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AMENABILITY PROPERTIES OF THE CENTRAL
FOURIER ALGEBRA OF A COMPACT GROUP

MAHMOOD ALAGHMANDAN AND NICO SPRONK

Abstract. We let the central Fourier algebra, ZA(G), be the
subalgebra of functions u in the Fourier algebra A(G) of a com-
pact group, for which u(xyx−1) = u(y) for all x, y in G. We show

that this algebra admits bounded point derivations whenever G

contains a non-Abelian closed connected subgroup. Conversely

when G is virtually Abelian, then ZA(G) is amenable. Further-
more, for virtually Abelian G, we establish which closed ideals

admit bounded approximate identities. We also show that ZA(G)

is weakly amenable, in fact hyper-Tauberian, exactly when G

admits no non-Abelian connected subgroup. We also study the

amenability constant of ZA(G) for finite G and exhibit totally

disconnected groups G for which ZA(G) is non-amenable. In

passing, we establish some properties related to spectral synthe-
sis of subsets of the spectrum of ZA(G).

1. Introduction

Let G be a compact group with Fourier algebra A(G) and B be a group of
continuous automorphisms on G. We let

ZBA(G) =
⋂
β∈B

{
u ∈A(G) : u ◦ β = u

}
and call this the algebra the B-centre of A(G). In particular, we let Inn(G)
be the group of inner automorphisms and let

ZA(G) = ZInn(G)A(G)
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and call this the G-centre of A(G), or the central Fourier algebra on G. Of
course, since A(G) is a commutative algebra, this bears no relation to the
centre of A(G) as an algebra.

We are motivated by the results of [7], where amenability properties of the
centre of the group algebra, ZL1(G), are studied. We note that this algebra
is densely spanned by idempotents—that is, normalized characters of irre-
ducible representations, dπχπ—and hence is automatically weakly amenable,
even hyper-Tauberian (see [54, Theo. 14]). Hence, those properties were not
discussed for compact G. However, it was shown for G either non-Abelian and
connected, or an infinite product of non-Abelian finite groups, that ZL1(G) is
non-amenable. It is conjectured in that paper that ZL1(G) is amenable if and
only if G has an open Abelian subgroup. Recently, the first named author
and Crann [5] have verified sufficiency of this conjecture.

1.1. Plan. In the present article, we conduct a parallel investigation for
ZA(G). Our techniques are different and some of our conclusions sharper. In
the case that the connected component of the identity, Ge, is non-Abelian, we
show that ZA(G) admits a point derivation; see Section 3. In Section 4, we
show that when G is virtually Abelian then ZA(G) is amenable. In Section 5
we combine our knowledge of point derivations for non-Abelian connected
groups with the structure of the central Fourier algebra for virtually Abelian
compact groups, to further establish that ZA(G) is weakly amenable if and
only if Ge is Abelian. We invest the extra effort to establish that this is exactly
the case in which G is hyper-Tauberian, a condition identified and studied by
Samei [54]. One of our major tools in Sections 4 and 5 is the relationship
between these properties and certain conditions related to sets of spectral
synthesis. In Section 6, we investigate the amenability constant AM(ZA(G)),
and show that an infinite product, P , of non-Abelian finite groups, gives a
non-amenable algebra ZA(P ).

In the course of our investigation we gain, in Proposition 5.3, some results
on spectral synthesis and weak synthesis of singleton and finite subsets of the
spectrum of ZA(G), giving partial generalisations of results of Meany [45] and
Ricci [49], with quite different proofs. We also gain a broad generalisation of
an amenability result of Lasser [39]; see Remark 4.12. In Section 4.3, we give
for virtually abelian compact groups, a full description of ideals in ZA(G)
admitting bounded approximate identities

1.2. History. It was shown by Johnson [34] that A(G) may fail to be
amenable for a compact G. This led Ruan [52] to define operator amenability
and show for a locally compact group H that A(H) is operator amenable
exactly when H is amenable; in particular this holds when G = H is com-
pact. One of the most interesting applications of this result is establishing,
for amenable H , which closed ideals of A(H) admit bounded approximate
identities, due to Forrest, Kaniuth, Lau and Spronk [19]. For Abelian H , this
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was established by Liu, van Rooij and Wang in [41]. That A(H) is always op-
erator weakly amenable was established by Spronk [57], and, independantly
Samei [53]. Both articles relied on identification of sets of spectral synthe-
sis, and, in particular, ideas in the latter helped Samei establish the notion
of hyper-Tauberian Banach algebras in [54]. The operator space structure of
ZA(G) is maximal—see Section 2.2—and hence operator versions of amenabil-
ity properties are automatic.

Forrest and Runde [20] established that A(H) is amenable exactly when
H is virtually abelian, and further that if the connected component He is
abelian, then A(H) is weakly amenable. Recently, Lee, Ludwig, Samei and
Spronk [40] have established for a Lie group H , then A(H) can be weakly
amenable only when He is Abelian. For general compact G = H , this fact
was established by Forrest, Samei and Spronk in [21].

2. Preliminaries and notation

2.1. Amenability and weak amenability. We briefly note some funda-
mental definitions which go back to [32].

Let A be a commutative Banach algebra. A Banach A-bimodule is any
Banach space X which admits a pair of contractive homomorphisms a �→
(x �→ ax) and a �→ (x �→ xa), each from A into bounded operators B(X ), such
that the ranges of these maps commute: a(xb) = (ax)b. The homomorphisms
given by pointwise adjoints of these maps make the dual, X ∗, into a dual
Banach A-module. We say A is amenable if every bounded derivation from
A into any dual module, that is, D :A→X ∗ with D(ab) = a(Db) + (Da)b, is
inner, that is, Da= af − fa for some f in X ∗.

Following [8], we say A is weakly amenable if there are no non-zero bounded
derivations for A into any symmetric Banach A-module, that is, module X
satisfying ax= xa. In particular, A is a symmetric Banach A-bimodule as is
its dual A∗. It is sufficient to see that there are no non-zero bounded deriva-
tions from A into A∗ to show that A is weakly amenable. Given a multiplica-
tive functional χ on A, a point derivation at χ is any linear functional D on A
which satisfies D(ab) = χ(a)D(b) +D(a)χ(b). The map a �→D(a)χ :A→A∗

is then a derivation. Hence, a weakly amenable algebra admits no non-zero
bounded point derivations.

2.2. The central Fourier algebra. Throughout this article, G will denote a

compact group. We let Ĝ denote the set of (equivalence classes of) continuous

irreducible representations. For π in Ĝ, we let Hπ denote the space on which it
acts and let dπ = dimHπ . We denote normalized Haar integration by

∫
G
. . . ds.

For integrable u :G→C we let û(π) =
∫
G
u(s)π̄(s)ds, and [28, (34.4)] provides
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the following description of the Fourier algebra:

u ∈A(G) ⇔ ‖u‖A =
∑
π∈Ĝ

dπ
∥∥û(π)∥∥

1
<∞,

where ‖ · ‖1 denotes the trace norm. This is a special case of the general
definition of the Fourier algebra, for locally compact groups, given in [16].
We let VN(G) = �∞-

⊕
π∈ĜB(Hπ) and we have dual identification A(G)∗ ∼=

VN(G) via

〈u,T 〉=
∑
π∈Ĝ

dπ Tr
(
û(π)Tπ

)
.

Let ZG : A(G) → ZA(G) be given by ZGu(x) =
∫
G
u(sxs−1)ds. This is

easily verified to be a contractive linear projection. A well-known consequence

of the Schur orthogonality relations is that for π in Ĝ and ξ, η in Hπ we

have ZG〈π(·)ξ|η〉= 〈ξ|η〉
dπ

χπ , where χπ is the character of π. Hence, ZA(G) =

span{χπ : π ∈ Ĝ}. Thus, since χ̂π(π) =
1
dπ

Idπ and χ̂π(π
′) = 0 for π′ �= π, we

have ‖χ̂π(π)‖1 = 1, and the description of the norm above gives that

(2.1) u ∈ ZA(G) ⇔ u=
∑
π∈Ĝ

απχπ with ‖u‖A =
∑
π∈Ĝ

dπ|απ|<∞.

Hence we have that ZA(G)∗ ∼= ZVN(G) = �∞-
⊕

π∈ĜCIdπ
∼= �∞(Ĝ).

In particular, we see that ZA(G) is the predual of a commutative von Neu-
mann algebra. Thus, generally, we will have no need to discuss the completely
bounded theory of this space. However, we shall require, some knowledge of
the operator space structure on A(G) in Section 6, which we shall simply
reference therein.

Let ∼G denote the equivalence relation on G by conjugacy, i.e. x∼G x′ if
and only if x′ = yxy−1 for some y in G. It may be deduced from [28, (34.37)]
that each element of the Gelfand spectrum of ZA(G) is given by evaluation
functionals from G, and hence may be identified with a point in Conj(G) =
G/∼G. See also Proposition 4.1, which gives a generalisation of this result.
It is evident that ZG has a certain expectation property: ZG(uv) = uZGv for
u in ZA(G) and v in A.

We observe that ZA(G) is actually the hypergroup algebra �1(Ĝ, d2), where
d2(π) = d2π , as verified in [1]. Notice that ZL1(G), the algebra studied in [7],
is the hypergroup algebra associated with the compact hypergroup Conj(G).

In [31] it is established that Ĝ is the dual hypergroup to Conj(G), and that

Conj(G) is the dual hypergroup to Ĝ is established in [3].
Let us end this section with a simple observation on quotient groups.

Proposition 2.1. Let N be a closed normal subgroup of G. Then PNu(x) =∫
H
u(xn)dn (normalized Haar integration on N ) defines a surjective quotient

map from ZA(G) to ZA(G/N).
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Proof. Since translation is an isometric action on A(G), continuous in G,
it is clear that PN : ZA(G)→A(G/N) is a contraction. Let q :G→G/N be

the quotient map. Then there is an obvious embedding π �→ π ◦ q : Ĝ/N → Ĝ.

An easy calculation shows that for π′ in Ĝ, we have

PNχπ′ =

{
χπ ◦ q if π′ = π ◦ q,
0 otherwise.

See, for example, the proof of [43, Prop. 4.14]. Further, an application of (2.1)
shows that the map∑

π∈Ĝ/N

απχπ �→
∑

π∈Ĝ/N

απχπ ◦ q : ZA(G/N)→ ZA(G)

is an isometry whose range is the image of PN . �

3. Groups with non-Abelian connected component

We begin with the case of G= SU(2), the group of 2×2 unitary matrices of
determinant one. We recall that the conjugacy classes in SU(2) are determined
by the eigenvalues; that is, for each x in SU(2) there is y in SU(2) for which

(3.1) x= y

[
ζ 0
0 ζ−1

]
y−1 where ζ in T satisfies Im ζ ≥ 0.

Hence we may label the conjugacy class by the specified eigenvalue: Cx =Cζ ,
so Cζ =Cζ−1 . It is well known that

ŜU(2) = {πl : l= 0,1,2, . . .},

where dπl
= l+ 1 and we have the associated character, evaluated at x as in

(3.1), given by

χl(x) = χπl
(Cx) = χπl

(Cζ) =

l∑
k=0

ζl−2k =

{
ζl+1−ζ−l−1

ζ−ζ−1 if ζ ∈ T \ {−1,1},
ζl(l+ 1) if ζ ∈ {−1,1}.

We now recall that the 3× 3 special orthogonal group SO(3) is isomorphic

to SU(2)/{−I, I} and admits spectrum ŜO(3) = {πl : l = 0,2,4, . . .} ⊂ ŜU(2).
The following is a sort of refinement of a result in [12], which is adapted
specifically for our proof of Theorem 3.2.

Proposition 3.1. The algebra ZA(SU(2)) admits a bounded non-zero point
derivation Dz at each class Cz of SU(2) for which Imz > 0; while ZA(SO(3))
admits a bounded non-zero point derivation Dz at each class Cz of SU(2) for
which Imz > 0 and Re z > 0.
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Proof. Let ZT = span{χl : l= 0,1,2, . . .} which is dense in ZA(SU(2)). For
u in ZT and z in T with Imz > 0 let Dzu = z d

dζu(Cζ)|ζ=z . For such z we
compute

Dzχl =
l(zl+2 − z−l−2)− (l+ 2)(zl − z−l)

(z − z−1)2
.

Notice that if we had Dzχl = 0 for all l then a simple induction argument
shows

z − z−1 =
z2n+1 − z1−2n

2n+ 1
for each n, so

∣∣z − z−1
∣∣≤ 2

2n+ 1

which is impossible if Im z > 0, so Dz �= 0 in such cases. Furthermore, we have

|Dzχl| ≤
4l+ 4

|z − z−1|2 .

Now if u=
∑n

j=1αjχlj for l1 < · · ·< ln, we can use the formula for the norm

(2.1) to see that

|Dzu| ≤
n∑

j=1

|αj |
4lj + 4

|z − z−1|2 =
4

|z − z−1|2
n∑

j=1

|αj |(lj + 1) =
4

|z − z−1|2 ‖u‖A.

Hence Dz extends to a continuous derivation on ZA(SU(2)).

By virtue of Proposition 2.1 and the identification ŜO(3)⊂ ŜU(2), above,
we have

ZA
(
SO(3)

)
= span{χl : 0,2,4, . . .} ⊂̃ ZA

(
SU(2)

)
.

By a similar argument as above each derivation Dz , with Imz > 0 and Imz2 >
0, also defines a non-zero point derivation on ZA(SO(3)). �

Theorem 3.2. Let G have non-Abelian connected component Ge. Then
ZA(G) admits a non-zero point derivation.

Proof. According to the proof of [21, Theo. 2.1], Ge admits a closed sub-
group S which is isomorphic to SU(2) or SO(3). [This uses a structure theorem
for connected compact groups—see [47]—and the fact that any compact non-
Abelian Lie algebra admits a copy of su(2).] Since ZA(G)|S ⊂A(G)|S =A(S)
(see [26] or [28, (34.27)], for example), and since for u in ZA(G), u(yxy−1) =
u(x) for x, y in G, a fortiori in S, we have ZA(G)|S ⊆ ZA(S). Further, since
S is connected and S � {e}, S is not contained in a single conjugacy class

of G. Hence ZA(G)|S �⊂ C1, and there is π in Ĝ for which χπ|S /∈ C1. Thus,
we have

π|S =
n⊕

j=1

mjπlj ,
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where each mj is a non-zero multiplicity and l1 < · · · < ln with either n > 1
or l1 > 0. It follows that χπ|S =

∑n
j=1mjχlj so

χπ(Cζ) =

n∑
j=1

mj

lj∑
kj=0

ζlj−2kj ,

where Cζ is the conjugacy class of elements with eigenvalue ζ in S. Thus for
z in T with Im z > 0, we have for the derivation Dz , defined in the proposition
above, that

Dz(χπ|S) =
n∑

j=1

lj∑
kj=0

mj(lj − 2kj)z
lj−2kj .

Notice that the above expression is a non-zero polynomial in z of degree ln.
If z is transcendental over rationals, then Dz(χπ|S) �= 0. Thus for such z,
D = Dz ◦ RS : ZA(G) → C, where RS is the restriction map, is a non-zero
point derivation. �

Remark 3.3. (i) For semisimple compact Lie G, a simplification of a result
in [49] gives bounded non-zero point derivations at all regular points of G.
This offers more precise data than does our Theorem 3.2 for such groups.
However, our proof uses less Lie-theoretic machinery and returns results of
sufficient strength for SU(2) and SO(3).

(ii) As mentioned in Section 2, ZA(G)∼= �1(Ĝ, d2) is a discrete hypergroup
algebra. There are other discrete hypergroups, amongst a class which includes

ŜU(2), whose hypergroup algebras are known to admit point derivations. See
[39].

(iii) There are other known examples of B-central Fourier algebras which
admit point derivations. For example, if n≥ 3, then the algebra of radial ele-
ments of A(Rn), ZSO(n)A(R

n), admits a point derivation at each infinite orbit
([48, 2.6.10]). We remark that if we let Hn =Rn�SO(n)d, Rn acted upon by
the discretized special orthogonal group, then for odd n we have ZA(Hn) =
ZSO(n)A(R

n), while for even n, ZA(Hn) = ZSO(n)/{±I}A(R
n � {±I}).

A general analysis of algebras ZA(H) for locally compact H is beyond the
scope of our present investigation. For groups with pre-compact conjugacy
classes (a class which does not include examples Hn, above), there are some
results for ZL1(H) in [7].

4. Virtually Abelian groups

4.1. On sets of synthesis in certain fixed-point subalgebras. The
purpose of this section is to gather some abstract results which will be useful
for understanding ZA(G) for a virtually Abelian (locally) compact group G,
in the next section.
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Let A denote a commutative Banach algebra. For the remainder of this
section, we shall assume that A is unital, semisimple, regular and conjugate-
closed on its Gelfand spectrum X. Given a group of automorphisms B on A
we let

ZBA=
⋂
β∈B

{
u ∈A : β(u) = u

}
denote the fixed point algebra. If B is compact and acts continuously, we
let ZB :A→ ZBA be given by ZBu=

∫
B
β(u)dβ (normalized Haar measure),

which may be understood as a Bochner integral. It is a surjective quotient
map which satisfies the expectation property ZB(uv) = uZBv for u in ZBA
and v in A.

The following result is mostly known for ZA(G); it is partially established
in [28, (34.37)], and we borrow aspects of the proof. As we require this result
in a wider scope of applications, we give the simple proof.

Proposition 4.1. Let B be a compact group of continuous automorphisms
on A. The Gelfand spectrum of ZBA is the orbit space X/B, and this algebra
is regular on its spectrum.

Proof. Since X is the spectrum of A, each β in B defines an automorphism
β∗|X of X . The orbit space X/B = {B∗x : x ∈X}, with quotient topology
comprises a closed subset of the spectrum of ZBA, and regularity of A passes
immediately to the regularity of ZBA on X/B. Indeed, each of these facts is a
consequence of the following observation. As regularity of A on its spectrum
implies normality (see, for example, [28, (39.17)]), if E and F are B∗-invariant
closed subsets of X , with E ∩ F =∅, then there is u in A for which u|E = 1
and u|F = 0. It is clear that that ZBu|E = 1 and ZBu|F = 0 too.

Let χ be any multiplicative character on ZBA. Suppose that for some
u1, . . . , un in kerχ,

⋂n
k=1 u

−1
k {0} ∩ X/B = ∅. Then u =

∑n
k=1 |uk|2 > 0 on

X/B, hence, when regarded as an element of A, is non-vanishing on X . Thus
u admits an inverse u′ in A. But then ZBu

′ is the inverse of u in ZBA,
contradicting that u ∈ kerχ. We thus conclude that for any finite family
F ⊂ ZBA,

⋂
u∈F u−1{0}∩X/B �=∅, and a compactness argument yields that⋂

u∈ZBA u−1{0} ∩X/B �=∅. It follows that χ ∈X/B. �

Remark 4.2. We can recover the result of [18] that for a compact sub-
group K of a locally compact group H , the algebra A(H :K) = {u ∈A(H) :
u(xk) = u(x) for u in H and k in K} has spectrum the coset space G/K. In-
deed, consider the unitization A(H)⊕C1 and let K act as automorphisms on
this algebra by right translation; we obtain A(H :K) as a the subalgebra of
ZK(A(H)⊕C1) of functions vanishing at infinity.

Now let E be a closed subset of X . We let

IA(E) = {u ∈A : u|E = 0}, and I0A(E) = {u ∈A : suppu∩E =∅}.
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Definition 4.3. We say that E is

• spectral for A if I0A(E) = IA(E);

• Ditkin for A provided each u in IA(E) satisfies that u ∈ uI0A(E);
• ultra-strongly Ditkin if I0A(E) possesses a bounded approximate identity for
IA(E); and

• approximable if IA(E) possesses a bounded approximate identity.

The definition of spectrality is well known, as is the Ditkin condition, also
sometimes called the Calderón condition; see, for example, [61]. Following
[63], [11], we will say that E is strongly Ditkin for A if I0A(E) posseses a multi-
plier bounded approximate identity (uα) for IA(E), i.e. so supα ‖uαu‖ ≤C‖u‖
for all u in IA(E). Note that a sequential approximate identity is automat-
ically multiplier bounded, thanks to the uniform boundedness principle. We
shall not require the last notion but mention it only for comparative pur-
poses. The ultra-strongly Ditkin condition is defined in [11]. The term “ap-
proximable” is not in wide use as we use it, and has been used by the second
named author in [58].

We have the following implications of properties for a closed subset E of X :

approximable
& spectral

⇔ ultra-strongly
Ditkin

⇒ strongly
Ditkin

⇒Ditkin⇒ spectral.

Remark 4.4. (i) It is not the case that approximable implies spectral. In
[9], a remarkable example of a semi-simple, conjugate-closed, regular sequence
algebra A is created which admits a contractive approximate identity, but
for which the space of finitely supported elements Ac is not dense in A. In
particular, the unitization A⊕C1 has spectrum the compactification N∪{∞},
and hence {∞} is an approximable but non-spectral set for A⊕C1.

(ii) It follows from Remark 4.5(ii), below that not every spectral set is
Ditkin. In [46], a (strongly) Ditkin set is produced in A(T) with countable
infinite boundary; so the boundary is an infinite Ditkin set of measure zero.
Hence according to [63], this boundary set is not strongly Ditkin. The uniti-
zation of the pointwise algebra �1(N) has spectrum N∪{∞}, and the set {∞}
is strongly Ditkin for this algebra but not ultra-strongly Ditkin.

Remark 4.5. (i) It is known, due to [61] (see also [36, 5.2.1]) that a finite
union of Ditkin sets is Ditkin. An easy variant of an argument of [63] tells us
that the same is true for ultra-strongly Ditkin or approximable sets. Indeed,
if E and F are approximable (respectively, ultra-strongly Ditkin), let (uα)
be a bounded approximate identity for IA(E) and (vβ) one for IA(F ) (each
contained in I0A(E), respectively I0A(F )). Then (uαvβ) (product directed set)
is a bounded approximate identity for IA(E ∪F ) = IA(E)∩ IA(F ) (contained
in I0A(E ∪ F ) = I0A(E)∩ I0A(F )), as is easily checked.
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(ii) It is shown in [6] for the unitized Mirkil algebra, that there exists two
spectral sets whose union is not spectral. In particular, spectral sets need not
be Ditkin.

We now observe that finite groups of automorphisms preserve certain prop-
erties of sets which are stable under finite unions.

Theorem 4.6. Let B be a finite group of automophisms on A and E be
a closed subset of X which is Ditkin, ultra-strongly Ditkin or approximable
for A. Then the subset B∗E of X/B enjoys the same property for ZBA.

Proof. We observe that for each automorphism β, we have β(IA(E)) =
IA(β

∗E) and β(I0A(E)) = I0A(β
∗E). Hence, Remark 4.5 shows that B∗E =⋃

β∈B β∗E is Ditkin, ultra-strongly Ditkin or approximable for A, based on
the respective assumption for E. Furthermore, we observe that for any u in
A we have ZBu= 1

|B|
∑

β∈B β(u), and hence

ZBI
0
A
(
B∗E

)
= I0ZBA

(
B∗E

)
⊆ I0A

(
B∗E

)
and the same sequence of inclusions holds for IA. Suppose u ∈ IZBA(B

∗E)

and (uα) is a net from I0A(E) for which ‖uuα − u‖ α−→ 0. Then uZBuα −
u= ZB(uuα − u)

α−→ 0. We immediately see that Ditkinness or ultra-strong
Ditkinness is preserved. By merely picking (uα) from within IA(E), we see
that approximability is preserved. �

Proposition 4.7. If the projective tensor product A⊗̂A is semisimple, and
B is a compact group of automorphisms on A, then ZBA⊗̂ZBA=ZB×BA⊗̂A.

Proof. Since ZB is a quotient map, ZBA⊗̂ZBA is isometrically a subspace
of A⊗̂A. Moreover, ZB ⊗ZB = ZB×B . �

Suppose A⊗̂A is semisimple. With our assumptions A⊗̂A is regular on
its spectrum X ×X ([60]). Then, following [54, Theo. 6], we call A hyper-
Tauberian if the diagonal

XD =
{
(x,x) : x ∈X

}
is spectral for A⊗̂A. It is a well-known interpretation of the splitting result
of [25] (see also [14]) that approximability of XD for A⊗̂A is equivalent to
amenability of A. We further note that for a compact group of automorphisms
on A that

(X/B)D =
{(

B∗x,B∗x
)
: x ∈X

}
= (B ×B)∗XD.

These comments combine with the last two results to give us the following.

Corollary 4.8. Suppose A⊗̂A is semisimple and let B be a finite group
of continuous automorphisms on A.

(i) If XD is Ditkin for A⊗̂A, then ZBA is hyper-Tauberian.
(ii) If A is amenable, then ZBA is amenable.
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We observe that (ii), above, follows from a more general result of [37].
We shall say that a closed subset E of X is weakly spectral for A if there

is a fixed n > 0 for which IA(E)n = {un : u ∈ IA(E)} ⊆ I0A(E). We let the
characteristic of E with respect to A, ξA(E), denote the minimal such n, so
ξ(E) = 1 if E is spectral. These concepts were introduced in [62].

Proposition 4.9. Suppose B is a compact group of automorphisms on A
and E = B∗E be weakly spectral for A. Then E is weakly spectral for ZBA
(with ξZBA(E)≤ ξA(E)).

Proof. It is evident that ZBIA(E) = IZBA(E). It is also true that
ZBI

0
A(E) = I0ZBA(E). Indeed, if u ∈ I0A(E), then suppu∩E =∅. Then there

there is open U =B∗U ⊃E such that suppu∩U =∅. If not, then

suppu∩E = suppu∩
⋂{

U : U =B∗U open, U ⊃E
}
�=∅

violating our initial assumption. Thus it follows that supp(ZGu)∩E =∅.
We note that IZBA(E)⊂ IA(E). Hence, if E is weakly spectral for A, then

for u ∈ IZBA(E), uξA(E) ∈ I0A(E). But

uξA(E) = ZBu
ξA(E) ∈ ZBI0A(E)⊆ ZBI0A(E) = I0ZBA(E).

Hence, ξZBA(E)≤ ξA(E). �

4.2. Virtually Abelian groups. We say a locally compact group is virtually
Abelian if it admits an Abelian subgroup of finite index, hence necessarily an
open such subgroup. In the case of a compact G, an open Abelian subgroup
is automatically of finite index. As with the article so far, we assume that G
is compact for the remainder of the section.

Theorem 4.10. Let G be virtually Abelian. Then there exists a normal
open Abelian subgroup T . We then have that the T -centre, that is, when T
acts on G by inner automorphisms, is given by an isomorphic identification

ZTA(G) =
⊕

aT∈G/T

A(aT :Ra),

where Ra = RaT is a closed subgroup of T and A(aT : Ra) = {u ∈ 1aTA(G) :
u(atr) = u(at) for t in T and r in Ra}. The algebra ZTA(G) admits spec-
trum X =

⊔
aT∈G/T aT/Ra. We have

ZA(G) = ZG/TZTA(G),

where the action of G, that is, of G/T , on an element of X is given by
bT ·atRa = bab−1btb−1Rbab−1 . For each a in G and t in T , we have conjugacy
class

Cat =
{
bab−1btb−1r : b ∈G and r ∈Rbab−1T

}
.
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Proof. Let S be an open Abelian subgroup and L a left transversal for S
in G. Then

T =
⋂
b∈L

bSb−1

is an open normal subgroup. Indeed, L is finite so T is the intersection of
finitely many open subgroups. Furthermore, the definition of T is independent
of choice of transversal and for any a in G, aL is another transversal, hence
aTa−1 =

⋂
b∈aL bSb−1 = T , so T is normal.

Since T is Abelian s �→ s−1 is a homomorphism, and also since s �→ a−1sa
is a homomorphism it is easy to see that

Ra =
{
s−1a−1sa : s ∈ T

}
is a subgroup of T , which is closed as T is compact. Observe that for a and a′

in G, if Ta= Ta′, then Ra =Ra′ . Hence, we may write RTa =RaT =Ra. We
recall that A(G) =

⊕
aT∈G/T A(aT ) where A(aT ) = 1aTA(G)∼=A(T ). Now if

a in G and t in T are fixed, then for s in T we have

sats−1 = a
(
a−1sa

)
ts−1 = ats−1

(
a−1sa

)
.

Hence orbits of the action of T on aT , by conjugation, are the same as orbits
of the action of Ra on aT by right translation; we write aT/∼T= aT/Ra. We
thus obtain the desired form for ZTA(G) and its spectrum X =G/∼T .

It is evident that ZA(G) ⊆ ZTA(G), and the action of G by inner au-
tomorphisms on X = G/∼T is really an action by G/T . In fact if we
let ZTu(x) =

∫
T
u(sxs−1)ds, then the Weyl integral formula tells us that

ZG = ZG ◦ZT = ZG/T ◦ZT . Hence, we gain the desired realization of ZA(G).
To see the action of G on X , and hence the structure of the conjugacy class

Cat, we fix a and t as above, and for b in G and s in T we have

bab−1
(
btb−1

)[
bs−1b−1

(
ba−1b−1bsb−1bab−1

)]
= bab−1

(
ba−1b−1bsb−1bab−1

)(
btb−1

)
bs−1b−1 = bs(at)(bs)−1.

Since each bsb−1 is a generic element of T , we get the desired result. �

Theorem 4.11. If G is virtually Abelian, then ZA(G) is hyper-Tauberian
and amenable.

Proof. We consider the algebra ZTA(G) and its spectrum X , whose
form is described in Theorem 4.10. Each A(aT : Ra) ∼= A(T/Ra) (which is

the Abelian group algebra L1(T̂/Ra)). The diagonal (T/Ra)D in T/Ra ×
T/Ra is a subgroup and hence, thanks to [51], ultra-strongly Ditkin for
A(T/Ra)⊗̂A(T/Ra) ∼= A(T/Ra × T/Ra). Thus, Remark 4.5 shows us that
XD

∼=
⋃

aT∈G/T (T/Ra)D is also ultra-strongly Ditkin. Letting B =G/T , we

appeal to Corollary 4.8. �
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Remark 4.12. Let G and T be as in Theorem 4.10. Using reasoning
above, we see that 1T ZA(G) = ZG/TA(T ), is amenable. In particular for

G = T � {id, ι}, where ι(t) = t−1, we have that Z{id,ι}A(T) ∼= Z{id,ι̂}�
1(Z) ∼=

�1(Z/{id, ι̂}). Here, Z/{id, ι} ∼= N0 is the polynomial hypergroup with multi-
plication δn ∗ δm = 1

2 (δ|n−m| + δn+m). This hypergroup algebra is also proved
to be amenable in [38].

In fact, we may define a class of hypergroups by letting F be any finite
subgroup of GLn(Z) and considering the orbit space Zn/F . We let �1(Zn/F )
denote the closed subalgebra of �1(Zn) generated by elements

δF (v) =
1

|F |
∑
α∈F

δα(v), v ∈ Zn.

We have that �1(Zn/F ) ∼= ZF �
1(Zn) is amenable. Indeed, if G = Tn � F ,

where F acts by dual action, then ZF �
1(Zn)∼= ZG/TnA(Tn).

4.3. Approximable subsets of ZA(G). We aim to give, for any compact
group G, a characterisation of approximable subsets for ZA(G). When G
is virtually Abelian this characterisation is especially satisfying. Recall that
approximable sets were defined in Definition 4.3. See Section 1.2 for references
on approximable subsets in A(H), for amenable locally compact H .

A coset in a locally compact group H is any subset K of H which is closed
under the ternary operation: x, y, z ∈K implies xy−1z ∈K. It is an exercise
to see that this agrees with the “standard” notion of coset of some subgroup.
We let Ω(H) denote the Boolean algebra generated by all cosets of H , and
Ωc(H) denote those elements of Ω(G) which are closed.

Proposition 4.13. Let E be a closed subset of Conj(G). Then E is ap-

proximable for ZA(G) if and only if Ẽ ∈Ωc(G), where Ẽ =
⋃

C∈E C.

Proof. If (uα) is a bounded approximate identity for IZA(E). Then (uα) is
a bounded net in A(G)⊆B(Gd), where the latter space is the Fourier-Stieltjes
algebra of the discretized group Gd. The embedding is an isometry thanks
to [16]. Since ZA(G) is regular, (uα) converges pointwise to the indicator
function 1Conj(G)\E on Conj(G), hence to 1G\Ẽ in the weak* topology of

B(Gd). Hence by [29], Ẽ ∈ Ω(G). Since Ẽ, being the pre-image of E in G

under the conjugation equivalence, is closed, we see that Ẽ ∈Ωc(G).

If Ẽ ∈Ωc(G), then by [19], Ẽ is approximable for A(G). If (vα) is a bounded

approximate identity for IA(Ẽ), then (ZGvα) is such for IZA(E). �

We remark that the last proposition reduces the general question of
amenability of ZA(G) into a question of whether the diagonal E =Conj(G)D
in Conj(G) × Conj(G) satisfies that Ẽ ∈ Ω(G × G), hence is automatically
in Ωc(G × G). (Indeed it follows from Lemma 6.1 that ZA(G)⊗̂ZA(G) ∼=
ZA(G×G)). We do not know how to determine this for a general, even totally
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disconnected, group, unless it is a product of finite groups; see Theorem 6.5,
for example.

Theorem 4.14. If G is virtually Abelian, and E ∈ Ωc(G), then G∗E =⋃
x∈E Cx ∈Ωc(G). Hence the approximable subsets of ZA(G) are exactly sets

of the form G∗E where E ∈Ωc(G).

Proof. A result of [17] (after [24], [55]) shows that there are a finite number
of closed subgroups H1, . . . ,Hn, elements a1, . . . , an of G, and for each k, open
subgroups Kk1, . . . ,Kkmk

of Hk and elements bk1, . . . , bkmk
of Hk such that

E =
⋃n

k=1 ak(Hk \
⋃mk

j=1 bkjKkj). Since each Hk is compact, each Kkj is of
finite index. We can hence rearrange this result to show that E is simply
a union of finitely many closed cosets of subgroups of G. Let such a coset
be given by aH where H is a closed subgroup. By taking intersection, we
may suppose H is a subgroup of an open normal Abelian subgroup T , hence
aH ⊂ aT .

However, the calculations from the proof of Theorem 4.10 show that the
orbit of aH under conjugation by G is

⋃
bT∈G/T bab−1bHb−1Rbab−1 , which is

clearly an element of Ωc(G).
The characterization of approximable sets is now a direct consequence of

Proposition 4.13 and the fact that G∗(G∗E) =G∗E. �

5. Hyper-Tauberian property and weak amenability

We can give a complete characterization of both hyper-Tauberianness
and weak amenability for ZA(G). Recall that the definition of hyper-
Tauberianness is given before Corollary 4.8.

Theorem 5.1. For any compact group G the following are equivalent:

(i) the connected component of the identity, Ge, is Abelian;
(ii) ZA(G) is hyper-Tauberian;
(iii) all singleton sets of Conj(G) are spectral for ZA(G);
(iv) ZA(G) is weakly amenable; and
(v) ZA(G) admits no non-zero bounded point derivations.

Proof. That (ii) implies (iii) and (iv) are both from [54, Theo. 5]. A well-
known observation from [56] is that a commutative Banach algebra admits a
non-zero bounded point derivation at a multiplicative functional χ if and only
if (kerχ)2 is not dense in kerχ. Hence, (iii) implies (v). That (iv) implies (v)
follows from a well-known fact mentioned in Section 2. Theorem 3.2 provides
that (v) implies (i).

Hence it remains to see that (i) implies (ii). In the case that G is virtually
Abelian, this is from Theorem 4.11.

Now let us consider the general case where Ge is Abelian. We follow the
proof of [20, Theo. 3.3]. We let N be a net of closed normal subgroups, ordered
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by reverse inclusion, such that for any neighbourhood U of e, we eventually
have N ⊂ U for some N in N , and for which G/N is Lie for each N in N . For
example, we may let N =NF =

⋂
π∈F kerπ for the increasing net of all finite

subsets of Ĝ. Then each G/N is virtually Abelian. Indeed, it follows from
[27, (7.12)], that each (G/N)e is connected, hence open as G/N is Lie. Hence,
by Proposition 2.1, ZA(G/N) ∼= PN (ZA(G)), and hence is hyper-Tauberian.
Also if N ⊃N ′ then PN (ZA(G))⊂ PN ′(ZA(G)). It then is easy to check that
for u in ZA(G), the difference u− PNu tends to 0 as N tends to e. Hence,⋃

N∈N PN ZA(G) is dense in ZA(G). We appeal to [54, Cor. 13] to see that

�1-
⊕

N∈N PN ZA(G) is hyper-Tauberian, and hence the completion ZAN (G)
of

⋃
N∈N PN ZA(G), with respect to the norm

‖u‖N = inf

{ ∑
N∈N

‖uN‖A : u=
∑
N∈N

uN , uN ∈ PN ZA(G)

}
≥ ‖u‖A

is hyper-Tauberian, thanks to [54, Theo. 12]. Notice for N ⊇ N ′ that
PN ZA(G)PN ′ ZA(G)⊆ PN ′ ZA(G), so ‖ · ‖N is indeed an algebra norm. But
the continuous inclusion with dense range, ZAN (G) ↪→ ZA(G), shows again
by [54, Theo. 12] that the latter algebra is hyper-Tauberian. �

Remark 5.2. (i) We note that using the density of
⋃

N∈N PN ZA(G) in
ZA(G), above, we may have more easily shown that (i) implies (iv) directly.
We found it more satisfying to obtain the stronger hyper-Tauberian property.
We note that [54, Rem. 24(ii)] shows that hyper-Tauberianness is stronger
than weak amenability.

(ii) A technique employed in the proof of [22, Lem. 3.6] and [7, Theo. 2.4]
can be used to allow us to bypass the algebra ZAN (G), employed above. Our
present technique allows us to avoid introducing local maps, which, admit-
tedly, are used in the original definition of hyper-Tauberianness in [54].

The following partially recovers a non-spectral result of [45], but uses dif-
ferent methods. We defined weak spectrality just before Proposition 4.9.

Proposition 5.3. Let G be a non-Abelian compact connected Lie group.

(i) There exists a C in Conj(G) for which C is not spectral for A(G).
(ii) Any finite F ⊆ Conj(G) is weakly spectral for ZA(G) with ξZA(F ) ≤

|F |+
∑

C∈F dimC/2 where dimC is the dimension of the manifold C.

Proof. The failure of spectrality for some {C} follows from (iii), above, and
Proposition 4.9. On the other hand, [44, Cor. 4.9] shows that a single conju-
gacy class C is always weakly spectral for A(G) with ξA(C) ≤ 1 + dimC/2.
Hence, the subadditivity result in [62] shows that

ξA

( ⋃
C∈F

C

)
≤

∑
C∈F

ξA(C) = |F |+
∑
C∈F

dimC/2.

Again we appeal to Proposition 4.9. �
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6. Finite groups and their direct products

We recall from [33], that amenability of a Banach algebra A is equivalent to
having a bounded approximate diagonal (b.a.d.): a bounded net (dι)⊂A⊗̂A
which for each a in A satisfies

(a⊗ 1)dι − dι(1⊗ a)
ι−→ 0 and m(dι)a

ι−→ a,

where m :A⊗̂A→A is the multiplication map. We let the amenability con-
stant be given by

AM(A) = inf
{
M > 0 : there is a b.a.d. (dι) for A with ‖dι‖A⊗̂A ≤M

}
,

where we adopt the convention that inf∅ = ∞. It will be useful for us to
understand the tensor product ZA(G)⊗̂ZA(G′), where G′ is another compact
group.

Lemma 6.1. We have an isometric isomorphism

ZA(G)⊗̂ZA
(
G′)∼=ZA

(
G×G′).

Proof. Let us give two proofs.
For the first, we recall the theorem of [15] that

(6.1) A(G)⊗̂op
A
(
G′)∼=A

(
G×G′),

where ⊗̂op
denotes the operator projective tensor product. The map ZG :

A(G)→ ZA(G) is easily verified to be a complete quotient map, so we have a
completely isometric inclusion

ZA(G)⊗̂op
ZA

(
G′)= ZG ⊗ZG′

(
A(G)⊗̂op

A
(
G′))⊂A(G)⊗̂op

A
(
G′).

But in the identification (6.1), we have that ZG ⊗ ZG′ ∼= ZG×G′ , so

ZG ⊗ ZG′(A(G)⊗̂op
A(G′)) ∼= ZA(G × G′). Since ZA(G)∗ ∼= ZVN(G) is a

commutative von Neuman algebra, we obtain an isometric identification
ZA(G)⊗̂op

ZA(G′)∼= ZA(G)⊗̂ZA(G′).

For the second proof, we use the fact that ZA(G)∼= �1(Ĝ, d2) as noted in

Section 2. Using that Ĝ×G′ ∼= Ĝ×Ĝ′ (irreducible representations of products
are exactly the Kronecker products of irreducible representations) we see that

ZA(G×G′) ∼= �1(Ĝ× Ĝ′, d2 × d2), where d2 × d2(π,π′) = d2πd
2
π′ . Hence, the

usual tensor product formula shows that

ZA(G)⊗̂ZA
(
G′)∼= �1

(
Ĝ, d2

)
⊗̂�1

(
Ĝ′, d2

)∼= �1
(
Ĝ× Ĝ′, d2 × d2

)∼= ZA
(
G×G′)

with isometric identifications. �

The following computation on a finite group mirrors [7, Theo. 1.8], where
for a finite group G it is shown that

AM
(
ZL1(G)

)
=

1

|G|2
∑

C,C′∈Conj(G)

|C|
∣∣C ′∣∣∣∣∣∣∑

π∈Ĝ

d2πχπ(C)χπ

(
C ′

)∣∣∣∣.
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Proposition 6.2. Let G be a finite group. Then

AM
(
ZA(G)

)
=

1

|G|2
∑

π,π′∈Ĝ×Ĝ

dπdπ′

∣∣∣∣ ∑
C∈Conj(G)

|C|2χπ(C)χπ′(C)

∣∣∣∣.
In particular we see that 1 ≤ AM(ZA(G)), with the bound achieved exactly
when G is Abelian.

Proof. Any bounded approximate diagonal admits a cluster point, which
is a diagonal; that is, d in ZA(G)⊗̂ZA(G) for which m(d) = 1 and (u ⊗
1)d= d(1⊗ u). It was observed in [23] that for a finite dimensional amenable
commutative algebra the diagonal is unique. In fact, Lemma 6.1 provides that
this diagonal must be the indicator function of the diagonal of the spectrum of
ZA(G×G), 1Conj(G)D =

∑
C∈Conj(G) 1C×C . The Schur orthogonality relations

provide Fourier series

1C×C =
∑

π,π′∈Ĝ×Ĝ

〈1C×C |χπ ⊗ χπ′〉χπ ⊗ χπ′

=
∑

π,π′∈Ĝ×Ĝ

(
1

|G|2
∑

x,y∈G×G

1C×C(x, y)χπ(x)χπ′(y)

)
χπ ⊗ χπ′

=
1

|G|2
∑

π,π′∈Ĝ×Ĝ

|C|2χπ(C)χπ′(C)χπ ⊗ χπ′

and hence

1Conj(G)D =
1

|G|2
∑

π,π′∈Ĝ×Ĝ

( ∑
C∈Conj(G)

|C|2χπ(C)χπ′(C)

)
χπ̄ ⊗ χπ′ ,

where we have exchanged π̄ for π to give our formula its “positive-definite”
flavour. We again appeal to Lemma 6.1 and obtain

AM
(
ZA(G)

)
= ‖1Conj(G)D‖ZA(G×G)

which, by (2.1) gives us the desired result.
Let us examine the lower bound. We restrict the outer sum to the diagonal

to obtain

AM
(
ZA(G)

)
≥ 1

|G|2
∑
π∈Ĝ

d2π
∑

C∈Conj(G)

|C|2χπ(C)χπ(C)

≥ 1

|G|
∑
π∈Ĝ

d2π
∑

C∈Conj(G)

|C|
|G|χπ(C)χπ(C)

=
1

|G|
∑
π∈Ĝ

d2π〈χπ|χπ〉=
1

|G|
∑
π∈Ĝ

d2π = 1.
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Notice that if G is non-Abelian, then at least one conjugacy class satisfies
|C|2 > |C|, and then for at least one π, say π = 1, χπ(C) �= 0. Hence the second

inequality, above, is strict. For an Abelian group, ZA(G) = A(G) ∼= L1(Ĝ).

The well-known diagonal 1

|Ĝ|
∑

χ∈Ĝ δχ̄ ⊗ δχ shows that AM(L1(Ĝ)) = 1. �

For a finite non-Abelian group, G, the lower bound of AM(ZL1(G))≥ 1 +
1

300 was derived based on a result in [50]. Some improvements were made in the

investigation [4]; and the generality of the lower bound of AM(ZL1(G))≥ 7
4 ,

which is sharp, was established in [13]. We have made no effort to establish
if our lower bound, below, is sharp.

Corollary 6.3. If G is a non-Abelian finite group, then AM(ZA(G)) ≥
2√
3
.

Proof. Because G is compact, we have that A(G) is its own multiplier
algebra, even its own completely bounded multiplier algebra. As such each u
in A(G) induces a Schur multiplier on G×G matrices, [ast] �→ [u(s−1t)ast],
with norm the same as ‖u‖A. See [10], [35] for details of this.

The reasoning above also applies to A(G × G). Consider the diagonal
w = 1Conj(G)D element of ZA(G×G)⊂ A(G×G). It is an idempotent, that

is, w2 = w with ‖w‖A > 1. Hence by [59, Theo. 3.3] (using estimates which
go back to [42]), we have that AM(ZA(G)) = ‖w‖A ≥ 2√

3
. �

Lemma 6.4. (i) If G1, . . . ,Gn are finite groups and P =
∏n

i=1Gi, then

AM
(
ZA(P )

)
=

n∏
i=1

AM
(
ZA(Gi)

)
.

(ii) If G=H × F where H is compact and F is finite, then

AM
(
ZA(G)

)
≥AM

(
ZA(F )

)
.

Proof. To see (i), we use Lemma 6.1 and the isomorphism P × P ∼=∏n
i=1Gi ×Gi to see that

ZA(P × P )∼= ZA(G1 ×G1)⊗̂ · · · ⊗̂ZA(Gn ×Gn).

Hence, the unique diagonal satisfies

1Conj(P )D
∼= 1Conj(G1)D ⊗ · · · ⊗ 1Conj(Gn)D .

We appeal to the fact that ⊗̂ gives a cross-norm.
To see (ii) we have that the map u⊗ v �→ u(e)v : ZA(H)⊗̂ZA(F )→ ZA(F )

extends to a contractive surjective homomorphism, and hence, again using
Lemma 6.1, induces a contractive surjective homomorphism from ZA(G) onto
ZA(F ). It is standard and straightforward to check that if AM(ZA(G)) <
∞, then any bounded approximate diagonal for ZA(G) is carried to such
for ZA(F ), hence the diagonal for ZA(F ) has norm bounded above by
AM(ZA(G)). �
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We lend the following evidence to our conjecture that ZA(G) is amenable
if and only if G is virtually Abelian.

Theorem 6.5. Let {Gi}i∈I be an collection of finite groups and P be the
compact product group

∏
i∈I Gi. Then ZA(P ) is amenable if and only if all

but finitely many groups Gi are Abelian.

Proof. Suppose there is an infinite sequence of indices i1, i2, . . . for which
each Gik is non-Abelian. Let Pn =

∏n
k=1Gik and Hn =

∏
i∈I\{i1,...,in}Gi. We

successively use parts (ii) and (i) of the lemma above, then Corollary 6.3 to
see for each n that

AM
(
ZA(P )

)
≥AM

(
ZA(Pn)

)
=

n∏
k=1

AM
(
ZA(Gik)

)
≥ (2/

√
3)n.

Thus, we see that AM(ZA(P )) =∞. �

Using techniques from the theory of hypergroups, the first-named author

([2]) has proved that if G is tall—that is, for each d, {π ∈ Ĝ : dπ = d} is finite—
then ZA(G) is non-amenable. There are examples of totally disconnected tall
groups in [30]. Coupled with the last theorem, this gives two classes of totally
disconnected and non-virtually Abelian G for which ZA(G) is non-amenable.

7. Open questions

In the course of this investigation, two open questions stand out. A third
still remains from the paper [7], which motivated out investigation.

Question 7.1. For compact G, does amenability of ZA(G) imply that G
is virtually Abelian?

An approach to answering this is suggested in comments following Propo-
sition 4.13. Thanks to Theorem 5.1, this question remains open only for
compact groups with Abelian connected components of identity. Totally dis-
connected compact groups are pro-finite, and hence more refined qualitative
version of Corollary 6.3, coupled with Proposition 2.1 may solve this.

For the next question, we use the assumptions and notation of Section 4.1.
We state it in two equivalent forms.

Question 7.2 ([58]). (i) If A is amenable, must it be hyper-Tauberian?
(ii) If XD is approximable for A⊗̂A, must it be spectral?

As indicated in Remark 4.4, its is not generally true that approximability
of a subset of the spectrum, for an a given algebra, implies spectrality.

The converse of the next question is answered in [5].

Question 7.3 ([7]). For a compact group G, if ZL1(G) is amenable, must
G be virtually Abelian?
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