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TUTTE RELATIONS, TQFT, AND PLANARITY
OF CUBIC GRAPHS

IAN AGOL AND VYACHESLAV KRUSHKAL

Abstract. It has been known since the work of Tutte that the
value of the chromatic polynomial of planar triangulations at

(3 +
√
5)/2 has a number of remarkable properties. We investi-

gate to what extent Tutte’s relations characterize planar graphs.

A version of the Tutte linear relation for the flow polynomial at

(3−
√
5)/2 is shown to give a planarity criterion for 3-connected

cubic (trivalent) graphs. A conjecture is formulated that the

golden identity for the flow polynomial characterizes planarity of

cubic graphs as well. In addition, Tutte’s upper bound on the

chromatic polynomial of planar triangulations at (3 +
√
5)/2 is

generalized to other Beraha numbers, and an exponential lower

bound is given for the value at (3−
√
5)/2. The proofs of these

results rely on the structure of the Temperley–Lieb algebra and
more generally on methods of topological quantum field theory.

1. Introduction

In the late 1960s, W. T. Tutte observed [12], [11] that the value of the

chromatic polynomial of planar triangulations at (3+
√
5)/2 obeys a number

of surprising relations. The Tutte golden identity states

(1.1) χT (φ+ 2) = (φ+ 2)φ3V−10
(
χT (φ+ 1)

)2
,

where T is any planar triangulation, V is the number of its vertices, and φ=
(1 +

√
5)/2 denotes the golden ratio. Tutte also established a linear identity
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Figure 1. The graphs in the identity (1.2).

for the chromatic polynomial at φ+ 1:

(1.2) χG1
(φ+ 1) + χG2

(φ+ 1) = φ−3
(
χG3

(φ+ 1) + χG4
(φ+ 1)

)
,

where Gi are planar graphs which are identical outside a disk and are related
within the disk as shown in Figure 1.

Using duality between the chromatic polynomial χG of a planar graph G
and the flow polynomial FG∗ of its dual, (1.1) and (1.2) may be restated as
identities for the flow polynomial of planar cubic graphs.

This paper is motivated in part by the question of whether such identities
for the chromatic and flow polynomials characterize planarity of graphs. We
prove a converse to Tutte’s theorem (1.2) for 3-connected cubic graphs: such
a graph is planar if and only if a version of the linear relation (1.2) for the flow
polynomial holds at each edge, see Theorem 3.2. We actually work with the

Galois conjugate 3−
√
5

2 of φ+1 roughly because the sign of the flow polynomial
is determined by the number of edges and vertices (and components) on the
interval (0,1) which makes it possible to establish inequalities which feed into
an induction. We also consider the identity (1.1) for the chromatic and flow
polynomials. We conjecture that the golden identity for the flow polynomial
characterizes planarity of cubic graphs, see Conjecture 5.1 for a precise state-
ment. On the other hand, examples are given of non-planar graphs satisfying
the chromatic polynomial version of the golden identity, and we explain the
difference between the chromatic and flow settings in Section 5.

In [4], the identities (1.1), (1.2) were shown to fit in the framework of (2+1)
dimensional topological quantum field theory (TQFT). In particular, these
identities were proved to be a consequence of the structure of the Temperley–
Lieb algebra at roots of unity, and the linear relation (1.2) was shown to have

a counterpart at each value 2 + 2cos( 2πjn ). We extend this framework and
define a category for the flow polynomial which takes into account abstract
(not necessarily planar) graphs. The structure of this category, together with
combinatorial properties of non-planar cubic graphs (a strengthening of the
Kuratowski criterion for planarity), give the characterization of planarity in
Theorem 3.2.
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We also use the TQFT framework to generalize Tutte’s bound on the value
of the chromatic polynomial of a planar triangulations T with V vertices

(1.3)
∣∣χT (φ+ 1)

∣∣≤ φ5−V

to all Beraha numbers Bn = 2+2cos( 2π
n+1 ) and to real values x≥ 4, see theo-

rem 4.1. The upper bound (1.3) is interesting in connection to the conjecture
of Beraha that large planar triangulations have a real zero close to φ + 1.
This conjecture remains open. In contrast to (1.3), in Theorem 4.2 we give a

lower bound at the Galois conjugate value (3−
√
5)/2, which is exponentially

increasing in V .

2. The Tutte polynomial, the Temperley–Lieb algebra, and
the Jones–Wenzl projectors

To provide background for the results of this paper and to fix the no-
taion, this section recalls basic information about graph polynomials and the
Temperley–Lieb algebra, and it summarizes the results of [4]. The Tutte poly-
nomial TG(x, y) of a graph G satisfies the contraction–deletion rule: for any
edge e of G which is not a bridge or a loop, TG = TG\e + TG/e. The Tutte

polynomial of a graph consisting of b bridges and l loops is defined to be xbyl.
This paper will mainly concern two specializations, the chromatic polynomial
χG and the flow polynomial FG:

χG(x) = (−1)V−c(G)xc(G)TG(1− x,0),

FG(x) = (−1)E+V+c(G)TG(0,1− x),

where V,E denote the number of vertices and edges of G, and c(G) is the
number of connected components. For a planar graph G and its dual G∗, one
has TG(x, y) = TG∗(y,x). If G is connected, this implies

(2.1) FG(x) = x−1χG∗(x).

To describe the TQFT context for Tutte’s relations (1.1), (1.2), we sum-
marize the relevant facts about the Temperley–Lieb algebra, the chromatic
algebra and their structure at roots of unity. The reader is referred to [4] for
more details.

2.1. The Temperley–Lieb algebra. The Temperley–Lieb algebra in de-
gree n, TLn, is an algebra over C[d] consisting of linear combinations of 1-
dimensional submanifolds in a rectangle. Each submanifold meets both the
top and the bottom of the rectangle in n points. The submanifolds are con-
sidered equivalent if they are isotopic rel boundary. Deleting a simple closed
curve has the effect of multiplying the element by d. When d is specialized
to a complex number, the algebra will be denoted TLd

n. The multiplication
is given by vertical stacking of rectangles. The usual generators of TL4 are
illustrated in Figure 2.
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Figure 2. Generators of TL4.

The trace trd : TL
d
n −→C is defined on rectangular pictures (additive gen-

erators) by connecting the top and bottom endpoints by disjoint arcs in the
complement of the rectangle in the plane, and then evaluating d#circles . The
Hermitian product is defined by 〈a, b〉= tr(ab̄), where the involution − reflects
pictures in a horizontal line and conjugates the coefficients.

The trace radical of TLd
n is the ideal consisting of the elements a such that

tr(ab) = 0 for all b ∈TLd
n. An important fact, underlying the construction of

SU(2) quantum invariants of knots and 3-manifolds, is that the trace radical
in the Temperley–Lieb algebra is non-trivial precisely at the special values
d= 2cos( πj

n+1 ). (In fact, these are the values of d for which there exists a non-
trivial ideal in the Temperley–Lieb category, and the ideal equals the trace
radical.) Moreover, for these values of d, (assuming j, n + 1 are coprime)
the trace radical is generated by a special element, the Jones–Wenzl projector
P (n) [17]. At primitive roots of unity (j = 1) the Hermitian product descends

to a positive definite inner product on the quotient of TLd
n by the trace radical.

2.2. The chromatic algebra. Recall that a cubic graph is trivalent: every
vertex has degree 3. Cn is an algebra over C[Q], whose elements are formal
linear combinations of isotopy classes of planar cubic graphs in a rectangle R,
modulo the local relations shown in Figure 3. (The first relation is the version
of the contraction–deletion rule for cubic graphs.)

The intersection of a graph with the boundary of the rectangle R consists of
2n points: n points at the top and the bottom each, Figure 4. It is convenient
to allow 2-valent vertices as well, and the value of a simple closed curve is set
to be Q− 1. When Q is set to be a specific complex number, the algebra is
denoted CQ

n .
The trace tr : CQ

n −→ C is defined by connecting the endpoints of G by
disjoint arcs in the complement of the rectangle R in the plane and evaluating
the flow polynomial of the resulting graph at Q. (Equivalently, the trace
equals Q−1 times the chromatic polynomial of the dual graph. The focus in
[4] was on the chromatic polynomial, explaining the name of the algebra.)
For example, the traces of the elements in Figure 4 are 0, (Q− 1)(Q− 2)2.
The trace is well-defined since the local relations are precisely the relations
defining the flow polynomial of a planar cubic graph. The multiplication
and the Hermitian product on CQ

n are defined analogously to the case of the
Temperley–Lieb algebra.
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Figure 3. Defining relations in the the chromatic algebra.

Figure 4. Examples of graphs in the definition of C3.

Figure 5. The homomorphism Φ: CQ
n −→TLd

2n, Q= d2.

2.3. The map Cn −→TL2n. Consider the homomorphism Φ: CQ
n −→TLd

2n,
where Q= d2. This map replaces each edge of a graph with the second Jones–
Wenzl projector, and each vertex is resolved as shown in Figure 5. Moreover,
for a trivalent graph G there is an overall factor dV/2, where V is the number
of vertices of G.

One checks that Φ induces a well-defined homomorphism of algebras CQ
n −→

TLd
2n, where Q= d2, and moreover it is trace-preserving: the diagram

(2.2) Cd2

n

tr

Φ
TLd

2n

trd

C
=

C

commutes. It follows that the pullback under Φ of the trace radical in TLd

is in the trace radical of Cd2

. Note that elements in the trace radical in the
chromatic algebra are precisely local relations on graphs which preserve the
flow polynomial, or equivalently the chromatic polynomial of the dual graph.
When d= φ, the trace radical of the Temperley–Lieb algebra is generated by
the Jones–Wenzl projector P (4). The Tutte relation (1.2) then may be seen

as a consequence of the structure of TLφ since it is mapped by Φ to P (4) [4,
Section 2, p. 721].
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Figure 6. The graphs Hi in the identities (3.1), (3.2). The
graphs are identical outside the disk.

3. A planarity criterion from TQFT

It follows from duality (2.1) that Tutte’s linear relation (1.2) has an im-
mediate analogue, a 4-term identity for the flow polynomial of dual graphs.
Further, using the relations in Figure 3 (equivalent to the contraction–deletion
rule), it can be restated as a 3-term identity

(3.1) φFH1
(φ+ 1)− FH2

(φ+ 1) + φ−1FH3
(φ+ 1) = 0,

where planar graphs Hi are shown in Figure 6.
We will use a version of this identity at the Galois conjugate value (3 −√
5)/2:

Lemma 3.1. Consider three planar graphs Hi which are locally related as
shown in Figure 6. Then the values of their flow polynomials at φ−2 = (3−√
5)/2 satisfy the linear identity

(3.2) FH1

(
φ−2

)
+ φFH2

(
φ−2

)
+ φ2FH3

(
φ−2

)
= 0.

Recall from Section 2 that the identity (3.1) holds since its left-hand side is
the pull-back of the 4th Jones–Wenzl projector P (4) from the Temperley–Lieb
algebra TLd to the chromatic algebra CQ. Here d= φ, P (4) generates the trace
radical, and the corresponding value of Q is d2 = φ+ 1. The identity (3.2)

holds for the same reason, being a pull-back of P (4) for d= (1−
√
5)/2 =−φ−1

and Q= (3−
√
5)/2 = φ−2. We work with the Galois conjugate because the

sign of the flow polynomial in the interval (0,1) is determined by the number
of vertices and edges, which is useful for proving inequalities.

Consider the question of whether (3.2) holds for a ribbon (not necessarily
planar) graph. Recall that a ribbon graph is an abstract graph G together
with an embedding into a surface S so that the complement S \G consists
of 2-cells. Given such an embedding, a small neighborhood N of G in S is
a compact surface with boundary, which may be thought of as a choice of
a 2-dimensional thickening of G. (Such a thickening of vertices and edges
may be alternatively encoded using cyclic ordering of half-edges incident to
every vertex.) For our applications, it does not matter whether the surface
is orientable, and in fact only a local ribbon structure will be used, where
a thickening of a given edge and of adjacent half-edges is specified. Ribbon
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Figure 7. Two ribbon structures near an edge of a cubic graph.

graphs have been used both in the context of quantum topology (cf. [8]) and
in combinatorics (cf. [3]).

A ribbon structure is needed to make sense of the relation (3.2). Specifi-
cally, an edge e of an abstract cubic graph H1, shown on the left in Figure 6,
uniquely determines H3. However the graph denoted H2 in the figure depends
on a choice of a ribbon structure near the edge e. There are two such choices,
Figure 7.

A graph is k-connected if it has at least k+1 vertices, but does not contain
a set of k− 1 vertices whose removal (together with all of the edges adjacent
to them) disconnects the graph.

We are in a position to state the main result of this section.

Theorem 3.2. A 3-connected cubic graph G is planar if and only if the
identity (3.2) for the flow polynomial at (3−

√
5)/2 holds for at least one of

the two ribbon structures at every edge of G.

The theorem follows from the following lemma. Note that in the first part
of the statement the graph is not assumed to be cubic.

Lemma 3.3. (1) Let G be a graph with two adjacent trivalent vertices.
Let e denote the edge connecting them, and fix one of the two ribbon structures
near e (Figure 7). Denote by V,E the number of vertices, respectively edges,
of G. Then

(3.3) (−1)V−E
[
FH1

(
φ−2

)
+ φFH2

(
φ−2

)
+ φ2FH3

(
φ−2

)]
≥ 0,

where H1 =G and H2,H3 are locally related to H1 as in Figure 6.
(2) Moreover, if G is a 3-connected cubic graph then G is non-planar if

and only if there exists an edge e with a strict inequality in (3.3) for both
ribbon structures at e.

The proofs of Lemma 3.3 and Theorem 3.2 will be given in the context of
flow category which is introduced next.

3.1. The flow category. Abstract (not necessarily planar) graphs may be
used to define an algebra along the lines of the Temperley–Lieb and chromatic
algebras in Section 2. However since the algebra structure will not be needed
in the proof of Theorem 3.2, and also the graphs are no longer assumed to be
planar, the notion of a category is more suitable.
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Figure 8. The contraction–deletion rule in F4,3.

The objects of the flow category are finite ordered sets n= {1, . . . , n}. Con-
sider Gm,n = {finite graphs with m+n marked univalent vertices}, where the
marked vertices are divided into two ordered subsets of m, respectively n ver-
tices. The edges incident to the marked vertices are called boundary edges
and the rest are internal edges. Morphisms between m, n in the flow category
are elements of FQ

m,n: formal C-linear combinations of graphs Gm,n, modulo
the contraction–deletion relation (Figure 8) which applies to internal edges.
In addition, the value of a loop is set to be Q − 1, and graphs which have
a univalent vertex (other than the specified marked vertices) are set to be
zero. It follows from the defining relations that a 2-valent vertex incident to
an interior edge can be removed from a graph.

Graphs whose equivalence classes are elements of FQ
m,n may be represented

geometrically as in Figure 8. (Over/under-crossings do not carry any infor-
mation here since the figure is meant to represent only the abstract graph
structure and not a specific planar projection.)

A graph without marked vertices (and so no boundary edges), considered in

FQ
0,0

∼=C, evaluates to its flow polynomial at Q. The pairing FQ
k,m×FQ

m,n −→
FQ

k,n is obtained by gluing along m boundary edges. In particular, this pairing

applied to two graphs A ∈ G0,m, B ∈ Gm,0 gives 〈A,B〉= the value of the flow
polynomial FA∪B at Q.

Remark 3.4. The flow category may be extended to a definition of a
TQFT. This is a special case of a well-known construction [15] of TQFTs
as fields (“pictures”) on a manifold modulo local relations. In particular,
the example of the Tutte polynomial and of the local relation given by the
contraction–deletion rule was discussed in [16]. Unlike the Temperley–Lieb
and the chromatic algebra which give rise to the (2 + 1)-dimensional (SU(2)
and SO(3) respectively) theories, this TQFT is not specific to dimension 2
since it is formulated in terms of abstract, not embedded graphs. We use
elements of the structure of the flow category as a convenient setting for the
proof of Theorem 3.2.

Given any graph representing an element of FQ
m,n, the contraction–deletion

rule may be used to eliminate all internal edges. In particular, four graphs

ei in Figure 9 form a basis of FQ
0,4. Note that three of these graphs (viewed
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Figure 9. A basis of FQ
0,4.

relative to a fixed embedding of the marked vertices in the boundary of a
rectangle) are planar and one, denoted e4, is non-planar.

Proof of Lemma 3.3. Let G be a graph with two adjacent trivalent vertices
(connected by an edge e), as in the statement of the lemma, and fix Q= φ−2 =

(3−
√
5)/2. Cut each of the four edges adjacent to e in half, and consider the

graph G as the union H1 ∪G. Here H1 is a “neighborhood” of the edge e,
that is the part of G shown on the left in Figure 6, and G is the rest of the

graph G. H1 is considered as an element of FQ
0,4 and G an element of FQ

4,0,

and the union G=H1 ∪G is taken along 4 pairs of marked points.

Consider the element P ∈ FQ
0,4,

P :=H1 + φH2 + φ2H3.

where Hi denotes the part of the graph Hi contained in the disk in Figure 6,
i = 1,2,3. (In the planar context, this is an element of the trace radical of
the chromatic algebra CQ, Section 2.3.) Lemma 3.3 may then be restated as
saying that

(3.4) (−1)V−E〈P,G〉 ≥ 0.

The proof of (3.4) is by induction on the number of internal edges of G.
First, consider the base of the induction: no internal edges. Since the first
three basis vectors in Figure 9 are planar and P is in the trace radical of the
chromatic algebra, 〈P, ei〉= 0, i= 1,2,3. A direct calculation gives 〈P, e4〉=
−φ, so (−1)V−E〈P, e4〉> 0.

For the inductive step, consider the contraction–deletion rule

(3.5) (−1)V−E
〈
P,G′〉= (−1)V−E

〈
P,G′/e′

〉
− (−1)V−E

〈
P,G′ \ e′

〉
,

where e′ is an edge (neither a bridge nor a loop) of G′, and V,E denote the
number of vertices and edges of H1 ∪G′. Both G′/e′, G′ \ e′ have fewer edges
than G′, so the inductive hypothesis applies. Moreover, the sign of (−1)V−E of
G′/e′ agrees with that of G′, and it differs from the sign for G′ \ e′. Therefore
(−1)V−E〈P,G′〉 ≥ 0, being the sum of two non-negative terms.

To conclude the inductive step, we need to analyze the effect of removing
a loop from G′. This changes the sign (−1)V−E , but the loop value is −φ−1,
so overall removing a loop does not affect the sign of (−1)V−E〈P,G〉. This
completes the proof of part (1) of the lemma.
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Figure 10. Left: a subdivision of K3,3 with three pairwise
non-adjacent non-subdivided edges (drawn straight). The
two figures on the right show the two relevant minors.

One of the implications in the second statement in lemma 3.3 is clear: if G
is planar, then the equality in (3.3) follows from lemma 3.1. The proof of the
other implication relies on the theorem [7, Theorem 5], [9, Theorem 3.1] that
any 3-connected non-planar graph with at least six vertices contains a cycle
with three pairwise crossing chords. In other words, the theorem asserts that
any 3-connected non-planar graph, different from K5, contains a subdivision
of K3,3 with three pairwise non-adjacent non-subdivided edges, Figure 10.

We will use only a weaker version of the theorem, that one of the edges
is unsubdivided, call it e. As in the proof above of part (1) of the lemma,
decompose G=H1 ∪G. The two ribbon structures near e correspond to the
two cyclic orderings of the four univalent vertices of H1 (and correspondingly
of G). As illustrated in Figure 10, for either cyclic ordering G has the non-
planar basis element e4 (Figure 9) as a minor.

Fix either ribbon structure at e. Using the contraction–deletion rule on
the internal edges of G, (−1)V−E〈P,G〉 equals the sum of 2k terms, where
k is the number of internal edges. Each term is of the form (−1)V−E〈P, ei〉
where ei is a basis element in Figure 9. Moreover, it is shown in the proof of
(1) above that each of the 2k summands is non-negative. As indicated in the
previous paragraph, at least one of the terms involves the non-trivial pairing
with e4. It follows that (−1)V−E〈P,G〉> 0. �

4. Bounds for the chromatic and flow polynomials and
the Beraha numbers

It has been known since the work of Tutte [12], [11] and Beraha [2] that
the Beraha numbers Bn = 2+ 2cos( 2π

n+1 ), where n is a positive integer, play
a special role in the theory of the chromatic polynomial of planar graphs.

Theorem 4.1. Given a planar triangulation T , let x be either a Beraha
numbers Bn or a real number ≥ 4. Then

(4.1)
∣∣χT (x)

∣∣≤ x(x− 1)(x− 2)(V−2).
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For x=B4 = φ+1= (3+
√
5)/2 this upper bound coincides with the Tutte

estimate

(4.2)
∣
∣χT (φ+ 1)

∣
∣≤ φ5−V .

Note that the upper bound (4.1) is exponentially decreasing only when
x− 2< 1. It is an interesting question whether the bound may be improved
for 4-connected planar triangulations.

Proof of Theorem 4.1. When a given triangulation T has a multiedge or a
triangle not bounding a face, one may decompose into two triangulations and
induct to get the inequality. More precisely, the chromatic polynomial of a
graph G which is the union of two subgraphs G1,G2 such that G1 ∩G2 is the
complete graph Kn, satisfies

χG(x) =
χG1

(x)χG2
(x)

χKn
(x)

.

For planar graphs the relevant cases are n= 2,3, and if both G1,G2 satisfy
(4.1), then so does G. Therefore, it suffices to prove the statement for 4-
connected planar triangulations T . By a theorem of Whitney [18, Theorem 1]
T has a Hamiltonian cycle. The cycle divides T into two outerplanar trian-
gulations. The doubles of these triangulations have chromatic polynomial the
same as that of the outerplanar graph, which is x(x − 1)(x − 2)(V−2). As
explained in Section 2.3, the chromatic polynomial of a planar graph may be
evaluated in the Temperley–Lieb algebra. The inner product in TLd is posi-
tive semi-definite for d ∈ {2cos( π

n+1 )}, and it is positive definite for d > 2 [6],

[5, Corollary 7.1]. Then (4.1) follows from the Cauchy–Schwarz inequality. �
Theorem 4.2. Given a planar triangulation T , its chromatic polynomial

satisfies

(4.3)
∣
∣χT

(
φ−2

)∣∣≥ φ2V−6.

Proof. Consider the 3-connected dual cubic planar graph G = T ∗, then
|χT (φ

−2)|= φ−2|FG(φ
−2)|. It follows from an Euler characteristic calculation

that the numbers n,V of vertices of G,T are related by n = 2V − 4. Then
(4.3) is equivalent to the inequality

(4.4)
∣∣FG

(
φ−2

)∣∣≥ φn−2.

for the flow polynomial of 3-connected planar cubic graphs G with n ver-
tices. Consider the operation of removing an edge e from G, where one disre-
gards the 2-valent vertices (the boundary of the removed edge) in G\e, so that
the resulting graph is again cubic. In this terminology the graph H3 in Fig-
ure 6 is obtained by removing e from H1. A theorem of Barnette–Grünbaum
[1, Lemma 1] (and a closely related result of Tutte [10]) states that for any
3-connected graph with more than 6 edges there exists an edge whose removal
yields a graph which is also 3-connected. Said differently, there is a sequence
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of edge removals so that each graph in the sequence is 3-connected and the
last graph is K4.

Consider an inductive application of the identity (3.2) to such a sequence
of edge removals. Let the graphs in Figure 6 show the inductive step: the
edge e is removed from a planar 3-connected cubic graph H1, giving rise to
a planar 3-connected cubic graph H3. In particular, it follows that all three
graphs Hi are connected.

The flow polynomial of a connected bridgeless graph with n vertices and
E edges is non-zero, of sign (−1)(E−n+1) on the interval (−∞,1) [14, Theo-
rem 3.11]. (This is the flow polynomial version of the analogous result for the
chromatic polynomial [13, (2.3)].) It follows that the sign of FH3

(φ−2), and

also the sign of FH2
(φ−2) if H2 is bridgeless, are opposite of that of FH1

(φ−2).
Rewrite (3.2) as

(−1)E−n+1FH1

(
φ−2

)
= (−1)E−n

[
φFH2

(
φ−2

)
+ φ2FH3

(
φ−2

)]
,

where the first and the third terms are positive, and the second term is non-
negative. Omitting the second term, one has

(−1)E−n+1FH1

(
φ−2

)
≥ (−1)E−n

[
φ2FH3

(
φ−2

)]
.

To conclude the inductive step, note that that H3 has two fewer vertices
than H1, and the inequality above gives a factor of φ2. The base of the
induction is FK4

=−φ2. �

It is interesting to compare the inequalities (4.2) and (4.3). Conceptu-
ally the difference between the upper bound (4.1) at Beraha numbers and

the lower bound (4.3) at φ−2 = (3 −
√
5)/2 may be understood using the

structure of the Temperley–Lieb algebra TLd. As discussed in Section 2,
the value (3 +

√
5)/2 of the chromatic polynomial corresponds to the pa-

rameter d= 2cos(π/5) where TLd is positive semi-definite and the Cauchy–
Schwarz inequality applies. (This is true for all Beraha numbers, see the

proof of Theorem 4.1.) On the other hand the value (3−
√
5)/2 corresponds

to d= 2cos(3π/5). The 4th Jones–Wenzl projector is in the trace radical of

TLd for both d= 2cos(π/5) and d= 2cos(3π/5), but the bilinear pairing on

TLd at the latter value of d has mixed signs.

5. The golden identity and inequality for non-planar graphs

The golden identity (1.1) for the chromatic polynomial of planar trian-
gulations has an immediate counterpart stated dually for the flow polyno-
mial of planar cubic graphs. Moreover, there are analogous identities for the
chromatic and flow polynomials relating their values at the Galois conjugate
(3−

√
5)/2 = φ−2 and (5−

√
5)/2. In this section we consider the validity of

these relations for non-planar graphs.
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Figure 11. A non-planar graph G satisfying the golden
identity (1.1).

5.1. A conjecture for the flow polynomial. The Galois conjugate of the
golden identity, stated for the flow polynomial of planar cubic graphs, reads

FG

(
(5−

√
5)/2

)
=
(
−φ−1

)E
FG

(
(3−

√
5)/2

)2
,

where E is the number of edges of G.
Based on numerical evidence, we conjecture that in fact this identity char-

acterizes planar cubic graphs:

Conjecture 5.1. For any cubic bridgeless graph G,

(5.1) (−φ)EFG

(
(5−

√
5)/2

)
≥ FG

(
(3−

√
5)/2

)2
,

Moreover, G is planar if and only if (5.1) is an equality.

Similarly, numerical evidence points to the inequality FG(φ + 2) ≤
φEFG(φ + 1)2 for any cubic graph G, with an equality if and only if G is
planar.

5.2. The chromatic polynomial. In contrast to Conjecture 5.1, there
are non-planar graphs satisfying the chromatic version (1.1) of the golden
identity. This section describes a specific example (see Figure 11), and it
suggests an explanation of the apparent difference with the behavior of the
flow polynomial.

The main point is that the chromatic Tutte linear relation (1.2) at φ+ 1,
unlike its flow counterpart (3.1), still holds when coupled with certain non-
planar graphs. (Note that in (1.2) there is an arbitrary number of edges
intersecting the boundary of the disk, so in fact this is an infinite collection
of local relations for the chromatic polynomial of planar graphs.)

Consider the graph in Figure 11, obtained from K3,3 by adding three edges.
Endow it with the ribbon structure induced from the shown planar projection.
A copy of this graph, denoted G2, is also included in Figure 12. Consider the
intersection of G2 with the shaded region indicated in the figure as a particular
example of the second graph in Figure 1. The graphs G1,G3,G4, shown below,
are locally related to G2 as in Figure 1. Note that G1,G3,G4 are all planar,
so they satisfy (1.1).
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Figure 12. A non-planar graph G2 satisfying the golden
identity (1.1). Also shown are the graphs locally related to
G2 as in Figure 1.

Figure 13. Parts of the graphs G2,G3,G4 (and their duals)
in the shaded disks in Figure 12.

A key ingredient in the proof of the golden identity (1.1) in [11] (and also in
[4]) is the linear identity (1.2) which holds as a consequence of the vanishing

of the projector P (4) in the Temperley–Lieb algebra TLφ (see Section 2.3).
This identity is intrinsic to planar graphs, and it certainly does not hold for
general ribbon graphs. However, we will now show that it still holds for some
non-planar graphs.

In the relation (1.2) and Figure 1 there is an arbitrary number of edges
leading to the boundary of the disk. In the special case in Figure 12 the
internal vertex on the left has no edges leading to the boundary. The map to
the Temperley–Lieb algebra, described in Section 2.3, is defined in terms of
dual trivalent graphs. The relevant dual graphs are shown in Figure 13. One
checks that the image equals zero in the Temperley–Lieb algebra at d = φ.
(Indeed, every term involves the projector P (4) capped with a turnback, or

the partial trace of P (4), see Figure 14. Such elements equal zero in TLφ [4,
Section 5.4].) Consequently, the identity (3.1) and its chromatic dual:

(5.2) φχG2
(φ+ 1) = χG3

(φ+ 1) + (1− φ)χG4
(φ+ 1)

hold for the graphs in Figure 12. (More generally, the identity still holds for
an arbitrary number of edges leading to the boundary of the disk at the other
three vertices in Figure 13, and these local pictures may be paired with an
arbitrary non-planar graph.)
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Figure 14. The partial trace of the projector P (4) equals
zero at d= φ (and also at d=−φ−1).

The chromatic polynomial of these graphs satisfies the contraction–deletion
rule pictured in Figure 3:

(5.3) χG1
(φ+ 2) + χG3

(φ+ 2) = χG2
(φ+ 2) + χG4

(φ+ 2).

As shown in the proof of Lemma 3.1 in [4], (5.2) yields

(5.4) φ3
(
χG1

(φ+ 1)
)2

+
(
χG3

(φ+ 1)
)2

= φ3
(
χG2

(φ+ 1)
)2

+
(
χG4

(φ+ 1)
)2
.

Equations (5.3), (5.4), combined with the fact that three of the graphs satisfy
the golden identity, imply that the remaining graph, G2, also obeys (1.1).

The argument above suggests a strategy for generating families of non-
planar graphs satisfying the chromatic golden identity. It would be interesting
to find a characterization of all such graphs, and in particular to see whether
the argument using the 4th Jones–Wenzl projector considered here generates
all of them. Another open question is whether there exist 4-connected non-
planar graphs with the number of edges and vertices satisfying E = 3V − 6
(analogous to the case of a planar triangulation) and satisfying the golden
identity (1.1).
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