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INVERSE SEMIGROUP EXPANSIONS AND THEIR ACTIONS
ON C∗-ALGEBRAS

ALCIDES BUSS AND RUY EXEL

Abstract. In this work, we give a presentation of the prefix ex-
pansion Pr(G) of an inverse semigroup G as recently introduced

by Lawson, Margolis and Steinberg which is similar to the univer-
sal inverse semigroup defined by the second named author in case

G is a group. The inverse semigroup Pr(G) classifies the partial

actions of G on spaces. We extend this result and prove that Fell

bundles over G correspond bijectively to saturated Fell bundles

over Pr(G). In particular, this shows that twisted partial actions

of G (on C∗-algebras) correspond to twisted (global) actions of

Pr(G). Furthermore, we show that this correspondence preserves
C∗-algebra crossed products.

1. Introduction

Modifying the construction of the Birget–Rhodes prefix expansion of a
semigroup [1], Lawson, Margolis and Steinberg [8] introduced a generalized
prefix expansion of an inverse semigroup G as follows: let Pr(G) be the
collection of all pairs (A, t), where t ∈G, and A is a finite subset of G satisfying

tt∗, t ∈A and ss∗ = tt∗ for all s ∈A.

With the operation

(1.1) (A, t)(B,s) =
(
tss∗t∗A∪ tB, ts

)
,

Pr(G) turns out to be an inverse semigroup, and in the main application pre-
sented in [8], it is proved that Pr(G) possesses a universal property with re-
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spect to partial actions of G: partial actions (resp. representations/homomor-
phisms) of G correspond bijectively to global actions (resp. representations/
homomorphisms) of Pr(G).

The above explicit construction of Pr(G) is suggested via a McAlister–
O’Carroll triple [7] constructed from G in a somewhat involving way.

The first goal of this paper is to obtain an alternate description of Pr(G)
in terms of generators and relations which emphasizes its role as governing
partial representations (or homomorphisms) of G. Our method for doing so
is independent of [8] and is very similar to the one adopted in [4], where an
inverse semigroup S(G) was constructed from a group G, possessing a univer-
sal property related to partial representations and which was later shown by
Kellendonk and Lawson [6] to be precisely the Birget–Rhodes expansion of G.
Needless to say, in case G is a group, the prefix expansion Pr(G) coincides
with the inverse semigroup S(G) constructed in [4].

The interest in approaching Pr(G) from a different route is, in part, to
show that its structure, including the product operation (1.1) above, is a
direct consequence of the concept of partial representations. In addition, we
answer some natural questions about the expansion Pr(G) which did not take
place in [8], as for instance what happens with Pr(Pr(G)) as well as the order
of Pr(G) if G is finite.

As already observed in [8], the assignment G �→Pr(G) is a functor on the
category Inv of inverse semigroups (with homomorphisms as morphisms). It
may also be viewed as a functor from the category PInv of inverse semigroups
with partial homomorphisms as morphisms to Inv. When viewed in this way,
we show that it is the left adjoint of the forgetful functor Inv→ PInv. This
is related to the result in [11] where Szendrei shows that G �→Pr(G), when
considered as a functor from the category of groups to F -inverse semigroups,
is left adjoint of to the functor assigning to an inverse semigroup its maximal
homomorphic group image.

One of the main goals in this paper is to study the relation between Fell
bundles and crossed products by G and Pr(G). We prove that Fell bun-
dles over G correspond bijectively to saturated Fell bundles over Pr(G) in
a somewhat canonical way. In fact, this correspondence extends to a func-
tor and gives an equivalence between the categories of Fell bundles over G
and saturated Fell bundles over Pr(G). Moreover, this equivalence preserves
the associated (full and reduced) cross-sectional C∗-algebras. In particular,
the functor G �→ Pr(G) preserves classical partial crossed products, that is,
A � G ∼= A � Pr(G) for any partial action of G on a C∗-algebra A and the
corresponding (global) action of Pr(G) on A. A similar result still holds
for twisted partial actions. In fact, all these results are special cases of the
more general theorem we obtain for Fell bundles and their corresponding C∗-
algebras.
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2. The expansion

Throughout this section, we will let G be an inverse semigroup.

Definition 2.1. We shall let Pr(G) denote the universal semigroup de-
fined via generators and relations as follows: to each element s in G we take
a generator [s] (from any fixed set having as many elements as G), and for
every s, t ∈G we consider the relations

(i) [s][t][t∗] = [st][t∗],
(ii) [s∗][s][t] = [s∗][st],
(iii) [s][s∗][s] = [s].

The following result is inspired by [4, Proposition 2.4].

Proposition 2.2. For every t in G, let εt = [t][t∗]. Then, for each t and
s in G,

(i) εt is idempotent,
(ii) [t]εs = εts[t],
(iii) εt and εs commute.

Proof. Notice that (i) follows immediately from Definition 2.1(iii). With
respect to (iii), we have

εsεt = [s]
[
s∗

]
[t]

[
t∗

]
= [s]

[
s∗t

][
t∗

]
(2.1)

= [s]
[
s∗t

][
t∗s

][
s∗t

][
t∗

]
=

[
ss∗t

][
t∗s

][
s∗tt∗

]
.

Interchanging the roles of s and t, the above computation gives

εtεs =
[
tt∗s

][
s∗t

][
t∗ss∗

]
=

[
tt∗s

][
s∗t

][
t∗s

][
s∗t

][
t∗ss∗

]

=
[
tt∗ss∗t

][
t∗s

][
s∗tt∗ss∗

]

=
[
ss∗tt∗t

][
t∗s

][
s∗ss∗tt∗

]
=

[
ss∗t

][
t∗s

][
s∗tt∗

] (2.1)
= εsεt.

Addressing (ii) observe that

[t]εs = [t][s]
[
s∗

]
= [t]

[
t∗

]
[t][s]

[
s∗

] (iii)
= [t][s]

[
s∗

][
t∗

]
[t]

= [ts]
[
s∗

][
t∗

]
[t] = [ts]

[
s∗t∗

]
[t] = εts[t]. �

In the next result, we write E(G) for the idempotent semilattice of G.

Proposition 2.3. Given e ∈E(G) and s ∈G one has that:

(i) εe = [e], and hence [e] is idempotent,
(ii) [e][s] = [es], and [s][e] = [se],
(iii) εeεs = εes.

Proof. (i) This follows from

[e] = [e]
[
e∗

]
[e] = [e]

[
e∗e

]
= [e]

[
e∗

]
= εe.
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In order to prove (ii), we have by (i) that

[e][s] = [e][e][s] = [e][es] = [e][es]
[
(es)∗

]
[es] = [ees]

[
(es)∗

]
[es]

= [es]
[
(es)∗

]
[es] = [es].

The second part of (ii) follows similarly. As for (iii), we have

εeεs = εeεsεe
(i)
= [e][s]

[
s∗

]
[e]

(ii)
= [es]

[
s∗e

]
= εes. �

Lemma 2.4. Given s1, . . . , sn, t ∈G, let x= εs1 · · ·εsn [t]. Then
x= εs′1εs′2 · · ·εs′n

[
t′
]
,

where t′ = pt, s′i = psi, for all i= 1, . . . , n, and p= s1s
∗
1s2s

∗
2 · · ·sns∗ntt∗.

Proof. Letting f = tt∗ and ei = sis
∗
i , for all i = 1, . . . , n, observe that, for

each i, one has

εsi = εeisi
Proposition 2.3(iii)

= εeiεsi ,

while

[t] = [t]
[
t∗

]
[t] =

[
tt∗

]
[t] = [f ][t]

Proposition 2.3(i)
= εf [t].

So

x = εs1εs2 · · ·εsn [t] = εe1εs1εe2εs2 · · ·εenεsnεf [t]

= εe1εe2 · · ·εenεfεs1εs2 · · ·εsn [t]
Proposition 2.3(iii)

= εpεs1εs2 · · ·εsn [t]
= εpεs1εpεs2 · · ·εpεsnεp[t] = εps1εps2 · · ·εpsn [pt]. �

Proposition 2.5. Every element x ∈Pr(G) may be written as a product

(2.2) x= εs1 · · ·εsn [t],
where s1, . . . , sn, t ∈G. One may moreover assume that

(a) s1s
∗
1 = · · ·= sns

∗
n = tt∗, and

(b) t and tt∗ belong to the set {s1, . . . , sn}.

Proof. Given x ∈ Pr(G) write x = [r1][r2] · · · [rm], where the ri ∈ G. We
shall prove the first sentence of the statement by induction on m. The case
m= 1 follows from

x= [r1] = [r1]
[
r∗1

]
[r1] = εr1 [r1].

Assuming that m≥ 2, use the induction hypothesis to write

[r1][r2] · · · [rm−1] = εs1 · · ·εsn [t],
with s1, . . . , sn, t ∈G. Next observe that

(2.3) [t][rm] = [t]
[
t∗

]
[t][rm] = [t]

[
t∗

]
[trm] = εt[trm].

Therefore

x= [r1][r2] · · · [rm] = εs1 · · ·εsn [t][rm]
(2.3)
= εs1 · · ·εsnεt[trm],
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proving the first sentence in the statement.
In order to prove (a) write x= εs1εs2 · · ·εsn [t], using what we have already

proved, and let t′, s′i, and p, be as in Lemma 2.4. Then the condition in (a)
is verified since

s′is
′∗
i = psis

∗
i p= p= ptt∗p= t′t′∗.

To conclude, we need to check (b) but this follows from

[t] = [t]
[
t∗

]
[t] = εt[t] = εt

[
tt∗t

] Proposition 2.3(ii)
= εt

[
tt∗

]
[t] = εtεtt∗ [t]. �

Definition 2.6. If x ∈ Pr(G) is written as in (2.2) in such a way that
Proposition 2.5(a), (b) are satisfied, we will say that x is in normal form.

Suppose that an element x ∈Pr(G) is written as x= εs1εs2 · · ·εsn [t], as in
(2.2), but not necessarily in normal form. Letting A= {s1, s2, . . . , sn} we will
use the notation

(2.4) εA := εs1εs2 · · ·εsn ,
which is unambiguously defined since the εsi commute with each other by
Proposition 2.2(iii). Employing this notation, we may therefore write

(2.5) x= εA[t].

Assuming now that x is in normal form, notice that Proposition 2.5(a), (b)
may be rephrased as

(2.6) t, tt∗ ∈A and ss∗ = tt∗ for all s ∈A.

Definition 2.7. Given e ∈ E(G) we will say that a subset A ⊆ G is an
e-set if

(i) e ∈A, and
(ii) ss∗ = e, for all s ∈A.

Observe that condition (2.6) may be rephrased by saying that A is a finite
tt∗-set containing t. We may therefore summarize our findings as follows:

Proposition 2.8. Every element x ∈Pr(G) may be written as

x= εA[t],

where t ∈G, and A is a finite tt∗-set containing t, in which case we say that
x is in normal form.

Let us now give an expression for multiplying elements of Pr(G).

Proposition 2.9. Let A,B ⊆G be finite subsets, let t, s ∈G, and let x=
εA[t] and y = εB [s]. Assuming that t ∈A, one has that

xy = εA∪(tB)[ts] = ε(tss∗t∗A)∪(tB)[ts].

Assuming that both x and y are in normal form (in which case the above
requirement that t ∈ A is automatically satisfied) one moreover has that the
second expression for xy above is in normal form.
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Proof. Using Proposition 2.2(ii), it is easy to see that [t]εB = ε(tB)[t], so

xy = εA[t]εB[s] = εAε(tB)[t][s] = εA∪(tB)[t][s] = · · · .
Letting B =A∪ (tB), the above equals

· · ·= εB [t]
[
t∗

]
[t][s] = εB [t]

[
t∗

]
[ts] = εBεt[ts] = εB∪{t}[ts] = εB [ts],

proving the first expression for xy above. Next, observe that

[ts] = [ts]
[
s∗t∗

]
[ts] =

[
tss∗t∗

]
[ts] = εq[ts],

where q = tss∗t∗. Therefore,

xy = εA∪(tB)εq[ts] = εqεAε(tB)[ts]

Proposition 2.3(iii)
= ε(qA)ε(tB)[ts] = ε(qA)∪(tB)[ts],

proving the second expression for xy above. Assuming that xi = εAi [ti] is in
normal form for i= 1,2, we have for all s ∈A that ss∗ = tt∗, so

qs(qs)∗ = qss∗ = tss∗t∗tt∗ = tss∗t∗,

while for s ∈B, one has that ss∗ = ss∗, so

ts(ts)∗ = tss∗t∗ = tss∗t∗.

Moreover, since s ∈B,
ts ∈ tB ⊆ (qA)∪ (tB),

and, because tt∗ ∈A,

tss∗t∗ = tss∗t∗tt∗ ∈ qA⊆ (qA)∪ (tB),

hence proving the last assertion. �

Proposition 2.5 may be used to prove that Pr(G) is a regular semigroup.

Proposition 2.10. For every x ∈Pr(G) there exists x̄ ∈Pr(G) such that
xx̄x= x and x̄xx̄= x̄.

Proof. Given x in G, use Proposition 2.5 to write x = εs1 · · ·εsn [t], with
s1, . . . , sn, t ∈ G, and set x̄ = [t∗]εs1 · · ·εsn . Then, using Proposition 2.2(iii),
we get

xx̄x = εs1 · · ·εsn [t]
[
t∗

]
εs1 · · ·εsnεs1 · · ·εsn [t]

= εs1 · · ·εsn [t]
[
t∗

]
[t] = εs1 · · ·εsn [t] = x.

The proof that x̄xx̄= x̄ is just as easy. �

Before we proceed, we need to introduce the following important concept:

Definition 2.11. Let H be a semigroup. A partial homomorphism of G
in H is a map

π : G→H

such that for all s, t ∈G, one has that
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(i) π(s)π(t)π(t∗) = π(st)π(t∗),
(ii) π(s∗)π(s)π(t) = π(s∗)π(st),
(iii) π(s)π(s∗)π(s) = π(s).

Notice that the definition of partial homomorphisms does not require H
to be an inverse semigroup. However, should H happen to be an inverse
semigroup, then Definition 2.11(iii) applied to both s and s∗, together with
the uniqueness of inverses, immediately implies that

(2.7) π
(
s∗

)
= π(s)∗ for all s ∈G.

Hence, if H is an inverse semigroup, the axioms (i)–(iii) in Definition 2.11 are
equivalent to (i)–(ii) plus (2.7). If H is the semigroup L(H) of all bounded
linear maps on a Hilbert space H with composition of operators as the semi-
group multiplication, partial homomorphisms G→H are also called partial
representations of G on H.

It is evident that the map

(2.8) ιG : G→Pr(G), s ∈G �→ [s] ∈Pr(G)

is a partial homomorphism of G in Pr(G), and we will call it the canonical
partial homomorphism. The universal property of Pr(G) tells us that every
partial homomorphism of G factors through the canonical one. More precisely:

Proposition 2.12. For every semigroup H and every partial homomor-
phism π : G → H , there exists a unique semigroup homomorphism π̃ :
Pr(G)→H , such that the diagram

G

ιG

π
H

Pr(G)

π̃

commutes, where the vertical arrow is the canonical partial homomorphism.

Proof. Obvious from the definition of Pr(G). �

This result has a very useful consequence, as follows.

Corollary 2.13. Let π : G → H be a partial homomorphism of G in a
semigroup H . Then, given any e ∈E(G) one has that

(i) π(e) is idempotent,
(ii) if s ∈G, then π(e)π(s) = π(es), and π(s)π(e) = π(se).

Proof. Letting π̃ be as in Proposition 2.12 we have

π(e)π(s) = π̃
(
[e]

)
π̃
(
[s]

)
= π̃

(
[e][s]

) Proposition 2.3(ii)
= π̃

(
[es]

)
= π(es),

proving the first part of (ii), while the second part follows similarly. As for
(i), it follows from (ii) by taking s= e. �
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If we take π to be the identity map on G, then it is evidently a partial
homomorphism of G in itself, so Proposition 2.12 provides a semigroup ho-
momorphism

(2.9) ∂ : Pr(G)→G,

called the degree map, such that ∂([s]) = s, for all s in G.

Proposition 2.14. Let x ∈Pr(G) be written in normal form as x= εA[t].
Then ∂(x) = t. Moreover, x is idempotent if and only if ∂(x) = t is idem-
potent, in which case we have x = εA. Hence ∂ is an essentially injective
homomorphism in the sense that pre-images of idempotents are idempotents.1

In particular, the idempotents of Pr(G) have the form εA for some finite
subset A⊆G which can be chosen to be an e-set for some e ∈E(G).

Proof. We have

∂(x) = ∂
(
εs1 · · ·εsn [t]

)
= ∂

(
[s1]

[
s∗1

]
· · · [sn]

[
s∗n

]
[t]

)
= s1s

∗
1 · · ·sns∗nt= tt∗t= t.

In particular, if x is idempotent then so is t. In this case, t= εt (by Proposi-
tion 2.3(i)) so that x= εAεt = εA∪{t} = εA because A contains t. �

Theorem 2.15. Pr(G) is an inverse semigroup.

Proof. We have already seen in Proposition 2.10 that Pr(G) is regular. It
therefore suffices to prove that the idempotent elements of Pr(G) commute
(see [7, Chapter 1, Theorem 3]). By Proposition 2.14, every idempotent of
Pr(G) has the form εA for some A⊆G. The fact that idempotents commute
then follows from Proposition 2.2(iii). �

Recall that an inverse semigroup G is E-unitary if for all s ∈ G and e ∈
E(G),

es ∈E(G) ⇒ s ∈E(G).

Proposition 2.16. The inverse semigroup Pr(G) is E-unitary if and only
if G is E-unitary.

Proof. Suppose that G is E-unitary, and let x ∈Pr(G) and y ∈E(Pr(G))
with yx ∈E(Pr(G)). Letting e := ∂(y) ∈E(G) and s := ∂(x) ∈G we then get
es= ∂(yx) ∈ E(G). Since G is E-unitary, we have ∂(x) = s ∈ E(G), so that
x ∈E(Pr(G)) because ∂ is essentially injective.

Conversely, assume that Pr(G) is E-unitary and let s ∈ G and e ∈ E(G)
with es ∈E(G). Then [e][s] = [es] ∈E(Pr(G)) (by Proposition 2.3(i)) so that
[s] ∈E(Pr(G)) because Pr(G) is E-unitary. Therefore, s= ∂([s]) ∈E(G). �

1 Essentially injective homomorphisms are also called idempotent pure homomorphisms

in [8].
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Before ending this section, let us remark at this point that our inverse
semigroup Pr(G) is canonically isomorphic to the inverse semigroup

H =
{
(A, t) : A⊆G finite, t, tt∗ ∈A and ss∗ = tt∗ for all s ∈A

}

introduced in [8] (see our Introduction). In fact, this obviously follows from
the same universal property (of classifying partial homomorphisms) that both
have. An explicit isomorphism Pr(G) ∼= H is given by taking an element
x= εA[t] ∈Pr(G) in normal form and sending it to the pair (A, t) ∈H . This is
the same map one gets by first considering the map π : G→H , t �→ ({tt∗, t}, t)
and checking that π is a partial homomorphism. The corresponding homo-
morphism π̃ : Pr(G) → H obtained from the universal property of Pr(G)
is then equal to the map εA[t] �→ (A, t) just mentioned. In particular, this
shows that this map is well-defined and, even more important, that nor-
mal forms are unique: if x = εA[t] = εB[s] are two ways of writing x in
normal form, then A = B and s = t. Later, in Section 5, we are going to
prove uniqueness of normal forms without using the inverse semigroup H
above: we construct a canonical partial action of G that “separates” normal
forms.

3. Partial homomorphisms and partial actions

In Definition 2.11, we defined partial homomorphisms of inverse semi-
groups. Now we will find equivalent conditions for checking that a map into
an inverse semigroup is a partial homomorphism. As before, we fix an inverse
semigroup G.

Proposition 3.1. Let H be an inverse semigroup and let π : G→H be a
map. Then π is a partial homomorphism if and only if, for all s and t in G,
one has that

(i) π(s∗) = π(s)∗,
(ii) π(s)π(t)≤ π(st), and
(iii) π(s)≤ π(t) whenever s≤ t.

Proof. Assume that π is a partial homomorphism. Then (i) holds by (2.7).
Next pick s, t ∈G, and let f = π(t∗)π(t). We then have that f is idempotent
by (i), and

π(st)f = π(st)π
(
t∗

)
π(t) = π(s)π(t)π

(
t∗

)
π(t) = π(s)π(t),

proving (ii). Assuming that s≤ t, write s= te, for some idempotent e. Then
π(e) is idempotent by Corollary 2.13(i) and

π(t)π(e)
Corollary 2.13(ii)

= π(te) = π(s),

proving (iii).
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Conversely, suppose that (i)–(iii) hold. Given s, t ∈G, we have

π(s)π(t)π
(
t∗

)
≤ π(st)π

(
t∗

)
= π(st)π

(
t∗

)
π(t)π

(
t∗

)

≤ π
(
stt∗

)
π(t)π

(
t∗

)
≤ π(s)π(t)π

(
t∗

)
,

where in the last step we have used (iii) and the fact that stt∗ ≤ s. This
gives Definition 2.11(i), and 2.11(ii) follows similarly. The last axiom of Defi-
nition 2.11 follows immediately from (i). �

Remark 3.2. Maps π : G → H satisfying conditions (i)–(iii) of Proposi-
tion 3.1 are sometimes called dual pre-homomorphisms by some authors (as
for instance, in [8]).

Let us specialize to partial homomorphisms in symmetric inverse semi-
groups, but first we would like to introduce some terminology.

Definition 3.3. Let G be an inverse semigroup and let X be a set. By a
partial action of G on X we shall mean a partial homomorphism

π : G→I(X),

where I(X) denotes the symmetric inverse semigroup on X .

Given a partial action π, as above, we shall write πs for π(s).

Proposition 3.4. Let X be a set and let π : G → I(X) be a map. For
each s ∈G, let Xs be the range of πs. Then π is a partial action if and only
if, for all s, t ∈G, the following holds:

(i) π−1
s = πs∗ (in particular this implies that the domain of πs coincides with

the range of πs∗ , namely Xs∗),
(ii) πs(Xs∗ ∩Xt) =Xs ∩Xst,
(iii) for every x ∈Xt∗ ∩Xt∗s∗ , one has that πs(πt(x)) = πst(x).

Proof. Initially observe that, under (i) and (ii), the composition πs(πt(x))
appearing in (iii) is meaningful, since

πt(x) ∈ πt(Xt∗ ∩Xt∗s∗) = πt

(
πt∗(Xt ∩Xs∗)

)
=Xt ∩Xs∗ ⊆Xs∗ .

Assume first that (i)–(iii) hold. In order to prove that π is a partial action
we will use Proposition 3.1. Since Proposition 3.1(i) is granted, let us attack
Proposition 3.1(ii). For this let s, t ∈G, and notice that the domain of πsπt

coincides with

πt∗(Xt ∩Xs∗) =Xt∗ ∩Xt∗s∗ ,

by (ii). Evidently this is contained in Xt∗s∗ , also known as the domain of
πst. By (iii) we see that πsπt coincides with πst on the domain of the former,
which means that πsπt ≤ πst, proving Proposition 3.1(ii).

Let us now study the behavior of πe, for an idempotent e ∈E(G). By (iii)
with s = t = e, we deduce that for every x ∈ Xe, one has that πe(πe(x)) =
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πe(x), but since πe(x) is injective it must be that πe(x) = x. In other words,
πe is the identity map on Xe.

Now let s, t ∈ G with s ≤ t, so that s = ts∗s. As seen above πs∗s is the
identity on Xs∗s, so

Xs∗s ∩Xt∗ = πs∗s(Xs∗s ∩Xt∗)
(ii)
= Xs∗s ∩Xs∗st∗ =Xs∗s ∩Xs∗

(ii)
= πs∗(Xs ∩Xs) = πs∗(Xs) =Xs∗ .

This implies that Xs∗ ⊆Xt∗ and, for every x ∈Xs∗ , we have x ∈Xs∗s∩Xs∗st∗ ,
hence by (iii)

πs(x) = πts∗s(x) = πt

(
πs∗s(x)

)
= πt(x),

proving that πs ≤ πt.
Now assume that π is a partial action, so Proposition 3.1(i)–(iii) hold. Then

(i) is granted so let us prove (ii). Given s, t ∈G, observe that the domain of
πsπt is given by πt∗(Xt ∩Xs∗), which is therefore contained in the domain of
πst, namely Xt∗s∗ , by Proposition 3.1(ii), that is,

πt∗(Xt ∩Xs∗)⊆Xt∗s∗ .

Since the set on the left-hand side above is obviously also contained in Xt∗ ,
we deduce that

(3.1) πt∗(Xt ∩Xs∗)⊆Xt∗ ∩Xt∗s∗ .

We claim that (3.1) is actually an equality of sets. In order to prove it, notice
that a suitable change of variables in (3.1) yields

(3.2) πt(Xt∗ ∩Xt∗s∗)⊆Xt ∩Xtt∗s∗ .

Evidently stt∗ ≤ s, so the domain of πstt∗ is contained in the domain of πs by
Proposition 3.1(iii) or, in other words, Xtt∗s∗ ⊆Xs∗ . Plugging this into (3.2)
one obtains

(3.3) πt(Xt∗ ∩Xt∗s∗)⊆Xt ∩Xs∗ .

Applying the inverse of πt to both sides then gives

Xt∗ ∩Xt∗s∗ ⊆ πt∗(Xt ∩Xs∗),

which happens to be precisely the converse of the inclusion in (3.1). Therefore

πt∗(Xt ∩Xs∗) =Xt∗ ∩Xt∗s∗ ,

and our claim is proved. Suitably changing variables in the above equality
immediately yields (ii).

In order to prove (iii) let x ∈ Xt∗ ∩ Xt∗s∗ . Then by (3.3) one has that
πt(x) ∈Xs∗ , so x is in the domain of πsπt, and hence by Proposition 3.1(ii)
one has that

πs

(
πt(x)

)
= πst(x). �

Let us now prove a result very similar to the above, except that it is tailored
to require minimal effort for checking a map to be a partial action.
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Proposition 3.5. Let X be a set and let π :G→I(X) be a map. For each
s ∈G, let Xs be the range of πs. Then π is a partial action if and only if, for
all s, t ∈G, the following holds:

(i) π−1
s = πs∗ ,

(ii) πs(Xs∗ ∩Xt)⊆Xst,
(iii) if s≤ t, then Xs ⊆Xt,
(iv) for every x ∈Xt∗ ∩Xt∗s∗ , one has that πs(πt(x)) = πst(x).

Proof. The reader should have noticed that the conditions above are very
similar to the conditions given in Proposition 3.4, except that the equality in
Proposition 3.4(ii) is replaced by the weaker inclusion in (ii) above, while (iii)
is new.

The remark made at the beginning of the proof of Proposition 3.4 applies
here as well, although with a different argument: under (i)–(iii), let x ∈Xt∗ ∩
Xt∗s∗ . Then

πt(x) ∈ πt(Xt∗ ∩Xt∗s∗)
(ii)

⊆Xtt∗s∗
(iii)

⊆ Xs∗ ,

hence the composition πs(πt(x)) appearing in (iv) is meaningful.
Let us first observe that conditions (i)–(iv) above are necessary for π to be

a partial action: clearly (i), (ii), and (iv) immediately follow from Proposi-
tion 3.4, while (iii) is a direct consequence of Proposition 3.1(iii).

Conversely, let us prove that π is a partial action under the assumption that
the above conditions hold. Using Proposition 3.4, it is clearly enough to verify
Proposition 3.4(ii). Since the range of πs is precisely Xs one immediately
deduces from (ii) that

(3.4) πs(Xs∗ ∩Xt)⊆Xs ∩Xst.

Applying this with a suitable change of variables, we get

πs∗(Xs ∩Xst)⊆Xs∗ ∩Xs∗st

(iii)

⊆ Xs∗ ∩Xt.

Because πs is the inverse of πs∗ the above implies that

Xs ∩Xst ⊆ πs(Xs∗ ∩Xt),

which combines with (3.4) to give the desired Proposition 3.4(ii). �

4. The expansion as an adjunction of categories

Let Inv be the category of inverse semigroups with usual homomorphisms
as morphisms, and let PInv be the category of inverse semigroups with partial
homomorphisms as morphisms. Note that composition of partial homomor-
phisms in again a partial homomorphism (this can be seen from Proposi-
tion 3.1) so that PInv is indeed a category. Given two inverse semigroups G
and H , we write Hom(G,H) for the set of all homomorphisms G→H (that
is, the hom-set in Inv) and PHom(G,H) for the set of all partial homomor-
phisms G→H (that is, the hom-set in PInv). Observe that G �→Pr(G) is a
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functor PInv→ Inv: given a partial homomorphism π : G→H the induced
homomorphism Pr(π) : Pr(G) → Pr(H) is given by S(π) = ιH ◦ π̃, where
ιH : H →Pr(H) is the canonical inclusion h �→ [h] and π̃ : Pr(G)→H is the
morphism provided by Proposition 2.12. In other words, Pr(π)[g] = [π(g)] for
all g ∈ G. By Proposition 2.12, there is a bijective correspondence between
partial homomorphisms G → H and homomorphisms Pr(G) → H , that is,
we have a canonical bijection Hom(G,H) ∼= PHom(Pr(G),H). It is easy to
see that this correspondence is natural in both variables G and H . This al-
ready says that we have an adjunction between the prefix expansion functor
Pr : PInv→ Inv, G→Pr(G) and the forgetful functor Fg : Inv→ PInv.

Now we describe the above adjunction in terms of units and counits. Given
an inverse semigroup G, we write ∂G : Pr(G) → G for the degree map and
ιG : G → Pr(G) for the canonical inclusion map, that is, ∂G([g]) = g and
ιG(g) = [g] for all g ∈ G. Then ∂ may be interpreted as a natural transfor-
mation from the functor Pr◦Fg : Inv→ Inv to the identity functor IdInv on
Inv, and ι may be viewed as a natural transformation from the identity func-
tor IdPInv to the functor Fg ◦Pr : PInv→ PInv. Moreover, (ι, ∂) is the pair
unit-counit for the adjunction between Pr and Fg. To see this, one has to
check the equations

1Pr = ∂Pr◦Pr ι and 1Fg =Fg∂ ◦ ιFg,
write 1 denotes identity natural transformations. More explicitly, this means
that the composition

∂Pr(G) ◦Pr(ιG) : Pr(G)→Pr
(
Pr(G)

)
→Pr(G)

is the identity homomorphism IdPr(G) : Pr(G)→Pr(G); and the composition

∂G ◦ ιG : G→Pr(G)→G

is the identity (partial) homomorphism IdG : G → G. Both assertions are
easily checked.

5. The canonical partial action

We again fix an inverse semigroup G. The goal of this section is to exhibit
a somewhat canonical partial action of G which will, among other things,
enable us to prove that the normal form of each element in Pr(G) is unique.

Definition 5.1. A nonempty subset ξ ⊆ G will be called a filter if for
every e ∈E(G) and s ∈G,

(5.1) es ∈ ξ ⇐⇒ e ∈ ξ and s ∈ ξ.

If G is a group, a filter is just a subset ξ ⊆G containing 1 (the unit of G).
In general, filters may contain several idempotents (for instance G is always
a filter). If G has a zero 0 ∈G, then the only filter containing 0 is G. Also,
observe that E(S) is a filter if and only if S is E-unitary.
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Remark 5.2. In general, a filter does not satisfy the symmetric property
of (5.1):

se ∈ ξ ⇐⇒ e ∈ ξ and s ∈ ξ.

In fact, it may happen that s ∈ ξ but s∗s /∈ ξ and also s∗ /∈ ξ. As a simple
example, let G be the inverse semigroup with 0 and one generator s �= 0 satis-
fying s2 = 0. This is the inverse semigroup with five elements G= {0, e, f, s, t},
where t= s∗, ss∗ = e and s∗s= f (with s2 = t2 = 0). Observe that ξ = {e, s}
is a filter in G. We have s ∈ ξ but s∗ = t /∈ ξ and s∗s = f /∈ ξ. The same
problem happens for the filter η = {f, t}.

Let us use the opportunity to mention that Pr(G) = {ε0, εe, εs, εf , εt, [s], [t]},
an inverse semigroup containing {ε0 = [0], εs, εt, [s], [t]} as an inverse subsemi-
group isomorphic to G and two other new idempotents εe ≥ εs and εf ≥ εt.

Here is a useful alternative characterization of filters.

Proposition 5.3. Let ξ be a nonempty subset of G. Then ξ is a filter if
and only if

(i) ss∗ ∈ ξ for every s ∈ ξ;
(ii) ss∗t ∈ ξ for every s, t ∈ ξ; and
(iii) whenever s, t ∈G are such that s ∈ ξ and s≤ t, we have t ∈ ξ.

Proof. Assuming that ξ is a filter, let s ∈ ξ. With e= ss∗, we have es= s ∈
ξ, hence e ∈ ξ, proving (i). If one is also given t ∈ ξ, then ss∗t= et ∈ ξ, proving
(ii). Next assume that t≥ s ∈ ξ. Again with e= ss∗, we have et= ss∗t= s ∈ ξ,
so (5.1) implies that t ∈ ξ.

Conversely, suppose that ξ satisfies (i)–(iii) and assume that es ∈ ξ, where
e is idempotent. Then

ξ � es≤ s

and hence s ∈ ξ, by (iii). Moreover, by (i),

ξ � es(es)∗ = ess∗ ≤ e,

and hence e ∈ ξ, again by (iii). On the other hand, assuming that e, s ∈ ξ,
with e idempotent, we have by (ii) that

es= ee∗s ∈ ξ. �

Definition 5.4. A nonempty subset ξ ⊆G is said to be a filter base if it
satisfies Proposition 5.3(i)–(ii).

Observe that Proposition 5.3(i) follows from Proposition 5.3(ii) by taking
s= t. So a filter base is just a subset ∅ �= ξ ⊆G satisfying Proposition 5.3(ii).

As a relevant example, notice that every e-set (Definition 2.7) is a filter
base.
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Proposition 5.5. Let η be a filter base. Then

〈η〉 := {t ∈G : t≥ s, for some s ∈ η}
is a filter.

Proof. Let e ∈E(G) and s ∈G. Supposing that es ∈ 〈η〉, there exists t ∈ η
such that es≥ t. But then

η � t≤ es≤ s

from where we see that s ∈ 〈η〉. Moreover

η � tt∗ ≤ es(es)∗ = ess∗ ≤ e,

so e ∈ 〈η〉. Conversely, suppose that both e and s lie in 〈η〉. Then there are
e1, s1 ∈ η such that e1 ≤ e, and s1 ≤ s, so

η � e1e
∗
1s1 ≤ ee∗s= es,

and therefore es ∈ 〈η〉. �
Definition 5.6. If η is a filter base, we will refer to 〈η〉 as the filter

generated by η. If ξ is a filter and 〈η〉= ξ, we will say that η is a filter base
for ξ.

If ξ is a filter, then it is evidently also a filter base and 〈ξ〉= ξ.

Definition 5.7. We will denote by X the collection of all filters, and for
t ∈G we will set

Xt = {ξ ∈X : t ∈ ξ}.
We next start preparing for the construction of our partial action of G

on X .

Proposition 5.8. If t ∈G and η is a filter base containing t∗, then

tη := {ts : s ∈ η}
is a filter base containing t. If moreover η′ is another filter base containing
t∗, such that 〈η〉= 〈η′〉, then 〈tη〉= 〈tη′〉.

Proof. Given u ∈ tη, write u= ts, with s ∈ η. Then ss∗t∗ ∈ η, so

uu∗ = tss∗t∗ ∈ tη.

If v is another element of tη, write v = tr, with r ∈ η, and notice that ss∗r ∈ η,
so

uu∗v = tss∗t∗tr = tt∗tss∗r = tss∗r ∈ tη.

This proves that tη is a filter base. Since t∗ ∈ η, we have t∗t ∈ η, so

t= tt∗t ∈ tη.

Given η′ as above, suppose that u ∈ 〈tη〉. Then there exists s ∈ η such that
u≥ ts. Since

s ∈ η ⊆ 〈η〉=
〈
η′

〉
,
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there exists s′ ∈ η′ such that s≥ s′. Therefore,

u≥ ts≥ ts′ ∈ tη′,

proving that u ∈ 〈tη′〉. This shows that 〈tη〉 ⊆ 〈tη′〉, and the reverse inclusion
may be proved in a similar way. �

We are now ready to introduce the partial action which is the main object
of this section.

Theorem 5.9. For each t ∈G, define

πt : Xt∗ →Xt,

by πt(ξ) = 〈tξ〉, for all ξ ∈Xt∗ . Then π is a partial action of G on X .

Proof. We will check the conditions in Proposition 3.5. For this, we first
claim that πs∗πs is the identity on Xs∗ , for every s in G. Given ξ ∈Xs∗ , we
have s ∈ sξ, and sξ is a filter base for πs(ξ), so we deduce from Proposition 5.8
that s∗sξ is a filter base for πs∗(πs(ξ)). Thus, in order to prove our claim, it
suffices to show that 〈s∗sξ〉= ξ. As s∗ ∈ ξ, one has that s∗sξ ⊆ ξ, and hence
〈s∗sξ〉 ⊆ ξ. Conversely, given u ∈ ξ, we have

u≥ s∗su ∈ s∗sξ,

so u ∈ 〈s∗sξ〉, proving that 〈s∗sξ〉= ξ, and therefore that πs∗(πs(ξ)) = ξ. Re-
versing the roles of s and s∗ we deduce that πsπs∗ is the identity on Xs,
whence πs∗ = π−1

s , proving Proposition 3.5(i).
In order to prove Proposition 3.5(ii), let t, s ∈G and let ξ ∈Xs∗ ∩Xt. This

means that s∗, t ∈ ξ, so evidently

st ∈ sξ ⊆ 〈sξ〉= πs(ξ),

which implies that πs(ξ) ∈Xst.
With respect to Proposition 3.5(iii), assume that s ≤ t, and pick ξ ∈Xs.

Then

t≥ s ∈ ξ,

and hence t ∈ ξ, by Proposition 5.3(iii), proving that ξ ∈Xt.
Finally, assuming that ξ ∈Xt∗ ∩Xt∗s∗ , we claim that

〈stξ〉=
〈
s〈tξ〉

〉
.

Clearly tξ ⊆ 〈tξ〉, so stξ ⊆ s〈tξ〉, and hence 〈stξ〉 ⊆ 〈s〈tξ〉〉. Conversely, given
u ∈ 〈s〈tξ〉〉, there exists v ∈ 〈tξ〉 such that u≥ sv, and there exists w ∈ ξ, such
that v ≥ tw. So

u≥ sv ≥ stw ∈ stξ,

implying that u ∈ 〈stξ〉. This proves our claim and hence

πs

(
πt(ξ)

)
= πs

(
〈tξ〉

)
=

〈
s〈tξ〉

〉
= 〈stξ〉= πst(ξ).
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The reader may have thought of another strategy to prove this last fact, using
tξ as a filter base for πt(ξ) when computing πs(πt(ξ)). However, there is no
guarantee that s∗ ∈ tξ, so this might not work. �

We shall now employ the above partial action to deduce the promised fact
that the normal form of each element in Pr(G) is unique. Recall that every
e-set is a filter base, so if A is an e-set we may form the filter 〈A〉 generated
by A.

Lemma 5.10. Let A be an e-set, where e ∈E(G), and let ξ = 〈A〉. Then
A=

{
s ∈ ξ : ss∗ = e

}
.

Proof. It is evident that A is contained in the set in the right-hand side.
Conversely, given s ∈ ξ, such that ss∗ = e, there exists t ∈A, such that s≥ t.
Thus,

t= tt∗s= es= ss∗s= s,

which implies that s ∈A. �

Theorem 5.11. Let x, y ∈Pr(G) be written in normal form as x= εA[s]
and y = εB [t]. If x= y, then s= t and A=B.

Proof. By Proposition 2.14, we have

s= ∂(x) = ∂(y) = t,

so s= t. Since s ∈A, and s= t ∈B, we deduce that

εA = εAεs = εA[s]
[
s∗

]
= x

[
s∗

]
= y

[
s∗

]
= εB [s]

[
s∗

]
= εBεs = εB ,

meaning that εA = εB . Next, consider the semigroup homomorphism

π̃ : Pr(G)→I(X),

provided by Proposition 2.12 in terms of the partial action π introduced in
Theorem 5.9. For every s ∈G, we have

π̃(εs) = π̃
(
[s]

[
s∗

])
= π̃

(
[s]

)
π̃
([
s∗

])
= πsπs∗ = πsπ

−1
s = idXs .

Therefore,

π̃(εA) =
∏

s∈A

π̃(εs) =
∏

s∈A

idXs = idXA
,

where by XA we of course mean
⋂

s∈AXs. Having seen above that εA = εB ,
we then deduce that XA =XB .

Since εA[s] and εB [s] are in normal form we have by definition that A and
B are e-sets, where e = ss∗. Recalling that every e-set is a filter base we
have by Proposition 5.5 that ξ := 〈A〉 is a filter, which evidently belongs to
XA, and hence also to XB , meaning that B ⊆ ξ. Using Lemma 5.10, we then
obtain

A=
{
s ∈ ξ : ss∗ = e

}
⊇B,
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and a symmetric argument yields A⊆B, proving that A=B and completing
the proof. �

One natural question is whether Pr(Pr(G))∼=Pr(G). The following result
shows that this happens if and only if G is a semilattice.

Proposition 5.12. Let G be an inverse semigroup. Then the following
assertions are equivalent:

(i) every partial homomorphism of G is a homomorphism;
(ii) the canonical map ιG : g �→ [g] from G into Pr(G) is a homomorphism;
(iii) {[g] : g ∈ G} is an inverse subsemigroup of Pr(G) (and hence equals

Pr(G));
(iv) the canonical map G→Pr(G) is an isomorphism (whose inverse is the

degree map ∂ : Pr(G)→G);
(v) G=E(G), that is, G is a semilattice.

In particular, every inverse semigroup G which is not a semilattice has a
partial homomorphism which is not a representation. Moreover, in this case
we have a strictly increasing chain of inclusions:

G ↪→Pr(G) ↪→Pr(Pr(G)) ↪→ · · · .
Proof. The implication (i)⇒ (ii) is obvious since the canonical map ιG :

G→Pr(G) is a partial homomorphism. On the other hand, if the canonical
map g �→ [g] is a homomorphism, then {[g] : g ∈G} is an inverse subsemigroup
of Pr(G) which generates it, so that Pr(G) = {[g] : g ∈ G}. In this case,
ιG must be an isomorphism from G to Pr(G) because ∂ : Pr(G) → G is
a homomorphism satisfying ∂([g]) = g for all g ∈ G. Hence, we have the
implications (ii)⇒ (iii)⇒ (iv). To prove (iv)⇒ (v), suppose that g �→ [g] is a
homomorphism of G. Then we have εg = [g][g∗] = [gg∗] = εgg∗ . Observe that
the map g �→ εg is injective. In fact, the normal form of εg is εgεgg∗ [gg∗].
Thus, if εg = εh, then {g, gg∗} = {h,hh∗} (by Theorem 5.11) so that g = h.
In particular, since εg = εgg∗ , it follows that g = gg∗ for all g ∈ G, that is,
G=E(G). Finally, to check (v)⇒ (i), suppose that G is a semilattice and π is
a partial homomorphism of G. Then π(ef) = π(e)π(f) for all e, f ∈E(G) =G
by Corollary 2.13, so that π is a homomorphism. �

Proposition 5.13. Let G be a finite inverse semigroup. Given e ∈E(G),
define Ge := {s ∈G : ss∗ = e} and let pe = |Ge| be the number of elements of
Ge. Then Pr(G) has exactly

(5.2)
∣∣E

(
Pr(G)

)∣∣ =
∑

e∈E(G)

2pe−1

idempotent elements and exactly

(5.3)
∣∣Pr(G)−E

(
Pr(G)

)∣∣=
∑

e∈E(G)

2pe−2(pe − 1)
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non-idempotent elements. In particular, the total number of elements of Pr(G)
is given by

(5.4)
∣∣Pr(G)

∣∣ =
∑

e∈E(G)

2pe−1 +
∑

e∈E(G)

2pe−2(pe − 1) =
∑

e∈E(G)

2pe−2(pe + 1).

Proof. Given e ∈ E(G), let Xe = {A ⊆ Ge : e ∈ A}. Observe that |Xe| =
2pe−1. We already know (see Proposition 2.14) that the idempotents of Pr(G)
have the form εA for some e ∈E(G) and some A ∈Xe. And by Theorem 5.11,
for A,B ⊆Ge, we have εA = εB if and only if A=B (observe that the normal
form of εA is εA[e] whenever A ∈ Xe). This implies (5.2). To prove (5.3),
observe that (by Theorem 5.11) every non-idempotent element of Pr(G) can
be uniquely written as εA[s] for some A ⊆ Xe and some s ∈ A with s �= e.
Notice that we have exactly 2pe−2 sets A in Xe with this property. Since we
have pe − 1 elements s ∈Ge with s �= e, (5.3) follows as well. �

6. Twisted partial actions on C∗-algebras

In this section, we are going to enrich sets with further structure and require
a partial action of an inverse semigroup G to be compatible with this structure.
For instance, if X is a topological space, and α : G→I(X) is a partial action
of G on X , then it is natural to require the domain Ds∗ := dom(αs) and
the range Ds := ran(αs) of αs to be open subsets of X and αs : Ds∗ → Ds

to be continuous for all s ∈ G. Observe that this implies that each αs is
a homeomorphism with inverse αs∗ . Alternatively, we could say that αs is
a partial homeomorphism of X . So, a partial action of G on a topological
space X is just a partial homomorphism of G into the inverse semigroup of all
partial homeomorphisms of X . We also require the union

⋃
Ds to be dense

in X—otherwise this can be arranged replacing X by the closure of
⋃
Ds.

Similarly, if B is a C∗-algebra and β : G→ I(B) is a partial action of G
on B, it is natural to require each βs : Ds∗ →Ds to be a partial automorphism
between (closed, two-sided) ideals Ds∗ ,Ds of B. Of course, by a partial au-

tomorphism of B we mean a ∗-isomorphism I
∼−→ J between ideals I, J of B.

Hence, a partial action of G on a C∗-algebra B is just a partial homomor-
phism from G into the inverse semigroup of all partial automorphisms of B.
In addition, we require that the union

⋃
Ds spans a dense subspace of B. If

B = C0(X) is a commutative C∗-algebra, then partial automorphisms of B
correspond to partial homeomorphisms of X , so partial actions on B corre-
spond to partial actions on X .

The notion of partial actions of inverse semigroups on C∗-algebras appears
in [9]. In the case of groups, it can be seen as a special case of the twisted
partial actions defined by the second named author in [3]. In [2], we considered
a notion of twisted (global) actions for inverse semigroups improving Sieben’s
definition in [10]. We already know that partial actions of G correspond
bijectively to actions of Pr(G). A similar result should also hold with twists,
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that is, twisted partial actions of G should correspond to twisted (global)
actions of Pr(G). In order to prove this, we first have to find the right
definition of twisted partial actions in the realm of inverse semigroups. Using
the canonical partial homomorphism of G in Pr(G) to view G as a subset of
Pr(G), a short way to define this is to say that a twisted partial action of G is
the restriction of a twisted action of Pr(G) (in the sense of [2, Definition 4.1])
to G. However, since this concept should be a simultaneous generalization of
[2, Definition 4.1] and [3, Definition 2.1], it is not so difficult to guess what
should be the right definition:

Given a C∗-algebra B, we write M(B) for the multiplier algebra of B and
UM(B) for the group of unitary multipliers of B.

Definition 6.1. Let G be an inverse semigroup and let B be a C∗-algebra.
A twisted partial action of G on B is a pair (β,ω), where β = {βs}s∈G is a
family of partial automorphisms βs : Ds∗ →Ds of B and ω = {ω(s, t)}s,t∈G is
a family of unitary multipliers ω(s, t) ∈ UM(Ds ∩ Dst), such that the linear
span of the family of ideals {Ds}s∈G is dense in B and the following conditions
are satisfied for all r, s, t ∈G and e, f ∈E(G):

(i) βr(Dr∗ ∩Ds) =Dr ∩Drs;
(ii) βr(βs(x)) = ω(r, s)βrs(x)ω(r, s)

∗ for all x ∈Ds∗ ∩Ds∗r∗ ;
(iii) βr(xω(s, t))ω(r, st) = βr(x)ω(r, s)ω(rs, t) whenever x ∈Dr∗ ∩Ds ∩Dst;
(iv) ω(e, f) = 1ef and ω(r, r∗r) = ω(rr∗, r) = 1r, where 1r is the unit of

M(Dr);
(v) ω(s∗, e)ω(s∗e, s)x= ω(s∗, s)x for all x ∈Ds∗e.

It is not difficult to see that the above definition is in fact a generalization
of both [2, Definition 4.1] and [3, Definition 2.1]. Let us observe that the
first axiom above is not included in the definition of twisted (global) actions
appearing in [2, Definition 4.1], but it is a consequence of the other axioms.
In fact, if (β,ω) is a twisted action, then by [2, Lemma 4.6] we have βr(Dr∗ ∩
Ds) =Drs =Dr ∩Drs because (by the same lemma) Drs =Drss∗r∗ ⊆Drr∗ =
Dr.

Remark 6.2. Axiom (ii) in the above definition is equivalent to

(6.1) βr ◦ βs =Adω(r,s) ◦ βrs (composition of partial automorphisms),

where Adω(r,s) : Dr ∩Drs →Dr ∩Drs is the partial automorphism defined by
Adω(r,s)(z) = ω(r, s)zω(r, s)∗. In fact, observe that (by the properties (iii) and
(iv) to be proved in Proposition 6.3 below)

dom(βr ◦ βs) = β−1
s (Ds ∩Dr∗) =Ds∗ ∩Ds∗r∗ =Ds∗r∗r ∩Ds∗r∗ .

On the other hand,

dom(Adω(r,s) ◦ βrs) = β−1
rs (Drs ∩Dr) =Ds∗r∗ ∩Ds∗r∗r.
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Thus, dom(βr ◦ βs) = dom(Adω(r,s) ◦ βrs). In the untwisted case (that is,
if ω(r, s) is the unit multiplier of Dr ∩ Drs for all r, s), we may interpret
Adω(r,s) ◦ βrs as the restriction of βrs to the domain of βr ◦ βs. In this case,
(6.1) just says that βrs extends βr ◦ βs.

Here are some properties of twisted partial actions (compare with [2,
Lemma 4.6]).

Proposition 6.3. Let (β,ω) be a twisted partial action of G on B as above.
Then the following holds:

(i) Ds ⊆Dss∗ for all s ∈G. Moreover, Ds =Dss∗ for all s ∈G if and only
if (β,ω) is a twisted (global) action in the sense of [2, Definition 4.1];

(ii) βe : De →De is the identity map for all e ∈E(G);
(iii) Ds ∩ Dt =Ds ∩ Dss∗t =Dtt∗s ∩ Dss∗t =Des ∩ Det for all s, t ∈G, where

e= ss∗tt∗; moreover De ∩Ds =Des for all e ∈E and s ∈ S;
(iv) β−1

s (Ds ∩Dr∗) =Ds∗ ∩Ds∗r∗ ;
(v) s≤ t⇒Ds ⊆Dt.

Proof. (i) Observe that Ds = βs(Ds∗) = βs(Ds∗ ∩Ds∗) =Ds ∩Dss∗ , so that
Ds ⊆ Dss∗ for all s ∈ G. If Ds = Dss∗ for all s ∈ G, we have to check that
(β,ω) is a twisted global action, that is, the axioms (i)–(iv) appearing in
[2, Definition 4.1] are satisfied. But the axioms are essentially the same by
looking at property (iii) we are going to prove below.

(ii) By axiom (iii) in Definition 6.1, we have ω(e, e) = 1e, so that βe(βe(x)) =
ω(e, e)βe(x)ω(e, e) = βe(x) for all De by Definition 6.1(ii). Since βe : De →De

is an isomorphism, this implies that βe = idDe .
(iii) First, given f ∈ E(G), since βf = idDf

, we have Df ∩ Dt = βf (Df ∩
Dt) =Df ∩Dft by Definition 6.1(i). Since Ds ⊆Dss∗ , taking f = ss∗, we get
Ds ∩ Dt = Ds ∩ Dss∗ ∩ Dt = Ds ∩ Dss∗t. Now, applying this again, we get
Ds ∩Dss∗t =Dss∗t ∩Ds =Dss∗t ∩Dss∗tt∗s =Dss∗t ∩Dtt∗s =Des ∩Det.

(iv) By Definition 6.1(i) and (iii) above, we have βs(Ds∗ ∩ Ds∗r∗) = Ds ∩
Dss∗r∗ =Ds ∩Dr∗ , whence (iv) follows.

(v) If s ≤ t, then s = ss∗t, so that Ds ∩ Dt
(iii)
= Ds ∩ Dss∗t = Ds. Hence,

Ds ⊆Dt. �

Let (β,ω) be a twisted partial action of an inverse semigroup S on a C∗-
algebra B as in Definition 6.1. Given an element x = εr1 · · · εrn [r] of Pr(G)

in normal form, we define D̃x :=Dr1 · · ·Drn · Dr and β̃x : D̃x∗ → D̃x by β̃x :=
βr1β

−1
r1 · · ·βrnβ

−1
rn βr (as composition of partial maps). If y = εs1 · · · εsm [s] is

another element of Pr(G) in normal form, we also define ω̃(x, y) as the re-

striction of the unitary multiplier ω(r, s) ∈ UM(Dr · Drs) to D̃xy = Dr1 · · ·
DrnDrs1 · · ·Drsm · Dr · Drs ⊆Dr · Drs.

The following result is a generalization of Theorems 4.2 and 4.3 in [10].
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Proposition 6.4. The pair (β̃, ω̃) (together with the domains D̃x) above
defined is a (global) twisted action of Pr(G) on B. Moreover, the assignment

(β,ω) �→ (β̃, ω̃) is a bijective correspondence between twisted partial actions of
G on B and twisted (global) actions of Pr(G) on B.

Proof. First, let us observe that if x= εr1 · · · εrn [r] is an element of Pr(G)

(not necessarily in normal form), then D̃x := Dr1 · · ·Drn · Dr. In fact, to
check this it is enough to put x in normal form and use Proposition 6.3(iii).

This justifies the fact that D̃xy = Dr1 · · ·DrnDrs1 · · ·Drsm · Dr · Drs for x =
εr1 · · · εrn [r] and y = εs1 · · · εsm [s] because in this case xy = εr1 · · · εrnεrs1 · · ·
εrsmεr[rs] (see Proposition 2.9). Also, since x∗ = [r∗]εr1 · · · εrn = εr∗r1 · · ·
εr∗rn [r

∗] (see Proposition 2.2(ii)), it follows that D̃x∗ =Dr∗ · Dr∗r1 · · ·Dr∗rn .
Now, it is not difficult to see that the domain and range of βr1β

−1
r1 · · ·βrnβ

−1
rn βr

are Dr∗ · Dr∗r1 · · ·Dr∗rn and Dr1 · · ·Drn · Dr. Therefore, β̃x : D̃x∗ → D̃x is a
∗-isomorphism. Also, observe that ω̃(x, y) is a unitary multiplier of D̃xy since

ω(r, s) is a unitary multiplier of Dr ∩Drs which contains D̃xy as an ideal. It
remains to check the axioms of twisted action in [2, Definition 4.1] for the

pair (β̃, ω̃). But since the β̃ and ω̃ are just restrictions of β and ω, it is an

exercise to check that the axioms in Definition 6.1 also hold for the pair (β̃, ω̃)

and hence it is a twisted partial action of Pr(G) on B. To prove that (β̃, ω̃)
is a (global) twisted action in the sense of [2, Definition 4.1], by Proposi-

tion 6.3(i), it is enough to check that D̃x = D̃xx∗ for all x ∈Pr(G). But if x
is written in normal form as x= εr1 · · · εrn [r], then xx∗ = εr1 · · · εrnεr so that

D̃xx∗ =Dr1 · · ·Drn · Dr = D̃x.
Therefore, if (β,ω) is a twisted partial action of G on B, then the pair

(β̃, ω̃) above defined is a (global) twisted action of Pr(G) on B. Conversely,

if (β̃, ω̃) is a twisted action of Pr(G) on B, then we can define (β,ω) by

setting Ds := D̃[s] (here, of course, D̃x denotes the range of β̃x for all x ∈
Pr(G)), βs := β̃[s], and ω(s, t) := ω̃([s], [t]) ∈ UM(D̃[s][t]). Observe that by

[2, Lemma 4.6(v)], D̃[s][t] = D̃[s][s∗][st] = D̃[s] · D̃[st] = Ds · Dst, so that ω(s, t)
is a unitary multiplier of Ds · Dst. Again, it easy to check the axioms of
twisted partial action of the pair (β,ω). And it is clear that the assignments

(β,ω) �→ (β̃, ω̃) and (β̃, ω̃) �→ (β,ω) are inverse of each other. �

7. Fell bundles over G and Pr(G)

Recall that a Fell bundle over an inverse semigroup G is a family A =
{As}s∈G of Banach spaces As together with multiplication maps As ×At →
Ast, involutions As →As∗ for all s, t ∈G and inclusions As ↪→At whenever
s≤ t in G. All this structure is required to be compatible in a suitable way. In
addition, the norms on the fibers As are required to satisfy the C∗-condition
‖a∗a‖ = ‖a‖2 for all a ∈ As. Observe that a∗a ∈ As∗s whenever a ∈ As. In
particular, the fiber Ae over an idempotent e ∈ E(G) is a C∗-algebra. One
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of the requirements in the definition of a Fell bundle is that a∗a has to be a
positive element of the C∗-algebra As∗s for all a ∈ As, that is, a∗a= b∗b for
some b ∈ As∗s (this is not automatically satisfied in general). There are two
canonical C∗-algebras that can be constructed from a Fell bundle A: one is
the full cross-sectional C∗-algebra C∗(A) and the other is the reduced cross-
sectional C∗-algebra C∗

r (A) of A. We refer the reader to [5] for the precise
definition of Fell bundles and their cross-sectional C∗-algebras.

A famous result by Gelfand–Neumark asserts that every C∗-algebra is iso-
morphic to a concrete ∗-algebra of operators, that is, to some closed
∗-subalgebra A⊆L(H) of bounded operators on some Hilbert space H (this is
the reason why C∗-algebras are sometimes also called operator algebras). An
extension of this result is also true for Fell bundles. A concrete Fell bundle
over G is a family A = {As} of closed subspaces As ⊆ L(H), for some fixed
Hilbert space H, such that

• AsAt ⊆Ast for all s, t ∈G;
• A∗

s ⊆As∗ for all s ∈G; and
• As ⊆At whenever s≤ t in G.

Every (abstract) Fell bundle A is isomorphic to a concrete one. Indeed, this
can be proved by applying the Gelfand–Neumark theorem mentioned above
to the full (or reduced) cross-sectional C∗-algebra A= C∗(A) and using the
canonical representation of A into A (see [5] for more details). Thus, given
a Fell bundle A = {As}s∈G, we may assume that there is a Hilbert space
H such that A is a concrete Fell bundle in L(H) and such that A = C∗(A)
is the C∗-subalgebra of L(H) defined as the closed linear span of the fibers
As ⊆ L(H). Observe that the fibers Ae over idempotents e ∈ E = E(G) are
in this way C∗-subalgebras of A⊆L(H). Let E = {Ae}e∈E be the restriction
of A to the semilattice E. By [5, Proposition 4.3], the C∗-algebra B =C∗(E)
is isomorphic to the closed linear span of the fibers Ae with e ∈ E. So, we
may further assume that B is a C∗-subalgebra of A⊆L(H). Hence, there is
no loss of generality in assuming that a given Fell bundle is concrete and we
shall usually do so in what follows.

Definition 7.1. Given a C∗-algebra A, we write P�(A) for the semigroup
of all closed subspaces of A with respect to the canonical multiplication:

M ·N := spanMN for all M,N ∈ P�(A).

If H is a Hilbert space, we write P�(H) for P�(L(H)).

Observe that P�(A) is not an inverse semigroup in general, even if we re-
strict attention to subspaces M ⊆A that are ternary ring of operators in the
sense that M ·M∗ ·M =M . The problem is that P�(A) is too big and idem-
potents do not commute in general. One way to find an inverse subsemigroup
inside P�(A) is to consider a fixed C∗-subalgebra B ⊆ A and consider the
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subset P�(A,B)⊆P�(A) consisting of all closed subspaces M ⊆A satisfying

MM∗M ⊆M, M∗M ⊆B, MM∗ ⊆B,

MB ⊆M and BM ⊆M.

Then it is not difficult to prove that P�(A,B) is in fact an inverse subsemigroup
of P�(A). This is done in the proof of [2, Proposition 8.6]. The inverse of M
in P�(A,B) is the adjoint M∗ = {m∗ : m ∈ M}. If A is L(H) and B is a
C∗-subalgebra of L(H), we write P�(H,B) for P�(L(H),B).

In particular, if A = {As}s∈G is a concrete Fell bundle in L(H) for some
Hilbert space H, we may consider the C∗-algebra B =C∗(E)⊆L(H) defined
as the closed linear span of the fibers Ae with e ∈ E(S). Then P�(H,B)
is an inverse semigroup containing all the fibers As ⊆ L(H) (see proof of
Proposition 8.6 in [2]). This assertion includes in particular the fact that
each As is a ternary ring of operators. Observe that the fibers generate an
inverse subsemigroup of P�(H,B), namely the inverse semigroup consisting of
all finite products (that is, closed linear spans) of the form As1 · As2 · · ·Asn

with si ∈G. If A is saturated, meaning that spanAsAt =Ast for all s, t ∈G,
then in a sense the Fell bundle A itself may be “confused” with this inverse
semigroup.

Theorem 7.2. Let A = {As}s∈G be a concrete Fell bundle in L(H) over
an inverse semigroup G. Then the map π : G→P�(H) given by π(s) :=As

is a partial homomorphism. Moreover, π is a homomorphism if and only if
A is saturated. Let π̃ : Pr(G) → P�(H) be the representation associated to

π as in Proposition 2.12, and let Ãx := π̃(x) for all x ∈ Pr(G). Then Ã =

{Ãx}x∈Pr(G) is a saturated Fell bundle over Pr(G). Given s1, . . . , sn, s ∈G,

the fiber Ãx over x= εs1 · · ·εsn [s] is given by

(7.1) Ãx =As1 · As∗1 · · ·Asn · As∗n · As.

The assignment A �→ Ã is a bijective correspondence between Fell bundles over
G and saturated Fell bundles over Pr(G). Furthermore, the canonical Fell

bundle morphism Ã → A induces C∗-algebra isomorphisms C∗(Ã)∼= C∗(A),

C∗
r (Ã)∼=C∗

r (A) and C∗(Ẽ)∼=C∗(E), where Ẽ and E are the restrictions of Ã
and A to E(Pr(G)) and E(G), respectively.

Proof. To prove that π is a partial homomorphism, we have to show that

As · At · At∗ =Ast · At∗ and As∗ · As · At =As∗ · Ast for all s, t ∈G.

Since AsAt ⊆ Ast, we have As · At · At∗ ⊆ Ast · At∗ . On the other hand,
observe that Ase ⊆As for all e ∈E(G) because se≤ s in G. Applying this to
e= tt∗ and using that At∗ =At∗ · At · At∗ , we get

Ast · At∗ =Ast · At∗ · At · At∗ ⊆Astt∗ · At · At∗ ⊆As · At · At∗ .

Similarly, As∗ · As · At =As∗ · Ast. Thus, π is a partial homomorphism.
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Of course, π is a homomorphism if and only if Ast = π(st) = π(s)π(t) =
As · At, that is, A is saturated. Observe that the image of π (and hence of
π̃) is contained in P�(H,B), where B = C∗(E) (see comments above). Since
π̃ is a representation, we have π̃(xy) = π̃(x)π̃(y) and π̃(x∗) = π̃(x)∗, that is,

we have Ãxy = Ãx · Ãy and Ãx∗ = Ã∗
x for all x, y ∈Pr(G). If x≤ y in Pr(G),

then π̃(x)≤ π̃(y) in P�(H,B), that is, Ãx ⊆ Ãy whenever x≤ y (the natural

order of P�(H,B) is given by inclusion of subspaces). This implies that Ã is a
(concrete) saturated Fell bundle over Pr(G). If x= εs1 · · ·εsn [s], observe that

π̃(x) = π̃(εs1) · · · π̃(εsn)π̃(εs) = π(s1)π
(
s∗1

)
· · ·π(sn)π

(
s∗n

)
π(s).

This is exactly (7.1).

If Ã is a saturated Fell bundle over Pr(G), then we may “restrict” Ã to
G (using the canonical inclusion map ιG : G→Pr(G)) and get a Fell bundle

A over G. The two constructions A �→ Ã and Ã �→ A are easily seen to be
inverse of each other, so that Fell bundles over G correspond bijectively to
saturated Fell bundles over Pr(G).

The final assertion will follow from [2, Theorem 8.4], after we check that
the canonical morphism

(ι, ∂) :
(
Ã,Pr(G)

)
→ (A,G)

gives Ã as a refinement of A in the sense of [2, Definition 8.1], where ∂ :

Pr(G) → G is the degree map and ι : Ã → A is given by the inclusions

Ãx ↪→ A∂(x) (observe that Ãx ⊆ A∂(x) by (7.1)). First, we already know
from Proposition 2.14 that ∂ is (surjective and) essentially injective. And,

by definition, ι : Ãx →A∂(x) is the inclusion map, so it is injective. Finally,
given s ∈G, the condition

As =
∑

∂(x)=s

ι(Ãx)

appearing in [2, Definition 8.1] is obviously satisfied since ι(Ã[s]) =As. �

Remark 7.3. The above result improves [2, Proposition 8.6]. To be more
precise, in [2, Proposition 8.6] we proved that every Fell bundle A= {As}s∈G

has a saturated refinement B = {Bt}t∈T , where T is another inverse semigroup
which, a priori, depends on the Fell bundle A (see proof of Proposition 8.6
in [2]). Above we have proved that T can be chosen to be Pr(G), a more
natural choice which depends only on G. So, for instance, if we know that G
is countable, then so is T =Pr(G) (this was not clear in [2, Proposition 8.6]).
Also, if the fibers As are separable, then so are the fibers Bt because each one
is a subspace of some As. The refinement obtained in the above theorem also
preserves (local) regularity (see [2] for the definition of (local) regularity of

Fell bundles): in fact, observe that each fiber Ãx is an ideal of A∂(x) (in the
sense of [3, Definition 6.1]). So, the result follows from [3, Proposition 6.3].
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8. Fell bundles and partial twisted actions

Given a twisted partial action (B,β,ω) of G on a C∗-algebra B as in
Definition 6.1, there is a canonical associated Fell bundleA overG as described
in [2] for (global) twisted actions (where we get saturated Fell bundles). The
Fell bundle A is defined as follows:

The fiber As over s ∈G is defined by As := {(a, s) : b ∈Ds}=Dsδs, where
we write aδs for the element (a, s). The operations on A are defined by

(aδs) · (bδt) := βs

(
β−1
s (a)b

)
ω(s, t)δst

and

(aδs)
∗ := β−1

s

(
a∗

)
ω
(
s∗, s

)∗
δs∗

and the inclusion maps jt,s : As ↪→At for s≤ t in G are defined by

jt,s(aδs) := aω
(
t, s∗s

)∗
δt.

The above operations are exactly the same as the ones defined in [2]. And
the proof that A is in fact a Fell bundle can also be made in the same way.
The only difference here is that A is not necessarily saturated because of
the partiality of our twisted action (β,ω). In fact, it is easy to see that A
is saturated if and only if (β,ω) is a (global) twisted action (as defined in
[2]). In any case, the Fell bundle A is always regular . This means that the
fibers As are regular as imprimitivity Hilbert Is, Js-bimodules, where Is :=
As · A∗

s and Js =A∗
s · As (closed linear spans), that is (see [2] for the precise

definition), there is a family u= (us)s∈G of unitary multipliers us : Js →As

for the imprimitivity bimodules As (recall that a multiplier of an imprimitivity
Hilbert I, J -bimodule F is, by definition, an adjointable operator v : J →
F). For the Fell bundle A above defined we may take us as the multiplier
defined by us(xδs∗s) := βs(x)δs for all x ∈ Ds∗ . It is easy to see that Is =
A∗

sAs =Ds∗δs so that us is a well-defined map from Js to As. Moreover, us is
adjointable with adjoint given by u∗

s(yδs) = β−1
s (y)δs∗s for all y ∈Ds. Observe

that us is in fact a unitary multiplier, that is, u∗
sus = 1s∗ and usu

∗
s = 1s,

where 1s is the unit multiplier of Js ∼=Ds (isomorphism of C∗-algebras). Also,
observe that ue = 1e for all e ∈E(G).

Hence, to a twisted partial action (β,ω) we attach a pair (A, u) consisting
of a (regular) Fell bundle A over G and a family u = (us)s∈G of unitary
multipliers us for As such that ue = 1e for all e ∈E(G).

Conversely, to such a pair (A, u) it is possible to construct a twisted partial
action (β,ω) using ideas as in [2, Section 3] as follows: given a regular concrete
Fell bundle A= {As}s∈G in L(H), a family of unitary multipliers u= {us}s∈G

as above may be viewed concretely as partial isometries us ∈ L(H) satisfying:

usA∗
s = As · A∗

s, A∗
sus =A∗

s · As,
(8.1)

usu
∗
s = 1s, u∗

sus = 1s∗ , and ue = 1e
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for all s ∈G and e ∈ E(G), where 1s denotes the unit multiplier of As · A∗
s ,

that is, the (orthogonal) projection onto the subspace As · A∗
s · H ⊆ H. The

associated twisted partial action (β,ω) is then given by

βs : Ds∗ →Ds, βs(x) := usxu
∗
s, and ω(s, t) := usutu

∗
st,

where Ds := As · A∗
s (closed linear span). The same ideas as in [2] may be

used to prove that the pair (β,ω) above defined is in fact a twisted partial
action and the following result (see [2, Corollary 4.16] for the saturated case)
may be obtained.

Proposition 8.1. The above construction (β,ω) �→ (A, u) is a bijective
correspondence between (isomorphism classes of) twisted partial actions (β,ω)
of G and regular Fell bundles (A, u) over G.

The C∗-algebra B above where G acts through (β,ω) is, via the above cor-
respondence, canonically isomorphic to the cross-sectional C∗-algebra C∗(E)
of the restriction E of A to the idempotents E = E(G). In fact, observe
that by the construction of A, each fiber Ae =Deδe ∼=De over an idempotent
e ∈ E embeds into B. Since the ideals Ds for s ∈ G span a dense subspace
of B, the same is true for De with e ∈ E because for every s ∈ G we have
Ds ⊆ Dss∗ (see Proposition 6.3(i)). Hence, the embeddings Ae ↪→ B extend

to an isomorphism C∗(E) ∼−→B by [5, Proposition 4.3].
Moreover, the correspondence (B,G,β,ω) �→ A is also compatible with

crossed products in the sense that

(8.2) B �β,ω G∼=C∗(A) and B �
r
β,ω G∼=C∗

r (A).

We did not define the above full B �β,ω G and reduced B �
r
β,ω G crossed

products for a twisted partial action (β,ω) of G on B, but they can be defined
(and the above isomorphisms can be obtained) in the same way as explained
in [2, Section 6] for twisted (global) actions.

Now, if A is a regular Fell bundle concrete in L(H), then, as already men-

tioned in Remark 7.3, the corresponding Fell bundle Ã over Pr(G) as in
Theorem 7.2 is also regular (and concrete in L(H)). Moreover, if u= {us}s∈G

is a family of partial isometries on H satisfying (8.1) for A, then the family
ũ= {ũx}x∈Pr(G) defined by

ũx := us1u
∗
s1 · · ·usnu

∗
snus whenever x= εs1 · · · εsn [s] is in normal form,

also satisfies (8.1) for Ã. Moreover, it is not difficult to see that if (β,ω) is
the twisted partial action corresponding to (A, u), then the twisted (global)

action (β̃, ω̃) associated to (Ã, ũ) as above is the same as the one already
obtained in Propostion 6.4. In particular, Theorem 7.2 and (8.2) yields the
following consequence:
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Corollary 8.2. Let (β,ω) be a twisted partial action of G on B and let

(β̃, ω̃) be the corresponding twisted action of Pr(G) on B. Then

B �β,ω G∼=B �β̃,ω̃ Pr(G) and B �
r
β,ω G∼=B �

r
β̃,ω̃

Pr(G).

Of course, this also covers the case of (untwisted) partial actions of inverse
semigroups on C∗-algebras (and, in particular, on locally compact spaces):

Corollary 8.3. Let β be a partial action of G on B and let β̃ the be
corresponding action of Pr(G) on B. Then

B �β G∼=B �β̃ Pr(G) and B �
r
β G∼=B �

r
β̃
Pr(G).
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