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PROPOSED PROPERTY 2R COUNTEREXAMPLES
EXAMINED

MARTIN SCHARLEMANN

To Wolfgang Haken, who, forty years ago, found that Four Colors Suffice.

Abstract. In 1985, Akbulut and Kirby analyzed a homotopy
4-sphere Σ that was first discovered by Cappell and Shaneson,

depicting it as a potential counterexample to three important

conjectures, all of which remain unresolved. In 1991, Gompf’s

further analysi showed that Σ was one of an infinite collection of

examples, all of which were (sadly) the standard S4, but with an
unusual handle structure.

Recent work with Gompf and Thompson, showed that the con-
struction gives rise to a family Ln of 2-component links, each

of which remains a potential counterexample to the generalized

Property R Conjecture. In each Ln, one component is the simple

square knot Q, and it was argued that the other component, after

handle-slides, could in theory be placed very symmetrically. How

to accomplish this was unknown, and that question is resolved

here, in part by finding a symmetric construction of the Ln.

In view of the continuing interest and potential importance of

the Cappell-Shaneson-Akbulut-Kirby-Gompf examples (e.g., the

original Σ is known to embed very efficiently in S4 and so pro-
vides unique insight into proposed approaches to the Schoenflies

Conjecture) digressions into various aspects of this view are also
included.

In 1987, David Gabai, demonstrating the power of his newly-developed
sutured manifold theory, settled the long-sought Property R Conjecture [Ga].
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Theorem 0.1 (Property R). If 0-framed surgery on a knot K ⊂ S3 yields
S1 × S2, then K is the unknot.

The conjecture had been motivated in part by a simple question: Could a
non-standard homotopy 4-sphere be built using just a single 1-handle and a
single 2-handle? Gabai’s theorem established that it could not, but it then
begs two more general questions:

• Is a homotopy 4-sphere built without 3-handles necessarily standard? This
is a generalization because such a manifold has (a single 0-handle and) the
same number of 2-handles as 1-handles.

• If it is always standard, can one show this by simple handle-slides, without
introducing additional pairs of canceling handles?

In the second, stronger form, this is the Generalized Property R Conjecture,
which is usually stated [Ki, Problem 1.82] as a conjecture about links: If
surgery on an n-component link L yields the connected sum #nS

1 ×S2 then
L becomes the unlink after suitable handle slides. [GST] focused on the the
hunt for a counter-example in the simplest possible case. In an argument that
can be traced back 30 years to [AK], it is argued that a counter-example is
likely to arise even among those 2-component links in which one component
is simply the square knot Q. Here is a brief review:

Let L denote the set of all two-component links that contain the square knot
Q and on which some surgery yields (S1 × S2)#(S1 × S2). A combination of
sutured manifold theory and Heegaard theory provides a natural classification
of L, up to handle slides over Q. In brief, for any link Q ∪K ⊂ L, handle-
slides of K over Q will eventually transform K to a knot that lies in the
standard genus 2 Seifert surface F of Q, and furthermore its position in F is
very constrained: Viewing F as the 3-fold branched cover of a 4-punctured
sphere P , K must be a homeomorphic lift of an embedded circle in P . There
is a natural way of parameterizing embedded circles in P by the rationals;
with one such parameterization, a circle in P lifts homeomorphically to F if
and only if the corresponding rational has odd denominator.

A frustrating aspect of this classification is that each handle-slide of K over
Q requires the choice of a band over which to slide, and the classification does
not give a prescription for finding the relevant bands. So there is no direct way
to see how a given link in L fits into the classification. In particular, it is also
argued in [GST] that there is an infinite family Ln ⊂L of links that probably
do not satisfy the Property 2R Conjecture, but we were unable to resolve
how the family Ln fits into the classification of L. This left a puzzling gap
([GST, Question One]) between the 4-dimensional Kirby-calculus arguments
which gave rise to interest in Ln, and the 3-dimensional sutured manifold
arguments which were used to classify L. Here we resolve that question by
showing that each Ln corresponds to the slope n

2n+1 ∈Q.
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The family Ln =Q∪ Vn (called Ln,1 in [GST]) has these central features:

• If Ln satisfies the generalized Property R Conjecture then a certain well-
known group presentation could be trivialized by Andrews-Curtis moves,
an outcome that seems very unlikely when n≥ 3.

• On the other hand, L0 can be handle-slid to become the unlink. (This is
demonstrated in [GST, Figures 12, 13, 5].)

• Let M denote the 3-manifold obtained from S3 by 0-framed surgery on Q.
There is a torus T ⊂ M and simple closed curve α ⊂ T so that each Vn

intersects T twice and Dehn twisting Vn in M at T along the slope given
by α converts Vn to Vn+1.

• When viewed in S3, the framing of α given by its annular neighborhood in
T is ±1.

It is further shown that, given these last two features, Ln+1 can be obtained
from Ln by handle-slides and the introduction and use of a single canceling
Hopf pair. It follows inductively that, with the introduction of a canceling Hopf
pair, each Ln can be handle-slid to the unlink. In particular, 0-framed surgery
on each Ln gives (S1 × S2)#(S1 × S2), and the corresponding homotopy 4-
sphere is standard, because its handle structure can be trivialized with the
introduction of a cancelling 2- and 3-handle pair.

Here is an outline of the paper: Section 1 is aimed at filling a pictorial gap
in [GST], namely the transition from [GST, Figure 12d] (itself derived from
[Go, Figure 1]) to the full-blown explicit example [GST, Figure 1]. Section 2
begins the process of moving (perhaps by slides) the component Vn of Ln

onto the Seifert surface F of the square knot Q. The modest goal here is
to provide a highly symmetric picture, in which F is clearly displayed, with
Vn nearby. In order to complete the move of Vn onto F , Section 3 changes
the viewpoint: Instead of viewing Q and Vn in S3, we see how Vn lies in the
fibered manifold M obtained by doing 0-framed surgery on Q, and move it
onto a fiber. This accomplished, Section 4 describes how the resulting link
fits into the classification of L developed in [GST].

The torus T described above plays a crucial role in the construction of
the Vn, but T itself is difficult to see. The rest of the paper aims for a clearer
picture of T . Section 5 provides an alternate view of the construction of Vn,
a view in which T is more easily tracked. This leads in Section 6 to an
explicit description of T in the fibered manifold M . This, in turn, leads in
Section 7 to a pleasant description of how the Andrews-Curtis problematic
presentation of the trivial group naturally arises from the construction of Ln.
In particular, the relation aba = bab in that presentation derives from the
natural presentation of π1(D

4 −DQ), where DQ is the ribbon disk that Q
bounds in D4. Finally, in Section 8, a fuller description of how T appears in
S3 is given, one that includes an explicit picture of the slope in T along which
Dehn twisting changes Vn to Vn+1.
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Figure 1. Symmetrizing the link diagram.

Many of the arguments in the paper are pictorial; some are likely
to be indecipherable without viewing the full-color rendering in the
on-line .pdf file.

1. From surgery diagram to explicit link

We begin by explaining with pictures the transition in [GST] from a fairly
simple surgery diagram of a probable counterexample to Property 2R to an
explicit picture of it as a complicated link in S3. Begin with the surgery
diagram Figure [GST, Figure 12d] and draw it symmetrically, a transition
illustrated in Figure 1.

Next consider the effect of blowing down the red circles in the surgery
description labelled [±1]. Focus on the right circle and recall the easy fact (see
[GS, Figure 5.18]) that blowing down the circle with label [−1] is equivalent to
taking the disk D that it bounds and giving everything that runs through it
a +1 (sic) twist. In this case, part of what runs through D are n segments of
a 0-framed component coming from the +n twist-box on the right. Figure 2
is meant to illustrate what happens, very specifically in the top row for n= 2.
Before twisting along D, move the n= 2 punctures in D so that as one moves
clockwise around the disk, the punctures become more central. The track
of the 2 strands going through D, after the +1 twist around D, is shown
in red. It is then illustrated in blue how the result can be thought of as a
+1 twist box placed around an n-stranded band that follows the original red
circle that was blown down. The result for general n is shown next, and then
this is applied to the given surgery diagram to give the link illustrated at the
bottom of Figure 2. (The second 0-framed component, now green, has also
been twisted by the blow downs; however the twistings are opposite and cancel
out.) The gray annuli are meant to represent n parallel strands, much like the
wide annuli that appear in [GST, Figure 1]. We now discuss the transition to
that figure.

In Figure 3, the gray annuli are pushed off the plane of the green knot (now
visibly the square knot), then the twist boxes are moved clockwise past one
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Figure 2. Blowing down.

end of the two (black) connecting arcs, switching a crossing between the arc
and the annulus to which it is connected. Finally, the two gray annuli are
isotoped to push the parts containing the twist boxes to the outside of the
figure, beginning to imitate their positioning in [GST, Figure 1].

Continue with the positioning, moving clockwise from the upper left in Fig-
ure 4. The first step there is to move the square knot into the correct position
and then expand the two gray annuli. Next, the ends of the connecting arcs on
each annuli are moved to be adjacent (represented by the small blue squares
in the figure). This has the psychological advantage that the link component
Vn can be thought of as starting with a single circle (the end-point union of
the two black arcs in the figure) and then doing a ±n Dehn twist to that circle
along the cores of the two gray annuli. The next move is a surprise: Push
the blue square in the right-hand hand gray annulus clockwise roughly three-
quarters around the annulus, pushing the twist-box ahead of it. When this



212 M. SCHARLEMANN

Figure 3. Further moves.

is done (the bottom left-hand rendering) the picture of the link has become
essentially identical to that in [GST, Figure 1].

2. Pushing Vn onto a Seifert surface

It follows easily from [ST, Corollary 4.2] that each Vn, perhaps after some
handle-slides over Q, can be placed onto a standard Seifert surface of Q, so
that the framing of Vn given by the Seifert surface coincides with 0-framing
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Figure 4. Final positioning.

in S3. (For details, see the proof of [GST, Theorem 3.3].) The proof of [ST,
Corollary 4.2] requires Gabai’s deep theory of sutured manifolds. It is non-
constructive, and in particular the proof provides no description of how to find
the handle-slides of Vn over Q that are needed to place Vn onto the Seifert
surface.

In this section, we begin the search for the required handle-slides by trying
to push the whole apparatus A that defines Vn onto a Seifert surface F for Q.
(Here A is the union of the two gray annuli in Figure 2 with the two arcs
that connect them.) It’s immediately clear that A can’t be completely moved
onto F , since each of the gray annuli in A has non-trivial linking number
with Q. Here we focus on getting A as closely aligned with F as seems
possible, given this difficulty.

Figure 5 repeats the first two steps in Figure 3, with these minor modifi-
cations:

• The square knot Q is laid out in the classic fashion that emphasizes its
Seifert surface, three rectangles in the plane of the page, with the middle
rectangle joined to each of the side rectangles via three twisted bands.

• The Seifert surface F is not shown; instead, the annuli have been shaded
to show where they lie in front of or behind F .

• In the lower figure, not only has each twist box been passed through an
end of one of the arcs (as was done in Figure 3), but also the annuli have
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Figure 5. An altered view.

been stretched horizontally and the top subarc of the top annulus passed
over the top subarc of Q (and symmetrically at the bottom) so that much
of each annulus lies right next to F .

• Since each gray annulus links Q once, there is an intersection point (shown
with a red dot in the lower figure) of each with F .

• The arcs connecting the annuli appear in red.

Further progress is shown in Figure 6: First, the red arcs are moved mostly
onto F by passing one of them over the top (and the other under the bottom)
of the center of Q. (In fact, if the red arcs were not attached to the annuli
at the blue squares, but set free to form their own circle, that circle could
be moved entirely onto F away from the annuli.) Then the subarcs of the
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Figure 6. A second step.

annuli at the center of the figure are moved to conform to F as much as
possible, at one point inevitably passing from the top of F , around Q and
then under F . Each annulus conforms even more closely to F if half of its
full twist is absorbed into the point at which the annulus is passed around Q,
moving from the top of F to the bottom. The final result is shown in Figure 7.

Sadly, central features of Figure 7 do not offer much hope of further pushing
Vn onto F . Most noticeably, the gray annuli which carry so much of Vn have
non-trivial linking number with Q, so there is no way that they can be moved
intact onto the Seifert surface F . Of course, we are allowed to change Vn by
sliding it over Q, but this is very difficult to picture in S3. Further progress in
pushing Vn onto F requires a good understanding of the fiber structure of the
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Figure 7. A new final view.

complement of Q and the parallel fiber structure of the closed 3-manifold M
obtained by 0-framed surgery on Q. That is the subject of the next section.

3. The fiber structures of S3 −Q and M

For understanding the structure of the fibering of S3 −Q, a good starting
point is the fibering of the simple trefoil knot, for Q is the sum of two of these.
(In discussing knot complements, we’ll suppress the distinction between a knot
and its regular neighborhood in S3. Thus, S3 −Q will be shorthand for the
compact manifold with torus boundary that is the complement in S3 of an
open regular neighborhood of Q.)

A nice account of this fibering is given in [Z, Section 3] beginning with
Zeeman’s modest: “I personally found it hard to visualise how the complement
of a knot could be fibered so beautifully, until I heard a talk by John Stallings
on Neuwirth knots.”

The classic description of the trefoil complement’s fibering begins with
viewing its punctured torus Seifert surface as two disks connected by three
twisted bands. (A possibly confusing feature: The sign of the twist on the
band is actually the opposite of the sign of the knot crossing, so, for example,
the trefoil summand pictured on the left of Q is a left-handed trefoil knot Tr−,
but the twists on the three bands in its Seifert surface S− are right-handed.)
The monodromy of Tr− cycles the three bands and exchanges the two disks,
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Figure 8. Structure of S3 − Tr±.

and so ends up being of order six. At each iteration of the monodromy the knot
itself is rotated a sixth of the way along itself. A dual view of the monodromy
will be more useful here: Pick one vertex in the center of each of the two disks
in S− and connect these two vertices by three edges, each running through one
of the twisted bands in S−. (This is roughly shown Figure 11(a).) If S− is cut
open along this θ graph, the result can be viewed as a planar hexagon with a
disk removed. The circle boundary of the removed disk corresponds to Tr−,
and S− itself can be recovered by identifying opposite sides of the hexagon,
as in Figure 8(a). The period six monodromy is then just a π

3 rotation of the

punctured hexagon and we can view S3 − Tr− as the mapping torus of S−
under this monodromy. If we were interested in the closed manifold obtained
by 0-framed surgery on Tr−, the picture would be the same, but with the
disk filled in.

The square knot Q is the connected sum of two trefoil knots Tr±, one
right-handed and the other left-handed. One way to see the monodromy of
the Seifert surface S+ of the other trefoil Tr+ is to use Figure 8(a), but,
in order to obtain the opposite orientation, first reflect the figure across the
inner (circle) boundary component, so the hexagonal boundary lies on the
inside and the knot boundary Tr+ on the outside, as in Figure 8(b). The
complement of Tr+ is then the mapping torus of S+ under the monodromy
shown in Figure 8(b).

Since Q is the connected sum of Tr± it is easy to see that S3 −Q can be
obtained by gluing the manifolds S3 − Tr+ and S3 − Tr− along a meridional
annulus in the boundary of each. A meridional annulus in the mapping torus
picture of the knot complements is the mapping torus of a subinterval of ∂S±,
so the result of gluing together the two knot complements along a meridional
annulus of each is a fibering of Q= Tr+#Tr− in which the fiber is the punc-
tured genus 2 surface F = S+�S−. The monodromy acts on F as shown in
Figure 9. The monodromy is a bit more complicated than it first appears (on
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Figure 9. Fixing a point in the monodromy.

Figure 10. Structure of M .

the left in Figure 9): In order to make the monodromy preserve the boundary
circle (corresponding to the knot Q) the π

3 rotation must be undone near the
central circle, as shown on the right of Figure 9. This complication disappears
in a description of the manifold M however, because the boundary circle of F
is filled in with a disk, so M is simply the mapping cylinder of the π

3 rotation
shown in Figure 10. The figure shows how the monodromy acts on the fiber
F∪ = F ∪∂ D2 of M , obtained by filling in the boundary of F with a disk.

To understand how the monodromy acts on F when viewed in S3 con-
sider how the monodromy of the trefoil knot acts on, say, the left half F� of
Figure 6(b) (corresponding to S−) and double this to get the action on all
of F . This process is described in three steps in Figure 11. On the left are
shown how the three arcs corresponding to the pairwise identified sides of the
hexagon in Figure 8(a) appear in F�. The arcs connect the red vertex to the
blue vertex and are oriented so that the monodromy takes the top arc to the
middle arc and the middle arc to the bottom arc. The monodromy also takes
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Figure 11. Onto the Seifert surface.

the bottom arc to the top arc, but reverses the orientation, reflecting the fact
that the monodromy is of order six. Red, blue and green properly embedded
transverse arcs in F� are added to the figure, and in Figure 11(b) these are
slid along the trefoil knot until their ends lie on the vertical arc along which
F� is doubled to recover F (Figure 11(c)). When the red, blue and green arcs
are doubled they become three circles in F which are permuted by the mon-
odromy on F∪. Figure 12 shows the three circles as they appear in F ⊂ F∪,
the fiber of M , and how they appear in F , the Seifert surface of Q in S3.

Note that the three circles in F bear a striking resemblance to the two
gray annuli and the red circle of Figure 6(b). We can exploit the resemblance
to give a color-coded description of how the apparatus A defining Vn can be
viewed in the hexagon model of the monodromy of F∪. Picture S3 −Q as
the hexagonal picture of F × I with the top F ×{1} identified to the bottom
F × {0} by the monodromy twist. Imagine how A would look, viewed from
above (i.e., looking down at the top F × {1}) after coloring the upper gray
annulus in Figure 7 red, the lower gray annulus blue, and the connecting
arcs yellow. This is shown in Figure 13: Away from ∂F × I the annuli lie
near F × { 1

2}. As the left ends of both the red and blue annuli are incident

to ∂F × { 1
2} they rise along ∂F × I until they pass out of the top F × {1}

(represented by a green dot) and continue their rise from the bottom F ×{0}
until they reach ∂F ×{ 1

2} again and are joined to the rest of the red and blue
annuli there. The switch in perspectives (the annuli climbing the vertical wall
∂F × I rather than circling around the knot Q) changes the apparent sign of
the half-twist at ∂F ×{ 1

2} from ±1
2 in Figure 7 to ∓1

2 in Figure 13, much as
the apparent half-twist on a ribbon in a book cover will change sign when the
book is fully opened (see Figure 14. The reader can experiment by drawing a
diagonal stripe on a square piece of paper, then folding along a vertical fold.
Depending on the direction of the fold the twist will either be + 1

2 or −1
2 .).
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Figure 12. Circles now in the fiber.

The upshot is that the apparent framing of both the blue and red annuli in
Figure 13 is now zero, the “blackboard framing”.

Begin a process of pushing Vn in M until all of Vn lies at the level F∪×{ 1
2}.

First compare Figures 13 and 15: Since the isotopy will be in M , F × I has
been replaced by F∪ × I , filling in the missing disk, with only the two green
dots remaining. The green dots continue to represent the points at which the
piece of the red and blue annuli to the right of the dots emerge from the top
of the box F∪ × I and, simultaneously, where the red and blue annuli to the
left of the dots enter the bottom of F∪ × I . (A vertical cross-section of the
northwest sextant, roughly parallel to the blue annulus, appears in Figure 17.)
One of the two arcs in A that connects the red annulus to the blue annulus
has changed color from yellow to brown. This will be the arc β that is pushed
first through the top of the box. The point at which β is incident to the
blue annulus has been slid in F∪ × { 1

2} so that it lies just to the left of the
green dot instead of to the right. Now push β through the top of the box, at
which point it reappears in M at the bottom of the box, but, because of the
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Figure 13. Viewing Vn.

Figure 14. How +1/2 becomes −1/2.

monodromy, with a π
3 clockwise rotation of the ends of β on the inner and

outer hexagons. The result, after also sliding the end of β on the red annulus
back to its original position to the left of the green dot, is shown in Figure 16.
The movement of the end of β at the blue annulus is shown schematically
(starting from its placement in Figure 13) clockwise from the upper left, in
Figure 17.

A symmetric argument describes how to push down the other arc (shown
in yellow) that connects the blue and red annuli. The result is shown in two
steps in Figures 18(a) and 18(b). The more pleasing Figure 18(c) is then
obtained by sliding the points where the arcs are incident to the annuli, so
that they all appear on the right side of the figure. The red and blue annuli
are now only n− 2 arcs wide, so in the case n= 2, Figure 18(c), with the red
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Figure 15. First slide.

Figure 16. Second slide.

and blue annuli omitted, represents the final positioning of V2, completely on
the surface F∪ as was predicted to be possible.

If n≥ 3, further moves of Vn are required. Figures 19(a) and 19(b) show
two more upward pushes of the brown arc β through the top of the box F∪×I
and, via the clockwise π

3 rotation of the monodromy, back through the bottom
of the box. (Figures 20(a) and 20(b) show the corresponding final position of
Vn, n= 3,4 on a fiber F∪ of M .) The fact that, after the push, a segment of β
crosses over over the blue annulus (and another crosses over the red annulus)
is at first puzzling. But recall how the monodromy acts on F∪: Up to isotopy,
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Figure 17. A vertical cross-section.

it is a π
3 clockwise twist, but it also fixes the green dots in the figure (the

points where the blue and red annuli intersect the top and the bottom of
the box F∪ × I . So the monodromy itself looks a bit like that in Figure 9.
Thus a segment of β spanning the southern sextant of F , when pushed out
the top of F × I and reappearing at the bottom, has its ends rotated to the
southwest sextant, but the middle of the segment will pass south of the green
dot on the red annulus. The segment does then pass under the red annulus,
but the segment can be straightened by an isotopy that appears to move the
segment from below the annulus to above the annulus. See Figure 21, which
also shows the isotopy in a vertical cross-section near the red annulus in the
southwest sextant. Similar remarks apply to segments of β passing over the
blue annulus.

The final appearance of Vn on the fiber of M depends mostly on nmod3.
Figure 22 shows the general case for n ≡ −1,0,1 by depicting with brown
bands collections of j − 1 parallel segments of β. The blue and red annuli in
the figures can be ignored; they have been included only to help imagine the
transition from one step to the next. At several places in the figure it appears
that a single segment of β intersects a brown band, but this is just shorthand
for a double-curve sum of the crossing arc with the j − 1 curves in the band,
as shown in Figure 22(a).)
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Figure 18. Straightening the arcs.
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Figure 19. Moving further when n≥ 3.

Of course all these presentations of Vn ⊂ F∪ ⊂ M can be translated to
pictures of Vn ⊂ F ⊂ S3. This translation, in the case n = 3, is shown in
Figure 23 via a three-stage process: The points in which Vn intersects the
circle separating the trefoil summands are labeled sequentially, as shown in
Figure 23(a). Then the discussion around Figure 11 is used to locate each of
these subarcs in the appropriate place on the Seifert surface F ⊂ S3, as shown
in Figure 23(b). These subarcs are mostly joined along the arc that separates
the left- and right-hand trefoil knots, but there is a dangling end at both the
top and the bottom of F in the figure, reflecting that joining these ends by a
subarc requires a choice of how Vn is to avoid the disk F∪−F bounded by Q.
The choice is whether to connect these ends by an arc parallel to the trefoil
knot on the left or parallel to the one on the right. Figure 23(c) shows the
result when the two ends are connected along the trefoil on the left, via an
arc that is rendered in red. The resulting link in S3 is slice by construction;
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Figure 20. n= 3 or 4.

Figure 21. How the arc passes through.
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Figure 22. The general case.



228 M. SCHARLEMANN

Figure 23. A slice link.



PROPOSED PROPERTY 2R COUNTEREXAMPLES EXAMINED 229

Figure 24. The Z3 action.

it is a nice question (just as it was for [GST, Figure 2]) whether this link, or
examples from higher n, are also ribbon links. Alex Zupan [Zu] has pointed
out that this question is of more than passing interest: It is easy to see that
handle slides preserve the property of being a ribbon link, so if these examples
are not ribbon links then they are also counterexamples to Property 2R.

4. The curve that Vn covers in a 4-punctured sphere

Recall from [GST] that there is a natural Z3 action on the genus 2 surface
F∪, by which F∪ is a 3-fold branched cover of S2 with 4 branch points.
See [GST, Figure 7], reproduced as Figure 24 here. It is further shown
([GST, Corollaries 6.2, 6.4]) that 0-framed surgery on a simple closed curve
V ⊂ F∪ ⊂ M yields (S2 × S2)#(S2 × S2) if and only if V projects home-
omorphically to an essential simple closed curve in the 4-punctured sphere
P = S2 − {branch points} and that an essential simple closed curve in P is
the homeomorphic image of a curve in F∪ if and only if it separates two branch
points coming from the same trefoil summand of Q.

The hexagonal description of F∪ given in Section 3 (e.g., Figure 10) is
particularly easy to see as a branched cover over S2. Start by giving S2 the
“pillowcase” metric: View S2 as constructed from two congruent rectangles,
with their boundaries identified in the obvious way. The corners of the rect-
angles will be the branch points for the covering and the two rectangles will
be called the front face and the back face of P ⊂ S2. Identify the top sex-
tant of Figure 10 with the front face of P and wrap the other five sextants



230 M. SCHARLEMANN

Figure 25. The branched surface view.

equatorially around P . See Figure 25. Then the northeast, northwest and the
bottom sextant are all identified with the back face of P and the southeast
and southwest sextants with the front face. The identifications of the bound-
ary edges in Figure 10 are consistent: For example, the top and bottom edges
of the outside hexagon in the figure have been identified with the top edge of,
respectively, the front and the back face of P , so the identification of these
edges to create F∪ is consistent with the identification of the top edges of the
two rectangles to form S2.

There is a natural correspondence between isotopy classes of simple closed
curves in P and the extended rationals Q ∪∞. The correspondence is given
by the slope in the pillowcase metric. It is a bit more useful in our context to
take the reciprocal of the apparent slope in Figure 25 or, equivalently, to turn
the pillowcase in the figure on its side. Thus one of the horizontal curves in P
shown in Figure 25 has slope 0, so it will correspond here to 1

0 =∞∈Q∪∞.
Such a curve is 3-fold covered by a simple closed curve in F∪ that divides F∪
into the two genus-one surfaces F� and Fr, Seifert surfaces for the two trefoil
summands of Q. A simple closed curve in P separates the two branch points
lying in F� (equivalently, separates the two that lie in Fr) if and only if it
intersects the top seam of the pillowcase in an odd number of points; that is,
if and only if it corresponds to a fraction p

q ∈Q∪∞ for which q is odd.
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When q is even, the curve in F∪ determined by p
q is separating and the mon-

odromy carries the curve to itself, thereby defining a mapping torus, which is
embedded in M . For example, the slope 1

0 yields the follow-swallow compan-

ion torus for Q. We will see in Section 6 that the slope 1
2 defines the torus

T ⊂M whose importance is described in the introductory section.
On the other hand, the curves Vn are non-separating and so will be among

the curves for which q is odd. For example, the circle in P that is vertical in
Figure 25 is assigned 0 = 0

1 ∈Q and corresponds to any of the three unknotted
circles in F shown in Figure 12(b). In this manner, {p/q ∈Q | q odd} becomes
a natural index for the set of curves V ⊂ S3 −Q such that surgery on Q∪ V
gives (S1 × S2)#(S1 × S2). It is natural to ask exactly which of these slopes
yield the curves Vn.

Remark. Here is the rationale for taking the reciprocal of the apparent
slope, that is, for turning Figure 25 on its side. There is a natural automor-
phism (S3,Q)→ (S3,Q) called a twist (see [Z] for a related use of the term).
A twist fixes one of the trefoil summands of Q and rotates the other trefoil
summand fully around the two points at which the summands are joined.
(A more technical description: A twist is a meridional Dehn twist along a
swallow-follow companion torus Tsf for Q.) It’s fairly easy to see that a twist

changes a curve V ⊂ F indexed by p
q ∈Q∪∞ to one indexed by p±q

q ∈Q∪∞.

So if we also allow V to change by such twists of Q, which do not change the
isotopy class of the link Q ∪ V , as well as by isotopy and slides of V over Q,
we could even index the curves V by p

q ∈Q/Z, q odd and, as a result, focus

attention on those indices p
q in which |2p|< q. The next theorem shows that,

from this point of view, the curves Vn are at the extreme.

Theorem 4.1. In the classification scheme above, the curve Vn corresponds
to n

2n+1 ∈Q.

Proof. Examine Figure 22, ignoring the red and blue bands and recalling
that each wide brown arc represents j− 1 parallel arcs. The number of inter-
section points of Vn with the outer hexagon is the total number of arcs that
appear, 4n+ 2. The number of intersection points of Vn with the six lines
that divide the figure into sextants is 2n. The ratio is then n

2n+1 . �

The case n= 4 is shown in Figure 26.

5. An alternate view of the construction

Essentially the first step in the construction above (see Figure 2) was to
import [GST, Figure 12] and blow down the two ±1 bracketed unknots. There
is another way to organize the construction, one which delays the blow-down
until much later and so gives additional insight into how Vn lies in M . Begin
with the link diagram [GST, Figure 19] (a version of [GST, Figure 11]) that
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Figure 26. n= 4.

describes Ln. This is shown here in Figure 27, augmented so that the relevant
torus T ⊂M is more visible: The vertical plane, mostly purple but containing
a green disk, is a 2-sphere in S3 that contains a circle on which 0-framed
surgery is performed. The surgery splits the 2-sphere into a pair of 2-spheres,
one green and one purple. In the diagram, the two 2-spheres are connected by
two thick pink strands. The torus T is obtained by tubing the two 2-spheres
together along the annuli boundaries of the two pink strands. The ±n twist-
boxes represent the n-fold Dehn twist along the meridian of T used in the
construction of Vn (see [GST, Section 10]).

Figure 28 shows a sequence of isotopies which moves the link in Figure 27
(including the bracketed unknots) to a position in which something like the
square knot begins to appear. When the top black circle is slid over the
two red circles labeled [±1] the square knot fully emerges: Figure 29 shows
the resulting circle as a green square knot, on which 0-surgery is still to be
performed, and also illustrates how the bracketed red circles can be pushed
near its Seifert surface. (The dotted parallel green and red arcs in the twist
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Figure 27. A further view.

boxes are to indicate that the twisting is of the black curve around the red
and green curves, not the red and green curves around each other.)

In fact, it is shown in Figure 30 that, except for the twist boxes, both the
red curves (labeled [±1]) and the 0-framed black curve can be simultaneously
pushed onto the natural Seifert surface of the green square knot, all before
the bracketed red curves are blown down! (The apparent twist of the curves
in Figure 30(a) is canceled by a symmetric twist of the curves on the left side
of the twist boxes.)

When the square knot is straightened out, it appears as in Figure 31, which
bears a striking resemblance to the earlier Figure 12(b). In particular, if we
temporarily ignore the 0-surgered black curve (so we can also ignore the twist
boxes), then the two red circles are parallel to each other in the complement
of the square knot. That is, there is an annulus A⊂ S3 −Q whose boundary
consists of the two red circles. This can be seen directly in Figure 31, but it
also follows from the discussion surrounding Figure 12(b): One red circle is the
image under the monodromy of the other. Since the red circles have opposite
(bracketed) signs, it follows that blowing both of them down simultaneously
has no effect on the square knot: It persists after the blow-down, but any arc
that intersects the annulus A between the red curves will be twisted around
the core of A. In particular, the 0-surgered black curve intersects A n times
at each of the upper and lower twist boxes, so the simultaneous blowdowns
change Figure 31 to Figure 32 via a process akin to that shown in Figure 2.
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Figure 28. The square knot appears.
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Figure 29. A clearer square knot.

Finally, Figure 32 can be isotoped to Figure 6(b), at which point we rejoin
the previous argument.

6. Identifying the torus T ⊂M

It is unsatisfying that in both views of the construction above it is hard
to identify the torus T ⊂ M , whose critical properties are listed in the in-
troductory section. T appears in [GST, Figure 19] (here in Figure 27), but
the appearance is well before the bracketed red curves are blown down, and
it is hard to track T through that operation. The most obvious torus in M
is the swallow-follow Tsf torus in S3 − Q, which is also the mapping torus
of the green circle in Figure 10. This torus does indeed intersect V0 in two
points, but a little experimentation shows that Dehn twisting V0 along curves
in this torus produces links much simpler than the Vn (in fact, mostly links
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Figure 30. Moving onto the Seifert surface.

Figure 31. The square knot straightened.
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Figure 32. After the blowdowns.

obtained from Q ∪ V0 just by twisting Q, as described in the remarks before
Theorem 4.1).

Here is a way to see a more complicated candidate for the torus T : Just as
the trefoil knot contains a spanning Möbius band, the manifold M contains
an interesting Klein bottle, the mapping cylinder of the six brown arcs in
Figure 33(a). Other tori in M can be obtained from Tsf by Dehn twisting it
along the Klein bottle. (This must be done in the direction of the curve in
the Klein bottle whose complement is orientable, in order for the operation to
makes sense.) An example is shown in Figure 33(b): The union of the twelve
green arcs is a circle that is preserved, with its orientation, by the monodromy,
so its mapping cylinder is a torus T in M . We now verify that T is the torus
we seek.

The yellow curve in Figure 33(b) is the original component V0; it intersects
T twice. Figure 34 shows (in red and blue) two parallel simple closed curves
on T : As was the convention in Section 3 (see also Figure 17) imagine both
the blue arc and the red arc lying in F∪ ×{ 1

2} ⊂ F∪ × I ⊂M . A green dot at
the end of each arc is labeled ± and represents in each case a vertical arc that
ascends (resp. descends) to F∪ × {1} (resp. F∪ × {0}). The two ends of the
blue arc (and similarly the two ends of the red arc) are then identified in M
by the monodromy. The framing of these curves given by the normal direction
to T is clearly the “blackboard framing” given by the figure, so Dehn twisting
along T in the direction of these curves can be visualized by widening the blue
and red arcs into bands, and then Dehn twisting along the bands. Finally,
visibly identify the ends of the blue band (and the ends of the red band) by
altering the monodromy near the central circle, as was done in Figure 9, to
get red and blue annuli. The result is Figure 35(a), which uses train-track
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Figure 33. From Klein bottle to torus.

merging to show the direction of the Dehn twisting. The result is essentially
identical to that shown in Figure 13 and can be made identical by flipping
both red and blue annuli along their core curves (see Figure 35(b)). Why the
colored annuli have framing ±1 in S3 (that is, before 0-surgery is done on Q
to create M ) is explained briefly in Section 3 via Figure 14.

This shows that constructing the links Ln is simple. The fact that all these
Ln satisfy Weak Generalized Property R requires only the argument in [GST,
Section 10]. In the next section we show directly that a natural presentation
of the trivial group given by the handle-structure of the 4-manifold cobordism
between S3 and #2(S

1 × S2) is

〈
a, b | aba= bab, an = bn+1

〉
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Figure 34. Identifying the torus.

and so Ln is unlikely to satisfy Generalized Property R, on Andrews-Curtis
grounds. This direct calculation makes it possible to sidestep the full com-
plexity of the original construction in [GST], with its roots in [Go].

7. How the cobordism presents the trivial group

The 4-manifold cobordismW between S3 and #2(S
1×S2) given by surgery

on Ln =Q∪ Vn is decomposed by the 3-manifold M into two pieces:

• the cobordism between S3 and M obtained by 0-framed surgery on the
square knot Q and

• the cobordism between M and #2(S
1×S2) given by further surgery on the

curve Vn, lying in the fiber as described above, with framing given by the
fiber.

Initially thinking of this description upside down, let WL denote the cobor-
dism between ∂0WL =#2(S

1 × S2) and ∂1WL =M , and let WQ denote the
cobordism between ∂0WQ =M and ∂1WQ = S3.

7.1. A natural presentation of π1(WL). The cobordism WL consists of
a single 2-handle attached to a collar of #2(S

1 × S2). A presentation for its
fundamental group is naturally obtained in two steps:

(1) Choose a non-separating pair of normally oriented non-parallel 2-spheres
Sa, Sb ⊂ ∂0WL.

(2) Write down the word r in letters a, a, b, b determined by the order and the
orientation with which the attaching circle for the 2-handle intersects the
spheres Sa, Sb.
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Figure 35. A train track picture.

Then the presentation is simply

π1(WL) = 〈a, b | r〉.
Different choices of 2-spheres will give rise to different relators r, hence differ-
ent presentations. But once these 2-spheres are chosen, the word r is deter-
mined (up to conjugation) by the free homotopy class of the attaching circle
for the 2-handle.

Lemma 7.1. The construction above gives a natural choice of 2-spheres
Sa, Sb ⊂ ∂0WL so that the associated presentation is

π1(WL) = 〈a, b | aba= bab〉.
Proof. Somewhat counterintuitively, the key to finding the relevant 2-

spheres is to consider the properties of the curve Vn lying in a fiber F∪ ⊂M ,
for WL can be viewed (dually) as the cobordism obtained by attaching a 2-
handle to M along Vn. Put another way, observe that ∂0WL =#2(S

1 × S2)
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Figure 36. The infinite cyclic cover of M .

is obtained from M by replacing a tubular neighborhood N of Vn by a solid
torus N ′ whose meridian circle is parallel in ∂N to the curve ∂N ∩F∪, where
F∪ is the fiber of M on which Vn lies.

Recall the structure of M from Section 3: It is the mapping torus of a
monodromy ρ : F∪ → F∪ which can be viewed as π/3 rotation on a hexagon
in which opposite sides have been identified to create the genus two surface
F∪. See Figures 10 and 24. An important feature is that the three curves
Vn, ρ(Vn), ρ

−1(Vn) are all disjoint in F∪ and together the three curves divide
F∪ up into two pairs of pants, Pa and Pb. It is these pairs of pants, capped
off by meridian disks of N ′, that will constitute the spheres Sa, Sb ⊂ ∂0WL.

To be a bit more concrete, let A⊂ F∪ be the annulus neighborhood N ∩F∪
of the curve Vn in the fiber F∪. Then ρ(A) and ρ−1(A) are disjoint from each
other and from A. Denote their complementary components in F∪ by Pa

and Pb, each a pair of pants. Once N is replaced by N ′ to get ∂0WL, each
component of ∂A bounds a meridian disk in N ′. On the other hand, the
mapping cylinder structure

M ∼= F∪ × I/(x,1)∼
(
ρ(x),0

)

shows that each component of ∂ρ(A) or ∂ρ−1(A) is also parallel (via a vertical
annulus) to ∂A, hence to a meridian circle in ∂N ′. These vertical annuli
describe how each boundary component of Pa (resp. Pb) can be capped off
by a disk in ∂0WL to create spheres Sa and Sb.

To illustrate, Figure 36 shows a schematic picture of the infinite cyclic
cover of M . The three horizontal lines represent three lifts of the fiber F∪,
which we might think of as ρ(F∪), F∪ and ρ−1(F∪). The circle in each fiber
represents a lift of Vn; the short horizontal green and aqua segments represent
lifts of spanning arcs of the annuli ρ(A) and ρ−1(A). The red lines represent
lifts of Pa and the blue lines represent lifts of Pb. The focus is on the central
circle, the order in which copies of Pa and Pb occur around that circle, and
how Pa and Pb are normally oriented by a choice of normal orientation on F∪.
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Figure 37. The lift of μ.

The circle represents a meridian circle of ∂N , so the order and orientation of
intersections with Pa ⊂ Sa and Pb ⊂ Sb gives the relation r in the presentation
we seek. If we start by reading just below the circle and proceed clockwise
the relation is

ababab =⇒ aba= bab

as predicted. Keeping in mind that Pa, Pb are connected surfaces in M itself,
it’s easy to see how to find a simple closed curve that is disjoint from Pb (resp.
Pa) and intersects Pa (resp. Pb) in a single point. (For example, in Figure 36,
the upper-right (northeast) quadrant of the meridian circle of ∂N is an arc
whose endpoints lie near and on the same side of Pa and which intersects Pb

in a single point.) It follows that Sa and Sb are non-parallel and that their
union is non-separating, as we require.

In the argument above, it may appear that the schematic diagram (at least)
depends on taking n= 0. It is certainly easier to understand the picture for
the special case in which the surgery curve is V0. But notice that there is a
natural homeomorphism of M to itself which takes V0 to Vn, namely twisting
n times about the torus T defined in Section 6, so the presentation given by
the handle structure on WL is the same, regardless of n. �
7.2. The relator from WQ. When WQ is attached to WL along M a
relator is added. It is determined by a meridian circle μ of the square knot
as it appears in ∂1WQ = S3. In M μ is represented by an arc in F∪ × I that
connects point × {1} to ρ(point)× {0}. In the schematic Figure 36, the lift
of μ is covered by the tilted arc shown in Figure 37. For the illustrated case
n= 0, the circle is seen to represent the relator baa or simply b.

In the general case, in which V0 becomes Vn by twisting around a torus T
(see Section 6), it is quite complicated to calculate how the twisting alters the
way in which Pa and Pb (and so Sa and Sb) intersect μ. The reader is invited
to try the calculation directly in, say, Figure 20(b). Rather than trying to un-
derstand how twisting around T affects Pa and Pb, so that we might calculate
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Figure 38. A cross section of the lift of T .

the resulting intersections of μ with Sa and Sb, we will instead leave V0, Pa, Pb

unchanged, but twist the curve μ around T (in the opposite direction) and
determine how the twisted μ intersects the unchanged Pa and Pb.

The first observation is that the schematic presentation of Pa, Pb given in
Figures 36 and 37 is in fact an accurate depiction of how the swallow-follow
torus Tsf in M (i.e., the mapping torus of the circle depicted in Figure 33(a))
intersects the curve V0 and the planar surfaces Pa and Pb. To be specific,
Figure 38 shows how V0, Pa and Pb intersect the lift T̃sf of Tsf to the infinite
cyclic cover of M . (Identify the right side of the figure with the left to get

T̃sf
∼= S1 × R.) The torus T is obtained by twisting Tsf along the Klein

bottle K, as described in Section 6. Since K can be made disjoint from all
three curves V0, ρ(V0) and ρ−1(V0), Figure 38 likewise depicts the pattern of

intersection of the lift T̃ with V0, Pa and Pb.
Now consider two adjacent vertical faces in the hexagon× I from which M

was constructed in Section 3. Pick, say, the faces whose tops appear as the
two left-most edges of the hexagon in Figure 10. Figure 39 depicts these two
faces; the monodromy identifies the top of the left face with the bottom of
the right face. The gray vertical bars represent the intersection of a bicollar
of the torus T with these faces; the bars have opposite normal orientation
(see Figure 33(b)). The purple diagonal represents the meridian μ. We are
trying to see how μ intersects Pa and Pb when μ is twisted along T as μ passes
through the bicollar. The slope at which μ is twisted along T is derived easily
from Figure 34: In words, a single twist, corresponding to n= 1 will move a
point vertically from the bottom of F × I to the top of F × I as it moves the
point horizontally 1

6 of the way around T .
Figure 40 shows the resulting trajectory of μ, when projected onto T ,

during the two arcs of passage of μ through the bicollar of T (i.e., through the
two gray bands in Figure 39). The case depicted is n= 2; higher values of n
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Figure 39. Passing μ through T .

Figure 40. The trajectory of μ.

would give longer purple arcs in Figure 40. In detail, each purple arc depicts
the effect of twisting along T on the short segment of μ that passes through
the bicollar of T . The twisting elongates the projection onto T of each of the
two short arcs into one of the purple arcs shown in Figure 40. The points at
the beginning and end of a purple arc in Figure 40 correspond to the initial
and the final point of contact of μ with the corresponding gray bands, which
represent the bicollar of T in which the twisting takes place. If the bicollar of
T represented by the bands were infinitesimally thin, the pair of points at the
beginning and end of each purple arc in Figure 40 would be translates of each
other, by n iterates of the translation described in the previous paragraph.
The purple arcs are oriented in opposite directions in the figure since T has
opposite normal orientation at the two points at which μ passes through the
bicollar. The terminus of one purple arc in Figure 40 is connected (out of
view in Figure 40 but shown in Figure 39) to the origin of the other purple
arc by one of the arcs of μ outside the bicollar. The word that results from
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twisting μ as it passes through the bicollar can now be read off: bbnan = 1 or
an = bn+1. The first b comes from the intersection of μ with the bottom of
F × I in Figure 39.

The final presentation for the fundamental group of the cobordism is then

π1(W ) =
〈
a, b | aba= bab, an = bn+1

〉
,

as expected.

8. Understanding T ∩ S3

Recall that M is obtained from S3 − η(Q) by attaching a solid torus to
∂η(Q) with framing zero. The torus T ⊂ M described in Section 6 passes
through the added solid torus in two meridians. This can be seen from Fig-
ure 33(b): An arc connecting a generic point in F∪ to its image under the
monodromy (i.e., π/3 rotation of the hexagon) will intersect T twice; and the
union of such an arc with the mapping torus of the generic point represents
the core of the attached solid torus. To put it another way, T ∩(S3−η(Q)) is a
twice-punctured torus whose boundary circles are longitudes of Q. Visualizing
T in S3 − η(Q) is not easy.

We begin with trying to understand how the Klein bottle K used in the
construction of T intersects S3−η(Q). In outline, this is easy to see: The three
colored circles in Figure 12(b) are cyclically permuted by the monodromy and
the mapping torus of this action (whose cube is orientation reversing) defines
the Klein bottle. But the argument above, applied to K, shows that K passes
once through the added solid torus; this outline masks how this happens,
since it ignores the effect shown in Figure 9. The actual monodromy on F ⊂
(S3 − η(Q)) and how K is determined by this monodromy can be understood
by starting with Figure 11(a) which, when doubled by reflection along its right
side, gives all of F . The Klein bottle K intersects F in Figure 11(a) in the
red, blue and green arcs.

If Figure 11(a) were completed to a trefoil knot by adding a line on the
right, as shown in red on the top left of Figure 41, the effect of the monodromy
would be relatively easy to see as a screwing motion along a vertical axis. The
trajectory of a typical point is shown by the dotted arrow; the effect of the
monodromy on F is shown on the top right of Figure 41. But notice that
the red line in the trefoil knot has been moved; it can be moved back to its
previous location, so the picture can be doubled to give F , by a twist on a
collar of the trefoil knot. This final monodromy is shown on the lower left of
Figure 41.

Recall how in Figure 11, K was isotoped off the capping-off disk, so that
K ∩ F consists of three circles instead of six arcs. The same thing can be
accomplished after the monodromy; the result is shown on the bottom right
of Figure 41. (Recall that the full view of F is obtained by doubling along
the right hand edge of the figure, converting the three arcs shown into three
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Figure 41. The trefoil monodromy on arcs.

circles.) Notice that in F the monodromy has moved the red and green circles
to where respectively, the green and blue circles were in Figure 11(c). The
blue circle in F is now much more complicated, but sliding it once over a
meridian of the solid torus that is attached to Q with framing 0, as illustrated
in Figure 42, isotopes the blue circle to the same position as the red circle
before the monodromy. Compare Figures 42 and 12(b).

It will be useful to have tracked how the monodromy moves a point near the
Klein bottle. This is illustrated in Figure 43. The aquamarine dot is tracked
through all the moves involved in understanding the monodromy, moving first
backwards from Figure 11(c) to Figure 11(a), then through Figure 41. The
resulting trajectory can be isotoped rel end points to the simpler path shown
in the last panel of Figure 43. Note that it can be completed to a meridian
of the knot by adding an arc in F from the blue dot to the aquamarine dot,
puncturing K exactly once. This is what we expect from the mapping cylinder
view of M shown in Figure 33(a).
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Figure 42. The effect of a handle slide.

Figure 43. Tracking a point.

The torus T we seek is obtained by doing a Dehn twist of the swallow-follow
torus Tsf along K. This is difficult to picture, but at least some of it can be
seen directly from the figure, in particular the way in which T intersects the
Seifert surface F . Tsf can be thought of as the union of

• a plane perpendicular to the plane of the figure, one that intersects F in a
vertical line and is punctured twice by the knot;
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Figure 44. How T intersects F .

Figure 45. The slope on which to twist.

• and an annulus neighborhood of that half of the knot that lies to one side of
the vertical plane (depicted as the right side of the vertical arc in Figure 44).

Then T is obtained by Dehn-twisting Tsf along K. The resulting curve T ∩F
is shown in Figure 44.

It is fairly straightforward now to identify within T the slope along which
we Dehn twist to change Vn to Vn+1, as described in the introductory section.
T is the mapping torus of the monodromy on T ∩ F , and a track of that
monodromy away from F is shown in Figure 43. If that track is combined
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Figure 46. The connection to Figure 5(a).

with an arc in F connecting its endpoints, the result is a curve lying in T .
Applying this construction to two tracks that lie on opposite sides of K in
Figure 43 gives us two disjoint curves in T ; these are shown in Figure 45. In
other words, the dotted circles in Figure 45 are two of the the simple closed
curves in T that were earlier identified in Figure 34. The pair of circles can
then be manipulated as shown in Figure 46 until they are positioned as the
gray annuli we recognize from Figure 5(a). (The pair of arrows in each of the
top two panels of Figure 46 are meant to clarify the isotopy that moves the
pair of curves to the position in the next panel.)
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