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FIXED-POINT INDEX, THE INCOMPATIBILITY THEOREM,

AND TORUS PARAMETRIZATION

ANDREY M. MISHCHENKO

Abstract. The fixed-point index of a homeomorphism of Jordan
curves measures the number of fixed-points, with multiplicity, of

the extension of the homeomorphism to the full Jordan domains

in question. The now-classical Circle Index Lemma says that

the fixed-point index of a positive-orientation-preserving homeo-
morphism of round circles is always non-negative. We begin by

proving a generalization of this lemma, to accommodate Jordan

curves bounding domains which do not disconnect each other. We

then apply this generalization to give a new proof of Schramm’s

Incompatibility Theorem, which was used by Schramm to give

the first proof of the rigidity of circle packings filling the complex

and hyperbolic planes. As an example application, we include
outlines of proofs of these circle packing theorems.

We then introduce a new tool, the so-called torus parametriza-
tion, for working with fixed-point index, which allows some prob-
lems concerning this quantity to be approached combinatorially.

We apply torus parametrization to give the first purely topo-
logical proof of the following lemma: given two positively ori-
ented Jordan curves, one may essentially prescribe the images

of three points of one of the curves in the other, and obtain an

orientation-preserving homeomorphism between the curves, hav-
ing non-negative fixed-point index, which respects this prescrip-
tion. This lemma is essential to our proof of the Incompatibility
Theorem.
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1. Introduction

This article is concerned with a topological quantity, the so-called fixed-
point index of a homeomorphism of Jordan curves, which has proven useful in
the study of various areas of complex analysis. We begin with its definition:

Definition 1.1. A Jordan curve is a homeomorphic image of a topological
circle S

1 in the complex plane C. A Jordan domain is a bounded open set
in C with Jordan curve boundary. We use the term closed Jordan domain or
compact Jordan domain to refer to the closure of a Jordan domain. We define
the positive orientation on a Jordan curve as usual. That is, if K is a closed
Jordan domain, then as we traverse ∂K in what we call the positive direction,
the interior of K stays to the left.

Let K and K̃ be closed Jordan domains. Let φ : ∂K → ∂K̃ be a homeomor-
phism of Jordan curves which is fixed-point-free and orientation-preserving.
We call such a homeomorphism indexable. Then {φ(z)− z}z∈∂K is a closed
curve in the plane which misses the origin. It has a natural orientation in-
duced by traversing ∂K positively. Then we define the fixed-point index of φ,
denoted η(φ), to be the winding number of {φ(z)− z}z∈∂K around the origin.

Two examples are shown in Figures 1 and 2. We remark that the fixed-
point index depends crucially on the choice of homeomorphism, and also on
the way that the sets K and K̃ are juxtaposed. It is a worthwhile exercise
to construct an indexable homeomorphism ∂K → ∂K̃, for K and K̃ as in
Figure 2, having fixed-point index unequal to −1.

Fixed-point index has found applications for example in the theories of
circle packing [HS93], Koebe uniformization [HS93], and Sierpinski carpets

K
φ(z)

z

φ(z)− z

�

� K̃

Figure 1. Two closed Jordan domains K and K̃ so that any
indexable homeomorphism φ : ∂K → ∂K̃ satisfies η(φ) = 0.

The arrows on ∂K and ∂K̃ indicate the positive orientations
on these Jordan curves. In this case φ is indexable so long
as it is orientation-preserving; the fixed-point-free condition
is automatic because ∂K and ∂K̃ do not meet. The dashed
arrow represents a vector of the form φ(z) − z. The vec-
tor φ(z)− z must always point “to the right,” so the curve
{φ(z)−z}z∈∂K has winding number 0 around the origin, thus
η(φ) = 0.
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K̃

K

φ(z)− z

Figure 2. An indexable homeomorphism φ : ∂K → ∂K̃ so
that η(φ) = −1. Suppose we insist that φ identifies the re-
spective corners as shown. Then tracing the path of the
dashed vectors φ(z)− z as z traverses ∂K positively, we see
that φ(z) − z must wind once clockwise around the origin,
thus η(φ) =−1.

[Mer12], Section 12. In all of these settings, it has been applied to prove
powerful existence, rigidity, and uniformization statements. Most recently, the
current author has used fixed-point index, including torus parametrization, to
prove rigidity statements for collections of possibly-overlapping round disks,
see [Mis12], [Mis13].

The fixed-point index measures the following topological quantity: sup-
pose that K and K̃ are closed Jordan domains, and Φ :K → K̃ is a homeo-
morphism, having finitely many fixed points, which restricts to an indexable
homeomorphism ∂Φ : ∂K → ∂K̃. There is a well-understood notion of the
multiplicity of a fixed point of Φ. Then the fixed-point index η(∂Φ) counts
the number of fixed-points of Φ, with multiplicity. For more discussion along
these lines, see [HS93, Section 2].

In this article, we describe a new technique for working with fixed-point
index, which we call the torus parametrization of a pair of Jordan curves, de-
fined in Section 5. We apply torus parametrization to give a new, elementary
proof of the following fundamental lemma.

Three Point Prescription Lemma 1.2. Let K and K̃ be compact Jor-
dan domains in transverse position, with boundaries oriented positively. Let
z1, z2, z3 ∈ ∂K \ ∂K̃ appear in counterclockwise order, similarly z̃1, z̃2, z̃3 ∈
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∂K̃ \ ∂K. Then there is an indexable homeomorphism φ : ∂K → ∂K̃ sending
zi �→ z̃i for i= 1,2,3, so that η(φ)≥ 0.

Two Jordan domains are in transverse position if their boundary Jordan
curves cross wherever they meet, cf. Definition 2.3 in Section 2. The example
given in Figure 2 shows that if we prescribe the images of four points, then a
negative fixed-point index may be forced.

A version of the Three Point Prescription Lemma 1.2 is stated in [Ste05,
Lemma 8.14], but we have not been able to fill in the details of the argu-
ment. The idea of the approach is as follows: first, any Riemann mapping
Φ : Ω→ Ω̃ between open Jordan domains having non-self-intersecting bound-
aries extends to a homeomorphism ∂Φ : ∂Ω→ ∂Ω̃ of their boundaries, and we
may prescribe the images of three points of ∂Ω in ∂Ω̃ by post-composing with
self-biholomorphisms of Ω̃. Next, it is known that any isolated fixed point of
a holomorphic map has non-negative multiplicity, see [HS93, Section 2]. Thus
the map ∂Φ, if it is indexable, has non-negative fixed-point index, because
the fixed-point index of ∂Φ counts the fixed points of Φ with multiplicity,
completing the argument. However, it is not clear how to deal with possible
fixed points in the induced boundary map ∂Φ. Our proof of Lemma 1.2 uses
only induction and plane topology arguments and is given in Section 7.

For a discussion on the strength of the hypotheses of Lemma 1.2, refer to
Remark 7.1 at the end of the article.

We also state and prove a new fundamental lemma on fixed-point index,
generalizing the well-known Circle Index Lemma 2.1 which states that the
fixed-point index of an indexable homeomorphism between circles is always
non-negative. The Circle Index Lemma was a crucial ingredient in all of
the applications of fixed-point index described above. In our generalization,
round disks are replaced by closed Jordan domains which do not disconnect
each other. In particular, the closed Jordan domains K and K̃ are said to
cut each other if K \ K̃ or K̃ \K is disconnected. Then there is the following
lemma.

Lemma 1.3. Let K and K̃ be closed Jordan domains in transverse position,
which do not cut each other, having boundaries oriented positively. Let φ :
∂K → ∂K̃ be an indexable homeomorphism. Then η(φ)≥ 0.

The proof appears at the end of Section 3.
As an example of the power of fixed-point index, we apply the Three Point

Prescription Lemma 1.2 and Lemma 1.3 to prove a version of the Incompati-
bility Theorem of Schramm [SCH91, Theorem 3.1], as described in Section 3.
The Incompatibility Theorem is then easily applied in Section 4 to prove some
well-known rigidity theorems for circle packings. The ideas for these proofs
are borrowed from [HS93], [Ste05, Chapter 8].
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2. Background lemmas and definitions

In the upcoming discussion, it will be useful to have access to two well-
known lemmas on fixed-point index. This section is devoted to introducing
these two lemmas.

Our first background lemma says essentially that “the fixed-point index
between two circles is always non-negative”:

Circle Index Lemma 2.1. Let K and K̃ be closed Jordan domains in
C, with boundaries oriented positively, and let φ : ∂K → ∂K̃ be an indexable
homeomorphism. Then the following hold.

(1) We have η(φ) = η(φ−1).

(2) If K ⊆ K̃ or K̃ ⊆K, then η(φ) = 1.

(3) If K and K̃ have disjoint interiors, then η(φ) = 0.

(4) If ∂K and ∂K̃ intersect in exactly two points, then η(φ)≥ 0.

As a consequence of the above, if K and K̃ are closed disks in the plane, then
η(φ)≥ 0.

Lemma 2.1 can be found in [HS93, Lemma 2.2], with a clear and complete
proof. There it is indicated that a version of the lemma appeared earlier in
[Str51].

The moral of our second background lemma is that fixed-point indices “add
nicely”:

Index Additivity Lemma 2.2. Suppose that K and L are interiorwise
disjoint closed Jordan domains which meet along a single positive-length Jor-
dan arc ∂K ∩ ∂L, similarly for K̃ and L̃. Then K ∪L and K̃ ∪ L̃ are closed
Jordan domains.

Let φ : ∂K → ∂K̃ and ψ : ∂L→ ∂L̃ be indexable homeomorphisms. Suppose
that φ and ψ agree on ∂K ∩ ∂L. Let θ : ∂(K ∪L)→ ∂(K̃ ∪ L̃) be induced via
restriction to φ or ψ as necessary. Then θ is an indexable homeomorphism
and η(θ) = η(φ) + η(ψ).

Proof. The situation is as depicted in Figure 3. We may consider η(φ) to
be 1/2π times the change in argument of the vector φ(z)− z, as z traverses
∂K once in the positive direction. Then as z varies positively in ∂K and in
∂L the contributions to the sum η(φ) + η(ψ) along ∂K ∩ ∂L cancel. �

Next, we wish to make precise our notion of transverse position:

Definition 2.3. Two Jordan curves γ and γ̃ are in transverse position if
for any point z ∈ γ ∩ γ̃ where they meet, they cross transversely, which here
means that there is an open neighborhood U ⊂C of z and a homeomorphism
φ : U →D between U and the open unit disk D, so that φ(γ ∩U) =R∩D and
φ(γ̃ ∩ U) = iR ∩ D. Two (open or closed) Jordan domains are said to be in
transverse position if their boundary Jordan curves are in transverse position.
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Figure 3. An illustration of fixed-point index additivity.

Note that if two Jordan curves are in transverse position, then they meet
finitely many times, by a compactness argument.

Finally, it will be helpful to have available to us the terminology of the
following definition.

Definition 2.4. Suppose that X1, . . . ,Xn and X ′
1, . . . ,X

′
n are all subsets

of C. Then we say that the collections {X1, . . . ,Xn} and {X ′
1, . . . ,X

′
n} are in

the same topological configuration if there is an orientation-preserving home-
omorphism ϕ : C→ C so that ϕ(Xi) =X ′

i for all 1 ≤ i ≤ n. In practice, the
collections of objects under consideration will not be labeled Xi and X ′

i , but
there will be some natural bijection between them. Then our requirement is
that ϕ respects this natural bijection. We say that certain conditions on some
objects uniquely determine their topological configuration if any two collec-
tions of objects satisfying the given conditions are in the same topological
configuration.

For example, considering a point z ∈ C and an open Jordan domain Ω,
the condition that z ∈Ω uniquely determines the topological configuration of
{z,Ω}, but the condition that z /∈Ω does not uniquely determine the topolog-
ical configuration of {z,Ω}. (We may have z ∈ ∂Ω, or z ∈ C \ (Ω ∪ ∂Ω), and
these situations are topologically distinct.)

The following lemma says that when working with fixed-point index, we
need to consider our Jordan domains only “up to topological configuration.”

Lemma 2.5. Suppose K and K̃ are closed Jordan domains. Let f : ∂K →
∂K̃ be an indexable homeomorphism. Suppose that K ′ and K̃ ′ are also closed
Jordan domains, so that {K,K̃} and {K ′, K̃ ′} are in the same topological con-

figuration, via the homeomorphism ϕ :C→C. Let f ′ : ∂K ′ → ∂K̃ ′ be induced
in the natural way, explicitly as f ′ = ϕ|∂K̃ ◦ f ◦ϕ−1|∂K′ . Then f ′ is indexable

with respect to the usual orientation on ∂K ′ and ∂K̃ ′, and η(f) = η(f ′).

Proof. The following is well known. For a reference, see Chapters 1 and 2
of [FM12].

Fact 2.6. Every orientation-preserving homeomorphism C→ C is homo-
topic to the identity map via homeomorphisms.
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Thus let Ht : C × [0,1]→ C be such a homotopy from the identity to ϕ.
Explicitly, for fixed t we have that Ht is an orientation-preserving homeomor-
phism C→C, with H0 equal to the identity on C and H1 = ϕ.

Let Kt = Ht(K) and K̃t = Ht(K̃). Then Kt and K̃t are closed Jordan

domains, because Ht is a homeomorphism. Let ft : ∂Kt → ∂K̃t be induced in
the natural way, explicitly as Ht|∂K̃ ◦ f ◦H−1

t |∂Kt . Let γt = {ft(z)− z}z∈∂Kt .
Then tautologically η(f) is the winding number of γ0 around the origin, and
η(f ′) is the winding number of γ1 around the origin.

Every γt is a closed curve because ∂Kt is a closed curve and ft is contin-
uous. Once we establish that no γt passes through the origin, Lemma 2.5
will be proved because we have an induced homotopy from γ0 to γ1, and two
curves homotopic in C \ {0} have the same winding number around the ori-
gin. Suppose for contradiction that 0 ∈ γt. Then there is a z ∈ ∂Kt so that
ft(z) = z. Thus Ht ◦ f ◦H−1

t (z) = z, and so f(H−1
t (z)) =H−1

t (z), contradict-
ing the fixed-point-free condition on f . �

3. The Incompatibility Theorem

In this section, we state and prove the Incompatibility Theorem of Oded
Schramm, appearing in [SCH91, Theorem 3.1]. Before doing so, we need some
preliminary definitions:

First, a topological rectangle is a closed Jordan domain R with four marked
points on its boundary ∂R, which we naturally call its corners. A side of R is a
closed sub-arc of ∂R having two corners of R as its endpoints, and containing
no other corner of R. We abuse notation slightly and use the same symbol,
in this case R, to refer both to a topological rectangle and to its constituent
closed Jordan domain. We define topological triangles, their corners, and their
sides analogously, and employ the same abuse of notation.

A packing of a topological rectangle R consists of a finite collection {K1,
. . . ,Kn} of closed Jordan domains so that the following hold:

• Every Ki is contained in R.
• The Ki are pairwise interiorwise disjoint, and any two of them meet at at
most one point.

• Each of the Ki meets ∂R at at most one point, and no Ki meets a corner
of R.

• For every connected component U of R \
⋃n

i=1Ki, we have that the closure
of U is a topological triangle T each of whose sides is contained in one of
the ∂Ki, or in a side of R. Then every corner of T is either a corner of R,
or an intersection point of some ∂Ki either with some other ∂Kj or with
∂R.

See Figure 4 for two examples of packings of topological rectangles. Let
Sa, Sb, Sc, Sd denote the sides of R. The contact graph of the packing of R
by K1, . . . ,Kn is the graph having vertices v1, . . . , vn corresponding to the
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R

R̃

Figure 4. Two topological rectangles packed with shapes.

K1, . . . ,Kn and va, vb, vc, vd corresponding to the sides of R, both in the nat-
ural way, so that two distinct vertices share an edge if and only if the corre-
sponding sets meet. Note that for example, the contact graph of a packing of
a rectangle is always a triangulation of a square, that is, a triangulation of a
topological closed disk having four boundary edges.

Next, suppose that we have packings of topological rectangles R and R̃ by
collections of closed Jordan domains K1, . . . ,Kn and K̃1, . . . , K̃n, respectively.
The two packings are said to be in transverse position if:

• For every pair of integers i and ĩ, both between 1 and n, with possibly
i= ĩ, we have that Ki and K̃ĩ are in transverse position as closed Jordan
domains.

• For every 1 ≤ i ≤ n, we have that Ki and R̃ are in transverse position as
closed Jordan domains, as are K̃i and R.

• No intersection point of a pair of the sets ∂K1, . . . , ∂Kn, ∂R lies on any
∂K̃i nor on ∂R̃. Similarly, no intersection point of a pair of the sets
∂K̃1, . . . , ∂K̃n, ∂R̃ lies on any ∂Ki nor on ∂R.

For two examples of packings in transverse position, see Figure 5.
Finally, two closed Jordan domains K and K̃ which are in transverse po-

sition are said to cut one another if at least one of the sets K \ K̃ and K̃ \K
is disconnected. Though it is not important for us, it holds for such K and
K̃ that K \ K̃ is connected if and only if K̃ \K is.

We are now ready to state our version of the Incompatibility Theorem
originally due to Schramm. The original appears in [SCH91, Theorem 3.1],
where it is used to give the first proof of the rigidity of circle packings filling
the complex plane.

When processing our statement of the Incompatibility Theorem 3.1, it may
be helpful to keep the following in mind: in Schramm’s original formulation,
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Figure 5. Shapes cutting each other. We have drawn R
and R̃ on top of each other in two different “incompatible”
ways, and in both cases some pair of corresponding shapes
are “incompatible.”
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Sa

Sb
Sc

Sd

S̃a

S̃b

S̃c

S̃d

R

R̃

Figure 6. Two rectangles cutting one another.

our notion of shapes cutting one another is referred to as incompatibility. Then
the Incompatibility Theorem 3.1 may be remembered as, “if two incompatible
rectangles are packed in the same combinatorial way, then at least one pair of
corresponding shapes of the two packings will be incompatible.” The precise
statement given in [SCH91] is somewhat different from the one we give here.
Our statement communicates the main idea of the theorem, and suffices for
our applications. Our proof uses fixed-point index, with the main new tool
being Lemma 1.3. The original proof by Schramm is via different methods,
but is also elementary.

Incompatibility Theorem 3.1. Let R and R̃ be topological rectangles
having sides Sa, Sb, Sc, Sd and S̃a, S̃b, S̃c, S̃d respectively, in the topological
configuration depicted in Figure 6. Suppose that we are given packings of
R and R̃ by collections of closed Jordan domains K1, . . . ,Kn and K̃1, . . . , K̃n
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respectively, in transverse position, so that the packings are combinatorially
equivalent in the following precise sense: denoting the contact graphs of the
packings by G and G̃ respectively, we insist that the following holds: letting
va, vb, vc, vd, v1, . . . , vn and ṽa, ṽb, ṽc, ṽd, ṽ1, . . . , ṽn denote the vertex sets of G
and G̃ in the natural way, we have that G and G̃ are isomorphic via the iden-
tification vi �→ ṽi for i= a, b, c, d,1, . . . , n. Then, there is an 1≤ i≤ n so that
Ki and K̃i cut each other.

For example, the packings shown in Figure 4 share a contact graph. In
Figure 5, we have overlaid them in two different ways, in both cases ensuring
that the hypotheses of Theorem 3.1 are satisfied. We see that in each case, a
pair of corresponding closed Jordan domains cut one another.

The rest of this section consists of a proof of the Incompatibility Theo-
rem 3.1. Our proof relies on the following simple lemma, which appeared in
the introduction but is restated here for the convenience of the reader.

Lemma 1.3. Let K and K̃ be closed Jordan domains in transverse position,
which do not cut each other, having boundaries oriented positively. Let φ :
∂K → ∂K̃ be an indexable homeomorphism. Then η(φ)≥ 0.

We now give the proof of Theorem 3.1 assuming Lemma 1.3:
First, note that there is a natural bijection between the Uf and the Ũf ,

where we write {Uf}f∈F to denote the connected components of R \ ∂R ∪⋃n
i=1Ki, similarly {Ũf}f∈F . Moreover, for fixed f , we have that Uf and Ũf

are topological triangles, and that the corners of Uf correspond in a natural

way to those of its partner Ũf . (To see this, one may consider the graphs

G and G̃. Each is the 1-skeleton of a triangulation of a topological closed
disk, and because the graphs are isomorphic, we get that the triangulations
are combinatorially equivalent. Then the Uf are in natural bijection with the

faces F of this combinatorial triangulation, as are the Ũf .)

Given such a pair Uf and Ũf , we have that Uf and Ũf are in transverse
position as closed Jordan domains, because the packings we began with are
in transverse position. For every such pair Uf and Ũf , orient ∂Uf and ∂̃Uf

positively, and let φf : ∂Uf → ∂Ũf be an indexable homeomorphism identify-
ing corresponding corners, satisfying η(φf )≥ 0. We may do so by the Three
Point Prescription Lemma 1.2.

Next, for every 1 ≤ i ≤ n, orienting ∂Ki and ∂K̃i positively, we obtain
an indexable homeomorphism φi : ∂Ki → ∂K̃i by restriction to the φf as

necessary. Also, via the same procedure, orienting ∂R and ∂R̃ positively,
we obtain an indexable homeomorphism φR : ∂R→ ∂R̃. Then, by the Index
Additivity Lemma 2.2, we have:

η(φR) =

n∑

i=1

η(φi) +
∑

f∈F

η(φf ).
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Now, as we saw in Figure 2, we have that η(φR) =−1. On the other hand,
every η(φf ) is non-negative by construction, and the η(φi) are non-negative
by Lemma 1.3, which gives us a contradiction.

To complete the proof of the Incompatibility Theorem 3.1, we require
the proofs of several lemmas. The proof of the Three Point Prescription
Lemma 1.2 is given in Section 7 using torus parametrization. Our proof of
Lemma 1.3 is inspired1 by an argument given by Schramm in [HS93, Proof
of Lemma 2.2], in support of the Circle Index Lemma 2.1. We first need to
prove a topological lemma on Jordan domains which do not cut each other.

Lemma 3.2. Suppose K and K̃ are closed Jordan domains in transverse
position which do not cut each other, whose boundaries meet at least twice.
Then the topological configuration of {K,K̃} is determined by how many times

∂K and ∂K̃ meet.

Proof. First, suppose without loss of generality that K is the closed unit
disk D̄. Let 2m ≥ 2 be the number of intersection points of ∂K with ∂K̃.
Note also that we may without loss of generality pick these arbitrarily along
∂K = ∂D. Label these z1, . . . , z2m in clockwise order around ∂K = ∂D. This
brings us to the situation of Figure 7(a).

Orient ∂K and ∂K̃ as usual. We now follow what happens as we traverse
∂K̃. By relabeling, we may suppose that ∂K̃ enters K at z1. Because the
interior of K̃ stays to the left of ∂K̃, and because ∂K̃ crosses ∂K at every
point where the two curves meet, it follows that ∂K̃ exits K at z2. The same
reasoning allows us to conclude that ∂K̃ enters K at z3, etc., so we get that
∂K̃ enters K at zi for all odd 1 ≤ i ≤ 2m, and exits K at zi for all even
1≤ i≤ 2m. This brings us to the situation of Figure 7(b).

We now consider where ∂K̃ goes after it crosses z1. Denote by zi the
point of ∂K ∩ ∂K̃ at which it arrives immediately after crossing z1, noting
that then i is even. We wish to establish that then i = 2, so suppose for
contradiction that i �= 2. This brings us to the situation of Figure 7(c). Then
[z1 → zi]∂K̃ disconnects K = D̄ into two components, call them A1 and A2.

We have that every connected component of K \ K̃ must then be completely

contained in one of A1 and A2. But K \ K̃ is connected by hypothesis, so

one of A1 and A2 must be disjoint from K \ K̃. We then get a contradiction,

because, keeping careful track of the orientation of ∂K̃, we see that there are
points of K \ K̃ immediately counterclockwise from z1 along ∂K, and points

of K \ K̃ immediately clockwise from z2 along ∂K, and these lie in different
components of K \ [z1 → zi]∂K̃ unless i= 2. The same reasoning allows us to

conclude that, for any odd 1≤ j ≤ 2m, after entering K at zj , the curve ∂K̃
exits K at zj+1, bringing us to the situation of Figure 7(d).

1 Thanks to Mario Bonk for suggesting this line of proof, greatly simplifying the required

arguments.
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Figure 7. The construction of the topologically unique pair
K and K̃ of transversely positioned closed Jordan domains,
not cutting each other, having boundaries meeting at 8
points. The orientation on ∂K = ∂D is the usual, positive
one, that is, the counterclockwise one. In all cases, dashed
arcs are sub-arcs of ∂K̃.
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By the same reasoning as in the previous paragraph, we get that, for any
even 1 ≤ j ≤ 2m, after exiting K at zj , the curve ∂K̃ enters K at zj+1,
adopting the convention that z2m+1 = z1. However, in this case, there are two
ways to connect zj to zj+1: roughly speaking, we may either travel clockwise
around the complement of K = D̄ from zj to zj+1, or counterclockwise. If we
connect every such pair zj and zj+1 with “clockwise” arcs, then the resulting

orientation on ∂K̃ is not positive with respect to the Jordan domain it bounds,
see Figure 7(e). Thus suppose without loss of generality, by relabeling if
necessary, that z2m and z1 are connected with a “counterclockwise” arc. Now
for the remaining pairs zj , zj+1, with j even, there are no choices (up to

topological equivalence) about how to draw the connecting sub-arcs of ∂K̃
between them, and we arrive at the situation of Figure 7(f). �

Remark 3.3. Which a priori topological configurations can occur for two
Jordan curves in transverse position is a poorly understood question, and is
known as the study of meanders. We are fortunate that our setting is nice
enough that a statement like that of Lemma 3.2 is possible. Thanks to Thomas
Lam for informing us of the topic of meander theory.

Proof of Lemma 1.3. In light of Lemmas 2.5 and 3.2, we may suppose that
K and K̃ are as in Figure 8, of course drawn with the correct number of
meeting points between ∂K and ∂K̃. Recalling that η(f) counts the winding
number of the vector f(z)−z around the origin, we consider when it is possible
for f(z)− z to be a positive real number. If z does not lie on the intersection

of the left-hand side of the rectangle ∂K with the interior of K̃, then f(z)−
z certainly has either a negative real component, or a non-zero imaginary
component. Thus, pick a z lying in this intersection. Then the only way for
f(z)− z to be real and positive is for f(z) to lie on the semicircular sub-arc of

∂K̃ to the right of z, as in the figure. But then, considering the orientations
on ∂K and ∂K̃, we get that the vector f(z) − z must always be turning
counterclockwise at such a z, as we traverse ∂K in the positive direction. We
conclude that whenever the curve {f(z)− z}∂K crosses the positive real axis,
it does so in the positive direction, thus the winding number of this curve
around the origin is non-negative. �

Remark 3.4. The same Figure 8 can be used to show that under the
hypotheses of Lemma 1.3, we get that η(f) ≤ 2. Thus the only fixed-point
indices which can be achieved in this setting are 0,1,2, and all three of these
occur. We do not use these facts, so working out the details is left as an
exercise for the interested reader.

4. Proof of rigidity and uniformization of circle packings

As an example of the power of fixed-point index, in this section we prove
three rigidity and uniformization theorems on circle packings. Theorem 4.1
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� � f(z)z

K
K̃

f(z)− z

Figure 8. We see that whenever f(z) − z is positive and

real, as we traverse ∂K and ∂K̃ positively, the point f(z)
is moving upward, and the point z is moving downward, so
the vector f(z)− z is winding counterclockwise, thus in the
positive direction.

is usually credited to Koebe [Koe36], Andreev [And70], and Thurston.2 All
of their proofs were via methods different from ours. Theorems 4.2 and 4.3
are originally due to Schramm [SCH91, Rigidity Theorems 1.1, 5.1], who
proved them essentially via the Incompatibility Theorem 3.1, although his
proof of the Incompatibility Theorem is not via fixed-point index techniques.
The first ones to study circle packings by fixed-point index techniques were
He and Schramm in [HS93], although they did not proceed via the Incom-
patibility Theorem, instead applying other normalizations to the packings in
question, to similarly argue by contradiction. For further references on circle
packing, see, for example, the articles [Sac94], [Roh11] and their bibliogra-
phies.

We begin with some basic definitions. A circle packing is a collection
P = {Di} of pairwise interiorwise disjoint round closed disks in the Riemann

sphere Ĉ. The contact graph of a circle packing is the graph having a vertex
for every disk of the packing, so that two vertices share an edge if and only if
the corresponding disks meet. Then the following hold.

2 Originally at his talk at the International Congress of Mathematicians, Helsinki, 1978,

according to [Sac94, p. 135]. See also [Thu, Chapter 13].
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Theorem 4.1. Suppose that P and P̃ are circle packings in Ĉ, sharing a
contact graph that triangulates the 2-sphere S

2. Then P and P̃ differ by a
Möbius or anti-Möbius transformation.

Theorem 4.2. Suppose that P and P̃ are circle packings which are locally
finite in C, sharing a contact graph that triangulates a topological open disk.
Then P and P̃ differ by a Euclidean similarity.

Theorem 4.3. There cannot be two circle packings P and P̃ sharing a
contact graph triangulating a topological open disk, so that one is locally finite
in C and the other is locally finite in the hyperbolic plane H

2, equivalently the
open unit disk D.

The rest of this section consists of the proofs of these three theorems. Before
moving on, we make one note.

Remark 4.4. The statement for locally finite packings in the hyperbolic
plane H

2 ∼= D analogous to Theorem 4.2 also holds. However, to apply our
techniques to prove it, one would need to show that two combinatorially equiv-
alent packings, both locally finite in H

2, having contact graphs triangulating
H

2, induce a homeomorphism, or at least some appropriately behaved iden-
tification, on the boundary ∂∞H

2 ∼= ∂D. This turns out to be true (in fact,
it follows from the rigidity theorem we discuss in this remark), but non-
trivial.

Proof of Theorem 4.1. The argument is by contradiction. The main idea is
to superimpose the packings P and P̃ on the Riemann sphere in a convenient
way. In particular, we isolate two topological quadrilaterals Q and Q̃ so that
they are packed in combinatorially equivalent ways by disks of P and P̃ , but
so that Q and Q̃ cut each other, as in Figure 5. Then the simple observation
that two round disks cannot cut each other gives us our desired contradiction,
via the Incompatibility Theorem 3.1.

Let X = (V,E,F ) be the common triangulation of S2 which P and P̃ re-

alize. Suppose for contradiction that P and P̃ are not equivalent under any
Möbius or anti-Möbius transformation. For the first part of the proof, we
apply a sequence of normalizations to P and to P̃ . Let f0 = 〈v1, v2, v3〉 ∈ F be

a face of X . We first normalize via a Möbius transformation so that Di = D̃i

for i= 1,2,3. Here Di ∈ P is the disk corresponding to the vertex vi ∈ V of
X , similarly D̃i ∈ P̃ . In particular, the correct Möbius transformation is the
one that sends the intersection points of the ∂Di to the corresponding ones
of the ∂D̃i.

Our next normalization is in our initial choice of f0 and our labeling of the
vi, as per the following observation.

Observation 4.5. Let v4 denote the vertex of X other than v1 so that
〈v2, v3, v4〉 is a face of X . Then there is some choice of f0 = 〈v1, v2, v3〉 so
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that the disks D4 and D̃4 are not equal after our normalization identifying
Di = D̃i for i= 1,2,3.

If there were no such choice of f0, then in fact every pair of corresponding
disks Di and D̃i would coincide after our first normalization, and so P and P̃
coincide.

An interstice of the packing P is a connected component of Ĉ \ P . Every
interstice is necessarily a curvilinear triangle, because the packing’s contact
graph triangulates Ĉ. For our next normalization, we insist that ∞ lies in
the interstice formed by D1 = D̃1,D2 = D̃2,D3 = D̃3 which contains no other
disks of either packing. Finally, we insist that D1 = D̃1,D2 = D̃2,D3 = D̃3 all
have Euclidean radius 1, and that D2 and D3 are tangent at a point lying
on the horizontal axis, so that D1 lies to their left. The situation for P is
depicted in Figure 9.

From now on, we work in the plane C, in the sense that ∞∈ Ĉ will not
move again for the remainder of the proof. Note that every face f of F
corresponds to some interstices Uf ⊂C and Ũf ⊂C of P and P̃ respectively,

except for f0, for which the interstices Uf0 = Ũf0 contain ∞. Let Q be the
topological quadrilateral shown in Figure 9(b). More precisely, let VQ = V \

�

�

D1

D2

D3

D4

(a)

D4

D2

D3

Q

(b)

Figure 9. The packing P after some normalizations. The
disks of P all lie between D1,D2,D3. Note that the interstice
formed by D1,D2,D3 on Ĉ is the outside region in these
figures. The disk D4 is “the first disk of P \ {D1,D2,D3}
we get to if we start scanning from the right.” In (b) the
topological quadrilateral Q is outlined in bold.
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{v1, v2, v3}, and let FQ = F \ {f0 = 〈v1, v2, v3〉, 〈v2, v3, v4〉}. Then we define

Q=
⋃

v∈VQ
Dv ∪

⋃
f∈FQ

Uf . Define the analogous objects for P̃ in the obvious
way.

We now apply one final transformation to P . First, suppose without loss
of generality that the Euclidean radius of D4 is larger than that of D̃4. Then
translate every disk of P to the right by a small amount ε > 0, leaving the
disks of P̃ unchanged. Denote this transformation by Tε. We will discuss
more precise requirements on ε later. The situation is depicted in Figure 10.
The essential point is that there is an open interval of values that ε > 0 may
take so that after all of our transformations, the topological quadrilaterals Q
and Q̃ are arranged qualitatively as in Figure 10(b). In particular, we may

choose ε so that the packings of Q and Q̃ by the remaining disks of P and P̃
are in transverse position, because there are only finitely many values of ε > 0
for which this fails. Then our desired contradiction follows immediately from
the Incompatibility Theorem 3.1, because round closed disks cannot cut one
another. �

D̃4

D4

D1 = D̃1

D2 = D̃2

D3 = D̃3

(a)

Q

Q̃

(b)

Figure 10. The interaction between P and P̃ before and
after applying Tε. In (a), we see the superimposition of the

Di with the D̃i before applying Tε to P . The disks Di are
drawn solid, and the disks D̃i are drawn dashed. In (b), we

see the relative positions of Q and Q̃ after applying Tε to P .



430 A. M. MISHCHENKO

Proof of Theorem 4.2. The proof of Theorem 4.2 proceeds along the same
lines, except that after our first round of normalizations identifying Di and
D̃i for i = 1,2,3, and sending a point of their common interstice to ∞, the
remaining disks of P accumulate around a point z∞ ∈ C, as do those of P̃
around a point z̃∞ ∈ C. The points z∞ and z̃∞ may coincide or may be
different. We define and apply Tε as before, this time making sure that z∞
and z̃∞ differ after applying Tε.

Next, pick small disjoint neighborhoods W and W̃ of z∞ and z̃∞ respec-
tively, and contained in Q and Q̃ respectively. Then, let VL be the set of
vertices v ∈ V so that both Dv ⊂W and D̃v ⊂ W̃ . Remove vertices from VL

until the sub-triangulation of X having vertices V \ VL is a triangulation of
a topological closed disk. Let FL be the set of faces of X corresponding to
interstices formed by disks whose vertices are in VL. Let L (which stands for

leftovers) be the union
⋃

v∈VL
Dv ∪

⋃
f∈FL

Uf ∪ z∞, and define L̃ similarly.

Then {Dv}v∈V \VL
together with L form a packing of the topological quadri-

lateral Q by closed Jordan domains, as do {D̃v}v∈V \VL
, L̃ in Q̃. Furthermore,

because L and L̃ are disjoint by construction, these two domains do not cut
each other. Then we get our desired contradiction by the Incompatibility
Theorem 3.1 as before. �

Proof of Theorem 4.3. The adaptation here is along similar lines as the
adaptation to prove Theorem 4.2. Suppose for contradiction that P is locally
finite in C, and P̃ is locally finite in H

2 ∼=D. This time, after our normaliza-
tions, the disks of P accumulate around a single point z∞, and the disks of
P̃ accumulate around some round circle C contained in the bounded region
in the plane formed between D1 = D̃1,D2 = D̃1,D3 = D̃3. This time, ensure
that we chose ε so that z∞ does not lie on the circle C. We define L and L̃
by throwing away disks of our circle packings, as before, but this time, either
L and L̃ are disjoint, or one contains the other. In either case, the two do not
cut each other, and the conclusion of the proof proceeds as before. �

5. Torus parametrization

Before defining torus parametrization, it will be helpful to have access to
the following simple lemma.

Lemma 5.1. Suppose K and K̃ are closed Jordan domains in transverse
position. Suppose that z ∈ ∂K ∩ ∂K̃. Orient ∂K and ∂K̃ positively as usual.
Then one of the following two mutually exclusive possibilities holds at the point
z.

(1) The curve ∂K̃ is entering K, and the curve ∂K is exiting K̃.

(2) The curve ∂K is entering K̃, and the curve ∂K̃ is exiting K.

Thus as we traverse ∂K, we alternate arriving at points of ∂K ∩ ∂K̃ where
(1) occurs and those where (2) occurs, and the same holds as we traverse ∂K̃.
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∂K

∂K̃
�
z

Figure 11. A meeting point between two Jordan curves in
transverse position. The orientation shown on ∂K implies
that K lies to the left. Depending on the orientation chosen
for ∂K̃ we will get that K̃ lies above ∂K̃ or below it.

Proof. Let z ∈ ∂K ∩ ∂K̃. We may assume, by applying a homeomorphism,
that locally near z the picture looks like Figure 11, with ∂K oriented down-
to-up as shown. Then K lies to the left of ∂K. Now, certainly ∂K̃ is either
entering or exiting K at z. Suppose ∂K̃ is entering K at z. Then ∂K̃ is
oriented right-to-left, and so K̃ is below ∂K̃. Thus ∂K is exiting K̃, and case
(1) occurs. Similarly, if ∂K̃ is exiting K at z then ∂K is entering K̃ at z, so
case (2) occurs. �

We are now ready to define torus parametrization. Throughout the defini-
tion, refer to Figure 12 for an example.

Definition 5.2. Let K and K̃ be closed Jordan domains in transverse
position, so that ∂K and ∂K̃ meet at 2M ≥ 0 points, with boundaries oriented
as usual. Let ∂K ∩ ∂K̃ = {P1, . . . , PM , P̃1, . . . , P̃M}, where Pi and P̃i are

labeled so that at every Pi we have that ∂K is entering K̃, and at every P̃i we
have that ∂K̃ is entering K. Imbue S1 with an orientation and let κ : ∂K → S

1

and κ̃ : ∂K̃ → S
1 be orientation-preserving homeomorphisms. We refer to this

as fixing a torus parametrization for K and K̃.
We consider a point (x, x̃) on the 2-torus T= S

1 × S
1 to be parametrizing

simultaneously a point κ−1(x) ∈ ∂K and a point κ̃−1(x̃) ∈ ∂K̃. We denote by
pi ∈ T the unique point (x, x̃) ∈ T satisfying κ−1(x) = κ̃−1(x̃) = Pi, similarly
p̃i ∈ T. Note that by the transverse position hypothesis no pair of points in
{p1, . . . , pM , p̃1, . . . , p̃M} share a first coordinate, nor a second coordinate.

Suppose we pick (x0, x̃0) ∈ S
1 × S

1. Then we may draw an image of T =
S
1 × S

1 by letting {x0}× S
1 be the vertical axis and letting S

1 ×{x̃0} be the
horizontal axis. Then we call (x0, x̃0) a base point for the drawing.

Suppose that φ : ∂K → ∂K̃ is an orientation-preserving homeomorphism.
Then φ determines an oriented curve γ in T for us, namely its graph γ =
{(κ(z), κ̃(φ(z)))}z∈∂K , with orientation obtained by traversing ∂K positively.
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K

u K̃

ũ

P1

P2

P̃1

P̃2

�

�

p1

p2

p̃1

p̃2

�

�

�

�

�

(κ(u), κ̃(ũ))

Figure 12. A pair of closed Jordan domains K and K̃ and
a torus parametrization for them, drawn with base point
(κ(u), κ̃(ũ)). The key points to check are that as we vary
the first coordinate of T positively starting at u, we arrive
at κ(P1), κ(P̃1), κ(P2), and κ(P̃2) in that order, and as we
vary the second coordinate of T positively starting at κ̃(ũ),

we arrive at κ̃(P1), κ̃(P̃2), κ̃(P2), and κ̃(P̃1) in that order.

Note that φ is fixed-point-free if and only if its associated curve γ misses all
of the pi and p̃i. Pick u ∈ ∂K and denote ũ = φ(u). Then if we draw the

torus parametrization for K and K̃ using the base point (κ(u), κ̃(ũ)), the
curve γ associated to φ essentially looks like the graph of a strictly increasing
function from a closed interval to itself. The converse is also true: given
any such γ, it determines for us an orientation-preserving homeomorphism
∂K → ∂K̃ sending u to ũ, which is fixed-point-free if and only if γ misses all
of the pi and p̃i.

Suppose that φ(u) = ũ, equivalently that (κ(u), κ̃(ũ)) ∈ γ. The curve γ and
the horizontal and vertical axes {κ̃(ũ)}×S

1 and S
1×{κ(u)} divide T into two
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simply connected open sets Δ↑(u,γ) and Δ↓(u,γ) as shown in Figure 13. We
suppress the dependence on ũ in the notation because ũ= φ(u). If neither u ∈
∂K̃ nor ũ ∈ ∂K, then every pi and every p̃i lies in either Δ↓(u,γ) or Δ↑(u,γ).
In this case, we write #p↓(u,γ) to denote |{p1, . . . , pM}∩Δ↓(u,γ)| the number
of points pi which lie in Δ↓(u,γ), and we define #p↑(u,γ), #p̃↓(u,γ), and
#p̃↑(u,γ) in the analogous way. Denote by ω(α, z) the winding number of the
closed curve α⊂C around the point z /∈ α.

Suppose γ0 is any oriented closed curve in T \ {p1, . . . , pM , p̃1, . . . , p̃M}.
Then the closed curve {κ̃−1(x̃)− κ−1(x)}(x,x̃)∈γ0

misses the origin, and has a
natural orientation obtained from that of γ0. We denote by w(γ0) the winding
number around the origin of {κ̃−1(x̃)− κ−1(x)}(x,x̃)∈γ0

.
The following central lemma says that given an indexable homeomorphism

φ : ∂K → ∂K̃, we may read off its fixed-point index η(φ) simply by examining
the curve γ associated to φ in the way we just described:

Lemma 5.3. Let K and K̃ be closed Jordan domains. Fix a torus
parametrization of K and K̃ via κ and κ̃. Let φ : ∂K → ∂K̃ be an indexable
homeomorphism, with graph γ in T. Suppose that φ(u) = ũ, where u /∈ ∂K̃
and ũ /∈ ∂K. Then:

η(φ) =w(γ) = ω(∂K, ũ) + ω(∂K̃,u)−#p↓(u,γ) +#p̃↓(u,γ)(1)

= ω(∂K, ũ) + ω(∂K̃,u) +#p↑(u,γ)−#p̃↑(u,γ).(2)

The remainder of the section is spent proving Lemma 5.3.
We begin with an observation.

Observation 5.4. If γ1 and γ2 are homotopic in T \ {p1, . . . , pM , p̃1, . . . ,
p̃M}, then w(γ1) =w(γ2).

This is because the homotopy between γ1 and γ2 in T \ {p1, . . . , pM , p̃1, . . . ,
p̃M} induces a homotopy between the closed curves {κ̃−1(x̃)−κ−1(x)}(x,x̃)∈γ1

and {κ̃−1(x̃)− κ−1(x)}(x,x̃)∈γ2
in the punctured plane C \ {0}.

Suppose that φ : ∂K → ∂K̃ is a fixed-point-free orientation-preserving
homeomorphism. Let γ be its graph in T. If γ has orientation induced by
traversing ∂K and ∂K̃ positively, then the following is a tautology.

Observation 5.5. η(φ) =w(γ).

Orient ∂Δ↓(u,γ) as shown in Figure 13. Then ∂Δ↓(u,γ) is the concate-
nation of the curve γ traversed backwards with S

1 ×{κ̃(ũ)} and {κ(u)}× S1,
where the two latter curves are oriented according to the positive orientation
on S

1.

Observation 5.6. If S
1 × {κ̃(ũ)} and {κ(u)} × S

1 are oriented accord-
ing to the positive orientation on S

1, then w(S1 × {κ̃(ũ)}) = ω(∂K, ũ) and

w({κ(u)} × S
1) = ω(∂K̃,u).
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It is also easy to see that if we concatenate two closed curves γ1 and γ2
that meet at a point, we get w(γ1 ◦ γ2) =w(γ1)+w(γ2). Thus, in light of the

orientations on ∂Δ↓(u,γ) and all other curves concerned we get:

w
(
∂Δ↓(u,γ)

)
=w

(
S
1 ×

{
κ̃(ũ)

})
+w

({
κ(u)

}
× S

1
)
−w(γ)

= ω(∂K, ũ) + ω(∂K̃,u)− η(φ).

For every i let ζ(pi) and ζ(p̃i) be small squares around pi and p̃i respectively

in T, oriented as shown in Figure 13. By square we mean a simple closed curve

which decomposes into four “sides,” so that on a given side one of the two

coordinates of S1 × S
1 = T is constant. Pick the squares small enough so that

the closed boxes they bound are pairwise disjoint and do not meet ∂Δ↓(u,γ).
Let Γ be the closed curve in Δ↓(u,γ) obtained in the following way. First,

start with every loop ζ(pi) and ζ(p̃j) for those pi and p̃j lying in Δ↓(u,γ).
Let δ0 be an arc contained in the interior of Δ↓(u,γ) which meets each ζ(pi)

and ζ(p̃j) contained in Δ↓(u,γ) at exactly one point. It is easy to prove

inductively that such an arc exists. Let δ be the closed curve obtained by

traversing δ0 first in one direction, then in the other. Then let Γ be obtained

by concatenating δ with every ζ(pi) and ζ(p̃j) contained in Δ↓(u,γ).

�

(κ(u), κ̃(ũ))

Δ↑(u,γ)

Δ↓(u,γ)

γ

�

�

�

�

S
1 × {κ̃(ũ)}

{κ(u)} × S
1

p1

p̃1

p2

p̃2

Figure 13. A homotopy from ∂Δ↓(u,γ) to Γ. Here the ori-
entation shown on γ is the opposite of the orientation induced
by traversing ∂K positively.
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Observation 5.7. The curves Γ and ∂Δ↓(u,γ) are homotopic in T \
{p1, . . . , pM , p̃1, . . . , p̃M}. Also w(δ) = 0. It follows that:

w
(
∂Δ↓(u,γ)

)
=w(Γ) =

∑

pi∈Δ↓(u,γ)

w
(
ζ(pi)

)
+

∑

p̃j∈Δ↓(u,γ)

w
(
ζ(p̃j)

)
.

See Figure 13 for an example. On the other hand, the following holds.

Observation 5.8. w(ζ(pi)) = 1, w(ζ(p̃i)) =−1.

To see why, suppose that ζ(pi) = ∂([x0 → x1]S1 × [x̃0 → x̃1]S1). (If α is an
oriented topological circle with a0, a1 ∈ α, then we denote by [a0 → a1]α the
closed oriented sub-arc of α beginning at a0 and ending at a1.) Then up to
orientation-preserving homeomorphism the picture near Pi is as in Figure 14.
We let (x, x̃) traverse ζ(pi) positively starting at (x0, x̃0), keeping track of the
vector κ̃−1(x̃) − κ̃−1(x) as we do so. The vector κ̃−1(x̃0) − κ̃−1(x0) points
to the right. As x varies from x0 to x1, the vector κ̃−1(x̃) − κ̃−1(x) ro-
tates in the positive direction, that is, counter-clockwise, until it arrives at
κ̃−1(x̃0)− κ−1(x1), which points upward. Continuing in this fashion, we see
that κ̃−1(x̃) − κ̃−1(x) makes one full counter-clockwise rotation as we tra-
verse ζ(pi). The proof that w(ζ(p̃i)) = −1 is similar. Combining all of our
observations establishes equation (1). The proof that equation (2) holds is
similar.

K

K̃

�Pi

�

�

�

�κ−1(x0)

κ−1(x1)

κ̃−1(x̃0)

κ̃−1(x̃1)

Figure 14. The local picture near Pi. This allows us to
compute the “local fixed-point index” w(ζ(pi)) of f near Pi.



436 A. M. MISHCHENKO

6. Preparatory plane-topological lemmas

As usual, let K and K̃ be compact Jordan domains in transverse position,
whose boundaries meet at least twice. Note that the connected components
of ∂K ∩ ∂K̃ are points, that those of (∂K \ ∂K̃)∪ (∂K̃ \ ∂K) are topological

open intervals, and that those of Ĉ \ (∂K ∪ ∂K̃) are topological open disks.
Denote by X = (V,E,F ) the cellular decomposition of the Riemann sphere

obtained by taking the connected components of ∂K ∩ ∂K̃ to be the vertices,
those of (∂K \ ∂K̃)∪ (∂K̃ \ ∂K) to be the edges, and those of Ĉ \ (∂K ∪ ∂K̃)
to be the faces.

For a face f ∈ F , define deg(f) to be the number of sides of f . Note that
deg(f) is even for all f ∈ F . Let Fn = {f ∈ F : deg(f) = n}, and F>n = {f ∈
F : deg(f)> n}.

Lemma 6.1. |F2| ≥ 4. Furthermore, if there is an f ∈ F having deg(f)> 4,
then |F2|> 4.

Proof. Recall that for a cellular decomposition of a topological sphere, we
have |V | − |E|+ |F | = 2. In our setup, it is easy to see that |E| = 2|V |. It
follows that |F |= |E|/2 + 2.

Next, note that

2|E|=
∑

f∈F

deg(f) = 2|F2|+ 4|F4|+ 6|F6|+ · · ·

so we get that |E|= |F2|+2|F4|+3|F6|+ · · · . Finally, note that |F |= |F2|+
|F>2|.

Putting these together gives

|E|= |F2|+ 2|F4|+ 3|F6|+ 4|F8|+ · · ·
≥ |F2|+ 2|F4|+ 2|F6|+ 2|F8|+ · · ·
= |F2|+ 2|F>2|
= 2|F | − |F2|= |E|+ 4− |F2|

noting that the inequality on the second line is strict if there is an f ∈ F
having deg(f)> 4. The lemma follows. �

Let FK = {f ∈ F : f ⊂K \ K̃}, and define FK̃ analogously. Let F∅ = {f ∈
F : f ⊂ Ĉ \ (K ∪ K̃)}, and let F∩ = {f ∈ F : f ⊂K ∩ K̃}. Then, for example,
we have that F = FK�FK̃�F∅�F∩. We call f ∈ F a bigon of X if deg(f) = 2,

and we say that f is finite if the point ∞∈ Ĉ is not in f . For example, by
Lemma 6.1, we always have at least 3 finite bigons. Then F2 denotes the set
of all of the bigons of X .

Lemma 6.2. |FK |= |FK̃ |.
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Proof. This is apparent if ∂K and ∂K̃ meet twice, because in that case
K and K̃ can be in only one topological configuration (for example, by

Lemma 3.2). We proceed by induction on the size of |V |= |∂K ∩ ∂K̃|, using
|V |= 2 for our base case.

Suppose that |V | ≥ 4 and let f be a finite bigon of F . We have depicted
the picture near f in Figure 15. In this figure, we have that a, b, c, d, f are
faces of X = (V,E,F ), the cellular decomposition induced by K and K̃. Note
that c �= d because |V | ≥ 4.

Our plan is to modify K and K̃ as shown in the figure, to create two new
compact Jordan domains K ′ and K̃ ′. Using the prime symbol in the natural
way, we have that a′, b′, c′ in the figure are faces of X ′ = (V ′,E′, F ′), the

cellular decomposition induced by K ′ and K̃ ′. The modification results in
c and d coalescing to form c′, and causes f to effectively disappear. It also
reduces the number of intersection points of our Jordan domains, allowing us
to apply induction.

There are four possibilities to check. We work out the first in detail. Sup-
pose that f ∈ FK . In this case it follows that a ∈ F∩, b ∈ F∅, and c, d ∈ FK̃ .

Our modification to K,K̃ in this case has the effect of decreasing each of |FK |
and |FK̃ | by 1. We apply the induction hypothesis and we are done.

The remaining three cases to check are f ∈ FK̃ , F∩, F∅. These are left as
straightforward exercises for the reader. �

Lemma 6.3. |F∩|= |F∅|.

Proof. This follows from Lemma 6.2. Let z be a point in the interior
of K̃ \ K, let φ : Ĉ → Ĉ be a homeomorphism interchanging z and ∞, let

K ′ = φ(K), let K̃ ′ be the closure of Ĉ \ φ(K̃), and apply Lemma 6.2 to K ′

and K̃ ′. The details are left to the reader. �

a f b

d

c

a′ c′ b′

Figure 15. Applying the induction step in the proof of
Lemma 6.2. The solid arcs represent segments of ∂K and
of ∂K ′ on the left-hand and right-hand sides respectively,
similarly the dashed arcs for ∂K̃ and ∂K̃ ′.



438 A. M. MISHCHENKO

Lemma 6.4. |V | =
∑

f∈FK
deg(f) =

∑
f∈FK̃

deg(f) =
∑

f∈F∅
deg(f) =∑

f∈F∩
deg(f).

Proof. Every vertex v ∈ V lies on the boundaries of exactly four faces of
X , one from each of FK , FK̃ , F∅, F∩, and a face’s edge degree and its vertex
degree are the same. Thus every vertex can be thought of as being counted
exactly once in each of the sums in the statement of the lemma. �

Lemma 6.5. At least one of the following holds:

(1) There are strictly more than three finite bigons in X .
(2) There is a (necessarily finite) bigon of X in F∩.

Proof. Suppose that Condition 1 fails. Then, by Lemma 6.1, there are
exactly three finite bigons in X , and one infinite bigon, necessarily belonging
to F∅. Consider the sums S∅ =

∑
f∈F∅

deg(f) and S∩ =
∑

f∈F∩
deg(f). The

two sums are equal by Lemma 6.4, and they have the same number of terms,
all of which are positive even integers, by Lemma 6.3. The sum S∅ has at
least one term which is equal to 2 (coming from the infinite bigon). By the
strictness portion of Lemma 6.1, no term of the sum S∩ is strictly greater
than 4, so this sum must have at least one term which is equal to 2, which is
equivalent to Condition 2. �

Suppose that z1, z2, z3 ∈ ∂K \ ∂K̃ and z̃1, z̃2, z̃3 ∈ ∂K̃ \ ∂K appear in
counterclockwise order as in the statement of the Three Point Prescription
Lemma 1.2. Let f be a bigon of X . We define the notion of constraint point
count for f , denoted CPC, as follows:

CPCK(f) =
∣∣∂f ∩ {z1, z2, z3}

∣∣,
CPCK̃(f) =

∣∣∂f ∩ {z̃1, z̃2, z̃3}
∣∣,

CPC(f) =
(
CPCK(f),CPCK̃(f)

)
.

Then, for example, we get that:
∑

f∈F2

CPCK(f)≤ 3,

∑

f∈F2

CPCK̃(f)≤ 3.

Of course the constraint point count of f depends on the choices of zi, z̃i. This
dependence is suppressed in the notation as it is normally clear which zi, z̃i
are meant.

Lemma 6.6. At least one of the following holds:

(1) There is a finite bigon f in X for which CPC(f) is equal to one of
(0,0), (1,0), (0,1).
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(2) There is a finite bigon f in X satisfying f ⊂K ∩ K̃, for which CPC(f)
is equal to one of (2,0), (1,1), (0,2).

Proof. Recall that by Lemma 6.1, there are always at least three finite
bigons in X .

First, suppose that we have strictly more than three finite bigons. In
this case, we will see that Condition 1 holds. Let f1, f2, f3, f4 be four
of our finite bigons, and suppose for contradiction that Condition 1 fails.
Then, for each fi we have that CPCK(fi) + CPCK̃(fi) ≥ 2. It follows

that
∑4

i=1CPCK(fi) + CPCK̃(fi) ≥ 8. On the other hand, we know that∑4
i=1CPCK(fi) +CPCK̃(fi)≤ 6, which is a contradiction.
Next, suppose that we have exactly three finite bigons, implying by

Lemma 6.5 that at least one of them, call it f0, lies in K ∩ K̃. Let f1, f2
denote the other two. Suppose that Condition 1 fails. Then, we have that
CPCK(fi) + CPCK̃(fi) ≥ 2 for i = 0,1,2. On the other hand, we know as

before that
∑2

i=0CPCK(fi) + CPCK̃(fi) ≤ 6. Putting these inequalities to-
gether gives that CPCK(fi)+CPCK̃(fi) = 2, in particular for i= 0, implying
Condition 2. �

7. Proof of the Three Point Prescription Lemma 1.2

Let K and K̃ be compact Jordan domains in transverse position. Let
z1, z2, z3 ∈ ∂K \ ∂K̃ appear in counterclockwise order, similarly z̃1, z̃2, z̃3 ∈
∂K̃ \∂K. We wish to find an indexable homeomorphism φ : ∂K → ∂K̃ sending
zi �→ z̃i for i= 1,2,3.

(We remind the interested reader to refer to Remark 7.1 at the end of the

section for a discussion on the strength of the hypotheses on K,K̃, zi, z̃i in
the statement of the lemma.)

We proceed by induction on the number of intersection points ∂K ∩ ∂K̃,
recalling that this number is always even. The Circle Index Lemma 2.1 takes
care of the cases where ∂K and ∂K̃ meet 0 or 2 times. Thus, suppose for the
remainder of the argument that ∂K and ∂K̃ meet at least 4 times.

Our plan is to apply basically the same modification to K and K̃ as we did
in Lemma 6.2 and Figure 15, except this time, we will be particular in our
choice of which finite bigon to focus on. For the remainder of the proof, we use
K ′ and K̃ ′ to denote the domains obtained via this modification. Figure 16
gives an alternative, topologically equivalent, example visualization.

We continue with the notation of Section 6. Suppose that we have chosen
a finite bigon f of X . Beginning with a torus parametrization for K and K̃,
we pick a torus parametrization for K ′ and K̃ ′, and show how we can move
between these two parametrizations.

Let U ⊂C be a simply connected open neighborhood of f ⊂C, with closure
Ū , so that Ū ∩ (∂K∩∂K̃) = ∂f ∩ (∂K∩∂K̃), and so that every zi and every z̃i
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KK̃

K ′

K̃ ′

Figure 16. A before-and-after view of the modification we
apply to K and K̃ in the induction step of the proof of the
Three Point Prescription Lemma 1.2. We essentially get rid
of one of our finite bigons. In this case, we had three choices
of which finite bigon to focus on.

in Ū also lies in ∂f . Conceptually, we want U to be a very small neighborhood
of f . As before, we obtain K ′ and K̃ ′ by modifying K and K̃ within U , so
that ∂K ′ and ∂K̃ ′ do not meet in U . Let ψK : ∂K ∩U → ∂K ′ ∩U denote an
orientation-preserving homeomorphism which agrees with the identity map
on the endpoints of its domain, and define ψK̃ similarly. Extend ψK and ψK̃

to all of ∂K and ∂K̃ via the identity map. Define z′i = ψK(zi) and z̃′i = ψK̃(z̃′i)
for i= 1,2,3.

Suppose that we have fixed a torus parametrization κ : ∂K → S
1, κ̃ : ∂K̃ →

S1 for K and K̃. Let κ′ = ψ−1
K ◦ κ and κ̃′ = ψ−1

K̃
◦ κ̃. Then κ′ : ∂K ′ → S1, κ̃′ :

∂K̃ ′ → S
1 is a torus parametrization for K ′ and K̃ ′ so that κ≡ κ′ and κ̃≡ κ̃′

outside of U , and so that κ(zi) = κ′(z′i) and κ̃(z̃i) = κ̃′(z̃′i) for i= 1,2,3.
By the induction hypothesis, there exists an indexable homeomorphism

φ′ : ∂K ′ → ∂K̃ ′ sending z′i �→ z̃′i for i= 1,2,3, satisfying η(φ′)≥ 0. Let γ′ be
the graph of φ′ in T = S

1 × S
1 according to the parametrization κ′, κ̃′. Our

goal is to modify γ′ to obtain a new simple closed curve γ ⊂ T which will be the
graph, according to the parametrization κ, κ̃, of an indexable homeomorphism
φ : ∂K → ∂K̃, in such a way that φ has the properties required to complete
the proof of the lemma.

We break the conclusion of the proof into two cases according to Lemma 6.6.
Case 1 of Lemma 6.6. Without loss of generality, by interchanging the roles

of K and K̃ if necessary, let f be a finite bigon in X satisfying CPCK(f) = 0,
with CPCK̃(f) equal to either 0 or 1. Consider the strips SK̃ = S

1 × κ̃(U ∩
∂K̃) = S

1× κ̃′(U ∩∂K̃ ′)⊂ T and SK = κ(U ∩∂K)×S
1 = κ′(U ∩∂K ′)×S

1 ⊂ T,
let S∪ = SK ∪ SK̃ denote their union, and let S∩ = SK ∩ SK̃ denote their

intersection. Note that there is no point in ∂K ′ ∩ ∂K̃ ′ whose parametrization
under κ′, κ̃′ lies in S∪, more formally that {(κ′(z), κ̃′(z)) : z ∈ ∂K ′ ∩ ∂K̃ ′} ∩
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S∪ = ∅. It follows that if we modify γ′ however we like within S∪, leaving
the points γ′ ∩ ∂S∪ fixed, to obtain a new simple closed curve γ ⊂ T which

• is strictly increasing in the sense of Section 5,
• contains (as is the case with γ′) the points (κ′(z′i), κ̃

′(z̃′i)), equivalently
(κ(zi), κ̃(z̃i)), for i= 1,2,3, and

• does not contain (as is the case with γ′) any of the points (κ(z), κ̃(z)) for

z ∈ ∂K ∩ ∂K̃, noting that ∂K ′ ∩ ∂K̃ ′ ⊂ ∂K ∩ ∂K̃,

then γ will be the graph of both of two indexable homeomorphisms φ′′ : ∂K ′ →
∂K̃ ′ and φ : ∂K → ∂K̃, where furthermore η(φ′′) = η(φ′)≥ 0.

Next, note that the only points of ∂K ∩ ∂K̃ whose parametrizations under
κ, κ̃ lie in S∪ are the corners of the bigon f , call them P and P̃ . Let p =
(κ(P ), κ̃(P )) ∈ T, and define p̃ similarly. Our goal is to obtain γ as above
so that the two points p and p̃ lie on the same side of γ. More formally, let
1 ≤ j ≤ 3 be chosen so that zj , z̃j /∈ U . Then, in the language of Section 5,
we will arrange so that either both p and p̃ lie in Δ↓(zj , γ), or both lie in
Δ↑(zj , γ). For example, if γ′ does not meet S∩ � p, p̃, then this condition is
satisfied automatically by taking γ = γ′. Having found such a γ, it will follow
from Lemma 5.3 that η(φ) = η(φ′′), completing the proof in this case.

Without loss of generality, by enlarging U slightly if necessary, we may
assume that ∂SK ∩ ∂SK̃ ∩ γ′ =∅. Then, because γ′ is strictly increasing, we
get that γ′ meets ∂S∩ either 0 or 2 times. In the former case, we are done
by our earlier observation, so suppose γ′ meets ∂S∩ twice. It follows by the
pigeonhole principle that γ′ meets ∂S∪ twice, since γ′ meets each of SK and
SK̃ twice.

Let {v↗, v↖, v↙, v↘}= ∂SK ∩∂SK̃ denote the corners of S∩ in the natural
way. Let g1, g2 ∈ γ′ ∩ ∂S∪ denote the points where γ′ enters and exits S∪,
respectively. If there is an i so that (κ(zi), κ̃(z̃i)) ∈ S∪, then let gz denote
(κ(zi), κ̃(z̃i)), otherwise let gz remain undefined. Note that if gz is defined then
gz ∈ SK̃ by our assumption that CPCK(f) = 0. We are now ready to describe
the construction of γ. We refer the reader to Figure 17 for an example.

First, suppose that gz is undefined (equivalently that CPCK̃(f) = 0). Then,
let γ be obtained by replacing [g1 → g2]γ′ by a strictly increasing arc starting
at g1, progressing first to a point located infinitesimally northwest of v↘, then
to g2. This γ satisfies our requirements and we are done.

Next suppose that gz is defined. One of two cases occurs: starting at g1,
either γ′ passes through gz and then through S∩, or it passes through S∩ and
then through gz . In the first case, construct γ from γ′ by replacing [gz → g2]γ′

by a strictly increasing arc starting at gz , progressing first to a point located
infinitesimally southeast of v↖, then to g2. In the second case, construct
γ from γ′ by replacing [g1 → gz]γ′ by a strictly increasing arc starting at g1,
progressing first to a point located infinitesimally northwest of v↘, then to gz .
In both cases γ satisfies our requirements and we are done.
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Figure 17. An example construction of γ in the proof of the
Three Point Prescription Lemma 1.2 in Case 1 of Lemma 6.6.
Here the lightly shaded region is S∩, and the darker regions
comprise S∪ \S∩. Here CPCK̃(f) = 1, and in the notation of
the proof, we have chosen j = 1, noting that z1, z̃1 /∈ U .

Case 2 of Lemma 6.6. Without loss of generality, by interchanging the roles
of K and K̃ if necessary, let f be a finite bigon of X satisfying f ⊂K ∩ K̃
with CPC(f) equal to either (1,1) or (0,2).

Note that if CPC(f) = (0,2), then

• U ∩ ∂K is a strict subset of exactly one of [z1 → z2]∂K , [z2 → z3]∂K , or
[z3 → z1]∂K , and

• U ∩ ∂K̃ is a strict superset of exactly one of [z̃1 → z̃2]∂K̃ , [z̃2 → z̃3]∂K̃ , or
[z̃3 → z̃1]∂K̃ .

By cyclically and simultaneously permuting the indices of the zi and z̃i if
necessary, we assume from now on without loss of generality that if CPC(f) =

(0,2), then U ∩ ∂K̃ ⊃ [z̃2 → z̃3]∂K̃ .
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First, suppose that either

• CPC(f) = (1,1), and there does not exist an i so that (κ(zi), κ̃(z̃i)) ∈ S∩,
or

• CPC(f) = (0,2), and U ∩ ∂K �⊂ [z2 → z3]∂K .

In both of these cases, it is possible to obtain γ from γ′ via a construction
very similar to that given in Case 1. This is left to the reader.

Finally, we have that either

• CPC(f) = (1,1), and there exists an i so that (κ(zi), κ̃(z̃i)) ∈ S∩, or
• CPC(f) = (0,2), and U ∩ ∂K ⊂ [z2 → z3]∂K .

In both of these cases, we set γ = γ′. We refer the reader to Figure 18 for
an example. Let P, P̃ denote the points of ∂K ∩ ∂K̃ ∩ f where ∂K enters K̃,
respectively where ∂K̃ entersK, using notation analogous to that of Section 5.
Because of the orientations on ∂f ∩ ∂K and ∂f ∩ ∂K̃ forced by the condition
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Figure 18. An example construction of γ in the proof of the
Three Point Prescription Lemma 1.2 in Case 2 of Lemma 6.6.
Here the shaded region is S∩. In this example CPC(f) =
(0,2) with U ∩ ∂K ⊂ [z2 → z3]∂K .
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that f ⊂ K ∩ K̃, we have that p = (κ(P ), κ̃(P )) is in the northwest corner

of S∩, and that p̃ = (κ(P̃ ), κ̃(P̃ )) is in the southeast corner. Furthermore,
in both cases (whether CPC(f) is (1,1) or is (0,2)), the curve γ separates
S∩ so that p ∈Δ↑(z1, γ) and p̃ ∈Δ↓(z1, γ). It follows from Lemma 5.3 that
η(φ) = η(φ′) + 1, and we are done.

Remark 7.1. The conditions of Lemma 1.2 that z̃1, z̃2, z̃3 /∈ ∂K, that
z1, z2, z3 /∈ ∂K̃, and that K and K̃ are in transverse position may appear
to the reader to be too strong. There are several reasons that the lemma is
stated as it is.

First, it may seem that even if those conditions are violated, it might be be
possible to modify K and K̃ “very slightly” so that the stated hypotheses of
Lemma 1.2 do hold, and then, for example, apply the lemma to the modified
Jordan domains, hoping to recover the desired conclusion for our original
K and K̃ by reversing our modifications to them. A major issue with this
approach is that Lemma 1.2 as stated does not give any lower bound on
|φ(z)− z|; the author is not aware of a simple amendment to the proof that
would provide one. Because of this, it is a priori not trivial to arrange the
modifications to K and K̃ mentioned earlier so that they are guaranteed to
be reversible without altering η(φ).

Next, it is not clear what a good set of hypotheses is for a strengthened
version of Lemma 1.2. For the conclusion of the lemma to hold, it is necessary
that there be some indexable φ : ∂K → ∂K̃ identifying zi �→ z̃i, and without
the transverse position hypothesis, it is not trivial to give necessary and suffi-
cient conditions for the existence of such a φ. For example, no such φ exists if
[z1 → z2]∂K ⊂ [z̃1 → z̃2]∂K̃ . For a more involved example, treating real num-
bers as points in the complex plane, let z1 = 2, z2 = 0, z̃1 = 1, z̃2 = 3, so that
[z1 → z2]∂K ⊂R and [z̃1 → z̃2]∂K̃ ⊂R. Then no indexable φ : ∂K → ∂K̃ exists
which identifies z1 �→ z̃1 and z2 �→ z̃2.

It is possible that Lemma 1.2 holds under the hypothesis that there exists
any indexable φ : ∂K → ∂K̃ identifying zi �→ z̃i. However, this formulation
would be somewhat unsatisfying absent an understanding of when such a φ
exists, and the author does not know of a modification of the proof given in
this article which could prove this stronger statement.

Acknowledgments. Thanks to Jordan Watkins for many fruitful discus-
sions, especially for pointing us strongly in the direction of what we call torus
parametrization. Thanks also to Mario Bonk for many fruitful discussions,
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