of Nε(dz,dt) under Pε. �

Lemma 4. Let (Hν) hold. Assume there exists a constant δ > 0 such that
ρ(z)≥ δ for ∀z ∈H. Then for any V ∈V0,

sup
ε<1

E

{
sup

0≤t≤T

∣∣∣∣Θε
t − 1

ε

∣∣∣∣2}<∞.

Proof. Since V ∈V0, then one has

sup
ω∈Ω,t∈[0,T ]

(∣∣V (ω, t)
∣∣+ ∣∣Q−1V (ω, t)

∣∣)≤C(T ),(18)

where C(T ), independent of ε, is a generic constant whose values might change
from line to line. For any t ∈ [0, T ], z ∈ H and ε ∈ (0,1), it follows from (1)
and (18) that

ϕ2
(
z, εV (t)

)
= ϕ

(
z,2εV (t)

)
exp
{
ε2
〈
V (t),Q−1V (t)

〉}
(19)

≤C(T )ϕ
(
z,2εV (t)

)
.

Then by mean value theorem, we have

I1 :=

∫
H

ϕ2(z, εV (t))

ρ(z)

∣∣∣∣ρ(z + εV (t))− ρ(z)

ε

∣∣∣∣2μ(dz)(20)

≤ 1

δ
‖∇ρ‖2∞

∣∣V (t)
∣∣2 ∫

H

ϕ2
(
z, εV (t)

)
μ(dz)

≤ C(T )

δ
‖∇ρ‖2∞

∫
H

ϕ
(
z,2εV (t)

)
μ(dz)

≤C(T ).

Also, there exists a constant ε1 ∈ (0, ε) such that

I2 :=

∫
H

∣∣∣∣ϕ(z, εV (t))− 1

ε

∣∣∣∣2ρ(z)μ(dz)(21)

=

∫
H

ϕ2
(
z, ε1V (t)

)∣∣〈z − ε1V (s),Q−1V (t)
〉∣∣2ρ(z)μ(dz)

≤C(T )

∫
H

ϕ2
(
z, ε1V (t)

)
|z|2ρ(z)μ(dz)

+C(T )

∫
H

ϕ2
(
z, ε1V (t)

)
ρ(z)μ(dz)
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≤C(T )

∫
H

ϕ
(
z,2ε1V (t)

)
|z|2ρ(z)μ(dz)

+C(T )

∫
H

ϕ
(
z,2ε1V (t)

)
ρ(z)μ(dz).

By triangle inequality and mean value theorem, one has

I3 :=

∫
H

ϕ
(
z,2ε1V (t)

)
|z|2ρ(z)μ(dz)(22)

=

∫
H

|z|2ρ(z)μ
(
dz + 2ε1V (t)

)
≤ 2

∫
H

∣∣z + 2ε1V (t)
∣∣2∣∣ρ(z + 2ε1V (t)

)
− ρ(z)

∣∣μ(dz + 2ε1V (t)
)

+ 2

∫
H

∣∣z + 2ε1V (t)
∣∣2ρ(z + 2ε1V (t)

)
μ
(
dz + 2ε1V (t)

)
+ 2

∫
H

∣∣2ε1V (t)
∣∣2∣∣ρ(z + 2ε1V (t)

)
− ρ(z)

∣∣μ(dz + 2ε1V (t)
)

+ 2

∫
H

∣∣2ε1V (t)
∣∣2ρ(z + 2ε1V (t)

)
μ
(
dz + 2ε1V (t)

)
≤C(T )‖∇ρ‖∞

∫
H

|z|2μ(dz) + 2

∫
H

|z|2ρ(z)μ(dz)

+C(T )‖∇ρ‖∞ +C(T )

∫
H

ρ(z)μ(dz)

≤C(T ).

Similar arguments give that

I4 :=

∫
H

ϕ
(
z,2ε1V (t)

)
ρ(z)μ(dz)≤C(T ).(23)

It follows from (21), (22) and (23) that

I2 =

∫
H

∣∣∣∣ϕ(z, εV (t))− 1

ε

∣∣∣∣2ρ(z)μ(dz)(24)

≤C(T )I3 +C(T )I4 ≤C(T ).

By (11) and triangle inequality, we have∫
H

∣∣∣∣λε(t, z)− 1

ε

∣∣∣∣2ρ(z)μ(dz)(25)

=
1

ε2

∫
H

∣∣∣∣ϕ(z, εV (t)
)ρ(z + εV (t))

ρ(z)
− 1

∣∣∣∣2ρ(z)μ(dz)
≤ 2I1 + 2I2 ≤C(T ).
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Combining this with (13) and Burkholder’s inequality, we have

E

{
sup
t≤T

∣∣∣∣Θε
t − 1

ε

∣∣∣∣2}
= E

{
sup
t≤T

∣∣∣∣∫ t

0

∫
H

Θε
s−(λ

ε(s, z)− 1)

ε
Ñ(dz,ds)

∣∣∣∣2}
≤C(T )E

{∫ T

0

∫
H

sup
s≤t

∣∣∣∣Θε
s − 1

ε

∣∣∣∣2∣∣λε(t, z)− 1
∣∣2ρ(z)μ(dz)dt}

+C(T )E

{∫ T

0

∫
H

∣∣∣∣λε(t, z)− 1

ε

∣∣∣∣2ρ(z)μ(dz)dt}
≤C(T )

∫ T

0

E sup
s≤t

∣∣∣∣Θε
s − 1

ε

∣∣∣∣2 dt+C(T ).

Then Gronwall’s inequality implies

E

{
sup

0≤t≤T

∣∣∣∣Θε
t − 1

ε

∣∣∣∣2}≤C(T ).

Furthermore, we have

sup
ε<1

E

{
sup

0≤t≤T

∣∣∣∣Θε
t − 1

ε

∣∣∣∣2}<∞. �

2.2. Malliavin derivatives. Let Gt :=G({N(dz,ds)}s≤t) be an H-valued
functional. Denote Gε

t :=G({Nε(dz,ds)}s≤t), where Nε is defined in (10).

Definition 5. A Poisson functional Gt is called to be Malliavin differ-
entiable along some V ∈ V, if for some p≥ 1 there exists a random variable
denoted by DV Gt with E|DV Gt|p <∞, such that

lim
ε→0

E
∣∣ε−1

(
Gε

t −Gt

)
−DV Gt

∣∣p = 0.(26)

Remark 3. This notion appeared firstly in [4]. It is based on Bismut’s
approach about the Malliavin calculus with jumps in [6].

Before we move on, it is necessary for us to prove the Malliavin differen-
tiability of the solution to (2).

Proposition 6. Let (Hν) hold. Assume A generates the C0-semigroup
{S(t)}t≥0 and F ∈ C2

b (H,H). Then for any V ∈ V, Xt is Malliavin differen-
tiable along V . Moreover, the derivative satisfies the following equation:

(27)

{
dDV Xt =ADV Xt dt+∇F (Xt)DV Xt dt+

∫
H
V (t)N(dz,dt),

DV X0 = 0.
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Proof. It is easy to prove that there exists a unique solution to the linear
equation (27). And the solution can be written as

DV Xt =

∫ t

0

S(t− s)∇F (Xs)DV Xs ds(28)

+

∫ t

0

∫
H

S(t− s)V (s)N(dz,ds).

For each ε > 0, let Lε be the perturbed process of L,

Lε
t :=

∫ t

0

∫
H

zNε(dz,ds), ∀t ∈ [0, T ].

Then by (10) we have

Lε
t = Lt + ε

∫ t

0

∫
H

V (s)N(dz,ds), ∀t ∈ [0, T ].(29)

Let {Xε
t }t≤T be the solution of the following equation:

Xε
t = x+

∫ t

0

S(t− s)F
(
Xε

s

)
ds+

∫ t

0

S(t− s)dLε
s +

∫ t

0

S(t− s)dZs.(30)

Now we aim to prove

lim
ε→0

E

{
sup
s≤t

∣∣∣∣Xε
s −Xs

ε
−DV Xs

∣∣∣∣}= 0.(31)

In fact, it follows (3), (29) and (30) that

Xε
t −Xt =

∫ t

0

S(t− s)
(
F
(
Xε

s

)
− F (Xs)

)
ds(32)

+ ε

∫ t

0

∫
H

S(t− s)V (s)N(dz,ds).

Since A is a generator of C0-semigroup on H, then there exist constant CA > 0
and κ > 0 such that ‖S(t)‖ ≤CAe

κt for t ∈ [0, T ]. Therefore,∣∣Xε
t −Xt

∣∣≤ ∫ t

0

∣∣S(t− s)
(
F
(
Xε

s

)
− F (Xs)

)∣∣ds
+ ε

∫ t

0

∫
H

∣∣S(t− s)V (s)
∣∣N(dz,ds)

≤CA‖∇F‖∞
∫ t

0

eκ(t−s)
∣∣Xε

s −Xs

∣∣ds
+ εCA

∫ t

0

∫
H

eκ(t−s)
∣∣V (s)

∣∣N(dz,ds).
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Then,

sup
s≤t

{
e−κs

∣∣Xε
s −Xs

∣∣}≤CA‖∇F‖∞
∫ t

0

sup
r≤s

{
e−κr

∣∣Xε
r −Xr

∣∣}ds
+ εCA

∫ t

0

∫
H

e−κs
∣∣V (s)

∣∣N(dz,ds).

By Gronwall’s inequality, we have

sup
s≤t

∣∣Xε
s −Xs

∣∣≤ εCA exp
{
κt+CA‖∇F‖∞t

}∫ t

0

∫
H

∣∣V (s)
∣∣N(dz,ds).(33)

By (28), (32) and Taylor’s formula, we arrive at∣∣∣∣1ε (Xε
t −Xt

)
−DV Xt

∣∣∣∣
≤CA

∫ t

0

eκ(t−s)

∣∣∣∣1ε (F (Xε
s

)
− F (Xs)

)
−∇F (Xs)DV Xs

∣∣∣∣ds
≤CA

∫ t

0

eκ(t−s)

{
‖∇F‖∞

∣∣∣∣1ε (Xε
s −Xs

)
−DV Xs

∣∣∣∣
+

1

ε

∥∥∇2F
∥∥
∞
∣∣Xε

s −Xs

∣∣2}ds.

Gronwall’s inequality implies

sup
s≤t

∣∣∣∣1ε (Xε
s −Xs

)
−DV Xs

∣∣∣∣
≤CA

∥∥∇2F
∥∥
∞t exp

{
C‖∇F‖∞t+ κt

}1
ε
sup
s≤t

∣∣Xε
s −Xs

∣∣2.
Combining this with (33), we can obtain

E

{
sup
s≤t

∣∣∣∣1ε (Xε
s −Xs

)
−DV Xs

∣∣∣∣}≤C1E

{∫ t

0

∫
H

∣∣V (s)
∣∣N(dz,ds)

}2

ε,

where C1 is a constant independent of ε. In view of V ∈ V and ν is a finite
measure, we have

E

{∫ t

0

∫
H

∣∣V (s)
∣∣N(dz,ds)

}2

≤ 2ν(H)

∫ t

0

EV 2(s)ds+ 2ν(H)2E

(∫ t

0

EV (s)ds

)2

≤ 2
(
ν(H) + ν(H)2T

)∫ t

0

EV 2(s)ds <∞.
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Therefore, there exists a constant C2 > 0 such that

E

{
sup
s≤t

∣∣∣∣1ε (Xε
s −Xs

)
−DV Xs

∣∣∣∣}≤C2ε,(34)

which yields (31). �
Proposition 7 (Chain rule). Let (Hν) hold. Assume A generates a C0-

semigroup {S(t)}t≥0 and F ∈C2
b (H,H). Then for any f ∈C2

b (H) and V ∈V,
f(Xt) is Malliavin differentiable and

DV f(Xt) =
〈
∇f(Xt),DV Xt

〉
.(35)

Proof. In view of Proposition 6, we have

E
∣∣〈∇f(Xt),DV Xt

〉∣∣≤ ‖∇f‖∞E|DV Xt|<∞.

Meanwhile, by Taylor’s formula we obtain∣∣∣∣1ε (f(Xε
t

)
− f(Xt)

)
−
〈
∇f(Xt),DV Xt

〉∣∣∣∣
≤ ‖∇f‖∞

∣∣∣∣1ε (Xε
t −Xt

)
−DV Xt

∣∣∣∣+ 1

2ε

∥∥∇2f
∥∥
∞
∣∣Xε

t −Xt

∣∣2.
Combining this with (33) and (34), we arrive at

lim
ε→0

E

∣∣∣∣1ε (f(Xε
t

)
− f(Xt)

)
−
〈
∇f(Xt),DV Xt

〉∣∣∣∣= 0. �
2.3. Integration by parts formula. Now we are ready to give the following
integration by parts formula.

Theorem 8. Let (Hν) hold. Assume the operator A generates a strongly
continuous semigroups {S(t)}t≥0 and F ∈C2

b (H,H). Then for any f ∈C2
b (H)

and V ∈V, we have

E
{
DV f(Xt)

}
=−E

{
f(Xt)Mt

}
, t≤ T,(36)

with

Mt =

∫ t

0

∫
H

(〈
z,Q−1V (s)

〉
+
〈
∇ logρ(z), V (s)

〉)
Ñ(dz,ds).

Remark 4. From the proof below, we will see that the formula hold for
Poisson functionals which are Malliavin differentiable along some V ∈V.

Proof. We give the proof in three steps.
Step 1. Assume V ∈ V0 and ρ≥ δ for some δ > 0. By Lemma 3, for any

ε ∈ (0,1), we have

Ef(Xt) = E
{
f
(
Xε

t

)
Θε

t

}
.

Then,

1

ε
E
(
f
(
Xε

t

)
Θε

t − f(Xt)
)
= 0.
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Furthermore,

1

ε
E
(
f
(
Xε

t

)
− f(Xt)

)
+

1

ε
Ef
(
Xε

t

)(
Θε

t − 1− εMt

)
+Ef

(
Xε

t

)
Mt = 0,(37)

where

Mt =

∫ t

0

∫
H

(〈
z,Q−1V (s)

〉
+
〈
∇ logρ(z), V (s)

〉)
Ñ(dz,ds).

For the first and third terms of (37), by Proposition 7, we obtain

lim
ε→0

1

ε
E
(
f
(
Xε

t

)
− f(Xt)

)
= EDV f(Xt),

(38)
lim
ε→0

E
{
f
(
Xε

t

)
Mt

}
= E

{
f(Xt)Mt

}
.

It follows from (11) and (12) that

lim
ε→0

Θε
s = 1, ∀s ∈ (0, T ].

Observe that ν is a finite measure, then also by (11) and (12) we arrive at

lim
ε→0

1

ε

(
Θε

t − 1
)
= lim

ε→0

1

ε

∫ t

0

∫
H

Θε
s−
(
λε(s, z)− 1

)
Ñ(dz,ds)

=

∫ t

0

∫
H

lim
ε→0

Θε
s−

1

ε

(
λε(s, z)− 1

)
Ñ(dz,ds)

=

∫ t

0

∫
H

lim
ε→0

1

ε

(
λε(s, z)− 1

)
Ñ(dz,ds)

=

∫ t

0

∫
H

(〈
z,Q−1V (s)

〉
+
〈
∇ logρ(z), V (s)

〉)
Ñ(dz,ds).

Combining this with Lemma 4, we obtain

lim
ε→0

1

ε
E
∣∣Θε

t − 1− εMt

∣∣= 0.

Then

lim
ε→0

1

ε

∣∣Ef(Xt)
(
Θε

t − 1− εMt

)∣∣≤ ‖f‖∞ lim
ε→0

1

ε
E
∣∣Θε

t − 1− εMt

∣∣= 0.(39)

Letting ε→ 0 in (37), by (38) and (39), we derive (36).
Step 2. Assume V ∈ V0. For n ≥ 1, let Ln := {Ln

t }t≥0 be a purely jump
Lévy process with characteristic measure 1

nμ and jump measure Nn(dz,dt).
Assume that Ln, L and Z are independent. Now, L + Ln is a jump pro-
cess with Lévy measure ν + 1

nμ. Moreover, its jump measure is Nn(dz,dt) :=

N(dz,dt)+Nn(dz,dt). Let Ñn(dz,dt) be the associated martingale measure,

that is, Ñn(dz,dt) :=Nn(dz,dt)− (ρ(z) + 1
n )μ(dz)dt. Let D

n
V be the deriva-

tive operator associated with Nn(dz,dt), which is defined as in Definition 5.
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Let {Xn
t }t≤T be the solution to the following equation:

(40)

{
dXn

t =AXn
t dt+ F (Xn

t )dt+ dLt + dLn
t + dZt,

X0 = x.

Then it is easy to see that

lim
n→∞

E

{
sup
s≤t

∣∣Xn
s −Xs

∣∣2}= 0, ∀t ∈ [0, T ].(41)

According to Proposition 6, the derivative Dn
V X

n
t exists and satisfies

Dn
V X

n
t =

∫ t

0

S(t− s)∇F
(
Xn

s

)
Dn

V X
n
s ds+

∫ t

0

∫
H

V (s)Nn(dz,ds).(42)

Moreover, we have E{sups≤t |Dn
V Xs|2}<∞. By Step 1,

EDn
V f
(
Xn

t

)
=−E

{
f
(
Xn

t

)
Mn

t

}
,(43)

where

Mn
t =

∫ t

0

∫
H

(〈
z,Q−1V (s)

〉
+

〈
∇ρ(z)

ρ(z) + 1
n

, V (s)

〉)
Ñn(dz,ds).

Then it follows from (28) and (42) that

E

{
sup
s≤t

∣∣Dn
V Xs −DV Xs

∣∣}
≤ E

∫ t

0

∣∣S(t− s)∇F
(
Xn

s

)
Dn

V X
n
s − S(t− s)∇F (Xs)DV Xs

∣∣ds
+E

∫ t

0

∣∣S(t− s)V (s)
∣∣Nn(dz,ds)

≤ E

∫ t

0

∣∣S(t− s)∇F
(
Xn

s

)
Dn

V X
n
s − S(t− s)∇F

(
Xn

s

)
DV Xs

∣∣ds+ C(t)

n

+E

∫ t

0

∣∣S(t− s)∇F
(
Xn

s

)
DV Xs − S(t− s)∇F (Xs)DV Xs

∣∣ds
≤C(t)

∫ t

0

E

(
sup
r≤s

∣∣Dn
V X

n
r −DV Xr

∣∣)ds+ C(t)

n

+C(t)
(
E sup

s≤t

∣∣Xn
s −Xs

∣∣2) 1
2

,

where C(t) is a generic constant independent of n. Gronwall’s inequality
yields

lim
n→∞

E

{
sup
s≤t

∣∣Dn
V Xs −DV Xs

∣∣}(44)

≤C(t) lim
n→∞

{
1

n
+
(
E sup

s≤t

∣∣Xn
s −Xs

∣∣2) 1
2

}
= 0.
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By Proposition 7, the triangle inequality and Hörder inequality, one can derive

lim
n→∞

∣∣EDn
V f
(
Xn

t

)
−EDV f(Xt)

∣∣(45)

≤ lim
n→∞

E
∣∣〈∇f

(
Xn

t

)
,Dn

V Xt

〉
−
〈
∇f(Xt),DV Xt

〉∣∣
≤ lim

n→∞
E
∣∣〈∇f

(
Xn

t

)
,Dn

V Xt

〉
−
〈
∇f
(
Xn

t

)
,DV Xt

〉∣∣
+ lim

n→∞
E
∣∣〈∇f

(
Xn

t

)
,DV Xt

〉
−
〈
∇f(Xt),DV Xt

〉∣∣
≤ ‖∇f‖∞ lim

n→∞
E
∣∣Dn

V X
n
t −DV Xt

∣∣
+
∥∥∇2f

∥∥
∞
{
E|DV Xt|2

} 1
2 lim
n→∞

{
E
∣∣Xn

t −Xt

∣∣2} 1
2 = 0.

Meanwhile, by the same argument, one can also have

lim
n→∞

E
{
f
(
Xn

t

)
Mn

t

}
= E

{
f(Xt)Mt

}
.(46)

Now, using (45), (46) and letting n→∞ in (43), we obtain (36).
Step 3. Assume V ∈V. For n≥ 1, define

Vn(t) = V (t)I[0,n]
(∣∣Q−1V (t)

∣∣), t ∈ [0, T ].

Then Vn ∈V0. By Step 2, we have

EDVnf(Xt) =−E
{
f(Xt)M

(n)
t

}
,(47)

with

M
(n)
t =

∫ t

0

∫
H

(〈
z,Q−1Vn(s)

〉
+
〈
∇ logρ(z), Vn(s)

〉)
Ñ(dz,ds).

It is easy to check that

lim
n→∞

E
∣∣Mn

t −Mt

∣∣= 0.(48)

Meanwhile, observe that

E|DVnXt −DV Xt| ≤ E

∫ t

0

∣∣S(t− s)∇F (Xs)(DVnXs −DV Xs)
∣∣ds

+E

∫ t

0

∫
H

∣∣S(t− s)
(
Vn(s)− V (s)

)∣∣N(dz,ds)

≤CA‖∇F‖∞
∫ t

0

e(t−s)κ
E|DVnXs −DV Xs|ds

+CAλ

∫ t

0

e(t−s)κ
E
∣∣Vn(s)− V (s)

∣∣ds.
Gronwall’s inequality yields

E|DVnXt −DV Xt|

≤CAλ exp
{(

CA‖∇F‖∞ + κ
)
t
}∫ t

0

E
∣∣Vn(s)− V (s)

∣∣ds,
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which tends to 0 as n→∞. Therefore,

lim
n→∞

∣∣EDVnf(Xt)−EDV f(Xt)
∣∣(49)

≤ ‖∇f‖∞ lim
n→∞

E|DVnXt −DV Xt|= 0.

With the help of (48) and (49), we finish the proof by letting n → ∞ in
(47). �

3. Proofs of main results

We use the notation Jst with s≤ t for the derivative flow between times s
and t, that is, for every ξ ∈H, Jstξ is the solution of

(50)

{
dJstξ =AJstξ dt+∇F (Xt)Jstξ dt,

Jssξ = ξ.

Note that we have the important cocycle property Jst = JrtJsr for r ∈ [s, t].
By (27) and (50), we can derive

DV Xt =

∫ t

0

∫
H

JstV (s)N(dz,ds).(51)

In the following discussions, for the sake of writing, let us denote Jt := J0t.
To summarize, Jtξ is the effect on Xt of an infinitesimal perturbation of the
initial condition along the direction ξ and DV Xt is the effect on Xt of an
infinitesimal perturbation of the Poisson jump measure N(dz,dt) along the
direction V .

3.1. Proof of Theorem 1. We will give the proof in two steps.
Step1: Let us first assume F ∈C2

b (H,H). For each ξ ∈H, by (50) we have

Jtξ = S(t)ξ +

∫ t

0

S(t− s)∇F (Xs)Jsξ ds.(52)

In view of (HA), we have ‖S(t)‖ ≤ e−γ1t for each t≥ 0. Then

|Jtξ| ≤ e−γ1t|ξ|+ ‖∇F‖∞
∫ t

0

e−γ1(t−s)|Jsξ|ds.

Gronwall’s inequality implies

|Jtξ| ≤ exp
{(

−γ1 + ‖∇F‖∞
)
t
}
|ξ|.(53)

Observe that

Q−1Jtξ =Q−1S(t)ξ +Q−1

∫ t

0

S(t− s)∇F (Xs)Jsξ ds(54)

=Q−1S(t)ξ +

∫ t

0

Q−1S(t− s)∇F (Xs)Jsξ ds,
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where we use (HSQ) in the second equality. Then one has∫ t

0

∣∣Q−1Jsξ
∣∣ds≤ ∫ t

0

∣∣Q−1S(s)ξ
∣∣ds

+ ‖∇F‖∞
∫ t

0

∫ s

0

∥∥Q−1S(s− r)
∥∥|Jrξ|dr ds

≤
(
1 + exp

{(
−γ1 + ‖∇F‖∞

)
t
}
t
)
|ξ|
∫ t

0

∥∥Q−1S(s)
∥∥ds <∞,

which together with (53) show {Jsξ}s≤T ∈ V. Now set V (s) = Jsξ in (51).
Then we obtain DV Xt =NtJtξ with Nt :=N([0, t]×H). Therefore,

I[Nt≥1]

Nt
DV Xt = JtξI[Nt≥1],(55)

where I[Nt≥1] is an indicator function and we let 0
0 = 0 for convention. Let

β : [0,∞) → [0,∞) be a smooth function satisfying β(y) = y2, y ∈ [0, 12 ] and
β(y)≡ 1, y ∈ [1,∞). By Proposition 7 and the fact DV Nt = 0, we have

DV

{
I[Nt≥1]

Nt

}
=DV

{
β(Nt)

Nt

}
=

β′(Nt)Nt − β(Nt)

N2
t

DV Nt = 0.(56)

It follows from (55), (56) and Theorem 8 that

∇ξP
1
t f(x) =∇ξE

{
f
(
Xx

t

)
I[Nt≥1]

}
(57)

= E
〈
∇f
(
Xx

t

)
, JtξI[Nt≥1]

〉
= E

〈
∇f
(
Xx

t

)
,
I[Nt≥1]

Nt
DV X

x
t

〉
= E

{
DV f

(
Xx

t

)I[Nt≥1]

Nt

}
= E

{
DV

(
f
(
Xx

t

)I[Nt≥1]

Nt

)}
= −E

{
f
(
Xx

t

)I[Nt≥1]

Nt

×
∫ t

0

∫
H

(〈
z,Q−1Jsξ

〉
+
〈
∇ logρ(z), Jsξ

〉)
Ñ(dz,ds)

}
.

Step 2: Assume F ∈ C1
b (H,H) and ∇F is Lipschitz continuous. We aim

to construct approximation sequence {Fk}k≥1 ⊂ C2
b (H,H) such that Fk → F

and ∇Fk →∇F in pointwise sense as k →∞. In fact, for k ≥ 1, we take a
sequence of non-negative, twice differential function {gk}k≥1 such that

Supp{gk} ⊂
{
y ∈R

k : |y|Rk ≤ 1

k

}
,

∫
Rk

gk(y)dy = 1.
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Identifying R
k with span{e1, . . . , ek}, we define

Fk(x) =

∫
Rk

gk(y−Πkx)F

(
k∑

i=1

yiei

)
dy,(58)

where Πk : H → span{e1, . . . , ek} is the projection operator. Then Fk is
a twice differentiable function with bounded and continuous derivatives
(see [10, P127]). Furthermore, we have supk≥1 ‖∇Fk‖∞ ≤ ‖∇F‖∞ and

supk≥1 ‖∇2Fk‖∞ ≤ ‖∇F‖Lip where ‖∇F‖Lip denotes the smallest Lipschitz
constant of ∇F . Now, for any k ≥ 1, let us consider the following equation:{

dXk
t =AXk

t dt+ Fk(X
k
t )dt+ dLt + dZt,

Xk
0 = x.

Let {Xk,x
t }t≤T be its solution. Then it is easy to prove that

lim
k→∞

∣∣Xk,x
t −Xt

∣∣= 0, and lim
k→∞

∫ t

0

∣∣Xk,x
s −Xs

∣∣ds= 0, ∀t≥ 0.(59)

Let {Jk
t ξ}t≥0 be the derivative flow w.r.t. the initial value along ξ. Then

Jk
t ξ = S(t)ξ +

∫ t

0

S(t− s)∇F k
(
Xk,x

s

)
Jk
s ξ ds.(60)

Furthermore,

sup
k≥1

∣∣Jk
t ξ
∣∣≤ exp

{
−
(
γ1 − ‖∇F‖∞

)
t
}
|ξ|.(61)

Now, by (52), (60) the triangle inequality we have∣∣Jk
t ξ − Jtξ

∣∣≤ ∫ t

0

e−γ1(t−s)
∣∣∇Fk

(
Xk,x

s

)
Jk
s ξ −∇F

(
Xx

s

)
Jsξ
∣∣ds

≤
∫ t

0

e−γ1(t−s)
∣∣∇Fk

(
Xk,x

s

)
Jk
s ξ −∇Fk

(
Xk,x

s

)
Jsξ
∣∣ds

+

∫ t

0

e−γ1(t−s)
∣∣∇Fk

(
Xk,x

s

)
Jsξ −∇Fk

(
Xx

s

)
Jsξ
∣∣ds

+

∫ t

0

e−γ1(t−s)
∣∣∇Fk

(
Xx

s

)
Jsξ −∇F

(
Xx

s

)
Jsξ
∣∣ds

≤ ‖∇F‖∞
∫ t

0

e−γ1(t−s)
∣∣Jk

s ξ − Jsξ
∣∣ds

+ sup
k≥1

∥∥∇2Fk

∥∥
∞

∫ t

0

eκ(t−s)
∣∣Xk,x

s −Xx
s

∣∣ exp{‖∇F‖∞s
}
|ξ|ds

+C2
A

∫ t

0

∥∥∇Fk

(
Xx

s

)
−∇F

(
Xx

s

)∥∥ exp{‖∇F‖∞s
}
|ξ|ds.
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Using Gronwall’s inequality and (59), one arrive at

lim
k→∞

∣∣Jk
t ξ − Jtξ

∣∣(62)

≤C lim
k→∞

{∫ t

0

∣∣Xk,x
s −Xx

s

∣∣ds+ ∫ t

0

∥∥∇Fk

(
Xx

s

)
−∇F

(
Xx

s

)∥∥ds}= 0,

where C is a constant depending on A, F and t. In view of (53), (59) and
(62), one has

lim
k→∞

∫ t

0

∣∣Q−1Jk
s ξ −Q−1Jsξ

∣∣ds(63)

= lim
k→∞

∫ t

0

∣∣∣∣∫ s

0

Q−1S(s− r)∇F
(
Xk,x

r

)
Jk
r ξ dr

−
∫ s

0

Q−1S(s− r)∇F
(
Xx

r

)
Jrξ dr

∣∣∣∣ds
≤ t lim

k→∞

∫ t

0

∥∥Q−1S(t− s)
∥∥∣∣∇F

(
Xk,x

s

)
Jk
s ξ −∇F

(
Xx

s

)
Jsξ
∣∣ds

= t

∫ t

0

∥∥Q−1S(t− s)
∥∥ lim
k→∞

∣∣∇F
(
Xk,x

s

)
Jk
s ξ −∇F

(
Xx

s

)
Jsξ
∣∣ds= 0,

where in the second equality we use the conditions
∫ t

0
‖Q−1S(s)‖ds <∞ and

F ∈C1
b (H,H).

Now let us define

P k,1
t f(x) := E

{
f
(
Xk,x

t

)
I[Nt≥1]

}
, ∀f ∈C2

b (H).

By Step 1, we have

∇ξP
k,1
t f(x)(64)

=−E

{
f
(
Xk,x

t

)I[Nt≥1]

Nt

×
∫ t

0

∫
H

(〈
z,Q−1Jk

s ξ
〉
+
〈
∇ logρ(z), Jk

s ξ
〉)
Ñ(dz,ds)

}
.

Observe that

lim
k→∞

∣∣∇ξP
k,1
t f(x)−∇ξP

1
t f(x)

∣∣≤ ‖∇f‖∞ lim
k→∞

E
∣∣Jk

t ξ − Jtξ
∣∣= 0,

and

lim
k→∞

E

∣∣∣∣∫ t

0

∫
H

(〈
z,Q−1Jk

s ξ −Q−1Jsξ
〉
+
〈
∇ logρ(z),

(
Jk
s ξ − Jsξ

)〉)
Ñ(dz,ds)

∣∣∣∣
≤C lim

k→∞

{∫ t

0

∣∣Q−1Jk
s ξ −Q−1Jsξ

∣∣ds+ ∫ t

0

∣∣Jk
s ξ − Jsξ

∣∣ds}= 0.

We finish the proof by letting k→∞ in (64).
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3.2. Proof of Theorem 2. We divide the proof into two steps.
Step 1: Assume F ∈C2

b (H,H). First, we recall that

|Jtξ| ≤ exp
{
−
(
γ1 − ‖∇F‖∞

)
t
}
|ξ|.(65)

By direct computation,

E

{
I[Nt≥1]

(Nt)2

}
=

∞∑
n=1

e−λt(λt)n

n2n!
≤ 6e−λt

(λt)2

∞∑
n=1

(λt)n+2

(n+ 2)!
≤ 6

(λt)2
.(66)

By Hölder inequality, we have∫ t

0

E
∣∣Q−1Jsξ

∣∣2 ds(67)

=

∫ t

0

E

∣∣∣∣Q−1S(s)ξ +

∫ s

0

Q−1S(s− r)∇F (Xr)Jrξ dr

∣∣∣∣2 ds
≤ 2

∫ t

0

∣∣Q−1S(s)ξ
∣∣2 ds+ 2

∫ t

0

E

∣∣∣∣∫ s

0

Q−1S(s− r)∇F (Xr)Jrξ dr

∣∣∣∣2 ds
≤ 2‖∇F‖2∞|ξ|2

×
∫ t

0

{
s

∫ s

0

∥∥Q−1S(s− r)
∥∥2 exp{−2

(
γ1 − ‖∇F‖∞

)
r
}
dr

}
ds

+ 2|ξ|2
∫ t

0

∥∥Q−1S(s)
∥∥2 ds

= 2‖∇F‖2∞|ξ|2Γt + 2|ξ|2
∫ t

0

∥∥Q−1S(s)
∥∥2 ds,

where

Γt :=

∫ t

0

{
s

∫ s

0

∥∥Q−1S(s− r)
∥∥2 exp{−2

(
γ1 − ‖∇F‖∞

)
r
}
dr

}
ds.

Since limt→∞

∫ t
0
‖Q−1S(s)‖2 ds

t <∞, then limt→∞ ‖Q−1S(t)‖2 <∞. Moreover,

lim
t→∞

Γt

t2
= lim

t→∞

∫ t

0
{s
∫ s

0
‖Q−1S(s− r)‖2 exp{−2(γ1 − ‖∇F‖∞)r}dr}ds

t2

≤ 1

2
lim
t→∞

∫ t

0

∥∥Q−1S(t− s)
∥∥2 exp{−2

(
γ1 − ‖∇F‖∞

)
s
}
ds

= lim
t→∞

∫ t

0
‖Q−1S(s)‖2 exp{2(γ1 − ‖∇F‖∞)s}ds

2exp{2(γ1 − ‖∇F‖∞)t}

≤ limt→∞ ‖Q−1S(t)‖2
4(γ1 − ‖∇F‖∞)

<∞.
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Therefore, there exists C1 > 0 independent of t and F , such that(
sup
t≥1

Γt

t2

)
+

(
sup
t≥1

∫ t

0
‖Q−1S(s)‖2 ds

t2

)
≤ C1

γ1 − ‖∇F‖∞
.(68)

Recalling that ν is finite measure and by Theorem 1, (65)–(68) one has for
each t≥ 1∣∣∇ξP

1
t f(x)

∣∣
=

∣∣∣∣−E

{
f
(
Xx

t

)I[Nt≥1]

Nt

∫ t

0

∫
H

(〈
z,Q−1Jsξ

〉
+
〈
∇ logρ(z), Jsξ

〉)
Ñ(dz,ds)

}∣∣∣∣
≤ ‖f‖∞

{{∫
H

|z|2ν(dz)E
I[Nt≥1]

(Nt)2

∫ t

0

E
∣∣Q−1Jsξ

∣∣2 ds} 1
2

+ 2‖∇ρ‖∞
∫ t

0

E|Jsξ|ds
}

≤ ‖f‖∞
{{∫

H

|z|2ν(dz)E
I[Nt≥1]

(Nt)2

∫ t

0

E
∣∣Q−1Jsξ

∣∣2 ds} 1
2

+
2‖∇ρ‖∞|ξ|
γ1 − ‖∇F‖∞

}
≤ ‖f‖∞|ξ|

{{
12

∫
H

|z|2ν(dz)
‖∇F‖2∞Γt +

∫ t

0
‖Q−1S(s)‖2 ds

λ2t2

} 1
2

+
2‖∇ρ‖∞

γ1 − ‖∇F‖∞

}
≤ ‖f‖∞|ξ|

{12C1

∫
H
|z|2ν(dz)(‖∇F‖2∞ + 1)} 1

2 + 2‖∇ρ‖∞
(λ∧ 1)((γ1 − ‖∇F‖∞)∧ 1)

.

Therefore, for each x, y ∈H and t≥ 1∣∣Ptf(x)− Ptf(y)
∣∣(69)

=
∣∣P 1

t f(x)− P 1
t f(y)

∣∣+ ∣∣E{f(Xx
t

)
I[Nt=0]

}
−E

{
f
(
Xy

t

)
I[Nt=0]

}∣∣
≤ ‖f‖∞|x− y|

{12C1

∫
H
|z|2ν(dz)(‖∇F‖2∞ + 1)} 1

2 + 2‖∇ρ‖∞
(λ∧ 1)((γ1 − ‖∇F‖∞)∧ 1)

+ 2‖f‖∞e−λt.

Step 2: Assume F is Lipschitz continuous. Then there exist {Fn}n≥1 ⊂
C2

b (H,H) such that Fn → F as n → ∞ in pointwise sense and
supn≥1 ‖∇Fn‖∞ ≤ ‖F‖Lip. Now let us consider the following equation:

(70)

{
dY n

t =AY n
t dt+ Fn(Y

n
t )dt+dLt +dZt,

Y n
0 = x.
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Let {Pn,t}t≥0 be the transition semigroup of the solution to Eq. (70). Then
it is easy to prove that

lim
n→∞

Pn,tf(y) = Ptf(y), ∀y ∈H,∀f ∈C2
b (H).

Now it follows from (69) that for any t≥ 1 and f ∈C2
b (H)∣∣Pn,tf(x)− Pn,tf(y)

∣∣
≤ ‖f‖∞|x− y|

{12C1

∫
H
|z|2ν(dz)(‖∇Fn‖2∞ + 1)} 1

2 + 2‖∇ρ‖∞
(λ∧ 1)(γ1 − ‖∇Fn‖∞)

+ 2‖f‖∞e−λt

≤ ‖f‖∞|x− y|
{12C1

∫
H
|z|2ν(dz)(‖F‖2Lip + 1)} 1

2 + 2‖∇ρ‖∞
(λ∧ 1)((γ1 − ‖F‖Lip)∧ 1)

+ 2‖f‖∞e−λt.

Letting n→∞, we get∣∣Ptf(x)− Ptf(y)
∣∣≤C‖f‖∞

{
|x− y|+ e−λt

}
, ∀t≥ 1,(71)

for some constant C > 0 independent of t. Observe that for each x, y ∈H,

E
∣∣Xx

t −Xy
t

∣∣≤ ∣∣S(t)(x− y)
∣∣+E

∫ t

0

∣∣S(t− s)
(
F
(
Xx

s

)
− F

(
Xy

s

))∣∣ds
≤ e−γ1t|x− y|+ ‖F‖Lip

∫ t

0

e−γ1(t−s)
E
∣∣Xx

s −Xy
s

∣∣ds.
Then Gronwall’s inequality yields

E
∣∣Xx

t −Xy
t

∣∣≤ exp
{(

−γ1 + ‖F‖Lip
)
t
}
|x− y|, ∀x, y ∈H.

Combining this with (71) and using the Markov property, we have for t > s∣∣Ptf(x)− Ptf(y)
∣∣(72)

≤ E
∣∣Psf

(
Xx

t−s

)
− Psf

(
Xy

t−s

)∣∣
≤ 2C‖f‖∞

{
E
∣∣Xx

t−s −Xy
t−s

∣∣+ e−λs
}

≤ 2C‖f‖∞
{
exp
{
−
(
γ1 − ‖F‖Lip

)
(t− s)

}
|x− y|+ e−λs

}
.

Let t >
(γ1−‖F‖Lip+λ)

γ1−‖F‖Lip
and take s=

(γ1−‖F‖Lip)t
γ1−‖F‖Lip+λ in (72), then∣∣Ptf(x)− Ptf(y)

∣∣
≤C‖f‖∞

(
1 + |x− y|

)
exp

{
− λ(γ1 − ‖F‖Lip)
λ+ γ1 − ‖F‖Lip

t

}
.
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Therefore,∥∥Pt(x, ·)− Pt(y, ·)
∥∥
Var

:=
1

2
sup

f∈Bb(H),‖f‖∞≤1

∣∣Ptf(x)− Pf (y)
∣∣

=
1

2
sup

f∈C2
b (H),‖f‖∞≤1

∣∣Ptf(x)− Pf (y)
∣∣

≤C
(
1 + |x− y|

)
exp

{
− λ(γ1 − ‖F‖Lip)
λ+ γ1 − ‖F‖Lip

t

}
.

The proof is completed by noting that the inequality trivially holds with a

suitable constant C > 0 for t≤ (γ1−‖F‖Lip+λ)
(γ1−‖F‖Lip)

. The proof is finished.
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noise, Stoch. Dyn. 11 (2011), 521–534. MR 2836539

[24] E. Priola and J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindri-
cal stable processes, Probab. Theory Related Fields 149 (2011), 97–137. MR 2773026

[25] M. Röckner and T. S. Zhang, Stochastic evolution equations of jump type: Exis-
tence, uniqueness and large deviation principles, Potential Anal. 26 (2007), 255–279.

MR 2286037
[26] R. L. Schilling and J. Wang, On the coupling property of Lévy processes, Ann. Inst.
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