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FOUR-DIMENSIONAL HAKEN COBORDISM THEORY

BELL FOOZWELL AND HYAM RUBINSTEIN

Abstract. Cobordism of Haken n-manifolds is defined by a
Haken (n+1)-manifold W whose boundary has two components,

each of which is a closed Haken n-manifold. In addition, the

inclusion map of the fundamental group of each boundary com-
ponent to π1(W ) is injective. In this paper, we prove that there

are 4-dimensional Haken cobordisms whose boundary consists of

any two closed Haken 3-manifolds. In particular, each closed

Haken 3-manifold is the π1-injective boundary of some Haken
4-manifold.

1. Introduction

The authors have defined and studied Haken n-manifolds and Haken cobor-
dism theory in previous work [5]. These manifolds enjoy important properties
for example, the universal cover of a closed Haken n-manifold is Rn (see
Foozwell [4]). We would like to know if Haken 4-manifolds are abundant or
relatively rare manifolds. We will show that they are abundant in the follow-
ing sense:

For each pair of closed Haken 3-manifolds M,M ′, there is a Haken 4-
manifold W with boundary ∂W =M ∪M ′. In addition, the inclusion maps
induce injections π1(M) → π1(W ) and π1(M

′) → π1(W ). The special case
when M ′ =∅ is of particular interest.

Our proof of this result will be obtained in a number of steps. The first
step is to show that if M is a torus-bundle over a circle, then there is a Haken
4-manifold W with boundary ∂W =M . We do this in Section 3. We then
show a similar result for general surface-bundles in Section 4. To show that
Haken manifolds satisfy our main result, we use a result of Gabai [6] and Ni
[12] in Section 5.
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It is well known that all closed 3-manifolds are null cobordant, that is,
bound compact 4-manifolds. Davis, Januszkiewicz and Weinberger [2] follow-
ing on from work in [1], show that if an aspherical closed n-manifold is null
cobordant, then it bounds an aspherical (n+ 1)-manifold, and furthermore,
the inclusion map of the boundary is π1-injective. Haken n-manifolds satisfy
the stronger property (than asphericity) that they have universal covering by
Rn, as shown in [4]. Moreover for Haken cobordism theory (see [5]), the in-
clusion maps of the n-manifolds into the (n+ 1)-dimensional cobordism are
π1-injective.

2. Haken n-manifolds

For simplicity, all manifolds will be assumed to be orientable throughout
this paper. We work throughout in the PL category, so all manifolds and
maps are assumed PL.

Let W be a compact n-manifold and let w be a finite collection of connected

(n−1)-dimensional submanifolds in ∂W . We say that w is a boundary-pattern
if whenever A1, . . . ,Ai is a collection of distinct elements of w, then A1 ∩ · · · ∩
Ai is an (n − i)-dimensional manifold.1 A boundary-pattern is complete if
∂W =

⋃
{A :A ∈w}. The intersection complex K =K(W,w) is

K =
⋃

{∂A :A ∈w}.
A two-dimensional disk with complete boundary-pattern consisting of i

elements is called an i-faced disk. A small disk is an i-faced disk for i≤ 3.
The empty boundary-pattern is a special case of a boundary-pattern, and

thus a closed manifold is a manifold with boundary-pattern.
Boundary-patterns arise naturally in splitting situations. Suppose that

M is a two-sided codimension-one submanifold of W . Let W |M denote the
manifold obtained by splitting W open along M . There is a surjective map
q : W |M →W , that reverses the process of splitting W open along M . We
call q the unsplitting map. If W has a boundary-pattern w, then B is an

element of the natural boundary-pattern of W |M if either

• B is a component of q−1(A) for some A ∈w, or

• B is a component of q−1(M).

A map between manifolds with boundary-patterns should relate the
boundary-patterns in a reasonable way. We use the following definition. If
(W,w) and (V, v) are manifolds with boundary-patterns, then an admissible
map is a continuous function f : W → V that is transverse to the boundary-
patterns and satisfies

B ∈w ⇐⇒ B is a component of f−1(A) for some A ∈ v.

1 The only manifold of negative dimension is the empty set. The empty set is also a

manifold in each non-negative dimension.
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Figure 1. g−1(K) is the cone on g−1(K)∩ ∂Δ.

We write f : (W,w)→ (V, v) to indicate that the map f is admissible. Ad-
missible homeomorphisms, embeddings and so on are defined in the obvious
way.

Definition 2.1. Let (W,w) be a manifold with boundary-pattern and
let K be the intersection complex. Suppose that for each admissible map
f : (Δ, δ)→ (W,w) of a small disk, there is a map g : Δ→ ∂W , homotopic to

f rel∂Δ, such that g−1(K) is the cone on g−1(K)∩ ∂Δ. Then we say that w
is a useful boundary-pattern. See Figure 1.

In his solution to the word problem, Waldhausen [14] showed that the
boundary-patterns that arise in splitting situations for Haken 3-manifolds can
always be modified to be useful. (Note that boundary patterns were formally
introduced later by Johannson in [7]—they were not explicitly mentioned in
[14]).

If a properly embedded arc can be pushed into the boundary-pattern so
that it is contained in no more than two boundary-pattern elements, then we
say that the arc is inessential. We state this more precisely in the following
definition.

Definition 2.2. Let (J, j) be a compact connected 1-dimensional manifold

with complete boundary-pattern and let σ : (J, j)→ (W,w) be an admissible

map. We say that σ is an inessential curve if there is a disk Δ and an
admissible map g : (Δ, δ)→ (W,w) such that

(1) J =Cl(∂Δ \
⋃
{A :A ∈ δ})

(2) δ consists of at most two elements, and
(3) g|J = σ.

The boundary-pattern δ consists of one element if both endpoints of σ
are contained in the same element of w. It consists of two elements if the
endpoints of σ are contained in distinct elements of w. If J is a circle, then

δ is empty. We say that σ : (J, j)→ (W,w) is an essential curve if there is no

map g : (Δ, δ)→ (W,w) satisfying the three properties above.
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An admissible map f : (M,m)→ (W,w) is essential if each essential curve

σ : (J, j)→ (M,m) defines an essential curve f ◦ σ : (J, j)→ (W,w). Let M

be a submanifold of W . We say that (M,m) is an essential submanifold of

(W,w) if the inclusion map is admissible and essential. When we wish to prove

that a submanifold (M,m) of (W,w) is essential, we will show that each curve

σ : (J, j)→ (M,m) that is inessential in M is also inessential in W .

Let (W,w) be an n-manifold with complete and useful boundary-pattern

and let (M,m) be a two-sided codimension-one submanifold of W for which

the inclusion map is admissible and essential. Then we say that (W,M) is a
good pair.

A Haken 1-cell is an arc with complete and useful boundary-pattern. If
n > 1, then a Haken n-cell is an n-cell with complete and useful boundary-
pattern such that each element of the boundary-pattern is a Haken (n−1)-cell.

Let (W0,w0
) be an n-manifold with complete and useful boundary-pattern.

A finite sequence of good pairs

(W0,M0), (W1,M1), . . . , (Wk,Mk)

is called a hierarchy if

(1) Wi+1 is obtained by splitting Wi open along Mi, and
(2) Wk+1 is a finite disjoint union of Haken n-cells.

A manifold with a hierarchy is called a Haken n-manifold.
By definition, each element of the boundary-pattern of a Haken n-manifold

is π1-injective. By convention, when we say that a manifold is Haken without
explicitly referring to a boundary-pattern, the boundary-pattern is simply
the disjoint union of the boundary components. For example, suppose that a
manifold W has two boundary components, X and Y . If we assert that W is
a Haken manifold, then this is meant to imply that X and Y are π1-injective
in W and that the boundary-pattern of W is {X,Y }.

Fibre-bundles that have aspherical surfaces as base and fibre provide ex-
amples of Haken 4-manifolds. The hierarchy is obtained by lifting essential
curves and arcs in the base surface to the 4-manifold. These manifolds will
play an important role in this paper.

Let w = {M1, . . . ,Mj} be a finite collection of closed Haken n-manifolds.

If W is a connected Haken (n+ 1)-manifold with boundary-pattern w, then
we say that W is a Haken cobordism. If the collection w consists of just two
manifolds, then we may regard a Haken cobordism as an equivalence relation
between Haken n-manifolds.

Our interest is in Haken cobordism as a relation between Haken 3-
manifolds. In Section 5, we will give a condition for two connected Haken
3-manifolds to form the boundary of a Haken cobordism. We will also show
that each closed Haken 3-manifold is the boundary of some Haken 4-manifold.
As a first step, the following lemma was proved in Foozwell’s thesis [3].
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Lemma 2.3. If N is obtained from the Haken 3-manifold M by splitting
M open along an incompressible surface F and re-gluing the boundary com-
ponents, then there is a Haken 4-manifold W with ∂W =M 
N 
E, where
E is a surface-bundle over the circle with fibre F .

We first prove that a product of a Haken 3-manifold with an interval is a
Haken 4-manifold. If (M,m) is a manifold with boundary-pattern, then B is
an element of the standard product boundary-pattern m× i for M × I if either

• B =M × {0},
• B =M × {1}, or
• B =A× I for some A ∈m.

Lemma 2.4. Let (M,m) be an orientable Haken 3-manifold. Then W =
M × I with the standard product boundary-pattern w is a Haken 4-manifold.

Proof. The manifold M1 =M has a hierarchy

(M1, F1), . . . , (Ms, Fs), . . . , (Mk, Fk),

where Mk|Fk is a disjoint union of Haken 3-cells. We will prove that the
splitting sequence

(W1, F1 × I), . . . , (Ws, Fs × I), . . . , (Wk, Fk × I)

is a hierarchy for W =W1, where each Ws =Ms × I .
To do so, we will use a proof by induction on the length of the splitting

sequence. We do this by proving the following three claims:

(1) Wk+1 is a disjoint union of Haken 4-cells.
(2) If Ws+1 has a useful boundary-pattern, then so does Ws.
(3) If Ws+1 has useful boundary-pattern, then Fs× I is an essential subman-

ifold of Ws.

To prove the claims (2) and (3), we use the following approach. If f : Δ→Ws

is a disk for which f−1(Fs × I) is a subset of ∂Δ, then we may regard f as
a map into Ws+1. We use the usefulness of the boundary-pattern of Ws+1 to
homotope f into ∂Ws+1. We then view this as a homotopy of f in Ws. Most
of the arguments then involve modifying maps of disks so that f−1(Fs × I) is
a subset of ∂Δ.

To prove claim (1), observe that Wk|(Fk × I) is a disjoint union of 4-cells
and each component is of the form Q× I where Q is a component of Mk|Fk.
The boundary-pattern of Q× I , which is induced by the splitting sequence, is
the standard product boundary-pattern q× i. Each element of the boundary-

pattern of Q is a Haken 2-cell, so each element of q× i is a Haken 3-cell. We

only need to show q× i is a useful boundary-pattern.

Let f : (Δ, δ)→ (Q× I, q× i) be an admissible map of a small disk. Since

Q× I is a 4-cell, the map f is homotopic rel∂Δ to a map g : Δ→ ∂(Q× I).
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Note that g(∂Δ) is a loop in a 3-sphere ∂(Q×I) that is subdivided into Haken
3-cells. The walls of these 3-cells are formed by the intersection complex K.
The loop g(∂Δ) is contained in at most three such 3-cells, and we can ho-
motope g so that g(Δ) is contained in the same 3-cells that contain g(∂Δ).
Further homotopy (using standard 3-manifold techniques) allows us to sim-
plify the map so that g−1(K) is the cone on g−1(K) ∩ ∂Δ. This establishes
claim (1).

We now prove claim (2): if Ws+1 has useful boundary-pattern, then Ws has
useful boundary-pattern. Suppose we have an admissible map f : (Δ, δ) →
(Ws,ws) of a small disk. Consider f−1(Fs × I), which, since Fs × I is π1-

injective in the aspherical manifold Ws, we may assume contains no loops. If
f−1(Fs × I) is empty, then we may view f as a map into Ws+1 which has
useful boundary-pattern. Pushing f into the boundary in Ws+1 is like pushing
into the boundary in Ws in this case.

If f−1(Fs × I) contains arcs, then choose an outermost arc that bounds
a disk Δ1. We may view f |Δ1 as an admissible map of a 2-faced disk into
Ws+1. Since Ws+1 has useful boundary-pattern, there is a map g : Δ1 →
Ws+1 homotopic to f |Δ1 rel∂Δ1 such that g−1(K(Ws+1,ws+1)) is the cone

on g−1(K(Ws+1,ws+1))∩ ∂Δ1.

Now this map g can be viewed as a homotopy of the map f in Ws. The
homotopy pushes the outermost disk Δ1 into ∂Ws ∪ Fs × I . We may then
push the disk to the other side of Fs × I . The result is a map f ′ that is

homotopic to f rel∂ such that f ′−1
(Fs× I) has one less arc than f−1(Fs× I).

So we can remove all the arcs of f−1. This establishes claim (2).
We now prove claim (3): if Ws+1 has useful boundary-pattern, then Fs× I

is essential in Ws.
Suppose we have a curve σ : (J, j)→ (Fs × I, fs × i) that is inessential in

Ws. This means there is a map g : (Δ, δ)→ (Ws,ws) such that

• J =Cl(∂Δ \
⋃
{A :A ∈ δ}),

• δ contains at most two elements, and

• g|J = σ.

If g−1(Fs × I) = J , then we may regard g as an admissible map into Ws+1,
which has useful boundary-pattern. Then g is homotopic rel∂Δ to a map
g1 : Δ→ ∂Ws+1. Observe that Δ = A ∪B where A= g1

−1(Fs × I) and B =
g1

−1(Cl(∂Ws+1 \ (Fs × I))), as illustrated in Figure 2. We now regard g1|A
as an admissible map of the disk A into Fs × I . This is the map required to
show that σ is an inessential curve in Fs × I .

If g−1(Fs × I) �= J , then we show how to modify the map so that the pre-
image is J . We remove loops from g−1(Fs× I) in the usual way, and similarly
we can remove arcs with both endpoints in J from g−1(Fs × I).
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Figure 2. Modifying the pre-image in the disk.

Figure 3. Modifying the pullback.

Suppose we have an arc with at least one endpoint not in J . An outer-
most such arc bounds a disk Δ1 in Δ, as in Figure 3(a). Then g|Δ1 is an
admissible map in Ws+1, which has a useful boundary-pattern, so there is a
map g2 : Δ1 → ∂Ws+1 homotopic to g|Δ1 rel∂Δ1. Then Δ1 = A ∪ B where
A= g2

−1(Fs × I) and B = g2
−1(Cl(∂Ws+1 \ (Fs × I))). See Figure 3(b). We

cut B out of Δ to obtain a new disk Δ2 and we push g2 to the other side of
Fs×I so that we have a map with one less arc in the pullback. See Figure 3(c).
Continuing in this fashion, we may assume that g−1(Fs × I) = J . �

Proof of Lemma 2.3. Form M × [0,1] and attach a copy of R(F )× [0,1] to
a regular neighbourhood of parallel copies of F ×{1} in M ×{1} as indicated
in Figure 4. We denote by R(F ) the regular neighbourhood of F . It is easy
to see that the right boundary components are obtained. The first essential
submanifold in the hierarchy of W is R(F )× {1/2}. After splitting W open
along R(F )×{1/2}, we obtain a manifold W1 equivalent to M × I , but with
a boundary-pattern different to the standard product boundary-pattern. To
define the boundary-pattern, let R(F−)×{1} and R(F+)×{1} be sufficiently
small regular neighbourhoods of parallel copies of F in M × {1}. Then B is
an element of the boundary-pattern w1 of M × I if

• B =M × {0},
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Figure 4. Building a Haken 4-manifold with three boundary components.

Figure 5. New boundary-pattern on the product M × I .

• B =R(F−)× {1}
• B =R(F+)× {1}
• B is a component of Cl(M × {1} \R(F±)× {1}).
The boundary-pattern w1, which is illustrated in Figure 5, is useful because

we can homotope admissible disks away from F± × I as in earlier parts of the
proof. The splitting sequence for W1 =M1 × I is

(W1, F1 × I), . . . , (Ws, Fs × I), . . . , (Wk, Fk × I)

as in the proof of Lemma 2.4. This sequence is a hierarchy for (W1,w1)

because we choose the regular neighbourhoods of F± × I to be sufficiently
small. �

After dealing with bundles in the next two sections, we will see how to
improve upon Lemma 2.3.
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3. Torus-bundles

In this section, we show that each torus-bundle over the circle is the bound-
ary of some Haken 4-manifold.

We first introduce some conventions of notation and orientation that will
be used throughout this paper.

If g : S → S is a homeomorphism of a surface S, then S(g) is the surface-
bundle over the circle with fibre S and monodromy g. More concretely,

S(g) = S × [0,1]/(x,0)∼
(
g(x),1

)
.(3.1)

We will use the above notation for fibre-bundles throughout this paper.
The following conventions regarding orientations on manifolds and their

boundaries will be used. If S is an orientable surface, then an orientation
for S can be specified by an ordered linearly independent pair of vectors
(w,x) at a single point p ∈ S. The standard orientation for S(g) is then
(w,x, y) where y is a non-zero vector based at (p,0) tangent to {p} × [0,1]
and directed towards 1. The standard orientation of the 4-manifold S(g)×
[0,1] is (w,x, y, z) where z is a non-zero vector based at (p,0,0) tangent to
{(p,0)}× [0,1] and directed towards 1. We write the boundary of S(g)× [0,1]
as

∂
(
S(g)× [0,1]

)
= S

(
g−1

)

 S(g).(3.2)

Since S(g−1) is homeomorphic to S(g), with a reversal of orientation, we use
the term S(g−1) in expression (3.2) to represent the manifold S(g)×{0} with
the orientation induced by the outward normal convention. The term S(g)
in expression (3.2) represents the manifold S(g)×{1}, also with the outward
normal convention.

Example 3.1. Let T2(ϕ) be the torus-bundle over a circle with monodromy
ϕ a single Dehn twist. We represent the torus-bundle T2(ϕ) by consider-
ing the torus as the square [0,1]× [0,1] in the plane with sides identified in
the usual way. The monodromy ϕ is represented by the matrix ( 1 0

1 1 ). We
represent T2(ϕ) visually in Figure 6, regarding T2(ϕ) as the quotient space
(T2 × [0,1])/(x,0)∼ (ϕ(x),1).

Figure 6. Torus bundle with single Dehn twist.
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We consider a special case of Lemma 2.3 that we will use subsequently. Let
W1 =T2(ϕ)× [0,1], which is a torus-bundle over an annulus. The boundary of
W1 is (T

2(ϕ)×{0})
(T2(ϕ)×{1}). Let us pick out two disjoint parallel torus
fibres in T2(ϕ)× {1}. These are: Ti =T2 × {i/3} × {1} for i= 1 or 2. Let ε
be a sufficiently small positive number,2 and consider the ε-neighbourhoods of
these tori: Ti(ε) = T2× [i/3− ε, i/3+ ε]×{1}. Attach a copy of T2× [−ε, ε]×
[0,1] to T2(ϕ)×{1} so that T2×[−ε, ε]×{0}meets T1(ε) and T2×[−ε, ε]×{1}
meets T2(ε). We choose the attachment so that the boundary of the resulting
manifold W is

T2
(
ϕ−1

)

T2

(
ψ−1

)

T2(ϕ ◦ψ)

where ψ ∈ SL(2,Z). The manifold W is an orientable Haken 4-manifold with
three boundary components. The orientations on the boundary components
is based on the orientation convention in expression (3.2). If we regard ψ as a
product of k Dehn twists, then this example shows how to construct a Haken
cobordism between torus-bundles with k+ 1 Dehn twists, k Dehn twists and
a single Dehn twist.

Theorem 3.2. If M is a torus-bundle over a circle, then there is a Haken
4-manifold W with boundary ∂W =M .

We will prove Theorem 3.2 via a sequence of lemmas. The first of these is
a simple observation that is probably well-known.

Lemma 3.3. Let F and G be closed orientable incompressible surfaces in
a closed orientable 3-manifold M . Suppose that F ∩ G is a simple closed
curve α. The manifold obtained by splitting M open along F and regluing via
a Dehn twist along α is homeomorphic to the manifold obtained by splitting
M open along G and regluing via a Dehn twist along α.

Proof. The result of either operation is simply Dehn surgery on the curve α.
�

Lemma 3.4. If Mϕ is a torus-bundle over a circle with monodromy ϕ a sin-
gle Dehn twist, then there is a Haken 4-manifold W with boundary ∂W =Mϕ.

Proof. Let Σ be a closed orientable surface of genus three. We may regard Σ
as the double of the thrice-punctured disk, which is shown in Figure 7. Three
of the four boundary components of the thrice-punctured disk are labelled in
Figure 7. Let εi be a curve parallel to the boundary component labelled i
in Figure 7. The curve ε4 is parallel to the unlabelled boundary component.
Let α, β and γ be the curves shown in Figure 7. Up to isotopy, the identity
mapping id: Σ→Σ can be written as a product of three positive Dehn twists
and four negative Dehn twists. This observation is a consequence of the
lantern relation [8] of the mapping class group. Let fα be the right-handed

2 The number ε is sufficiently small in the sense that T1(ε)∩ T2(ε) =∅.
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Figure 7. Lantern relation.

Dehn twist about α, and define fβ and fγ similarly. Let fi be the right-handed
Dehn twist about εi. The lantern relation is

fγfβfα = f1f2f3f4.

We may write this relation in a number of ways; each εi is disjoint from the
other curves, so for example, fi commutes with the other Dehn twists. Thus,
up to isotopy, we may write the identity mapping as

f1f
−1
γ f2f

−1
α f3f

−1
β f4.

We define the following maps:

θ7 = f1f
−1
γ f2f

−1
α f3f

−1
β f4, θ3 = θ4fα,

θ6 = θ7f
−1
4 , θ2 = θ3f

−1
2 ,

θ5 = θ6fβ , θ1 = θ2fγ ,

θ4 = θ5f
−1
3 , θ0 = θ1f

−1
1 .

We now show how to construct a Haken 4-manifold W7 with three surface-
bundle boundary components. Specifically,

∂W7 =Σ
(
θ−1
7

)

Σ(θ6)
T2(ϕ).

The boundary components are written using representatives from the appro-
priate orientation-preserving homeomorphism class. The orientations of the
boundary components are in accordance with the convention from expres-
sion (3.2).

To see how to buildW7, first note that, by the lantern relation, θ7 is isotopic
to the identity, so Σ(θ7) = Σ×S1. Then observe that Σ×S1 is related to Σ(θ6)
by splitting open along a fibre and regluing by a Dehn twist along the curve
ε4 in the fibre. There is an incompressible torus T in Σ× S1 that intersects
the fibre in the curve ε4. By Lemma 3.3, we can also obtain Σ(θ6) by splitting
Σ× S1 open along T and regluing with a Dehn twist. Then Lemma 2.3 tells
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us how to construct W7; we attach a manifold of the form T2 × [0,1]× [0,1]
to a boundary-component of (Σ× S1)× [0,1].

Observe that in Σ(θ6) there is an incompressible torus that intersects the
fibre in the curve β. By attaching a manifold of the form T2 × [0,1]× [0,1]
to a boundary-component of Σ(θ6)× [0,1] we obtain a Haken 4-manifold W6

with boundary

∂W6 =Σ
(
θ−1
6

)

Σ(θ5)
T2

(
ϕ−1

)
.

Similarly, there is an incompressible torus in Σ(θ5) that intersects the fibre
in the curve ε3. We then construct a 4-manifold W5 with boundary

∂W5 =Σ
(
θ−1
5

)

Σ(θ4)
T2(ϕ).

We continue creating Haken cobordisms with three boundary components.
However, we no longer need to find incompressible tori that intersect the
lantern curves. Instead, all the boundary components will be Σ-bundles over
the circle. Lemma 2.3 produces Haken 4-manifolds W4, W3, W2, and W1 with
boundaries as follows:

∂W4 =Σ
(
θ−1
4

)

Σ(θ3)
Σ

(
f−1
α

)
, ∂W2 =Σ

(
θ−1
2

)

Σ(θ1)
Σ

(
f−1
γ

)
,

∂W3 =Σ
(
θ−1
3

)

Σ(θ2)
Σ(f2), ∂W1 =Σ

(
θ−1
1

)

Σ(θ0)
Σ(f1).

Note that θ0 is the identity mapping so Σ(θ0) = Σ× S1.
So we have seven orientable Haken 4-manifolds each with three boundary

components. We can glue these seven manifolds together to form a connected
manifold W ′ with boundary

∂W ′ =Σ
(
θ−1
7

)

T2(ϕ)
T2

(
ϕ−1

)

T2(ϕ)
Σ

(
f−1
α

)


Σ(f2)
Σ
(
f−1
γ

)

Σ(f1)
Σ(θ0).

The idea is illustrated in Figure 8, which schematically shows the manifolds
W7 and W6 being joined together.

Figure 8. Identifying the Σ(θ6) boundary-components of
W7 and W6 to produce a connected 4-manifold.
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We glue eight of these boundary components in pairs, leaving just one
boundary component T2(ϕ). That is, we glue T2(ϕ−1)⊂W6 to T2(ϕ)⊂W5,
glue Σ(f−1

α ) to Σ(f2) and glue Σ(f−1
γ ) to Σ(f1). We also glue Σ(θ−1

7 ) to
Σ(θ0). This can all be done so that the result is orientable. Hence, there is
an orientable Haken 4-manifold W with boundary ∂W =T2(ϕ). �

Lemma 3.5. If Mψ is a torus-bundle over a circle with monodromy ψ a
product of a finite number of Dehn twists, then there is a Haken 4-manifold
W with boundary ∂W =Mψ .

Proof. The construction is similar to that of Example 3.1 and is by induc-
tion on the number of Dehn twists, say k. Write the monodromy as ψ = τ ◦σ
where τ is a product of k− 1 Dehn twists and σ is a Dehn twist. We modify
the torus-bundle Mψ × [0,1] by attaching a copy of T2 × [−ε, ε]× [0,1] to ε-
neighbourhoods of disjoint torus fibres in Mψ ×{0} as in Example 3.1, except
we choose the gluing so that the boundary components are Mψ , Mτ and Mσ .

Since σ is a single Dehn twist, we can glue on the compact 4-manifold found
in Lemma 3.4 to fill in the boundary component Mψ . We obtain a manifold
W with two boundary components Mψ,Mτ . It is easy to see that W is a
Haken 4-manifold. The proof now follows by induction since τ is a product of
k−1 Dehn twists. So we can find a Haken 4-manifold with boundary Mτ and
glue this onto W to build the required Haken 4-manifold with boundary Mψ .

Note that the case k = 1 follows from Lemma 3.4. �

Putting the results of the lemmas in this section together constitutes a
proof of Theorem 3.2.

4. Higher genus surface-bundles

We will use Lemma 2.3 in our proof of the main theorem of this section.

Theorem 4.1. If M is a closed surface-bundle over a circle, then there is
a Haken 4-manifold W with ∂W =M .

Proof. As before, the proof is by induction on the number of Dehn twists
needed to represent the monodromy. To prove Theorem 4.1, we must con-
struct a Haken 4-manifold whose boundary is a surface-bundle with given
monodromy.

To start the induction, let F be a closed orientable surface of genus at least
two, and let Mϕ be the surface bundle F (ϕ),where ϕ is a Dehn twist along an
essential curve α in F . It is clear that we can construct Mϕ from the product
F × S1 by cutting F × S1 open along the fibre F × {p} and regluing with a
Dehn twist. By Lemma 3.3, we can construct Mϕ by splitting F × S1 along
an incompressible torus containing α and regluing with a Dehn twist.

The manifold Mϕ is related to the product manifold F × S1 by a change
in homeomorphism along an incompressible torus. Hence, there is a Haken
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4-manifold W1 with boundary ∂W1 =Mϕ 
 (F ×S1)
E where E is the total
space of a torus-bundle over a circle. In Section 3, we showed that E is
the boundary of a Haken 4-manifold, W2. The product F × S1 is also the
boundary of a Haken 4-manifold. For example, take a Haken 3-manifold N
with boundary ∂N = F . Then N × S1 will suffice. We attach W2 and N × S1

to the appropriate boundary components of W1 to obtain a Haken 4-manifold
with boundary Mϕ.

To prove the general case, we proceed exactly as in Lemma 3.5. Assume
that Mϕ is a surface bundle over a circle whose monodromy ϕ is a product
of k Dehn twists. Write ϕ = τ ◦ ψ where ψ is a single Dehn twist and τ is
a product of k − 1 Dehn twists. Using Lemma 2.3 and the case above of
a surface bundle with monodromy consisting of a single Dehn twist, we can
construct a Haken 4-manifold with boundary consisting of the disjoint union
of Mϕ,Mτ ,Mψ and then glue on a Haken 4-manifold with boundary Mψ ,
since ψ is a single Dehn twist. By induction on the number k of Dehn twists,
there is another Haken 4-manifold with boundary Mτ since τ is a product of
k− 1 Dehn twists. Gluing this on completes the proof of the theorem. �

5. Other Haken manifolds

We first prove an extension of Lemma 2.3, which gives a sufficient condition
for two Haken 3-manifolds to be Haken cobordant.

Theorem 5.1. If N is obtained from the closed connected Haken 3-
manifold M by splitting M open along an incompressible surface F and re-
gluing the boundary components, then there is a Haken 4-manifold W with
∂W =M 
N , and boundary-pattern w = {M,N}.

Proof. We use the construction in the proof of Lemma 2.3 to obtain a
Haken 4-manifold X with boundary ∂X =M 
N 
E and boundary-pattern
x= {M,N,E}, where E is a a surface-bundle over a circle with fibre F . By

Theorems 3.2 and 4.1, there is another Haken 4-manifold Y with boundary
∂Y =E and boundary-pattern y = {E}. We form a quotient space ofX
Y by

gluing the E boundary components together via a homeomorphism to obtain
the required Haken 4-manifold W . �

Gabai [6] announced the following result in 1983 with an outline of the
proof, and recently Ni [12] has provided the details of the proof.

Theorem 5.2. Let M1 be a closed Haken 3-manifold. There is a sequence

M1,M2,M3, . . . ,Mn

such that Mi+1 is obtained from Mi by splitting Mi open along an incom-
pressible surface and re-gluing the boundary components, and Mn is a product
Σ× S1, where Σ is a closed surface.
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Using Theorem 5.2, we can show that every pair of closed Haken 3-
manifolds is the boundary of some Haken 4-manifold.

Theorem 5.3. Let M,M ′ be a pair of closed Haken 3-manifolds. Then
there is a Haken 4-manifold W with ∂W = M 
 M ′ and boundary-pattern
w = {M,M ′}.

Proof. Write M =M1 and using the notation of Theorem 5.2 we have a
sequence

M1,M2,M3, . . . ,Mn

such that Mi+1 is obtained fromMi by splitting Mi open along an incompress-
ible surface and re-gluing the boundary components, and Mn = Σ× S1, for
some closed orientable aspherical surface Σ. Using induction on the number
of terms in the sequence, we use Theorem 5.1 to obtain a Haken 4-manifold
X with boundary ∂X =M1 
Mn. Similarly (with obvious notation) there is
a Haken 4-manifold Y with boundary ∂Y =M ′

1 
M ′
p, where M ′

p = Σ′ × S1

and Σ′ is a closed orientable aspherical surface. If Σ′ is homeomorphic to
Σ, we can glue X to Y along the product boundary components to obtain
the required Haken cobordism. Otherwise, take a Haken 3-manifold N with
boundary ∂N = Σ 
Σ′. Then N × S1 is a Haken 4-manifold with boundary
(Σ×S1)
 (Σ′×S1). We can then glue X and Y to the appropriate boundary
components of N × S1 to obtain the required Haken cobordism. �

Corollary 5.4. If M is a closed Haken 3-manifold, then there is a Haken
4-manifold W with ∂W =M and boundary-pattern w = {M}.

6. Hyperbolic case

In Long and Reid [9], it is shown that if a closed hyperbolic 3-manifold
M is the totally geodesic boundary of a compact hyperbolic 4-manifold W ,
then η(M) takes an integer value. In [9], M is said to geometrically bound W .
On the other hand, Meyerhoff and Neumann [11], show that η(Nα) takes a
dense set of values in R for the set {Nα} of Dehn surgeries on a hyperbolic
knot in S3. So this implies that ‘generically’ hyperbolic 3-manifolds do not
geometrically bound hyperbolic 4-manifolds.

The existence of π1-injective 2-tori in the Haken 4-manifolds constructed
in Corollary 5.4 gives an obvious obstruction to these 4-manifolds admitting
hyperbolic or even strictly negatively curved metrics.

In [10], Long and Reid give examples of n-dimensional hyperbolic man-
ifolds which geometrically bound hyperbolic (n+ 1)-dimensional hyperbolic
manifolds, for all n.
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7. Some questions

The Haken 4-manifolds that we have constructed in this paper fall into
a special class. In a sense, they are analogues of the graph manifolds of
Waldhausen. Other examples of Haken 4-manifolds exist. For example, the
hyperbolic 4-manifolds of Ratcliffe and Tschantz [13] are all finitely covered
by Haken 4-manifolds (see [5] for a proof of this). In [5], examples of Haken
4-manifolds which admit metrics of strictly negative curvature but which do
not admit hyperbolic metrics are given.

Question 7.1. If M is a closed Haken 3-manifold, does there exist a Haken
4-manifold W with ∂W =M and which contains only non-separating subman-
ifolds in its hierarchy? (Note that then the complement of the hierarchy is a
single 4-cell.)

Question 7.2. Which closed hyperbolic Haken 3-manifolds M geometri-
cally bound hyperbolic Haken 4-manifolds? Are there other obstructions than
that in [9] that the eta invariant of M must be an integer? What about the
situation if the Haken 4-manifold admits a metric of strictly negative or non-
positive curvature? Is it still true that the eta invariant of M must be an
integer in this case?

Question 7.3. For n > 3, what are the Haken cobordism classes for Haken
n-manifolds? We say that Haken n-manifolds N and N ′ belong to the same
Haken cobordism class if there is a Haken (n+1)-manifold W for which ∂W =
N 
N ′ so that N,N ′ are essential in W . In private communication, Allan
Edmonds has constructed a Haken 4-manifold with odd Euler characteristic,
so we know, for example, that Haken 4-manifolds need not be null cobordant.
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