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CONTRACTION GROUPS, ERGODICITY, AND DISTAL

PROPERTIES OF AUTOMORPHISMS OF

COMPACT GROUPS

WOJCIECH JAWORSKI

Abstract. Given an automorphism τ of a compact group G,
we study the factorization of C(τ,K), the contraction group of

τ modulo a closed τ -invariant subgroup K, into the product

C(τ)K, of the contraction group C(τ) of τ , and K. We prove

that the factorization C(τ,K) =C(τ)K holds for every closed τ -
invariant subgroup K if and only if G contains arbitrarily small

closed normal τ -invariant subgroups N with finite-dimensional

quotients G/N . For metrizable groups, we obtain that C(τ)K

is a dense subgroup of C(τ,K), for every closed τ -invariant sub-
group K. These results are used to link the contraction group to

the properties of the dynamical system (G,τ). It follows that τ

is distal if and only if C(τ) is trivial, while ergodicity of τ implies

that C(τ) is nontrivial. When G is metrizable, the closure of

C(τ) is the largest closed τ -invariant subgroup on which τ acts

ergodically and, at the same time, it is the smallest among closed

normal τ -invariant subgroupsN such that τ acts distally onG/N .

If τ is ergodic, then its restriction to any closed connected normal

τ -invariant subgroup N with finite-dimensional quotient G/N is

also ergodic. Moreover, when G is connected, the largest closed

τ -invariant subgroup on which τ acts ergodically is necessarily
connected.
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1. Introduction

Let G be a (Hausdorff) topological group and τ an automorphism of G.
The subgroup

C(τ) =
{
g ∈G ; lim

n→∞
τn(g) = e

}
,

where e denotes the identity element of G, is called the contraction group of τ .
When K ≤ G is a closed subgroup invariant under τ , the formula τ̃(gK) =
τ(g)K (g ∈ G), defines a homeomorphism of the homogeneous space G/K.
The set

C(τ,K) =
{
g ∈G ; lim

n→∞
τ̃n(gK) =K

}
,

which contains the product C(τ)K, is called the contraction set of τ mod-
ulo K. When K is compact, C(τ,K) is itself a subgroup and C(τ) is a nor-
mal subgroup of C(τ,K). We will say that τ has the compact decomposition
property, if

(1.1) C(τ,K) =C(τ)K

for every compact subgroup K invariant under τ .
It is known that all automorphisms of Lie groups and all automorphisms of

totally disconnected locally compact groups have the compact decomposition
property [6], [2], [13]. The main objective of the present article is to investigate
whether and to what extent the compact decomposition property holds for
automorphisms of compact groups, and to explore some of the consequences
of this property.

The compact decomposition property has its origin in the theory of prob-
ability measures on groups [6], [5], [27], but contraction groups have been
studied in variety of contexts beginning from the 1970s. When C(τ) = G
(resp., C(τ,K) = G), the automorphism τ is called contractive (resp., con-
tractive modulo K) and a group admitting such an automorphism is called
contractible (resp., contractible modulo K). It appears that the concept of
a contractible locally compact group is due to Müller-Römer [23], [24], who
introduced it in 1973 in a work motivated by certain questions in abstract har-
monic analysis, in particular, the Wiener and Tauber properties of a group
algebra. Subsequently, contractive automorhisms of locally compact groups
were investigated by Wang [28] in a study of the Mautner phenomenon for
p-adic Lie groups.

We note that C(τ) is itself a contractible group and τ is a contractive
automorphism of C(τ). However, contraction groups are, as a rule, not closed
subgroups of G and their study in, say, locally compact groups, cannot be
reduced to a study of contractible locally compact groups.

Many fundamental results about contraction groups, contractive automor-
phisms, and contractible groups were discovered in the 1980s by Hazod and



CONTRACTION GROUPS 1025

Siebert [6], [27] in the course of their work on semistable convolution semi-
groups, in the theory of limit laws for products of independent random vari-
ables with values in a locally compact group. The main problem studied in
this article for compact groups was first considered and solved by Hazod and
Siebert for Lie groups, in an investigation prompted by the theory of the
semistable convolution semigroups.

A convolution semigroup (μt)t≥0 is a continuous homomorphism t → μt

of the additive semigroup [0,∞) into the convolution semigroup M1(G) of
probability measures on a locally compact group G (where M1(G) carries the
usual weak topology). Such a semigroup is called semistable with respect to
an automorphism τ ∈ Aut(G), if there exists c ∈ (0,1), such that τμt = μct

for every t ≥ 0 (where (τμt)(·) = μ(τ−1(·))). When (μt)t≥0 is a semistable
convolution semigroup, μ0 is necessarily the normalized Haar measure of some
compact subgroup K, invariant under τ . The fundamental observation of
Hazod and Siebert was that, when G is metrizable, then all the measures μt

are supported on the contraction group C(τ,K). Then, when G is a Lie group,
they proved the compact decomposition property C(τ,K) =C(τ)K [6], while
Siebert [27] previously described C(τ) as a simply connected nilpotent Lie
subgroup, whose Lie algebra is {X ∈ g ; limn→∞ τn∗ X = 0}, where g is the Lie
algebra of G and τ∗, the automorphism of g induced by τ ; when C(τ) happens
to be closed, the factorization C(τ,K) =C(τ)K is a semidirect product. Dani
and Shah [5] showed that these results remain true also for p-adic Lie groups.

Contraction groups are prominent not only in the probabilistic problem
studied by Hazod and Siebert but also in certain other questions involving
probabilities on groups. Thus when μ is a probability measure on a locally
compact group G, let μn denote the nth convolution power of μ. For the sake
of simplicity let us assume that μ is adapted, that is, not supported on a proper
closed subgroup. Let K denote the family of compact subsets of G and define
functions fn : K→ [0,1], n= 1,2, . . . , by fn(C) = supg∈G μn(Cg) (C ∈K). fn
provides a measure of the degree of concentration (or dissipation) of μn and is
called the concentration function of μn. When G is noncompact, one generally
expects that the convolution powers dissipate as n→∞. Thus, in terms of the
concentration functions one expects that limn→∞ fn(C) = 0 for every C ∈K,
unless μ is supported on a coset of a compact normal subgroup, a condition
which obviously prevents the concentration functions from converging to zero.
This natural conjecture, that the concentration functions converge to zero
unless μ is supported on a coset of a compact normal subgroup is, in fact, close
to the truth [15]. It can fail, but only for groups of a very special structure
[12]: A noncompact locally compact group G supports an adapted probability
measure whose concentration fail to converge to zero if and only if there exists
an inner automorphism τ of G and a compact subgroup K, invariant under
τ , such that G is isomorphic to the semidirect product C(τ,K)×τ Z (where
C(τ,K) is necessarily closed).
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Another question where contraction groups of inner automorphisms play
a key role concerns the extension of the classical Choquet–Deny theorem to
non-Abelian groups. Given a probability measure μ on a locally compact
group G, a bounded continuous function h : G→ C is called μ-harmonic, if
h(g) =

∫
G
h(gg′)μ(dg′) for every g ∈ G. The Choquet–Deny theorem asserts

that when G is Abelian, then the only bounded continuous μ-harmonic func-
tions possible, are the trivial ones, constant on the (left) cosets of the closed
subgroup generated by the support of μ. It is well known that the theorem
remains true for many non-Abelian groups, but is not true for all groups.
However, the problem of determining the sufficient and necessary conditions
under which the theorem holds remains an open one, despite many partial
results in this direction. In particular, it is known that for groups that are
either connected or totally disconnected, examples of measures for which the
Choquet–Deny theorem fails can be constructed whenever the group admits
an inner automorphism with a nontrivial contraction group [11], [14]. When
G is a totally disconnected generalized [FC] -group (e.g., a compactly gener-
ated totally disconnected locally compact group of polynomial growth), the
existence of an inner automorphism with a nontrivial contraction group turns
out to be both sufficient and necessary for the existence of such measures,
that is, the Choquet–Deny holds if and only if the contraction group of every
inner automorphism is trivial [14].

Contraction groups have been also studied from a more fundamental point
of view. In 2004, Baumgartner and Willis [2] demonstrated the significance of
these subgroups in the theory of totally disconnected locally compact groups,
by linking them with the theory of tidy subgroups and scales of automor-
phisms. The key to establishing this link is the compact decomposition prop-
erty (1.1). In fact, automorphisms of totally disconnected locally compact
groups not only have the compact decomposition property, but the factor-
ization C(τ,K) = C(τ)K remains true for any closed subgroup K, invariant
under τ [2], [13]. We note that while for totally disconnected locally compact
groups the latter generalized version of the compact decomposition property
is a consequence of the compact decomposition property itself, the generalized
version is not true for Lie groups.1

The proof of the compact decomposition property for Lie groups relies on
the structure theory of such groups and the aforementioned description of
the contraction group C(τ) as a simply connected nilpotent Lie subgroup.
The proof of the compact decomposition property for totally disconnected
locally compact groups makes use of properties specific to such groups (in
particular, the fact that compact open subgroups form a neighbourhood base
at e). As such, the proofs give no indication whether or to what extent the

1 For example, SL(2,R) admits an inner automorphism τ and a proper closed subgroup

K, such that C(τ) = {e}, τ(K) =K, and C(τ,K) = SL(2,R).
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compact decomposition property remains true for locally compact groups in
general. However, the final part of the proof for totally disconnected groups,
the extension from metrizable to nonmetrizable groups [13], uses a generally
applicable projective limit technique. This is based on the theorem that if the
dynamical system (G,τ), where G is a topological group and τ ∈Aut(G), is
the projective limit of similar systems (Gj , τj), where each τj has the compact
decomposition property, then τ itself has the compact decomposition property
[13]. In the current work we use this theorem, along with certain results and
techniques originating in ergodic theory [17], [26], [21], to study the compact
decomposition property for automorphisms of compact groups.

When G is a compact group and τ ∈Aut(G), then the dynamical system
(G,τ) is the projective limit of systems (Gj , τj), where each Gj is a closed
shift-invariant subgroup of LZ

j for some compact Lie group Lj , and τj is the
restriction of the (Bernoulli) shift to Gj [17], [26]. This permits the reduction
of our problem to the case of a closed shift-invariant subgroup of LZ, where L
is a compact Lie group. The work of Miles and Thomas [21] suggests a further
reduction to the following three subcases: I. G is a semisimple Lie group; II. τ
is the shift on G= LZ (where L is a compact Lie group); III. τ is a solenoidal
automorphism. This reduction turns out to be indeed possible. In cases I and
III, τ always has the compact decomposition property; in case II, the compact
decomposition property holds if and only if G has finite dimension, that is, L
is a finite group. It follows that an automorphism τ of a compact group G has
the compact decomposition property if and only if no infinite-dimensional case
II dynamical system arises as an equivariant homomorphic image of a closed
τ -invariant subgroup of G. An equivalent sufficient and necessary condition
is that the system (G,τ) be a projective limit of finite-dimensional systems.
Thus, the compact decomposition property fails for compact groups in general.
However, for metrizable groups we show that C(τ)K is a dense subgroup of
C(τ,K), for every τ ∈Aut(G) and every τ -invariant compact subgroup K.

Our investigation of the compact decomposition property makes it possible
to derive a number of interesting corollaries linking the contraction group to
the properties of the dynamical system (G,τ). Recall that an automorphism
τ of a topological group G acts distally on G if and only if for any g ∈G \ {e},
e is not in the closure of the orbit {τn(g);n ∈ Z}. It is obvious that if τ
acts distally, then C(τ) = C(τ−1) = {e}. The converse is known to be true
when G is a Lie group [1], or a totally disconnected locally compact group
[14]. Notably, the proof for totally disconnected groups rests on the results of
Baumgartner and Willis [2] obtained with the aid of the compact decompo-
sition property. When τ is an automorphism of a compact group, we prove
that τ acts distally if and only if C(τ) = {e}. An equivalent result is that
C(τ) is nontrivial whenever τ is ergodic and G �= {e}. For metrizable com-
pact groups we also show that the closure [C(τ)] of C(τ) is the largest closed
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τ -invariant subgroup of G on which τ acts ergodically, and, at the same time,
[C(τ)] is the smallest among closed normal τ -invariant subgroups N of G,
such that τ acts distally on the quotients G/N . Moreover, [C(τ)] turns out
to be connected whenever G is connected (while C(τ) itself can be totally
disconnected). Another corollary concerns a generalization of the result that
an ergodic automorphism of a compact group acts ergodically on the con-
nected component of the identity [26]. Let N be a closed normal connected
τ -invariant subgroup of G and τN denote the quotient of τ on G/N . We
obtain that τ acts ergodically on N whenever τ acts ergodically on G and the
system (G/N,τN ) is a projective limit of finite-dimensional systems.

2. Ergodic and distal automorphisms of compact groups

LetG denote a compact group. Throughout the sequel, it will be convenient
to work in the language of an action of Z on G by automorphisms, rather than
with a single automorphism τ ∈Aut(G) (inducing the action). In this section,
as this is helpful in the proof of Lemma 2.5 and does not lead to any extra
difficulties, we consider an arbitrary group Γ acting on G by automorphisms.
By an action, we always mean a left action. Let ω denote the normalized
Haar measure of G. Recall that the action of Γ on G is called ergodic, if
for every Γ -invariant Borel set B ⊆G, we have ω(B) = 0 or ω(B) = 1. The
following proposition is a restatement of a part of Lemma 1.2 in [26], except
that we omit the assumption that G be metrizable and Γ countable, which is
not used in the proof. While we are interested in actions of Z, in the proof of
Lemma 2.5 it will be necessary to consider an action of an uncountable group.

Throughout this paper, we do not assume, contrary to the prevailing cus-
tom in ergodic theory, that “compact group” means a metrizable (equivalently,
second countable) compact group. By a Lie group, we mean a real Lie group
of finite positive dimension, or a group equipped with the discrete topology.

Proposition 2.1. The following conditions are equivalent for an action of
a group Γ on the compact group G:

(1) Γ does not act ergodically.
(2) There exists a proper closed normal Γ -invariant subgroup N �G, such

that G/N is a Lie group whose topology is given by a 2-sided translation-
invariant metric which is also invariant under the (quotient) action of Γ on
G/N .

(3) There exists a compact Γ -invariant neighbourhood U of e in G, such
that U2 �=G.

Recall that the action of Γ on G is called topologically transitive, if Γ has
a dense orbit in G, and that Γ acts distally on G if and only if for every
g ∈G \ {e}, e is not contained in the closure of the orbit Γg.
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Corollary 2.2. If Γ acts topologically transitively, then it act ergodically.
If G is metrizable, then Γ acts topologically transitively if and only if it acts
ergodically.

Corollary 2.3. Suppose that Γ acts both ergodically and distally. If Γ is
countable or G is metrizable, then G= {e}.

Proof. If G is metrizable, this is trivial by topological transitivity. If Γ
is countable, consider the semidirect product G � Γ , where Γ is viewed as
a discrete group. Then G � Γ is a σ-compact locally compact group. By
[7, Theorem 8.7] every neighbourhood of the identity in G � Γ contains a
compact normal subgroup H with metrizable quotient (G � Γ )/H . Since
Γ is discrete, it easily follows that every neighbourhood of e in G contains
a compact normal Γ -invariant subgroup N with metrizable quotient G/N .
Since factors of ergodic actions are ergodic and factors of distal actions are
distal [3, Corollary 6.10, p. 52], it follows that every such quotient is trivial.
Hence, G must be trivial too. �

It is shown in [26, Theorem 1.4] that for every action of a countable group
Γ on a compact metrizable group G, there exists a closed normal Γ -invariant
subgroup G∗ which is the largest among closed Γ -invariant subgroups on
which Γ acts ergodically. The rather formidable proof of the key Lemma 1.3
in [26], needed to establish this result, uses metrizability of G in an essential
way. Below we give a different, much simpler proof of this lemma (stated here
as Lemma 2.5) which does not rely on metrizability, and, hence, obtain the
existence of the largest ergodic subgroup without any restrictions on either
G or Γ . (We will need this only for actions of Z, but on a not necessarily
metrizable group.)

Lemma 2.4. Let A,B be subgroups of Aut(G), where A normalizes B and
B is compact (in the usual topology of Aut(G)). Then A acts ergodically on
G if and only if AB acts ergodically on G.

Proof. To prove the nontrivial “if” component of the “if and only” state-
ment, we argue by contradiction. If A fails to act ergodically, then by Propo-
sition 2.1(3) there exists a compact A-invariant neighbourhood U of e, such
that U �= G. Recall that a compact subgroup of Aut(G) acts equicontinu-
ously on G. Hence, U contains a B-invariant neighbourhood of e. Therefore,
V =

⋂
b∈B bU is a compact AB-invariant neighbourhood of e, and V ⊆ U . So

AB fails to act ergodically. �

Lemma 2.5. Let Γ act on G and let H be a closed normal Γ -invariant
subgroup. The following conditions are equivalent:

(1) The action of Γ on H is not ergodic.
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(2) There exists a proper closed Γ -invariant subgroup N of H , such that
N is normal in G and H/N is a Lie group whose topology is given by 2-sided
translation-invariant metric which is also invariant under the action of Γ on
H/N .

Proof. In view of Proposition 2.1, we only need to prove that (1) implies
(2). Let A denote the image of Γ in Aut(H) and B the subgroup of Aut(H)
consisting of restrictions of the inner automorphisms of G to H . Then A
normalizes B and fails to act ergodically on H . Hence, by Lemma 2.4, AB
does not act ergodically on H , and so by Proposition 2.1(2) there exists a
proper closed AB-invariant normal subgroup N of H , such that H/N is a Lie
group whose topology is given by a 2-sided translation-invariant metric which
is also invariant under the action of AB. Since N is invariant under B, it is
a normal subgroup of G. �

The next theorem is proven in [26] under the assumption that G be metriz-
able and Γ countable [26, Theorem 1.4]. With the aid of our Lemma 2.5, the
proof can be redone, verbatim, without this assumption. For a given ordinal
number α, we denote by [0, α) (resp., [0, α]) the set of ordinals strictly smaller
than α (resp., smaller than or equal to α).

Theorem 2.6. Given an action of Γ on G, there exists an ordinal α and a
family (Gβ)β∈[0,α] of closed normal Γ -invariant subgroups of G, such that:

(i) G0 =G;
(ii) for every β ∈ [0, α), Gβ+1 is a proper closed Γ -invariant subgroup

of Gβ , and Gβ/Gβ+1 is a Lie group whose topology is given by a 2-sided
translation-invariant metric which is also invariant under the action of Γ on
Gβ/Gβ+1;

(iii) if β ∈ [0, α] is a nonzero limit ordinal, then Gβ =
⋂

γ∈[0,β)Gγ ;

(iv) Γ acts ergodically on Gα and Gα is the largest closed subgroup of G
on which Γ acts ergodically.

The ordinal α is countable when G is metrizable.

The subgroup Gα will be denoted by Gerg and called the ergodic component
of the dynamical system (G,Γ ) (and of the action of Γ , as well as of G itself).

Corollary 2.7. If Γ is countable or G is metrizable, then:

(i) Gerg is the smallest among closed normal Γ -invariant subgroups N of
G, such that Γ acts distally on G/N .

(ii) If Γ acts on a compact group H and ϕ : G→H is a continuous equi-
variant surjective homomorphisms, then ϕ(Gerg) =Herg.

Proof. (i): Since G \ Gα =
⋃

β∈[0,α)(Gβ \Gβ+1), it follows from part (ii)

of Theorem 2.6 that Γ acts distally on G/Gα. Let N be a closed nor-
mal Γ -invariant subgroup, such that Γ acts distally on G/N . Denote by
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ξ : G→G/N the canonical homomorphism. Then Γ acts both ergodically
and distally on ξ(Gα). Hence, by Corollary 2.3, N must contain Gα.

(ii) Since Γ acts ergodically on ϕ(Gerg), ϕ(Gerg) ⊆ Herg. On the other
hand, H/ϕ(Gerg) is a continuous equivariant image of G/Gerg. Hence, Γ acts
distally on H/ϕ(Gerg). Therefore, Herg ⊆ ϕ(Gerg) by (i). �

The full extent of the connection between contraction groups of Z-actions
on G and ergodicity and distality will emerge only after a thorough investi-
gation of the contraction groups themselves and the compact decomposition
property. Standard examples of automorphisms suggest that ergodic auto-
morphisms have dense contraction groups, while automorphisms with trivial
contraction groups are distal. The general results collected above permit to
draw a few preliminary conclusions. Let us denote the forward (resp., back-
ward) contraction group of a Z-action on G by C+(G) (resp., C−(G)):

C±(G) =
{
g ∈G ; lim

n→∞
(±n)g = e

}
.

Proposition 2.8. C+(G) and C−(G) are subgroups of Gerg. Moreover,
Z acts ergodically on the closures [C+(G)] and [C−(G)] . In particular, a
Z-action having a dense contraction group is ergodic.

Proof. That C±(G) ⊆ Gerg is an immediate consequence of Theorem 2.6.
To see that Z acts ergodically on [C±(G)] , observe that C±([C±(G)] ) =
C±(G). This yields C±(G)⊆ ([C±(G)] )erg. �

3. General properties of contraction groups

Throughout this section, G is a (Hausdorff) topological group on which Z

acts by automorphisms, and K is a closed Z-invariant subgroup of G. El-
ements of the theory of contraction groups for general topological groups
will prove useful in Section 8, where by retopologizing a compact group G
we will be able to identify certain important subgroups of the contraction
groups.

The forward (resp., backward) contraction set modulo K will be denoted
by C+(G,K) (resp., C−(G,K)):

C±(G,K) =
{
g ∈G ; lim

n→∞

(
(±n)g

)
K =K

}
.

It is clear that results about C−(G) and C−(G,K) can be obtained from those
about C+(G) and C+(G,K), and vice versa, by using the reflection k →−k
on Z. We will therefore focus on studying C+(G) and C+(G,K). A few of
our results will involve both C+(G) and C−(G).

We will say that the action of Z (or the dynamical system (G,Z)) has the
(forward) compact decomposition property (cdp), if C+(G,K) =C+(G)K for
every compact Z-invariant subgroup K ≤G.
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We note that

g ∈C+(G,K) ⇔ for every neighbourhood U of e,(3.1)

ng ∈ UK for large enough n ∈N.

It follows that C+(G,K) is a subgroup of G whenever for every neighbourhood
U of e, one can find a neighbourhood V of e, such that KV ⊆ UK. In
particular, C+(G,K) is a subgroup whenever K is compact, or K � G. It is
also easy to show that when K is compact, then C+(G) is a normal subgroup
of C+(G,K), while C+(G)K is a subgroup of C+(G,K).

The next proposition results by a straightforward application of Lemma
3.9(3) in [2], but it is also not difficult to prove it directly.

Proposition 3.1. Let G be compact. Then C+(G,K) = {g ∈G;K contains
every cluster point of the sequence (ng)∞n=1}. Moreover, if K is a normal
subgroup of G, then so is C+(G,K); in particular, C+(G) � G.

Proposition 3.2. Let K and H be closed Z-invariant subgroups of G.

(i) If for every neighbourhood U of e in G there exists a neighbourhood
V of e with (V K)∩H ⊆ U(K ∩H), then C+(G,K)∩H =C+(H,K ∩H).

(ii) If K ⊆H or K is compact, then C+(G,K)∩H =C+(H,K ∩H).
(iii) If the system (G,Z) has the cdp then so does (H,Z).

Proof. (i) Using (3.1) and the neighbourhood condition, C+(G,K) ∩H ⊆
C+(G,K∩H)∩H . But (3.1) and the observation that if U is a neighbourhood
of e in G, then (U(K ∩H))∩H = (U ∩H)(K ∩H), yield C+(G,K ∩H)∩H =
C+(H,K∩H). Since it is clear that C+(H,K∩H)⊆C+(G,K)∩H , the result
follows.

(ii) If K ⊆ H , then the assumption of (i) is trivially satisfied. It is not
difficult to see that compactness of K also makes this assumption true.

(iii) Let K be a compact Z-invariant subgroup of H . Then using (ii),
C+(H,K) = C+(G,K) ∩ H = (C+(G)K) ∩ H , and it is easy to see that
(C+(G)K)∩H =C+(H)K. �

Proposition 3.3. Let Z act on a topological group G1 and ϕ be a contin-
uous open equivariant homomorphism of G onto G1. Then:

(i) ϕ(C+(G,K))⊆C+(G1, [ϕ(K)] ) for every closed Z-invariant subgroup
K ≤G.

(ii) ϕ−1(C+(G1,K1)) =C+(G,ϕ−1(K1)) for every closed Z-invariant sub-
group K1 ≤G1.

(iii) ϕ(C+(G)) =C+(G1) if and only if C+(G,Kerϕ) =C+(G)Kerϕ.

Proof. (i) and (ii) follow immediately from (3.1); (iii) is an immediate con-
sequence of (ii). �

Corollary 3.4. If Kerϕ is compact, then the system (G,Z) has the cdp if
and only if both (G1,Z) and (Kerϕ,Z) have the cdp, and ϕ(C+(G)) =C+(G1).
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Proof. Let (G,Z) have the cdp. By Proposition 3.3(iii), ϕ(C+(G)) =
C+(G1). By Proposition 3.2, (Kerϕ,Z) has the cdp. Given a compact Z-
invariant subgroup K1 ≤G1, we have ϕ−1(C+(G1,K1)) =C+(G)ϕ−1(K1) by
Proposition 3.3(ii). So C+(G1,K1) = ϕ(C+(G)ϕ−1(K1)) = C+(G1)K1, that
is, (G1,Z) has the cdp.

Conversely, suppose that ϕ(C+(G)) = C+(G1), and both (G1,Z) and
(Kerϕ,Z) have the cdp. Let K ≤ G be a compact Z-invariant subgroup.
Then by Proposition 3.3(i), ϕ(C+(G,K))⊆ C+(G1, ϕ(K)) = C+(G1)ϕ(K) =
ϕ(C+(G))ϕ(K) = ϕ(C+(G)K). So C+(G,K) ⊆ C+(G)KKerϕ. Thus if g ∈
C+(G,K), then g = xyz with x ∈C+(G), y ∈K, z ∈Kerϕ. Since C+(G)K ≤
C+(G,K) and (Kerϕ,Z) has the cdp, using Proposition 3.2(ii) we conclude
that z ∈C+(G,K)∩Kerϕ=C+(Kerϕ,K ∩Kerϕ) =C+(Kerϕ)(K ∩Kerϕ)⊆
C+(G)K. Therefore, g = xyz ∈ C+(G)K. Hence, C+(G)K ⊆ C+(G,K) ⊆
C+(G)K. �

Corollary 3.5. If Kerϕ is compact and the system (G,Z) has the cdp,
then ϕ(C+(G,K)) = C+(G1, ϕ(K)) for every compact Z-invariant subgroup
K ≤G. In particular, ϕ(C+(G)) =C+(G1).

Proof. Using Corollary 3.4: ϕ(C+(G,K)) = ϕ(C+(G)K) =C+(G1)ϕ(K) =
C+(G1, ϕ(K)). �

We conclude this section by quoting the following three results.

Theorem 3.6 ([6, Theorem 2.4 and Lemma 1.8]). Every Z-action on a
Lie group has the cdp. Moreover, if Z acts on a Lie group G and K ≤G is a
closed normal Z-invariant subgroup, then C+(G,K) =C+(G)K. If Z acts on
Lie groups G and G1, and ϕ is a continuous equivariant homomorphims of G
onto G1, then ϕ(C+(G)) =C+(G1).

Theorem 3.7 ([2, Theorem 3.8], [13, Theorem 1]). If G is a totally dis-
connected locally compact group, then C+(G,K) = C+(G)K for every closed
Z-invariant subgroup K ≤G.

An independent proof of Theorem 3.7 for compact totally disconnected
groups will be given in Section 5, Corollary 5.10.

Theorem 3.8 ([13, Proposition 10]). Let N be a nonempty family of com-
pact normal Z-invariant subgroups of G, such that for every N ∈N , the sys-
tem (G/N,Z) has the cdp. Then the system (G/

⋂
N ,Z) also has the cdp.

4. Bernoulli systems

By the Bernoulli action on LZ, where L is a topological group, we mean
the action generated by the left shift: when an element x ∈ LZ is written as
a sequence x= (xn)n∈Z, the result of k ∈ Z acting on x is the sequence kx=
(xn+k)n∈Z. The contraction group of the Bernoulli action reads C+(L

Z) =
{x ∈ LZ ; limn→∞ xn = e}.
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The following example of a Bernoulli system shows that the cdp, as well
as the equality ϕ(C+(G)) = C+(G1) for a continuous equivariant surjective
homomorphism ϕ : G→G1, can fail when G is a compact Abelian group.

Example 4.1. Let G = TZ and K = {x ∈ TZ ; x = 1x} = {x ∈ TZ ; xn =
xn+1 for every n ∈ Z}. Suppose that C+(G,K) =C+(G)K, equivalently, that
with ϕ : G → G/K denoting the canonical homomorphism, ϕ(C+(G)) =
C+(G/K) (cf. Proposition 3.3(iii)).

Now, if x ∈ C+(G,K), then x = yh for some y ∈ C+(G) and h ∈ K.
Hence, as n → ∞, nx = n(yh) = (ny)h → h. We conclude that for
every x ∈ C+(G,K), the sequence (xn)

∞
n=1 = ((nx)0)

∞
n=1 converges (in T).

However, define x ∈ G by xn = 1 for n ≤ 0 and xn = exp(2πi
∑n

j=1 j
−1)

for n ≥ 1. Let z be a cluster point of the sequence (nx)∞n=1. Thus, there
is a subsequence (nkx)

∞
k=1 convergent to z. If so, then for every j ∈ Z,

(nkx)j = xnk+j → zj and (nkx)j+1 = xnk+j+1 → zj+1. But for large enough k,
xnk+j+1 = xnk+j exp(2πi(nk + j + 1)−1). Therefore zj+1 = zj , and so z ∈K.
Thus, every cluster point of (nx)∞n=1 belongs to K. So, by Proposition 3.1,
x ∈ C+(G,K). But we saw that this implies that the sequence (xn)

∞
n=1 con-

verges in T, that is, the infinite product
∏∞

j=1 exp(2πij
−1) converges, which

is a contradiction.

Theorem 4.2. The Bernoulli system (LZ,Z), where L is a compact group,
has the cdp if and only if L is totally disconnected.

Proof. ⇐: This is immediate by Theorem 3.7.
⇒: If L is not totally disconnected, it contains a compact normal subgroup

N such that L/N is a compact Lie group of positive dimension. As such, L/N
contains a closed subgroup S which is topologically isomorphic to T. Then SZ

is a closed shift-invariant subgroup of (L/N)Z, and by Example 4.1 the system
(SZ,Z) fails to have the cdp. Hence, by Proposition 3.2(iii), ((L/N)Z,Z) fails
to have the cdp. Corollary 3.4 shows that (LZ,Z) fails to have the cdp. �

In the remaining results of this section, we do not assume compactness of L.
This setting will be useful in our study of Δ-contraction groups in Sections 8
and 11.

Note that if H is any shift-invariant subgroup of LZ, then

(4.1) C+(H) =
{
x ∈H ; lim

n→∞
xn = e

}
.

It is also easy to see that if M is a closed subgroup of L, such that MZ ⊆H ,
then

(4.2) C+

(
H,MZ

)
=

{
x ∈H ; lim

n→∞
xnM =M (in L/M )

}
.

Lemma 4.3. Let M be a closed subgroup of a metrizable group L, and
H a shift-invariant subgroup of LZ, containing MZ. Then C+(H,MZ) =
C+(H)MZ.
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Proof. Let d be a right invariant metric on L. Then the topology of L/M
is given by the metric d̄(x̄, ȳ) = inf{d(x, y) ; x ∈ x̄, y ∈ ȳ} [7, 8.14]. Hence, for
a sequence (xn)

∞
n=1 in L, we have xnM → M if and only if d(xn,M) → 0,

where d(xn,M) denotes the distance from xn to M .
Given x = (xn)n∈Z ∈ C+(H,MZ), we can select a sequence y = (yn)n∈Z ∈

MZ with d(xny
−1
n , e) = d(xn, yn) ≤ 2d(xn,M) for every n. Then using (4.2)

and (4.1) we conclude that xy−1 ∈C+(H). So x= xy−1y ∈C+(H)MZ. �
In the next lemma, πN denotes the canonical projection of LZ onto LN,

mapping (xn)n∈Z ∈ LZ to (xn)n∈N ∈ LN. The condition involving πN will be
a natural one in the context of the theory of Markov subgroups of LZ, to be
reviewed in Section 5.

Lemma 4.4. Let L be a discrete group, M a subgroup of L, and G
a shift-invariant subgroup of LZ. If πN(G ∩ MZ) = πN(G) ∩ MN, then
C+(G,G∩MZ) =C+(G)(G∩MZ).

Proof. Let x ∈ C+(G,G ∩MZ). Since C+(G,G ∩MZ)⊆ C+(L
Z,MZ) and

L has the discrete topology, (4.2) with H = LZ implies that there exists k ∈ Z,
such that xn ∈M for every n≥ k. Then our assumption involving πN and the
shift-invariance produce y ∈G ∩MZ with yn = xn for every n≥ k. By (4.1),
xy−1 ∈C+(G). Hence, x= xy−1y ∈C+(G)(G∩MZ). �

5. The descending chain condition and Markov subgroups

Let a group Γ act by automorphisms on a compact group G. The dynamical
system (G,Γ ) (or the action of Γ ) is said to satisfy the descending chain
condition (dcc), if for every nonincreasing sequence (Gn)

∞
n=1 of closed Γ -

invariant subgroups there exists N ∈ N, such that Gn =GN for every n≥N
[17], [26]. It is not difficult to see that the dcc is equivalent to the formally
stronger condition that every nonempty directed downward family F (filter
base) of closed Γ -invariant subgroups has a minimal element. One immediate
consequence of this observation is the following metrizability result.

Proposition 5.1. If an action of a countable group Γ on G satisfies the
dcc, then G is metrizable.

Proof. Indeed, the family M of closed normal Γ -invariant subgroups M
with metrizable quotients G/M is directed downward (in fact, M1,M2 ∈M⇒
M1 ∩M2 ∈ M). But we saw in the proof of Corollary 2.3 that when Γ is
countable, then every neighbourhood of e in G contains a member of M.
With the dcc in place, this implies that {e} ∈M. �

By an isomorphism between two dynamical systems (G,Γ ) and (G′, Γ )
(where G, G′ are topological groups and Γ acts by automorphisms), we will al-
ways mean an equivariant homeomorphims which is also a group isomorphism
between G and G′. If L is any compact group, then Γ acts on the compact
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group LΓ by shifts: (γx)β = xβγ (γ,β ∈ Γ , x= (xα)α∈Γ ∈ LΓ ). A subgroup
V ≤ LΓ is called full if {xγ ;x ∈ V }= L for every γ ∈ Γ .

Theorem 5.2 ([17, Theorem 3.2]). An action of a finitely generated Abelian
group Γ on a compact group G satisfies the dcc if and only if there exists a
compact Lie group L and a full closed shift-invariant subgroup V of LΓ , such
that the system (G,Γ ) is isomorphic to (V,Γ ).

Theorem 3.16 in [17] shows that every dynamical system (G,Γ ), where G
is a metrizable compact group and Γ is a finitely generated Abelian group, is
the projective limit of a sequence (Gn, Γ ) of systems satisfying the dcc. An
obvious modification of the proof of this theorem yields a similar conclusion
without the metrizability assumption.

Theorem 5.3. Let a finitely generated Abelian group Γ act on a compact
group G and C denote the family of compact normal Γ -invariant subgroups
C of G, such that the systems (G/C,Γ ) satisfy the dcc. Then C is directed
downward and

⋂
C = {e}.

Our interest is in actions of Γ = Z. We will use the following notations
and terminology related to the Bernoulli dynamical system (LZ,Z), where L
is a compact group. The projection of LZ onto the nth coordinate (n ∈ Z)
will be denoted by πL

n , while π̂L
k (k ∈ N) will denote the projection of LZ

onto L{0,...,k}. The elements of L{0,...,k} will be written as (k + 1)-tuples
〈x0, . . . , xk〉; thus π̂k((xn)n∈Z) = 〈x0, . . . , xk〉. A closed shift-invariant sub-
group V ≤ LZ will be called a Markov subgroup, if V = {x ∈ LZ ; π̂L

1 (kx) ∈
π̂L
1 (V ) for every k ∈ Z}= {x ∈ LZ ; 〈xk, xk+1〉 ∈ π̂L

1 (V ) for every k ∈ Z}. The
subgroup π̂L

1 (V )≤ L{0,1} will be called the transition subgroup of V and de-
noted by TV .

Remark 5.4. If H is an arbitrary closed subgroup of L{0,1}, then V =
{x ∈ LZ ; 〈xk, xk+1〉 ∈ H for every k ∈ Z} is a Markov subgroup of LZ with
transition subgroup TV = H ∩ [πL

0 (V )]{0,1}. The equality TV = H holds if
and only if {x0 ∈ L ; 〈x0, x1〉 ∈H for some x1 ∈ L}= {x1 ∈ L ; 〈x0, x1〉 ∈H for
some x0 ∈ L}.

Let V be a Markov subgroup of LZ. Given n ∈ Z and g ∈ πL
0 (V ), we define,

following [26, p. 83], sets

(5.1) TV (g,n) = πL
n

(
V ∩

(
πL
0

)−1({g})), TV (n) = TV (e,n).

In particular,

(5.2) TV (g,1) =
{
x ∈ L; 〈g,x〉 ∈ TV

}
, TV (g,−1) =

{
x ∈ L; 〈x, g〉 ∈ TV

}
.

It follows that (TV (n))
∞
n=1 and (TV (−n))∞n=1 are nondecreasing sequences of

closed normal subgroups of πL
0 (V ), while each TV (g,n) is a coset of TV (n).
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We note that

(5.3) TV (±n± 1) =
⋃

g∈TV (±1)

TV (g,±n) (n ∈N).

The mapping Θn : πL
0 (V )→ πL

0 (V )/TV (n), given by

(5.4) Θn(g) = TV (g,n),

is a continuous homomorphism of πL
0 (V ) onto πL

0 (V )/TV (n), with kernel
KerΘn = TV (−n). It induces a topological isomorphism

(5.5) Θ̂n : πL
0 (V )/TV (−n)→ πL

0 (V )/TV (n).

Remark 5.5. Let L and L1 be compact groups, and α and β, continuous
homomorphisms of L onto L1. Then V = {x ∈ LZ ; α(xn) = β(xn+1) for every
n ∈ Z} is a full Markov subgroup of LZ, with TV = {〈x0, x1〉 ∈ L{0,1} ; α(x0) =
β(x1)}. Moreover, TV (−1) = Kerα, TV (1) = Kerβ, and L/TV (−1) and
L/TV (1) are canonically isomorphic to L1. For every k ∈ N, π̂L

k (V ) =

{〈x0, . . . , xk〉 ∈ L{0,...,k} ; α(xj) = β(xj+1) for every j = 0, . . . , k− 1}. If α and
β are both injective, then τ = β−1 ◦α ∈Aut(L) and πL

0 � V is an isomorphism
of (V,Z) onto (L,Z), where the action of Z on L is induced by τ , that is,
kx= τk(x) (k ∈ Z, x ∈ L).

We note that any full Markov subgroup V of LZ can be defined in terms
of homomorphims α and β, as in Remark 5.5. Indeed, let γ : L→ L/TV (1)
denote the projection. Then using (5.2) and the facts that V is full and
TV (g,1) is a coset of TV (1), it follows that

TV =
{
〈x0, x1〉 ∈ L{0,1} ; Θ1(x0) = γ(x1)

}
,

(5.6)
V =

{
x ∈ LZ ; Θ1(xn) = γ(xn+1) for every n ∈ Z

}
.

Below we collect a number of rather detailed technical results about Markov
subgroups, which we will need in the sequel. Many of those are modified
versions of similar results to be found or implicit in [17] and [26], however,
the nature of the modifications and added details warrant not omitting the
proofs. We denote by L an arbitrary compact group, unless explicitly stated
otherwise.

Lemma 5.6. Let V be a closed shift-invariant subgroup of LZ. Then V =⋂∞
k=1Hk, where Hk = {x ∈ LZ ; π̂L

k (nx) ∈ π̂L
k (V ) for every n ∈ Z}. If L is a

Lie group, then V =Hk for some k ∈N.

Proof. To prove the nontrivial inclusion
⋂∞

k=1Hk ⊆ V , suppose that
π̂L
k (nx) ∈ π̂L

k (V ) for every k ∈ N and n ∈ Z. Then for every k ∈ N there ex-

ists y(k) ∈ V , such that π̂L
2k((−k)x) = 〈x−k, . . . , xk〉= π̂L

2k(y
(k)). Hence, given

j ∈ Z, xj = y
(k)
j+k = (ky(k))j for all k ≥ |j|. Thus, the sequence (ky(k))∞k=1 of

elements of V converges to x, and so x ∈ V .
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Next, suppose that L is a Lie group. Then the system (LZ,Z) satisfies the
dcc (by Theorem 5.2). As (Hk)

∞
k=1 is a nonincreasing sequence of closed shift-

invariant subgroups of LZ, V =
⋂∞

k=1Hk =Hl when l is large enough. �

Lemma 5.7. Suppose that V is a Markov subgroup of LZ, N ∈ N, and
M = L{0,...,N} = π̂L

N (LZ). Define Φ : LZ → MZ by Φ(x)n = π̂L
N (nx). Then

Φ is a continuous injective equivariant homomorphim and W = Φ(V ) is a
Markov subgroup of MZ.

Proof. It is clear that Φ is a continuous injective equivariant homomor-
phism. Therefore W is a closed shift-invariant subgroup of MZ, obviously
contained in W ′ = {y ∈MZ ; 〈yn, yn+1〉 ∈ π̂M

1 (W ) for every n ∈ Z}.
Let y = (yn)n∈Z ∈W ′. Then yn = 〈yn0, . . . , ynN 〉 with ynj ∈ L. Define x=

(xn)n∈Z ∈ LZ by xn = yn0. The condition 〈yn, yn+1〉 ∈ π̂M
1 (W )⊆ π̂M

1 (Φ(LZ))
implies that ynj+k = yn+k j whenever 0≤ k ≤N and 0≤ j ≤N − k. Hence,
Φ(x) = y. Moreover, for a given n, 〈yn, yn+1〉= π̂M

1 (Φ(v)) = 〈π̂L
N (v), π̂L

N (1v)〉
for some v ∈ V , and, hence, 〈xn, xn+1〉 = 〈yn0, yn+10〉 = 〈v0, v1〉 ∈ TV . So
x ∈ V and y ∈Φ(V ) =W . Therefore W =W ′, that is, W is indeed a Markov
subgroup. �

The next lemma is a strengthening of Corollary 3.11 in [17].

Lemma 5.8. Let G and K be closed shift-invariant subgroups of LZ, where
L is a compact Lie group and G ⊇ K. Then there exists N ∈ N, such that
with M = L{0,...,N} = π̂L

N (LZ) and Φ : LZ →MZ defined by Φ(x)n = π̂L
N (nx),

the following statements hold true:

(i) G̃=Φ(G) and K̃ =Φ(K) are Markov subgroups of MZ;

(ii) K̃ = G̃∩ [πM
0 (K̃)]Z;

(iii) TK̃ = TG̃ ∩ [πM
0 (K̃)]{0,1}.

Proof. By Lemma 5.6 there exists N ∈N, such that G= {x ∈ LZ ; π̂L
N (nx) ∈

π̂L
N (G) for every n ∈ Z} and K = {x ∈ LZ ; π̂L

N (nx) ∈ π̂L
N (K) for every n ∈ Z}.

Put M = L{0,...,N} and define Φ : LZ → MZ by Φ(x)n = π̂L
N (nx). Then by

Lemma 5.6, W = Φ(LZ) is a Markov subgroup of MZ, while the definition

of N implies that G̃ = Φ(G) = {x ∈ W ; xn ∈ πM
n (G̃) for every n ∈ Z} and

K̃ = Φ(K) = {x ∈ W ; xn ∈ πM
n (K̃) for every n ∈ Z}. It follows that both

G̃ and K̃ are Markov subgroups of MZ with TG̃ = TW ∩ [πM
0 (G̃)]{0,1} and

TK̃ = TW ∩ [πM
0 (K̃)]{0,1}, resp. Clearly, K̃ = G̃ ∩ [πM

0 (K̃)]Z and TK̃ =

TG̃ ∩ [πM
0 (K̃)]{0,1}. �

Theorem 5.9. Let an action of Z on a compact group G satisfy the dcc
and K ≤G be a closed Z-invariant subgroup. Then there exists a compact Lie
group L̃ and an injective continuous equivariant homomorphism Ψ : G→ L̃Z,
such that:

(i) G̃=Ψ(G) and K̃ =Ψ(K) are Markov subgroups of L̃Z, and G̃ is full;
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(ii) K̃ = G̃∩ [πL̃
0 (K̃)]Z;

(iii) TK̃ = TG̃ ∩ [πL̃
0 (K̃)]{0,1}.

Proof. By Theorem 5.2, we may assume that G and K are a closed shift-
invariant subgroups of LZ, where L is a compact Lie group. Then Lemma 5.8
applies. Replacing M of Lemma 5.8 with L̃ = πM

0 (Φ(G)) (to ensure that G̃
be full) and putting Ψ=Φ � G, completes the proof. �

As an application of Theorems 5.9, we will now give a proof of the cdp for
totally disconnected compact groups.

Corollary 5.10. Any Z-action on a totally disconnected compact group
G has the cdp.

Proof. In view of Theorems 3.8 and 5.3, it suffices to prove this when the
system (G,Z) satisfies the dcc. Let K be a closed Z-invariant subgroup of
G. By Theorem 5.9 we may assume that G and K are Markov subgroups of
LZ, where L is a compact Lie group, G is full, K =G ∩ [πL

0 (K)]Z, and TK =
TG ∩ [πL

0 (K)]{0,1}. But then L must be finite. Let πN : LZ → LN denote the
natural projection, as in Lemma 4.4. The fact that K is a Markov subgroup
with TK = TG ∩ [πL

0 (K)]{0,1} easily implies that πN(K) = πN(G) ∩ [πL
0 (K)]N.

Hence, C+(G,K) =C+(G)K by Lemma 4.4. �
Lemma 5.11. Let G be a Markov subgroup of LZ and K a closed shift-

invariant subgroup of G. Then K =G∩ [πL
0 (K)]Z if and only if K is a Markov

subgroup of LZ with TK = TG ∩ [πL
0 (K)]{0,1}. Moreover, if K =G∩ [πL

0 (K)]Z,
then for every h ∈ πL

0 (K) and every n ∈ Z, TG(h,n)⊆ πL
0 (K)TG(n).

Proof. We omit an obvious proof of the first statement (partly based on
Remark 5.4). The second statement is true because h= πL

0 (x) for some x=
(xn)n∈Z ∈K ⊆G. Consequently, xn ∈ TG(h,n)∩ πL

0 (K) and since TG(h,n) is
a coset of TG(n), TG(h,n) = xnTG(n)⊆ πL

0 (K)TG(n). �
Lemma 5.12. Let L be a compact group and G a Markov subgroup of LZ,

given by G= {x ∈ LZ ; α(xn) = β(xn+1) for every n ∈ Z}, where α,β are con-
tinuous homomorphisms of L onto a compact group L1. If M ≤ L is a closed
subgroup with α(M) = β(M), then K = G ∩ MZ is a full Markov subgroup
of MZ with TK = TG ∩M{0,1} and TK(±1) = TG(±1) ∩M . Furthermore, if
TG(1)⊆M (resp., TG(−1)⊆M), then for every x ∈G and k ∈ Z, the condi-
tion that xk ∈M implies that xn ∈M for every n≥ k (resp., n≤ k).

Proof. Clearly, K = G ∩ [πL
0 (K)]Z and, hence, by Lemma 5.11, K is a

Markov subgroup of LZ with TK = TG ∩ [πL
0 (K)]{0,1}. But as α(M) = β(M),

given h ∈M , we can construct a sequence x= (xn)n∈Z ∈MZ with x0 = h and
α(xn) = β(xn+1) for every n. Thus x ∈K, and it follows that πL

0 (K) =M .
Therefore K is a full Markov subgroup of MZ with TK = TG ∩M{0,1}. The
equality TK(±1) = TG(±1)∩M follows from (5.2).
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If TG(1) ⊆ M , then by the last statement of Lemma 5.11, given h ∈ M ,
TG(h,1) ⊆M . Hence, if x ∈ G and xk ∈M , then xk+1 ∈ TG(xk,1) ⊆M ; by
induction, xn ∈M for all n≥ k. �

Given a function η : L→ L1 and a nonempty set A, we will write ηA for the
product function ηA : LA → LA

1 , mapping (xa)a∈A ∈ LA to (η(xa))a∈A ∈ LA
1 .

Lemma 5.13. Let G be a full Markov subgroup of LZ, and p ∈ N. Put
Lp = L/TG(p), and write ηp : L→ Lp for the canonical projection. If y ∈ LZ

p

and 〈yn, yn+1〉 ∈ η
{0,1}
p (TG) for every n ∈ Z, then y = ηZp (x) for some x ∈G.

Proof. Let S = {y ∈ LZ
p ; 〈yn, yn+1〉 ∈ η

{0,1}
p (TG) for every n ∈ Z}. We need

to prove that S ⊆ ηZp (G). We observe that this will be accomplished once

we prove that for every y ∈ S there exists a sequence (z(n))∞n=1 in LZ, such

that 〈z(n)i , z
(n)
i+1〉 ∈ TG for i=−n, . . . , n− 1 and yi = ηp(z

(n)
i ) for i=−n, . . . , n.

Indeed, it is clear that if x is any cluster point of such a sequence, then x ∈G
and y = ηZp (x).

We first show that for every s ∈ S there exists a sequence (x(m))∞m=1 in

LZ, such that 〈x(m)
i , x

(m)
i+1〉 ∈ TG for i = −m, . . . ,−1 and si = ηp(x

(m)
i ) for

i = −m, . . . ,0. We proceed by induction. When m = 1, then 〈s−1, s0〉 =
η{0,1}(〈z0, z1〉) = 〈η(z0), η(z1)〉 for some 〈z0, z1〉 ∈ TG. We define x(1) by x

(1)
−1 =

z0, x
(1)
0 = z1, and x

(1)
i = e otherwise. Next, suppose that x(1), . . . , x(m) are

already defined. Now, 〈s−m−1, s−m〉 = η
{0,1}
p (〈z0, z1〉) = 〈ηp(z0), ηp(z1)〉 for

some 〈z0, z1〉 ∈ TG. Thus, s−m = ηp(z1) = ηp(x
(m)
−m) and so x

(m)
−mz−1

1 ∈Kerηp =

TG(p), that is, x
(m)
−mz−1

1 = πL
p (v), where v ∈G∩KerπL

0 . Note that v0, . . . , vp ∈
TG(p). We define x(m+1) by x

(m+1)
−m−1 = vp−1z0 and x

(m+1)
i = x

(m)
i otherwise.

Then 〈x(m+1)
i , x

(m+1)
i+1 〉 ∈ TG for i = −m, . . . ,−1 and si = ηp(x

(m+1)
i ) for i =

−m, . . . ,0. For i = −m − 1, we have 〈x(m+1)
−m−1, x

(m+1)
−m 〉 = 〈vp−1z0, x

(m)
−m〉 =

〈vp−1z0, vpz1〉 = 〈vp−1, vp〉〈z0, z1〉 ∈ TG and s−m−1 = ηp(z0) = ηp(vp−1z0) =

ηp(x
(m+1)
−m−1). So the required sequence exists.

We can now conclude that when y ∈ S, then there exists a sequence

(z(n))∞n=1 in LZ, such that 〈z(n)i , z
(n)
i+1〉 ∈ TG for i = −n, . . . , n − 1 and yi =

ηp(z
(n)
i ) for i=−n, . . . , n. Indeed, given n ∈N, let s= ny and let (x(m))∞m=1 be

the sequence constructed in the preceding paragraph. Then z(n) = (−n)x(2n)

has the required properties. �

The case p = 1 of the following lemma is a part of Lemma 10.1 in [26,
p. 83]. The lemma is also closely related to Proposition 5.7 in [17]. The term
“semisimple Lie group” means a Lie group of positive dimension, whose Lie
algebra is semisimple, or a finite group.
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Lemma 5.14. Let G be a full Markov subgroup of LZ and let p ∈ N. Put
Lp = L/TG(p), Λp = TG(−p)∩TG(p), and write ηp : L→ Lp for the canonical
projection. Then:

(1) Gp = ηZp (G) is a full Markov subgroup of LZ
p with TGp = η

{0,1}
p (TG).

(2) Ker(ηZp � G) = ΛZ
p ∩G; Ker(ηZp � G) = ΛZ

p when p= 1.
(3) TGp(n) = ηp(TG(n+ p)) for every n ∈N.

Furthermore, if TG(p) = TG(p + 1) and Lp is a semisimple Lie group, then

π
Lp

0 � Gp is a topological isomorphism of Gp onto Lp.

Proof. It is clear that Gp is a full closed shift-invariant subgroup of LZ
p , that

π̂
Lp

1 (Gp) = η
{0,1}
p (π̂L

1 (G)) = η
{0,1}
p (TG), and that Gp ⊆ S = {y ∈ LZ

p ;

〈yn, yn+1〉 ∈ η
{0,1}
p (TG) for every n ∈ Z}. Lemma 5.13 shows that S ⊆ Gp.

This proves (1).
It is also clear that Ker(ηZp � G) = [TG(p)]

Z ∩ G ⊇ ΛZ
p ∩ G. Let x ∈

Ker(ηZp � G). Then xn ∈ TG(p) for every n ∈ Z. Thus for a given n, xn+p ∈
TG(p), so that xn+p = vp for some v ∈ G ∩ KerπL

0 . Put w = p((nx)v−1).
Then w ∈G ∩KerπL

0 and xn = w−p. Consequently, xn ∈ Λp. It follows that
Ker(ηZp � G)⊆ΛZ

p ∩G.

To complete the proof of (2), it sufficies to show that ΛZ
p ⊆G when p= 1.

But if x ∈ ΛZ
1 , then for a given n ∈ Z, 〈e,xn+1〉, 〈xn, e〉 ∈ TG, and so

〈xn, xn+1〉= 〈e,xn+1〉〈xn, e〉 ∈ TG. Therefore, x ∈G.
We proceed to the proof of (3). Suppose g ∈ TG(n + p), that is, g =

vn+p, where v ∈G∩KerπL
0 . Then ηp(g) = ηp(vn+p) = (ηZp (v))n+p = (ηZp (pv))n,

and (ηZp (pv))0 = ηp(vp) = e, where ηZp (pv) ∈ Gp. Thus, ηp(g) ∈ TGp(n). So
ηp(TG(n + p)) ⊆ TGp(n). Conversely, let h ∈ TGp(n), that is, h = wn where

w ∈ Gp ∩ Kerπ
Lp

0 . If v ∈ G is such that w = ηZp (v), then v0 ∈ TG(p), and

this easily implies that vn ∈ TG(n+ p). Then h = wn = (ηZp (v))n = ηp(xn) ∈
ηp(TG(n+ p)). Consequently, TGp(n) = ηp(TG(n+ p)).

If TV (p) = TV (p+1), then, by (3), TGp(1) is trivial. Hence, the homomor-
phism Lp � g → Θ1(g) = TGp(g,1) ∈ Lp/TGp(1) (cf. (5.4)), can be viewed as
a surjective homomorphism of the semisimple Lie group Lp onto itself. But
(due the finiteness of the centre of the connected component of e in Lp) such
a homomorphism is necessarily an automorphism. So TGp(−1) is trivial too.
Then Gp is isomorphic to Lp by the last statement of Remark 5.5. �

Corollary 5.15. Let G be a full Markov subgroup of LZ, where L is a
compact semisimple Lie group. Then there exists p ∈ N, such that, with the

notations of Lemma 5.14, π
Lp

0 � Gp is a topological isomorphism of Gp onto
Lp.

Proof. (TG(n))
∞
n=1 is a nondecreasing sequence of closed normal subgroups

of the semisimple Lie group L. Since such a group can have only a fi-
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nite number of closed normal subgroups, there exists p ∈ N with TG(p) =
TG(p+ 1). �

The final three results of this section concern the dimension of a shift-
invariant subgroup of LZ. Since we will only need to distinguish between
finite and infinite-dimensional groups, and between finite-dimensional groups
of different dimensions, the following working definition will do the job. We
define the dimension dimG= 0,1, . . . ,∞ of a compact group G as the supre-
mum of the dimensions of all Lie groups of the form G/N , where N ≤ G is
a compact normal subgroup. It follows that dimG <∞ if and only if there
exists a closed totally disconnected normal subgroup N , such that G/N is a
Lie group (and then dimG is the dimension of the Lie group G/N ). A well-
known reformulation of this criterion is that dimG<∞ if and only G admits
a neighbourhood of e which contains no nontrivial connected subgroups [22,
p. 182]. For a thorough discussion of the concept of dimension of a compact
group, we refer to [8].

Proposition 5.16. The following conditions are equivalent for a full Mar-
kov subgroup V of LZ, where L is a compact Lie group:

(i) One of the subgroups TV (−1), TV (1) is finite.
(ii) TV (n) is finite for every n ∈ Z.
(iii) dimV = dimL.
(iv) dimV <∞.

Proof. (i)⇒(ii): Since L is a compact Lie group, it follows from (5.5) that
if one of TV (−1), TV (1) is finite, then both are finite. Then an inductive
argument using (5.3) shows that TV (n) is finite for every n ∈ Z.

(ii)⇒(iii): Clearly, Ker(πL
0 � V ) = V ∩

∏
n∈Z

TV (n), and so Ker(πL
0 � V ) is

totally disconnected. As πL
0 (V ) = L, dimV = dimL.

(iv)⇒(i): Let U be a neighbourhood of e in V which contains no nontrivial
connected subgroups. Using Z-invariance of V we may assume that there is
N ∈N and a neighbourhood Ω of e in L, such that V ∩

⋂0
j=−N (πL

j )
−1(Ω)⊆ U .

Then the closed subgroup H = V ∩
⋂0

j=−N KerπL
j is contained in U , and so is

totally disconnected. Consequently, πL
1 (H) is finite. But using the fact that

V is a Markov subgroup, it is easy to see that πL
1 (H) = TV (1). �

Corollary 5.17. Let G be a connected finite-dimensional full Markov
subgroup of LZ, where L is a compact semisimple Lie group. Then there
exists p ∈ N, such that, with the notations of Lemma 5.14, ηp ◦ πL

0 � G is a
topological isomorphism of G onto L/TG(p).

Proof. In view of Corollary 5.15, it suffices to show that for every p ∈ N,

ηZp � G is an isomorphism of G onto Gp (because π
Lp

0 ◦ ηZp = ηp ◦ πL
0 ). We will

first show that G has finite centre.
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Since G is full, L is connected. Let L̃ be the universal covering of L, and N
denote the (finite) number of elements in the centre Z(L̃) of L̃. Observe that
if K is a (compact) connected Lie group whose Lie algebra is isomorphic to

that of L, then L̃ is the universal covering of K and Z(K) is a homomorphic

image of Z(L̃). Thus, |Z(K)| ≤N .
Clearly, for every k ∈N, dim(π̂L

k (G))≤ dimG= dimL. But since G is full,
L is a continuous homomorphic image of π̂L

k (G). Therefore, dim(π̂L
k (G)) =

dimL. Thus π̂L
k (G) is a connected Lie group whose Lie algebra is isomorphic

to that of L. Consequently, |Z(π̂L
k (G))| ≤N . Therefore, |π̂L

k (Z(G))| ≤N for
every k ∈N. This and the Z-invariance of Z(G) imply that |Z(G)| ≤N .2

We will now show by induction on p that ηZp � G is an isomorphism. When

p = 1, Ker(ηZ1 � G) = ΛZ
1 (cf. Lemma 5.14), where Λ1 is finite by Proposi-

tion 5.16. Hence, Ker(ηZ1 � G) is either trivial or infinite, and it is a to-
tally disconnected closed normal subgroup of G, thus contained in Z(G). So
Ker(ηZ1 � G) is finite and therefore trivial.

Next, let us suppose that we already proved that ηZp � G is an isomor-
phism. Let η̃1 : Lp → Lp/TGp(1) denote the projection. Then the argu-

ment in the case p = 1 demonstrates that Ker(η̃Z1 � Gp) = {e}. But using
Lemma 5.14(3), Ker(η̃1 ◦ ηp) = TG(p + 1) = Kerηp+1. It follows that there
exists an isomorphism ϕ : Lp+1 → Lp/TGp(1), such that ϕ ◦ ηp+1 = η̃1 ◦ ηp.
Hence, ϕZ ◦ηZp+1 � G= η̃Z1 ◦ηZp � G, and by induction, Ker(ηZp+1 � G) = {e}. �

Proposition 5.18. Let K be a proper closed normal Z-invariant subgroup
of LZ. Then LZ/K is uncountable, and either 0-dimensional or infinite-
dimensional.

Proof. Let ζ : LZ → LZ/K and ζk : L{0,...,k} → L{0,...,k}/π̂L
k (K) (k ∈N) de-

note the canonical homomorphisms. For every k ∈N there exists a surjective
homomorphism π̃k : LZ/K → L{0,...,k}/π̂L

k (K) with π̃k ◦ζ = ζk ◦ π̂L
k . For l ∈N,

let Φl
k denote the canonical isomorphism of L{0,...,(k+1)l−1} onto [L{0,...,k}]l,

mapping 〈x0, . . . , x(k+1)l−1〉 to (〈0, . . . , xk〉, . . . , 〈x(k+1)(l−1), . . . , x(k+1)l−1〉).
Using the fact that K is Z-invariant, one concludes that Φl

k(π̂
L
(k+1)l−1(K))⊆

[π̂L
k (K)]l. It follows that |π̃(k+1)l−1(L

Z/K)| ≥ |L{0,...,k}/πL
k (K)|l, and that

dim(π̃(k+1)−1(L
Z/K))≥ ldim(L{0,...,k}/πL

k (K)). Therefore:

(1) supl∈N |π̃(k+1)l−1(L
Z/K)|=∞, unless π̂L

k (K) = L{0,...,k};

(2) supl∈N dim(π̃(k+1)−1(L
Z/K)) =∞, unless dim(L{0,...,k}/πL

k (K)) = 0.

The first of the above conclusions yields that LZ/K is infinite, because by
Lemma 5.6 there exists k ∈N with π̂L

k (K) �= L{0,...,k}. By the Baire category
theorem and compactness, LZ/K is then uncountable.

2 Finiteness of Z(G) can be also deduced by using Theorems 9.24, 9.26, and 9.55 in [8] to

conclude that G is a semisimple Lie group.
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Next, if d= dim(LZ/K)<∞, then (2) yields that dim(L{0,...,k}/π̂L
k (K)) =

0 for every k ∈ N. This means that π̂L
k ((L

Z)e) = (L{0,...,k})e = [π̂L
k (K)]e =

π̂L
k (Ke), where by He we denote the connected component of the identity in

a group H . Therefore by Lemma 5.6, (LZ)e = Ke, and so LZ/K must be
0-dimensional. �

6. Solenoids in (Tm)Z

The solenoid plays a special role in ergodic theory of automorphisms of
compact groups and presents challenges of its own, see, for example, [17], [19],
[20], [21], [26], [29]. The situation is no different in the theory of contraction
groups, where a detailed technical knowledge of the solenoid is called for. Even
though the solenoid is a well known classical object, the relevant information
is not readily available in the literature. Moreover, there appears to be some
confusion, including outright mistakes, regarding certain facts which will play
a key role in our argument. Hence, we include a rather detailed review of the
solenoid, supplemented by the Appendix containing counterexamples.

Given m ∈N, we will denote by expm : Rm → Tm the exponential function

(6.1) expm(x1, . . . , xm) =
(
exp(2πix1), . . . , exp(2πixm)

)
.

When U is a matrix in GL(m,Q), we will write EU : Rm → (Tm)Z for the
homomorphism

(6.2) EU (x) =
(
expm

(
Unx

))
n∈Z

(where x is treated as a column vector when multiplied by Un). The closure
of EU (R

m) in (Tm)Z is a full shift-invariant subgroup of (Tm)Z, which will
be called the solenoid generated by U , or just solenoid, if U does not need
to be mentioned. A Markov subgroup of this form will be called a Markov
solenoid. For the sake of conciseness, a dynamical system (V,Z) in which V
is a solenoid and Z acts by the Bernoulli shifts, will be also referred to as a
solenoid.

Another common way of introducing the solenoid is via duality theory.
Recall that the dual group of (Tm)Z is canonically identified with the (weak)
direct product

∏∗
k∈Z

Zm. Given U ∈ GL(m,Q), let ΞU ≤
∏∗

k∈Z
Zm denote

the subgroup ΞU = {ξ ∈
∏∗

k∈Z
Zm ;

∑
k∈Z

ξkU
k = 0} (where ξk is treated as

a row vector when multiplied by Uk). Standard duality theory yields that
the solenoid V generated by U is precisely the anihilator Ξ⊥

U of ΞU in (Tm)Z.
The dual group of V can be identified with the subgroup of Qm generated by⋃

k∈Z
ZmUk.

The solenoid is an m-dimensional compact connected group which is locally
connected if and only if it is isomorphic to Tm. A sufficient and necessary
condition in order that the solenoid V generated by U be isomorphic to Tm

is that Up ∈ GL(m,Z) for some p ∈ N. When V is a Markov solenoid, it is
isomorphic to Tm if and only if U ∈GL(m,Z).
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When V is the solenoid generated by U , then for every k ∈N,

(6.3) π̂T
m

k (V ) =
{〈

expm(x), . . . , expm
(
Ukx

)〉
; x ∈Rm

}
is a closed subgroup of (Tm){0,...,k}, isomorphic to Tm. Let B be any nonsingu-
lar matrix in M(m,Z), such that A=BU ∈M(m,Z) (e.g., B = bI where b ∈N

is such that bU ∈M(m,Z)). Recall that the formula γC(expm(x)) = expm(Cx)
defines a one-to-one correspondence between matrices C ∈M(m,Z) and con-
tinuous homomorphisms γC : Tm → Tm; nonsingular matrices in M(m,Z) are
in one-to-one correspondence with surjective homomorphisms, and matrices
in GL(m,Z), with automorphisms of Tm. Hence, A and B define surjective
homomorphims α,β : Tm → Tm. It is clear that

(6.4) π̂T
m

1 (V )⊆
{
〈x0, x1〉 ∈

(
Tm

){0,1}
; α(x0) = β(x1)

}
,

and, hence, V is contained in the Markov subgroup

(6.5) W =
{
x ∈

(
Tm

)Z
; α(xn) = β(xn+1) for every n ∈ Z

}
.

It is not difficult to show that when m= 1 and gcd(A,B) = 1, then V =W .
Thus in dimension m = 1 every solenoid is a Markov solenoid. However,
while every solenoid is isomorphic to a Markov solenoid (cf. Proposition 6.2),
solenoids in dimension m> 1 are, in general, not Markov solenoids, see Ex-
ample A.1 in the Appendix. When V is a Markov solenoid, then

TV =
{〈

expm(x), expm(Ux)
〉
; x ∈Rm

}
,

(6.6)
TV (1) =

{
expm(Ux) ; x ∈ Zm

}
, TV (−1) =

{
expm

(
U−1x

)
; x ∈ Zm

}
,

in particular, TV (±1) are finite subgroups of Tm.
The question when a solenoid is a Markov solenoid is closely related to

a question which will play a key role in the sequel. In the proof of Theo-
rem 7.1 we will need to conclude that certain Markov subgroups of (Tm)Z are
solenoids. Example A.2 in the Appendix shows that the criteria used in [4,
p. 701] and [21, p. 214] are in error (unless m= 1).

Let V be any full Markov subgroup of (Tm)Z, where TV (1) and TV (−1)
are finite. Then Tm/TV (1) and Tm/TV (−1) are isomorphic to Tm, and by
(5.6) and Remark 5.5 one can find continuous surjective homomorphisms
α,β : Tm → Tm, determined by nonsingular matrices A,B ∈ M(m,Z), such
that

V =
{
x ∈

(
Tm

)Z
; α(xn) = β(xn+1) for every n ∈ Z

}
,

TV =
{
〈x0, x1〉 ∈

(
Tm

){0,1}
; α(x0) = β(x1)

}
,(6.7)

TV (−1) = Kerα, TV (1) = Kerβ.

It is clear that the solenoid generated by B−1A is a subgroup of V . When V
is the (Markov) solenoid generated by U , then comparing the descriptions of
TV in (6.6) and (6.7), one concludes that U =B−1A.

We denote by He the connected component of the identity in a group H .
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Proposition 6.1. Let V be a full Markov subgroup of (Tm)Z. Then:

(1) TV (1) is finite if and only if TV (−1) is finite.
(2) V is a Markov solenoid if and only if V is connected and TV (1) is

finite.
(3) If V is disconnected, then V/Ve is uncountable.

Proof. (1) is a special case Proposition 5.16. Equation (6.6) explains that
TV (±1) are finite when V is a Markov solenoid. To complete the proof of
(2) it remains to show that if V is connected and TV (±1) are finite, then
V is a Markov solenoid. The paragraph containing Equation (6.7) applies
in the current situtation. Since the solenoid W generated by U = B−1A is
contained in V , it remains to show that V ⊆W . Using Lemma 5.6, this will
be accomplished once we showed that π̂T

m

k (V )⊆ π̂T
m

k (W ) for every k ∈N.

By (6.3), π̂T
m

k (W ) = {〈expm(x), . . . , expm(Unx)〉 ; x ∈ Rm}. On the other

hand, π̂T
m

k (V ) is a closed connected subgroup of the torus (Tm){0,...,k}. There-
fore if v ∈ πT

m

k (V ), then there exist x0, . . . , xk ∈Rm, such that v = 〈expm(x0),

. . . , expm(xm)〉 and 〈expm(tx0), . . . , expm(txm)〉 ∈ πT
m

k (V ) for every t ∈ R.

But π̂T
m

k (V ) = {〈y0, . . . , yk〉 ; α(yj) = β(yj+1) for every j = 0, . . . , k − 1}
(cf. Remark 5.5). So α(expm(txj)) = expm(tAxj) = β(expm(txj+1)) =
expm(tBxj+1) for all j = 0, . . . , k− 1 and t ∈R. Hence, Axj =Bxj+1, that is,

xj+1 = Uxj . So v = 〈expm(x0), . . . , expm(Ukx0)〉 ∈ π̂T
m

k (W ).
By the Baire category theorem, to prove (3) it is enough to show that

V/Ve is infinite. Let x ∈ V \ Ve. By Lemma 5.6 there exist n ∈ Z and N ∈N,
such that π̂T

m

N (nx) /∈ π̂T
m

N (Ve). Observe that Ve is a full subgroup of (Tm)Z.

Hence, xn = v0 for some v ∈ Ve. Put y = (nx)v−1. Then π̂T
m

N (y) /∈ π̂T
m

N (Ve)
and y0 = e. Define z ∈ (Tm)Z by zj = e for j ≤ 0 and zj = yj for j ≥ 1. Since V
is a Markov subgroup, z ∈ V , and, hence, (−kN)z ∈ V for every k = 0,1, . . . .
Each of the latter elements can be seen to belong to a distinct coset of Ve. �

Proposition 6.1 combined with Theorem 5.9, and Proposition 5.16 results
in the following well known characterization of the solenoid [19, Theorem 19],
[17, p. 712], [26, Chapter 3].

Proposition 6.2. The following conditions are equivalent for an action of
Z on a compact group G:

(1) The dynamical system (G,Z) is isomorphic to a Markov solenoid in
(Tm)Z.

(2) G is an m-dimensional connected Abelian group and the system (G,Z)
satisfies the dcc.

Remark 6.3. When V is any full Markov subgroup of (Tm)Z with finite
TV (±1), the proof of Proposition 6.1(2) shows that the connected component
of the identity in V coincides with the solenoid generated by B−1A (where A
and B determine homomorphisms α and β satisfying (6.7)).
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It is obvious that the connectedness of a Markov subgroup V of (Tm)Z

implies that of the transition subgroup TV = π̂T
m

1 (V ). It is also not difficult
to see that when V is full, the condition that TV be connected and TV (±1)
finite, is equivalent to the condition that TV be topologically isomorphic to
Tm. However, contrary to the claim made in [4, p. 701], the connectedness
of TV is not sufficient in order that V be connected, and a Markov solenoid
cannot be defined as a full Markov subgroup V ≤ (Tm)Z such that TV is
isomorphic to Tm; see Example A.2 in the Appendix.3

Proposition 6.4. Every closed totally disconnected Z-invariant subgroup
of a solenoid is finite.

Proof. Indeed, if D is such a subgroup of a solenoid V ≤ (Tm)Z, then
πT

m

0 (D) is a finite subgroup of Tm, hence, contained in Ωm
p = {x ∈ Tm ; xp = e}

for some p ∈ N. Therefore D ⊆ (Ωm
p )Z, and so xp = e for every x ∈D. Since

for every k ∈ N, π̂T
m

k (V ) is isomorphic to Tm (cf. (6.3)), it follows that for

every k ∈N, π̂T
m

k (D) has at most pm elements. This forces D to have at most
pm elements. �

Corollary 6.5. Every closed Z-invariant subgroup of a solenoid has fi-
nitely many connected components.

Proof. IfH is such a subgroup of a solenoid V , thenH/He is a closed totally
disconnected Z-invariant subgroup of V/He. But V/He is either trivial, or,
by Proposition 6.2, it can be regarded as a solenoid, hence, Proposition 6.4
applies. �

One consequence of Proposition 6.4 is that if V is a Markov solenoid, then
TV (1) ∩ TV (−1) is trivial. This is because TV (±1) are finite and V contains
[TV (1)∩TV (−1)]Z (cf. Lemma 5.14(2)). The condition TV (1)∩TV (−1) = {e}
is therefore necessary in order that a Markov subgroup of (Tm)Z be a solenoid.
In [21] the authors define a “generalized torus” as a full Markov subgroup V
of (Tm)Z, such that TV (−1) and TV (1) are finite, and TV (−1)∩ TV (1) = {e}
[21, p. 214]. It is taken for granted [21, p. 216] that the generalized torus
is connected (and therefore coincides with what we call a Markov solenoid).
This is indeed the case when m= 1: for a full Markov subgroup V ≤ TZ with
finite TV (±1) the three conditions: V is a solenoid; TV is connected; and,
TV (−1) ∩ TV (1) = {e}, are equivalent. However, the situation turns out to
be entirely different when m> 1. In general, the generalized torus need not
be a solenoid, even if the original definition is strengthened by additionally
requiring that the transition subgroup TV be connected, see Example A.2 in
the Appendix.

3 The source of the error in [4] appears to be the final statement of Proposition 5.4 in [17]
or Lemma 9.9 in [26], which can be misunderstood as a claim that the connectedness of TV

implies that of V .
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The second of the next two interrelated results about Markov subgroups of
(Tm)Z will have a direct application in the proof of Theorem 7.1. The first is
a version of Lee’s supplement theorem [8, Theorem 9.41], which asserts that
every compact group V contains a closed totally disconnected subgroup D
with V =DVe. We denote by Ωm

p the subgroup of elements of order p in the
torus Tm.

Proposition 6.6. Let V be a full Markov subgroup of (Tm)Z, where
TV (±1) are finite. Then there exists p ∈N, such that V = [(Ωm

p )Z ∩ V ]Ve.

Proof. Due to Theorem 5.9, there exists a compact Lie group L and a
continuous injective equivariant homomorphism Ψ : V → LZ, such that
Ψ(V ) and Ψ(Ve) are Markov subgroups of LZ, Ψ(V ) is full, and Ψ(Ve) =
Ψ(V ) ∩ [πL

0 (Ψ(Ve))]
Z. But Ψ(Ve) = [Ψ(V )]e, π

L
0 ([Ψ(V )]e) = Le, and L/Le is

a group of finite order p. Hence, for every w ∈Ψ(V ), wp ∈Ψ(Ve). Therefore,
vp ∈ Ve for every v ∈ V .

Let D = {x ∈ V ; xp = e}= (Ωm
p )Z∩V . Clearly, D is closed, shift-invariant,

and totally disconnected. It remains to show that V =DVe. But if v ∈ V then
vp ∈ Ve. As Ve is divisible [8, Corollary 8.5], we can find x ∈ Ve with vp = xp.
Then v = (vx−1)x, where (vx−1) ∈D and x ∈ Ve. �

Corollary 6.7. There exists N ∈N, such that with ηN : Tm → Tm/TV (N)
denoting the canonical projection, the system (ηZN (V ),Z) is isomorphic to a
Markov solenoid in (Tm)Z. In particular, V ⊆ [TV (N)]ZVe.

Proof. Let K = (Ωm
p )Z ∩ V where p is as in Proposition 6.6. It is clear

that K = V ∩ [πT
m

0 (K)]Z. So by Lemma 5.11, K is a Markov subgroup
of (Tm)Z with TK = TV ∩ [πT

m

0 (K)]{0,1}. K is then a full Markov sub-
group of [πT

m

0 (K)]Z, where πT
m

0 (K) is finite. Therefore by Corollary 5.15,
there exists N ∈N, such that with κN : πT

m

0 (K)→ πT
m

0 (K)/TK(N) denoting
the canonical homomorphism, κZ

N (K) is finite. Recall that Ker(κZ

N � K) =
[TK(N) ∩ TK(−N)]Z ∩ K (Lemma 5.14). So [TK(N) ∩ TK(−N)]Z ∩ K has
finite index in K.

Clearly, [TK(N)∩TK(−N)]Z∩K ⊆ [TV (N)∩TV (−N)]Z∩V =Ker(ηZN � V ).
It follows that ηZN (K) is finite.

Now, V = KVe, so that Ṽ = ηZN (V ) = ηZN (K)ηZN (Ve) = ηZN (K)Ṽe. Thus,

Ṽe has finite index in Ṽ . Furthermore, by Proposition 5.16, TV (N) and

TV (N + 1) are finite. Hence, by Lemma 5.14, Ṽ is a full Markov subgroup
of [Tm/TV (N)]Z, where Tm/TV (N) is isomorphic to Tm and TṼ (1) is finite.
Using first part (3) and then part (2) of Proposition 6.1, one concludes that

Ṽ is indeed isomorphic to a Markov solenoid. �

We conclude this section with a description of the contraction group of
the solenoid generated by U ∈GL(m,Q). This involves the contraction group
C(U) of the automorphism x→ Ux of Rm, which we will denote also by U .



CONTRACTION GROUPS 1049

Proposition 6.8. Let g ∈ G, where G is the solenoid generated by U ∈
GL(m,Q). Then g ∈ C+(G) if and only if there exists x ∈ C(U), such that
gn = expm(Unx) for large enough n. Moreover, [C+(G)] is connected.

Proof. By virtue of (4.1), it suffices to show that if g ∈ C+(G), then for
some x ∈ C(U) and all large enough n, gn = expm(Unx). Choose matrices
A,B ∈ M(m,Z), such that U = B−1A, and let α,β : Tm → Tm be the cor-
responding homomorphims. Then G is contained in the Markov subgroup
{g ∈ (Tm)Z ; α(gn) = β(gn+1) for every n ∈ Z}, cf. (6.4), (6.5). Let Ω be a
neighbourhood of 0 ∈ Rm, such that expm � Ω is a homeomorphism onto a
neighbourhood of e in Tm, and set Ω1 =Ω∩ (A−1Ω)∩ (B−1Ω). If g ∈C+(G),
then there exists N ∈ N, such that gn ∈ expm(Ω1) for all n ≥ N . Thus for
n ≥ N , gn = expm(xn) with xn ∈ Ω1. But expm(Axn) = α(gn) = β(gn+1) =
expm(Bxn+1). Hence, due to our choice of Ω1, Axn =Bxn+1, or xn+1 = Uxn.
Thus if x = U−NxN , then xn = Unx for all n ≥ N . As limn→∞ gn = e and
Unx ∈Ω for n≥N , limn→∞Unx= 0, that is, x ∈C(U).

To see that [C+(G)] is connected, recall that by Corollary 6.5, [C+(G)]
has finitely many connected components. Therefore, ([C+(G)] )e is open in
[C+(G)] . This implies that C+([C+(G)] ) ⊆ ([C+(G)] )e. But C+(G) =
C+([C+(G)] ). So [C+(G)] = ([C+(G)] )e. �

Remark 6.9. While [C+(G)] is connected when G is a solenoid, C+(G)
itself need not be connected. In fact, C+(G) is nontrivial and totally discon-
nected whenever U has only unimodular eigenvalues and not all of them are
roots of 1, see Example 9.12.

7. The structure of an automorphism of a compact group

The following structure theorem for automorphisms of compact groups will
serve as a main tool in our investigation of the cdp for general compact groups.
Readers familiar with the work of Miles and Thomas [21] will immediately
recognize here a version of Theorem A in [21], with “nontoroidal” and “gener-
alized torus” in Theorem A replaced by “semisimple” and “Markov solenoid,”
resp., and two new statements added, one about contraction groups, and one
about uniqueness. It is not clear to us whether the statement about con-
traction groups can be derived from Theorem A without invoking the extra
information contained in its proof. In addition, as we indicated in Section 6
and demonstrated in Example A.2 in the Appendix, the generalized torus, as
defined in [21], need not be a connected group (despite what is claimed on
p. 216 in [21]). The proof of Theorem A in [21] (in particular, of Lemma 7)
seems to have overlooked the connectedness question of the generalized torus
arrived at,4 a question which appears to require some nontrival technical effort

4 This question does not arise at all when the compact group in the theorem is either

connected or totally disconnected. In these two cases the proof in [21] is complete.
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to resolve and which prompted much of the lengthy review of the solenoid in
Section 6. This warrants giving a detailed proof of Theorem 7.1, rather than
to refer to [21].

The solenoids defined in Section 6 do not include the trivial group {e}.
Throughout the remainder of this paper, the term (Markov) solenoid will
also mean the trivial group. An action of Z on a compact group G (and
the dynamical system (G,Z), as well as G itself) will be called solenoidal, if
the system (G,Z) is isomorphic to a solenoid. It will be called Bernoullian
(resp., Bernoullian of Lie type), if (G,Z) is isomorphic to a Bernoulli system
(LZ,Z), where L is a compact group (resp., compact Lie group). Recall that
by a compact semisimple Lie group we mean a Lie group of positive dimension
whose Lie algebra is semisimple, or a finite group.

Theorem 7.1. Let Z act on a compact group G. If the system (G,Z) sat-
isfies the dcc, then there exist k ∈N and closed normal Z-invariant subgroups
G=G0 ≥G1 ≥ · · · ≥Gk ≥Gk+1 = {e}, such that:

(1) G/G1 is a compact semisimple Lie group;
(2) (G1/G2,Z) is a solenoidal system;
(3) when j = 2,3, . . . , k, (Gj/Gj+1,Z) is a Bernoullian system of Lie type;
(4) when j = 0, . . . , k, the canonical homomorphism ξj : Gj → Gj/Gj+1

maps C+(Gj) onto C+(Gj/Gj+1).

Furthermore, G1 and G2 are uniquely determined by conditions (1)–(3): in
any two sequences, G ≥ G1 ≥ · · · ≥ Gk ≥ Gk+1 = {e} and G ≥ G′

1 ≥ · · · ≥
G′

k′ ≥G′
k′+1 = {e}, of closed normal Z-invariant subgroups satisfying (1)–(3),

G1 =G′
1 and G2 =G′

2.

Our proof of Theorem 7.1 will require three lemmas. We will denote by
Z(G), the center of a group G, and by Ze(G), the connected component
of the identity in Z(G). We note that any locally compact group contains
the largest connected normal solvable subgroup, called the radical [10, The-
orem 15], [25, Proposition 3.7]. When G is a compact group, Ze(Ge) is the
radical of G. An important property of the radical, which will be used re-
peatedly in our argument, is that ϕ(Ze(Ge)) = Ze(He) whenever ϕ : G→H
is a continuous surjective homomorphism between compact groups G and H
[8, Proposition 9.26].

Remark 7.2. The quotient G1/G2 in Theorem 7.1 is the radical of G/G2,
hence, G1 = Ze(Ge)G2. (Indeed, since G/G1

∼= (G/G2)/(G1/G2) is semisim-
ple, G1/G2 ⊇ Ze((G/G2)e); on the other hand, as a compact connected nor-
mal Abelian subgroup of (G/G2)e, G1/G2 is contained in Ze((G/G2)e) [10,
Theorem 4].)

Lemma 7.3. Let L and M be compact Lie groups, and α,β : L → M ,
continuous surjective homomorphisms. Then Kerα ⊆ Ze(Le) if and only if
Kerβ ⊆ Ze(Le).
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Proof. As pointed out above, α(Ze(Le)) = β(Ze(Le)) = Ze(Me). Hence,

α and β induce surjective homomorphisms α̃, β̃ : L/Ze(Le)→M/Ze(Me), in
the canonical way. If (say) Kerα⊆ Ze(Le), then α̃ is an isomorphism and so

β̃ ◦ α̃−1 is a surjective homomorphism of M/Ze(Me) onto itself. But a contin-
uous homomorphism ϕ of a compact Lie group K onto itself has finite kernel.
Since K/Ke is finite, Kerϕ is contained in Ke, and therefore in the center
of Ke. Since ϕ(Ke) =Ke, one easily concludes that if Z(Ke) is finite, then
ϕ(Z(Ke)) = Z(Ke),

5 and, hence, Kerϕ= {e}. In our case K =M/Ze(Me) is

semisimple, so that Z(Ke) is finite. Consequently, Ker(β̃ ◦ α̃−1) = {e}. This

forces β̃ to be injective, therefore Kerβ ⊆ Ze(Le). �
Lemma 7.4. Let G be a full Markov subgroup of LZ, where L is a compact

Lie group, and let ζ : L → L/Ze(Le) denote the canonical homomorphism.
Suppose that TG(1)⊆ Ze(Le), TG(1) is finite, and G∩ [Ze(Le)]

Z is connected.
Then G∩ [Ze(Le)]

Z is a full Markov subgroup of [Ze(Le)]
Z, (G∩ [Ze(Le)]

Z,Z)
is a solenoidal system, and ζ ◦πL

0 � G is a homomorphism of G onto L/Ze(Le),
with kernel Ker(ζ ◦ πL

0 � G) =G∩ [Ze(Le)]
Z.

Proof. Recall that G= {x ∈ LZ ; Θ1(xn) = γ(xn+1) for every n ∈ Z}, where
Θ1 and γ are defined in (5.4) and (5.6). Let H =G ∩ [Ze(Le)]

Z. By Lemma
5.12 (with α = Θ1, β = γ, M = Ze(Le)), H is a full Markov subgroup of
[Ze(Le)]

Z with TH(1) = TG(1). As H is connected, it follows from Proposi-
tion 6.1 that the system (H,Z) is isomorphic to a Markov solenoid. Obvi-
ously, the homomorphism ζ ◦ πL

0 � G maps G onto L/Ze(Le) and its kernel
contains H . But as Kerγ = TG(1)⊆ Ze(Le), it follows from Lemma 7.3 that
TG(−1) = KerΘ1 ⊆ Ze(Le). Hence, the last statement of Lemma 5.12 can be
used to conclude that Ker(ζ ◦ πL

0 � G)⊆H . �
Lemma 7.5. Let G be a full Markov subgroup of LZ, where L is a compact

Lie group. Then there exists N ∈N, such that for every n≥N − 1:

(i) dimTG(n) = dimTG(N − 1);
(ii) TG(n)⊆ TG(N − 1)Ze(Le);
(iii) G∩ [TG(N − 1)Ze(Le)]

Z ⊆ [G∩ [TG(N − 1)Ze(Le)]
Z]e[TG(N − 1)]Z.

Proof. Since TG(n), n = 1,2, . . . is a nondecreasing sequence of closed
subgroup of the Lie group L, there exists N1 ∈ N, such that dimTG(n) =
dimTG(N1 − 1) for every n≥N1 − 1. Let ζ : L→ L/Ze(Le) denote the pro-
jection. Then ζ(TG(n)), n = 1,2, . . . is a nondecreasing sequence of closed
normal subgroups of the semisimple Lie group L/Ze(Le). Since such a group
has only a finite number of closed normal subgroups, we can find N2 > N1,
such that TG(n)⊆ TG(N2 − 1)Ze(Le) for every n≥N2 − 1.

Let L̃= L/TG(N2 − 1) and η : L→ L̃ be the projection. By Lemma 5.14,

G̃= ηZ(G) is a full Markov subgroup of L̃Z, with TG̃ = η{0,1}(TG) and TG̃(n) =

5 See also [8, Theorem 9.28].
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η(TG(n+N2 − 1)) for all n ∈N. Since dimTG(n+N2 − 1) = dimTG(N2 − 1),
each TG̃(n) is finite.

By Lemma 5.12, W = G̃∩ [Ze(L̃e)]
Z is a full Markov subgroup of [Ze(L̃e)]

Z

with finite TW (1). As Ze(L̃e) is isomorphic to Tm for some m ≥ 0, it fol-
lows from Proposition 6.1(a) and Corollary 6.7 that for some M ∈ N, W ⊆
[TW (M)]ZWe. As TW (M) ⊆ TG̃(M), we obtain that W ⊆ [TG̃(M)]ZWe =
[η(TG(M +N2 − 1))]ZWe.

Let N = M + N2 − 1. Clearly, (i) and (ii) will hold with this choice of
N . We claim that (iii) will also hold. Indeed, ηZ(G∩ [TG(N2 − 1)Ze(Le)]

Z)⊆
G̃ ∩ [Ze(L̃e)]

Z = W . But if w ∈ W , then w = ηZ(g), where g ∈ G and

η(gn) ∈ Ze(L̃e) for every n ∈ Z. So gn ∈ TG(N2 − 1)Ze(Le) and thus g ∈
G ∩ [TG(N2 − 1)Ze(Le)]

Z. Hence, ηZ(G ∩ [TG(N2 − 1)Ze(Le)]
Z) = W , and

ηZ([G ∩ [TG(N2 − 1)Ze(Le)]
Z]e) = We. So ηZ(G ∩ [TG(N2 − 1)Ze(Le)]

Z) =
W ⊆ [η(TG(N))]ZWe = ηZ([TG(N)]Z[G ∩ [TG(N2 − 1)Ze(Le)]

Z]e) ⊆
ηZ([TG(N)]Z[G ∩ [TG(N)Ze(Le)]

Z]e). Since KerηZ = [TG(N2 − 1)]Z ⊆
[TG(N)]Z, while TG(N − 1)Ze(Le) = TG(N2 − 1)Ze(Le) by the definition of
N2, (iii) will be satisfied. �

Proof of Theorem 7.1. By Theorem 5.9, it suffices to consider the case that
G is a full Markov subgroup of LZ, where L is a compact Lie group. Given
such G, let N∗ =N∗(G) denote the smallest positive integer N with properties
(i)–(iii) of Lemma 7.5. We proceed by induction on N∗(G).

If N∗(G) = 1, we put k = 1 and G1 =G∩ [Ze(Le)]
Z. By Lemma 7.4, (G1,Z)

is a solenoidal system. Moreover, with ζ : L→ L/Ze(Le) denoting the pro-
jection, ζ ◦ πL

0 is a homomorphism onto the semisimple Lie group L/Ze(Le),
with Ker(πL

0 ◦ ζ) =G1. Hence, our theorem is true when N∗(G) = 1.
Next, assume that the theorem is already proven when N∗(G) ≤ N . Let

G be a full Markov subgroup of LZ, where L is a compact Lie group, and
suppose that N∗(G) = N + 1. Let L̃, Λ, η, and G̃ be the objects which in
Lemma 5.14 are denoted by L1, Λ1, η1, and G1, resp. Then for n ≥N − 1,
dimTG̃(n) = dimη(TG(n+1)) = dimη(TG(N)) = dimTG̃(N−1), and TG̃(n) =

η(TG(n+1))⊆ η(TG(N)Ze(Le)) = TG̃(N−1)Ze(L̃e). Moreover, since KerηZ =
[TG(1)]

Z ⊆ [TG(N)Ze(Le)]
Z, we obtain

G̃∩
[
TG̃(N − 1)Ze(L̃e)

]Z
= ηZ(G)∩ ηZ

([
TG(N)Ze(Le)

]Z)
= ηZ

(
G∩

[
TG(N)Ze(Le)

]Z)
⊆ ηZ

([
G∩

[
TG(N)Ze(Le)

]Z]
e

[
TG(N)

]Z)
=

[
G̃∩

[
TG̃(N − 1)Ze(L̃e)

]Z]
e

[
TG̃(N − 1)

]Z
.

Hence, N∗(G̃)≤N . Applying our inductive assumption to G̃, we can find a

sequence of closed normal Z-invariant subgroups G̃ = G̃0 ≥ G̃1 ≥ · · · ≥ G̃k̃ ≥
G̃k̃+1 = {e}, such that statements (1)–(4) of our theorem are true. We let



CONTRACTION GROUPS 1053

k = k̃+ 1 and define Gj = (ηZ � G)−1(G̃j) for j = 0,1, . . . , k, and Gk+1 = {e}.
These are closed normal Z-invariant subgroups of G with G=G0 ≥G1 ≥ · · · ≥
Gk = ΛZ ≥ Gk+1 = {e}. For each j = 0, . . . , k − 1, the system (Gj/Gj+1,Z)

is canonically isomorphic to (G̃j/G̃j+1,Z), while (Gk/Gk+1,Z) is trivially
isomorphic to (ΛZ,Z). This shows that statements (1)–(3) hold for G. We
proceed to verify (4).

That ξk(C+(Gk)) = C+(Gk+1) is trivial. That ξ0(C+(G)) = C+(G1) is
also trivial, because any action of Z on a compact semisimple Lie group is
equicontinuous, so that C+(G/G1) = {e}. When j = 1, . . . , k − 1 = k̃, let

ξ̃j : G̃j → G̃j/G̃j+1 denote the projection, ϕ̃j : Gj/Gj+1 → G̃j/G̃j+1, the
canonical (equivariant) isomorphism, and let ϕj = ηZ � Gj , which is a sur-

jective equivariant homomorphism onto G̃j . Thus ϕ̃j ◦ ξj = ξ̃j ◦ ϕj . Then

ϕ̃j(C+(Gj/Gj+1)) = C+(G̃j/G̃j+1) = ξ̃j(C+(G̃j)). But Kerϕj = ΛZ and

therefore by Lemma 4.3, C+(Gj ,Kerϕj) = C+(Gj)Kerϕj . So C+(G̃j) =
ϕj(C+(Gj)) by Proposition 3.3(iii). We thus obtain ϕ̃j(C+(Gj/Gj+1)) =

ξ̃j
(
ϕj(C+(Gj)) = ϕ̃j(ξj(C+(Gj)). Therefore, C+(Gj/Gj+1) = ξj(C+(Gj)).
In view of Remark 7.2, to prove the last statement of the theorem it is

enough to prove that G2 is unique. The latter is an immediate consequence
of the characterization of G2 which we obtain in Corollary 7.11 below. �

An action of Z on a compact group G (and the dynamical system (G,Z), as
well as G itself) will be called poly-Bernoullian, if there exists a finite sequence
G=G0 ≥G1 ≥ · · · ≥Gl ≥Gl+1 = {e} of closed normal Z-invariant subgroups,
such that for every j = 0, . . . , l, (Gj/Gj+1,Z) is a Bernoullian system. It is
easy to see that a poly-Bernoullian system (G,Z) satisfies the dcc if and only
if each (Gj/Gj+1,Z) is a Bernoullian system of Lie type. The action of Z on
the subgroup G2 of Theorem 7.1 is poly-Bernoullian.

We note that our use of the term “Bernoullian” differs from its standard use
in ergodic theory, where “Bernoullian” means measure isomorphic to Bernoulli
shifts (the isomorphism being an equivariant Borel isomorphism which does
not need to be a group homomorphism). In fact, every ergodic action of Z
on a compact metrizable group, and therefore every poly-Bernoullian action,
is Bernoullian in the sense of ergodic theory [20], [21]. The next example,
adapted from [16, Example 4], shows that not every poly-Bernoullian system
is Bernoullian in our sense.

Example 7.6. We will use the following two facts about Bernoullian sys-
tems: (1) A Markov subgroup G of LZ is equal to LZ if and only if TG(1) = L.
(2) If the system (G,Z) is isomorphic to a Bernoulli system (LZ,Z), then L
is isomorphic to the fixed point subgroup Gfix = {x ∈G ; 1x= x}.

Let α,β : Z4 × Z2 → Z2 be the homomorphims given by α(a, b) = b and
β(a, b) = (a+ b)(mod 2). Then G= {x ∈ (Z4 ×Z2)

Z ; α(xn) = β(xn+1) for ev-
ery n ∈ Z} is a full Markov subgroup of (Z4×Z2)

Z with TG(−1) = Z4×{0} and
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TG(1) = {(0,0), (1,1), (2,0), (3,1)} ∼= Z4. [TG(−1) ∩ TG(1)]
Z = {(0,0), (2,0)}Z

is a Z-invariant subgroup of G. Using Lemma 5.14 with p= 1, we conclude
that the system (G/{(0,0), (2,0)}Z,Z) is isomorphic to a Markov subgroup G̃
of [(Z4×Z2)/TG(1)]

Z, where TG̃(1) = TG(2)/TG(1). But TG(2) = Z4×Z2, and

so G̃= [(Z4 ×Z2)/TG(1)]
Z. Therefore, (G,Z) is a poly-Bernoullian system.

Next, Gfix consists of the constant sequences (x)n∈Z, where x ∈ {(a, b) ∈
Z4 × Z2 ; α(a, b) = β(a, b)} = {0,2} × Z2

∼= Z2 × Z2. Thus if (G,Z) were a
Bernoullian system, it would be isomorphic to (Z2 × Z2)

Z. In particular,
every g ∈ G \ {e} would have order 2. However, G contains the sequence
. . . (1,1), (1,0), (1,1), (1,0), (1,1), . . . which has order 4. Therefore, (G,Z) can-
not be a Bernoullian system.

Lemma 7.7. Let K be a proper closed normal Z-invariant subgroup of a
poly-Bernoullian system (H,Z). Then H/K is uncountable, and either 0-
dimensional or infinite-dimensional.

Proof. Let H = H0 ≥ H1 ≥ · · · ≥ Hl ≥ Hl+1 = {e} be as in the definition
of a poly-Bernoullian system, and ζ : H →H/K denote the projection. Let
I = {i= 0, . . . , l + 1 ; ζ(Hi) = {e}, or ζ(Hi) is uncountable and dim(ζ(Hi)) ∈
{0,∞}}. Since l+1 is trivially a member of I , it suffices to show that whenever
i+ 1 ∈ I for some i= 0, . . . , l, then i ∈ I .

Let ξi : Hi → Hi/Hi+1 and ηi : ζ(Hi) → ζ(Hi)/ζ(Hi+1) be the projec-
tions. It follows that there exists an equivariant surjective homomorphism
ζ̃i : Hi/Hi+1 → ζ(Hi)/ζ(Hi+1) with ζ̃i◦ξi = ηi◦ζ. Hence, by Proposition 5.18,
ζ(Hi)/ζ(Hi+1) is either trivial, or is uncountable and dim(ζ(Hi)/ζ(Hi+1)) ∈
{0,∞}. If ζ(Hi)/ζ(Hi+1) = {e}, then ζ(Hi) = ζ(Hi+1) and so i ∈ I . Oth-
erwise, ζ(Hi) is necessarily uncountable, while the identity dim(ζ(Hi)) =
dim(ζ(Hi+1)) + dim(ζ(Hi)/ζ(Hi+1)) implies that dim(ζ(Hi)) ∈ {0,∞}. Thus
i ∈ I in any case. �

The next lemma results by an elementary application of Proposition 6.4.

Lemma 7.8. Let Z act on a compact group G. Suppose that G1 ≤ G is
a closed normal Z-invariant subgroup, such that G/G1 is a Lie group and
(G1,Z) is a solenoidal system. Then G has finitely many connected com-
ponents and every closed totally disconnected Z-invariant subgroup of G is
finite.

Lemma 7.9. Let Z act on compact groups H and G, and ϕ : H → G be
a continuous equivariant homomorphism. Suppose that G≥G1 ≥ · · · ≥Gk ≥
Gk+1 = {e} is a sequence of closed normal Z-invariant subgroups which satis-
fies conditions (1)–(3) of Theorem 7.1. If (H,Z) is a poly-Bernoullian system,
then ϕ(H)⊆G2.

Proof. Let ξ : G → G/G2 denote the projection. Since dim(G/G2) < ∞,
dim(ξ(ϕ(H))) <∞, and so by Lemma 7.7, ξ(ϕ(H)) is either trivial or is an



CONTRACTION GROUPS 1055

uncountable closed totally disconnected Z-invariant subgroup of G/G2. By
Lemma 7.8, ξ(ϕ(H)) must be trivial, that is, ϕ(H)⊆G2. �

Corollary 7.10. Let Z act on compact groups H and G and ϕ : H →G
be a continuous equivariant surjective homomorphism. If (H,Z) is a poly-
Bernoullian system while (G,Z) satisfies the dcc, then (G,Z) is also poly-
Bernoullian.

Corollary 7.11. Let Z act on a compact group G and G ≥ G1 ≥ · · · ≥
Gk ≥Gk+1 = {e} be a sequence of closed normal Z-invariant subgroups which
satisfies conditions (1)–(3) of Theorem 7.1. Then G2 is the largest poly-
Bernoullian subgroup of G.

Proof. Apply Lemma 7.9 with H = a poly-Bernoullian subgroup, and ϕ=
the inclusion. �

The largest poly-Bernoullian subgroup (if exists) will be denoted by GpB

and called the poly-Bernoullian component of the system (G,Z).

Remark 7.12. If the system (G,Z) satisfies the dcc, then GpB � G and
dim(G/GpB)<∞.

Lemma 7.13. Let actions of Z on compact groups H and G satisfy the
dcc. If ϕ : H →G is a continuous equivariant surjective homomorphism, then
ϕ(HpB) =GpB .

Proof. By Lemma 7.9, ϕ(HpB)⊆GpB . To prove the opposite inclusion, let
H ≥H1 ≥ · · · ≥Hk′ ≥Hk′+1 = {e} and G ≥ G1 ≥ · · · ≥ Gk ≥ Gk+1 = {e} be
the sequences of subgroups described in Theorem 7.1 (H2 =HpB , G2 =GpB).

Consider the quotient G/ϕ(H2), which is an equivariant continuous image
of H/H2. Hence, dim(G/ϕ(H2)) <∞. Therefore dim(G2/ϕ(H2)) <∞, and
so by Lemma 7.7, G2/ϕ(H2) is either trivial or an uncountable closed totally
disconnected Z-invariant subgroup of G/ϕ(H2). But ϕ(H1)/ϕ(H2) is sole-
noidal as an equivariant image of H1/H2, while (G/ϕ(H2))/(ϕ(H1)/ϕ(H2))
is a Lie group. Hence, by Lemma 7.8, G2/ϕ(H2) is trivial, that is, GpB =
G2 = ϕ(H2) = ϕ(HpB). �

An action of Z on a compact group G (and the dynamical system (G,Z),
as well as G itself) will be called Bernoullizable, if there exists a directed
downward family P of closed normal Z-invariant subgroups P ≤G, such that
the systems (G/P,Z) are poly-Bernoullian and

⋂
P = {e}.6 It obvious that

every poly-Bernoullian system is Bernoullizable and that a Bernoullizable
system satisfying the dcc is poly-Bernoullian.

6 The term pro-poly-Bernoullian would give a more exact description to this concept.
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Lemma 7.14. Let M be a directed downward family of closed subgroups of
a compact group K, and ξ, a continuous homomorphism of K onto a compact
group L. Suppose M∗ ∈M is such that ξ(M) = ξ(M∗) for every M ∈M with
M ⊆M∗. Then M∗ ⊆ (Ker ξ)(

⋂
M).

Proof. Let Ω be an open subset of L containing ξ(
⋂
M). Using the finite

intersection property and the fact that M is directed downward, we conclude
that there is some M ∈ M with M ⊆M∗ and M ⊆ ξ−1(Ω). Consequently,
ξ(M∗) = ξ(M) ⊆ Ω. As Ω is arbitrary, it follows that ξ(M∗) ⊆ ξ(

⋂
M). So

M∗ ⊆ (Ker ξ)(
⋂
M). �

Proposition 7.15. Let Z act on compact groups H and G, and ϕ : H →G
be a continuous equivariant surjective homomorphism. If H is Bernoullizable,
then so is G.

Proof. Let P be a directed downward family of closed normal Z-invariant
subgroups P ≤H , such that the systems (H/P,Z) are poly-Bernoullian and⋂
P = {e}. By Theorem 5.3, it suffices to show that the system (G/C,Z) is

poly-Bernoullian whenever C ≤ G is a closed normal Z-invariant subgroup,
such that (G/C,Z) satisfies the dcc.

Let ξ : G → G/C denote the projection. Then {ξ(ϕ(P )) ; P ∈ P} is a
directed downward family of closed normal Z-invariant subgroups of G/C.
Hence, by the dcc there exists P∗ ∈ P , such that ξ(ϕ(P )) = ξ(ϕ(P∗)) for
every P ∈ P with P ⊆ P∗. So by Lemma 7.14, P∗ ⊆ Ker(ξ ◦ ϕ), that is,
ϕ(P∗) ⊆ C. If so, then there exists a continuous equivariant surjective ho-
morphism η : H/P∗ → G/C, such that ξ ◦ ϕ = η ◦ ξ∗, where ξ∗ : H →H/P∗
is the projection. Then G/C = ξ(ϕ(H)) = η(H/P∗), and so (G/C,Z) is poly-
Bernoullian by Corollary 7.10. �

Proposition 7.16. Every action of Z on a compact group admits the
largest Bernoullizable subgroup. The largest Bernoullizable subgroup is a nor-
mal subgroup.

Proof. Let C denote the family of closed normal Z-invariant subgroups C,
such that the systems (G/C,Z) satisfy the dcc. By Theorem 5.3, the system
(G,Z) is the projective limit of the systems (G/C,Z), C ∈ C. Denote by
ξC : G→G/C the projection and by BC the poly-Bernoullian component of
G/C. Then B =

⋂
C∈C ξ

−1
C (BC) is a closed normal Z-invariant subgroup of G.

We claim that B is the largest Bernoullizable subgroup of G.
Given C1,C2 ∈ C with C1 ⊇C2, write ξC1C2 : G/C2 →G/C1 for the homo-

morphism satisfying ξC1 = ξC1C2 ◦ ξC2 . By Lemma 7.13, ξC1C2(BC2) = BC1 .
Hence, by the basic theory of projective limits, B is the projective limit of
the system (BC)C∈C , and ξC(B) = BC for every C ∈ C. Therefore, B is
a Bernoullizable subgroup. That B is the largest Bernoullizable subgroup
follows from Proposition 7.15 applied to the projections ξC , and from the
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observation that a Bernoullizable subgroup of a system satisfying the dcc is
poly-Bernoullian. �

The largest Bernoullizable subgroup will be denoted by GB and called
the Bernoullizable component of the system (G,Z). Note that for a system
satisfying the dcc, GB =GpB is the subgroup G2 of Theorem 7.1.

Proposition 7.17. Let Z act on compact groups H and G and ϕ : H →G
be a continuous equivariant surjective homomorphism. Then ϕ(HB) =GB .

Proof. Let C (resp., C′) denote the family of closed normal Z-invariant sub-
groups C, such that the systems (G/C,Z) (resp., (H/C,Z)) satisfy the dcc. As
shown in the proof of Proposition 7.16, ξC(GB) =BC (resp., ξ′C(HB) =B′

C)
for every C ∈ C (resp., C ∈ C′), where BC (resp., B′

C) is the poly-Bernoullian
component of G/C (resp., H/C), and ξC : G→G/C (resp., ξ′C : H →G′/C),
the projection. Consequently, it suffices to show that ξC(ϕ(HB)) = BC for
every C ∈ C.

But given C ∈ C there exists C ′ ∈ C′ with ϕ(C ′)⊆ C. This can be estab-
lished using Lemma 7.14 as in the proof of Proposition 7.15. It follows that
there exists a surjective homorphism η : H/C ′ → G/C, such that η ◦ ξ′C′ =
ξC ◦ ϕ. Then ξC(ϕ(HB)) = η(ξ′C′(HB)) = η(B′

C′). But by Lemma 7.13,
η(B′

C′) =BC . �
An action of Z on a compact group G (as well as the dynamical system

(G,Z)) will be called pro-finite-dimensional, if there exists a directed down-
ward family P of closed normal Z-invariant subgroups P ≤G, such that the
groups G/P are finite-dimensional and

⋂
P = {e}. A pro-finite-dimensional

system satisfying the dcc is finite-dimensional.

Corollary 7.18. If Z acts on a compact group G, then:

(i) (G,Z) is a pro-finite-dimensional system if and only if GB is totally
disconnected.

(ii) (G/GB)B = {e}.
(iii) GB = {e} if an only if (G/C)pB = {e} for every closed normal Z-

invariant subgroup C, such that (G/C,Z) satisfies the dcc.

Proof. (i) ⇒: Let C ≤ G be a closed normal Z-invariant subgroup, such
that the system (G/C,Z) satisfies the dcc. Then (G/C,Z) is a pro-finite-
dimensional system, and therefore finite-dimensional. Lemma 7.7 forces
(G/C)pB to be totally disconnected. By Proposition 7.17 and Theorem 5.3,
GpB must be totally disconnected.

⇐: Let C denote the family of closed normal Z-invariant subgroups C,
such that the systems (G/C,Z) satisfy the dcc, and let ξC : G→G/C denote
the projection. Then ξC(GB) = (G/C)pB is totally disconnected, and so by
Remark 7.12, dim(G/C) <∞. Theorem 5.3 yields that (G,Z) is pro-finite-
dimensional. �
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Corollary 7.19. If Z acts on a connected compact group G, then GB is
connected.

Proof. Due to Theorem 5.3 and Proposition 7.17, it suffices to consider the
case that the system (G,Z) satisfies the dcc. Let G̃=G/(GpB)e and denote by

ϕ : G→ G̃ the projection. By Proposition 7.17, G̃pB is totally disconnected,

and so by Remark 7.12 (or Corollary 7.18 and the dcc), dim G̃ <∞.

Let H = G̃/Ze(G̃). Then H is a finite-dimensional compact connected
group with Ze(H) = {e}. Hence, by Theorem 5.9, there exists an equivariant
isomorphism of H onto a full Markov subgroup of LZ, where L is a compact
connected semisimple Lie group. Then Corollary 5.17 yields that H itself is
a semisimple Lie group. Hence, HpB being, by Proposition 7.17, a closed
normal totally disconnected subgroup of H , is finite, and therefore trivial by
Lemma 7.7. Thus, G̃pB ⊆ Ze(G̃). But dimZe(G̃) <∞, and so by Proposi-

tion 6.2 (Ze(G̃),Z) is a solenoidal system. Therefore, G̃pB , being totally dis-
connected, is finite by Proposition 6.4, and so trivial according to Lemma 7.7.
Consequently, GpB = (GpB)e. �

Corollary 7.20. If Z acts on a compact connected group G, then (G,Z)
is a pro-finite-dimensional system if and only if GB = {e}.

The final result of this section relates the Bernoullizable component GB of
the dynamical system (G,Z) to the ergodic component Gerg. Recall that Gerg

is the largest among closed Z-invariant subgroups on which Z acts ergodically.

Proposition 7.21. If Z acts on a compact group G, then GB ≤ Gerg ≤
Ze(Ge)GB .

Proof. Using Proposition 2.1 it is easy to see that projective limits of er-
godic actions on compact groups are ergodic, and that if Z acts ergodically
on a closed normal Z-invariant subgroup N ≤ G and on the quotient G/N ,
then it acts ergodically on G. Hence, every Bernoulizable action is ergodic.
Thus GB ≤Gerg.

Thanks to Corollary 2.7(ii) and Theorem 5.3, to demonstrate that Gerg ≤
Ze(Ge)GB , it suffices to consider the case that the system (G,Z) satisfies the
dcc. But then Ze(Ge)GB is the subgroup G1 of Theorem 7.1. As G/G1 is a
semisimple Lie group, (G/G1)erg = {e}. By Corollary 2.7(ii), Gerg ≤G1. �

Corollary 7.22. If G is totally disconnected, then Gerg =GB .

8. The semidiscrete topology and Δ-contraction groups

Let G be a group and N a directed downward family of normal subgroups
of G, such that

⋂
N = {e}. Then there exists a unique topology σ(N ), making

G into a (Hausdorff) topological group in which N is a neighbourhood base
at e. In this topology every member of N is a closed-open subgroup and so
G is a 0-dimensional group.
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Let G be a compact group. We will denote by N (G) the set of closed
normal subgroups of G, such that G/N is a Lie group. It is well known that
N (G) is closed under finite intersections [22, p. 177], [9, p. 148]. The topology
Δ = σ(N (G)) will be called the semidiscrete topology, or the Δ-topology. In
the next remark, we collect a few readily verifiable properties Δ.

Remark 8.1.

(a) Δ is no weaker than the original compact topology.
(b) Δ coincides with the original topology if and only if the latter is totally

disconnected.
(c) Δ is discrete if and only if G is a Lie group.

Proposition 8.2. Let M be a directed downward subset of N (G), such
that

⋂
M= {e}. Then M is neighbourhood base at e for the Δ-topology.

Proof. We need to show that every N ∈ N (G) contains some M ∈ M.
But with ξ : G→ G/N denoting the canonical projection, {ξ(M) ; M ∈M}
is a family of compact subgroups of the Lie group G/N . Hence, there exists
M∗ ∈ M, such that ξ(M) = ξ(M∗) for every M ∈ M with M ⊆ M∗. Then
Lemma 7.14 yields the desired result. �

Corollary 8.3. Let (fa)a∈A be a family of homomorphisms, each map-
ping G into a Lie group La, and each continuous with respect to the original
compact topology on G. If (fa)a∈A separates points and each La is given the
discrete topology, then Δ coincides with the weak topology generated (fa)a∈A.

Proof. Clearly, Kerfa ∈ N (G) (because fa(G) is a Lie group canonically
isomorphic to G/Kerfa). Let M denote the family of finite intersections of
the kernels of the homomorphisms fa, a ∈A. Then M satisfies the assump-
tions of Proposition 8.2, and so is a neighbourhood base at e for Δ. But the
weak topology Δ′ generated (fa)a∈A also makes G into a topological group
and M is a neighbourhood base at e for Δ′. Therefore, Δ =Δ′. �

Corollary 8.4. Let (La)a∈A be a family of compact Lie groups and G

a closed subgroup of
∏

a∈ALa. Denote by L
(d)
a the set La equipped with the

discrete topology. Then the Δ-topology on G is the restriction of the Tychonoff

topology of
∏

a∈AL
(d)
a to G.

Henceforth we will adopt the convention that whenever we say “open,”
“closed,” “continuous,” “dense,” etc., we refer to the original compact topol-
ogy of a compact group and not to the Δ-topology, unless explicitly stated
otherwise.

Corollary 8.5. Let G and H be compact groups.

(a) If ϕ : G→H is a continuous homomorphism into (resp., onto) H , then
ϕ is continuous (resp., continuous and open) with respect to the Δ-topologies
of G and H .
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(b) If H is a closed subgroup of G, then the Δ-topology of H is the restric-
tion of the Δ-topology of G to H .

(c) The Δ-topology of G×H is the product of the Δ-topology of G and the
Δ-topology of H .

Proof. (a) If N ∈ N (H), then the image of ϕ(G) in H/N is a Lie group
isomorphic to G/ϕ−1(N). Hence, ϕ−1(N) ∈N (G), and so ϕ is Δ-continuous.
If ϕ is surjective and N ∈N (G), then H/ϕ(N), being a homomorphic image
of G/N , is a Lie group. So ϕ(N) ∈N (H), and, hence, ϕ is Δ-open.

(b) Let Δ′ be the restriction of the Δ-topology of G to H . Then Δ′

makes H into a topological group in which M = {N ∩H ; N ∈ N (G)} is a
neighbourhood base at e. But M⊆N (H) and M satisfies the assumptions
of Proposition 8.2.

(c) The product of the Δ-topologies of G and H makes G × H into a
topological group in which M = {N ′ × N ′′ ; N ′ ∈ N (G),N ′′ ∈ N (H)} is a
neighbourhood base at e. One concludes using Proposition 8.2 as in (b). �

Suppose now that Z acts on the compact group G, and K is a closed
Z-invariant subgroup. When G is topologized using the Δ-topology, then
owing to Corollary 8.5(a), Z remains acting by topological automorphisms
and so the general theory of contraction groups outlined in Section 3 is ap-
plicable in this new setting. When the Δ-topology is used, the contraction
group and the contraction group modulo K will be denoted by CΔ

+ (G) and

CΔ
+ (G,K), resp. They will be referred to as the Δ-contraction group and

the Δ-contraction group modulo K. We emphasize that in our discussion
of CΔ

+ (G) and CΔ
+ (G,K), we will always assume that Z acts by automor-

phisms of the original compact group structure and that K is closed in the
original compact topology. It is clear that CΔ

+ (G)⊆C+(G) and CΔ
+ (G,K)⊆

C+(G,K), with the inclusions becoming equalities when G is totally discon-
nected. Moreover, since the members ofN (G) are normal subgroups, it follows
that CΔ

+ (G,K)� G whenever K � G, in particular, CΔ
+ (G) �G.

It is obvious that g ∈ CΔ
+ (G) (resp., g ∈ CΔ

+ (G,K)) if and only for every
continuous homomorphism f from G into a Lie group there exists nf ∈ N,
such that f(ng) = e (resp., f(ng) ∈ f(K)) for every n≥ nf . By Corollary 8.3,
to verify that g ∈C+(G) it suffices to work with a family of homomorphisms
which separates points.

Lemma 8.6. Let (fa)a∈A be a family of homomorphisms, each mapping G
continuously into a Lie group La, and let (fa)a∈A separate points. If K ⊆G is
a closed Z-invariant subgroup with the property that K =

⋂
a∈A f−1

a (fa(K)),

then g ∈ CΔ
+ (G,K) if and only if for every a ∈ A there exists na ∈ N, such

that fa(ng) ∈ fa(K) for every n≥ na.
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Proof. It suffices to show that if N ∈ N (G), then there exists a finite set
AN ⊆ A with

⋂
a∈AN

f−1
a (fa(K)) ⊆NK. But this can be established by an

argument analogous to that used in the proof of Proposition 8.2. �

Proposition 8.7. Let G and K be closed Z-invariant subgroups of LZ,
where L is a compact Lie group and K = G ∩ [πL

0 (K)]Z. Then g ∈ CΔ
+ (G)

(resp., g ∈ CΔ
+ (G,K)) if and only if gn = e (resp., gn ∈ πL

0 (K)) for large
enough n.

Corollary 8.8. If L is a compact Lie group, then CΔ
+ (LZ) is dense in LZ.

Corollary 8.9. Let G be a full Markov subgroup of LZ, where L is a com-
pact Lie group. Then CΔ

± (G) = {e} if and only if TG(∓1) = {e}. Moreover,
the following conditions are equivalent:

(i) G is a Lie group.
(ii) CΔ

+ (G) =CΔ
− (G) = {e}.

(iii) πL
0 � G is a topological isomorphism of G onto L.

Proof. The “if and only if” statement follows immediately from the defi-
nition of TG(±1). The implication (iii)⇒ (i) is trivial, while (i)⇒ (ii) is true
because the Δ-topology on a Lie group is discrete. Finally, if (ii) holds,
then TG(−1) = TG(1) = {e}. Applying the last statement of Remark 5.5
yields (iii). �

Corollary 8.10. Suppose that the system (G,Z), where G is a compact
group, satisfies the dcc.

(1) If CΔ
+ (G) = {e}, then GpB = {e}, in particular, G is a finite-dimen-

sional group.
(2) G is a Lie group if and only if CΔ

+ (G) =CΔ
− (G) = {e}.

Proof. (1) Let G ≥ G1 ≥ · · · ≥ Gk ≥ Gk+1 = {e} be the closed normal
Z-invariant subgroups described in Theorem 7.1. Since (Gj/Gj+1,Z) is a
Bernoullian system of Lie type when j = 2, . . . , k, triviality of CΔ

+ (G) implies,
inductively, that Gk+1 =Gk = · · ·=G2 (using Corollaries 8.5 and 8.8). Hence,
GpB =G2 = {e}.

(2) By Theorem 5.9 and Corollary 8.5(a) we may assume that G is a full
Markov subgroup of LZ, where L is a compact Lie group. Then (2) is an
immediate consequence of Corollary 8.9. �

Example 8.11. Let G be the Markov solenoid generated by U ∈GL(m,Q).
Since TG(±1) = {expm(U±1x) ; x ∈ Zm} (cf. (6.6)), it follows that CΔ

± (G) =
{e} if and only if U∓1 ∈M(m,Z).

Corollary 8.12. If (G,Z) is a pro-finite-dimensional system, then CΔ
± (G)

are totally disconnected.
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Proof. Let C be a compact normal Z-invariant subgroup, such that the
system (G/C,Z) satisfies the dcc. Then CΔ

± (G/C) ⊇ CΔ
± (G)/C and so if

CΔ
± (G/C) is totally disconnected, then C must contain the connected com-

ponent of the identity in CΔ
± (G). Thus by Theorem 5.3, it suffices to consider

the case that the system (G,Z) satisfies the dcc.
But when the dcc holds, then dimG<∞ and we may assume that G is a

full Markov subgroup of LZ, where L is a compact Lie group. Then by Propo-
sition 5.16, TG(n) is finite for every n ∈ Z. Hence, L± =

⋃∞
n=1 TG(±n) are

countable and therefore totally disconnected subgroups of L. Since CΔ
± (G)⊆

(L∓)
Z, the result follows. �

We will say that the action of Z on a compact group G (and the dynam-
ical system (G,Z)) has the Δ-decomposition property (Δdp), if CΔ

+ (G,K) =

CΔ
+ (G)K for every closed Z-invariant subgroup K ≤G. In Section 11, we will

prove that any action of Z on a compact group has the Δdp. The following
is a preliminary result in this direction.

Lemma 8.13. If an action of Z on a compact group G satisfies the dcc,
then the action has the Δdp.

Proof. Let K ≤G be a closed Z-invariant subgroup. By Theorem 5.9 and
Corollary 8.5(a), we may assume that G and K are Markov subgroups of
LZ, where L is a compact Lie group, G is full, K =G ∩ [πL

0 (K)]Z, and TK =
TG ∩ [πL

0 (K)]{0,1}. By Corollary 8.4, L needs to be considered as a discrete
group. We are then in the setting of the main part of the proof of Corol-
lary 5.10, except that L can now be infinite. That CΔ

+ (G,K) = CΔ
+ (G)K

follows from Lemma 4.4. �

9. Analytic elements in contraction groups

Throughout this section, G will denote a compact Abelian group. We
will make use of elements of the theory the exponential function for such
groups [8, Chapter 7]. Let L(G) denote the set Hom(R,G) of continuous
homomorphisms from R to G (1-parameter subgroups). L(G) is in a natural
way a real vector space: the scalar multiplication is given by (a · f)(t) = f(at)
(f ∈ L(G), a, t ∈R), and the addition f + g (f, g ∈ L(G)) is just the ordinary
addition of homomorphisms in L(G) when additive notation is used for the
group operation in G. To conform with the rest of this paper, we will continue
to use multiplicative notation for the group operation, so that (f + g)(t) =
f(t)g(t). We note that L(G) is, in general, an infinite-dimensional vector
space; dimL(G)<∞ if and only if G is a finite-dimensional group, in which
case dimL(G) = dimG [8].

The exponential function of G, denoted EXPG, is the function

EXPG : L(G)→G, EXPG(f) = f(1).
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It is a homomorphism of the additive group (L(G),+) into G. We note that
L(G) equipped with the topology of uniform convergence on compacta is
a topological vector space and EXPG becomes then a continuous mapping.
However, for our applications it will be sufficient to know that the restriction
of EXPG to any finite-dimensional subspace S of L(G) is continuous (with
respect to the unique topology making S into a topological vector space).
When G is a Lie group, we have the canonical identification of its Lie algebra
with L(G). With this identification in place, EXPG becomes the exponential
function as defined in the standard theory of Lie groups.

We will continue to denote by N (G) the family of closed normal subgroups
N of a compact group G, such that G/N is a Lie group.

Lemma 9.1. Suppose that S is a finite-dimensional subspace of L(G). Then
Ker(EXPG � S) is a discrete subgroup of S. Moreover, there exists N∗ ∈N (G),
such that, with ξN : G→ G/N denoting the projection, Ker(ξN ◦ EXPG � S)
is discrete for every N ∈N (G) with N ⊆N∗.

Proof. The first statement follows from the fact that Ker(EXPG) is a to-
tally disconnected subgroup of L(G) [8, Theorem 7.66]. It is also not dif-
ficult to give a self-contained proof using only the continuity of EXPG � S:
Let K = Ker(EXPG � S). Since S is a vector (Lie) group, K0, the con-
nected component of 0 in K, is a vector subspace of S, and it suffices to
show that K0 = {0}. But if f ∈ K0 then for every t ∈ R, tf ∈ K0, so that
f(t) = EXPG(tf) = {e}. Hence, f = 0.

To prove the second statement, observe that F = {(EXPG � S)−1(N) ;
N ∈ N (G)} is a directed downward family of closed subgroups of S, and⋂
F = Ker(EXPG � S). Since dimS < ∞, we can find N∗ ∈ N (G), such

that dim((EXPG � S)−1(N)) = dim((EXPG � S)−1(N∗)) for every N ∈ N (G)
with N ⊆ N∗. Since closed subgroups of S are Lie groups, it follows that
((EXPG � S)−1(N))0 = ((EXPG � S)−1(N∗))0 for every N ∈ N (G) with N ⊆
N∗. The fact that Ker(EXPG � S) =

⋂
F is discrete, forces (EXPG � S)−1(N)

to be totally disconnected, and therefore discrete. �

Let ϕ be a continuous homomorphism of G into a compact Abelian
group H . We will denote by ϕ∗ the mapping

ϕ∗ : L(G)→L(H), ϕ∗(f) = ϕ ◦ f.

Several basic properties of ϕ∗ are obvious:

(i) ϕ∗ is a linear mapping;
(ii) ϕ ◦EXPG =EXPH ◦ϕ∗;
(iii) ϕ∗ is injective whenever ϕ is injective;
(iv) (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗ when ψ : H →K is a continuous homomorphism

into a compact Abelian group K.
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The following is also true but far from obvious [8, Lemma 7.41], [9, Lemma
4.19], [22, Theorem 1, p. 192]:

(v) ϕ∗ is surjective whenever ϕ is surjective.

It follows from (iii) and (v) that when τ ∈ Aut(G), then τ∗ is an auto-
morphism of the vector space L(G). Thus when Z acts on G, there is the
corresponding action on L(G) which makes EXPG into an equivariant func-
tion. When Z acts also on the compact Abelian group H and ϕ : G→H is
a continuous equivariant homomorphism, then ϕ∗ : L(G)→L(H) is an equi-
variant linear mapping.

Let Z act on the compact Abelian group G. We will now define a sub-
group of C+(G) which for finite-dimensional groups will be later shown to
complement the Δ-contraction group CΔ

+ (G) (Corollary 11.7). Let us call
an element g ∈ C+(G), an analytic element, if g ∈ EXPG(C+(A)), where
A is a finite-dimensional Z-invariant subspace of L(G). Let Ca

+(G) = {g ∈
C+(G);g is analytic}. Note that Ca

+(G)⊆Ge, so that Ca
+(G) =Ca

+(Ge).

Proposition 9.2. Ca
+(G) is a path connected subgroup of C+(Ge), and

Ca
+(G) ∩ CΔ

+ (G) = {e}. Moreover, if Z acts on a compact Abelian group H
and ϕ : G→H is a continuous equivariant homomorphism, then ϕ(Ca

+(G))⊆
Ca

+(H).

Proof. That Ca
+(G) is a path connected subgroup is obvious. By virtue of

the equality ϕ ◦EXPG =EXPH ◦ϕ∗, the final statement is also obvious.
Suppose g ∈ Ca

+(G) ∩ CΔ
+ (G). Thus g = EXPG(x), where x ∈ C+(A) and

A⊆L(G) is a finite-dimensional Z-invariant subspace. By Lemma 9.1, there
exists N ∈ N (G), such that, with ξN : G → G/N denoting the projection,
D = Ker(ξN ◦ EXPG � A) is discrete. But by the definition of CΔ

+ (G), ng =
EXPG(nx) ∈N for large enough n. Thus for such n, nx ∈D. As x ∈C+(A),
this implies that nx= 0 for large enough n. So x= 0, that is, g = e. �

Example 9.3. Let G be the solenoid generated by U ∈GL(m,Q). Given
x ∈ Rm, the formula fx(t) = EU (tx) defines an element of L(G). It is easy
to see that the mapping Rm � x→ Φ(x) = fx ∈ L(G) is linear. Φ is also in-
jective, which follows from the fact that Ker(EU ) is discrete. Finally, Φ is
surjective because dimG = dimL(G) = m. We also have EXPG ◦ Φ = EU .
Φ is the natural isomorphism between Rm and L(G), and it is an equivari-
ant isomorphism when the action of Z on Rm is the one induced by U (i.e.,
nx = Unx). It follows that Ca

+(G) = EU (C(U)), while Proposition 8.7 and
the description of C+(G) obtained in Proposition 6.8 yield the factorization
C+(G) = Ca

+(G)CΔ
+ (G) (which is, algebraically, a direct product by Proposi-

tion 9.2).

We proceed to investigate the property ϕ(Ca
+(G)) = Ca

+(H), given a con-
tinuous equivariant surjective homomorphism ϕ : G → H between compact
Abelian groups.
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Lemma 9.4. If dim(Kerϕ)<∞, then for every finite-dimensional Z-invari-
ant subspace A⊆L(H) there exists a finite-dimensional Z-invariant subspace

Ã⊆L(G), such that A= ϕ∗(Ã).

Proof. Since Kerϕ∗ = L(Kerϕ) has finite dimension and ϕ∗ is equivariant,

Ã= ϕ−1
∗ (A) is the desired finite-dimensional Z-invariant subspace. �

Lemma 9.5. Let A and B be Abelian topological groups, ξ ∈Hom(A,BZ),
α ∈Aut(A), and let σ denote the shift σ((bn)n∈Z) = (bn+1)n∈Z on BZ. Then
there exists η ∈Hom(A,BZ), such that ξ(a)σ(η(a)) = η(α(a)) for every a ∈A.

Proof. Writing ξ = (ξn)n∈Z (ξn ∈Hom(A,B)), we need to find η = (ηn)n∈Z

(ηn ∈ Hom(A,B)), such that ξn(a)ηn+1(a) = ηn(α(a)) for every n ∈ Z and
a ∈A. One possible solution is to define

ηn(a) =

{∏n
j=1[ξj−1(α

n−j(a))]−1, when n≥ 1, a ∈A;∏−n
j=1 ξ−j(α

n+j−1(a)), when n≤−1, a ∈A;

and η0(a) = e for every a ∈A. �

Lemma 9.6. If (Kerϕ,Z) is a Bernoullian system, then for every finite-
dimensional Z-invariant subspace A⊆L(H) there exists a finite-dimensional

Z-invariant subspace Ã⊆L(G), such that A= ϕ∗(Ã) and dimA= dim Ã.

Proof. Since ϕ∗ is a linear surjection, there is a subspace A′ ⊆L(G), such
that ϕ∗ � A′ is a linear isomorphism of A′ onto A. Let ζ =EXPH � A and ζ ′ =
EXPG ◦ F , where F = (ϕ∗ � A′)−1. Then ζ ∈ Hom(A,H), ζ ′ ∈ Hom(A,G),
and ϕ ◦ ζ ′ = ζ. In the next step of the proof, we modify ζ ′ to obtain an
equivariant homomorphim ζ̃ ∈Hom(A,G) with ϕ ◦ ζ̃ = ζ.

Let τG ∈Aut(G), τH ∈Aut(H), and α ∈GL(A) denote the automorphisms
inducing the Z-actions (i.e., corresponding to 1 ∈ Z). Then ϕ ◦ τG ◦ ζ ′ =
τH ◦ ϕ ◦ ζ ′ = τH ◦ ζ = ζ ◦ α = ϕ ◦ ζ ′ ◦ α. Hence, for every a ∈ A, ξ(a) =
τG(ζ

′(a))[ζ ′(α(a))]−1 ∈ Kerϕ. Thus when σ = τG � Kerϕ and Kerϕ is iden-
tified with BZ, we are in the situation to which Lemma 9.5 applies. Conse-
quently, there exists η ∈Hom(A,Kerϕ), such that ξ(a)τG(η(a)) = η(α(a)) for
every a ∈ A. Invoking the definition of ξ, the latter identity can be rewrit-
ten as τG(ζ

′(a)η(a)) = ζ ′(α(a))η(α(a)). Thus, the formula ζ̃(a) = ζ ′(a)η(a)
defines a continuous equivariant homomorphism from A into G, such that
ϕ ◦ ζ̃ = ζ.

We will now make use of the following fact about the exponential function
EXPG: if V is a finite-dimensional real vector space, then every homomor-
phism h ∈ Hom(V,G) has the form h= EXPG ◦ T , where T : V →L(G) is a
linear mapping, uniquely determined by h. Let T : A→L(G) be such a linear

mapping corresponding to ζ̃. It easily follows that EXPH ◦ϕ∗ ◦T =EXPH � A
and EXPG ◦ τG∗ ◦T =EXPG ◦T ◦α. Hence, ϕ∗ ◦T = idA and τG∗ ◦T = T ◦α.
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Thus T is an equivariant linear mapping of A into L(G). Ã= T (A) is a finite-

dimensional Z-invariant subspace of L(G) with ϕ∗(Ã) = A. It is clear that

dimA= dim Ã. �

Lemma 9.7. If the system (Kerϕ,Z) satisfies the dcc, then for every finite-
dimensional Z-invariant subspace A⊆L(H), there exists a finite-dimensional

Z-invariant subspace Ã⊆L(G), such that A= ϕ∗(Ã).

Proof. Let K = Kerϕ. By Theorem 7.1, there exist closed Z-invariant
subgroups K ≥ K1 ≥ · · · ≥ Kk ≥ Kk+1 = {e}, such that K/K1 is finite,
(K1/K2,Z) is a solenoidal system, and for j = 2, . . . , k, (Kj/Kj+1,Z) is a
Bernoullian system. For j = 1, . . . , k+1, let ξj : G→G/Kj denote the canoni-
cal homomorphism and ϕj : G/Kj → H , the homomorphism satisfying
ϕj ◦ ξj = ϕ. Furthermore, when j = 1, . . . , k, let ηj : G/Kj+1 →G/Kj be the
homomorphism with ηj ◦ ξj+1 = ξj . Note that ϕj+1 = ϕj ◦ ηj .

We will show by finite induction that for every j = 2, . . . , k + 1 there
exists a finite-dimensional Z-invariant subspace Ãj ⊆ L(G/Kj), such that

ϕj∗(Ãj) =A. Since ϕk+1 becomes ϕ when G/Kk+1 is identified with G, this
will prove the lemma.

Since Kerϕ2 = K/K2 is a finite-dimensional group, our claim is true for
j = 2, due to Lemma 9.4. Suppose j = 2, . . . , k and that we already obtained
a finite-dimensional Z-invariant subspace Ãj ⊆ L(G/Kj) with ϕj∗(Ãj) = A.
Note that Kerηj =Kj/Kj+1 satisfies the assumptions of Lemma 9.6. Hence,

there exists a finite-dimensional Z-invariant subspace Ãj+1 ⊆ L(G/Kj+1),

such that ηj∗(Ãj+1) = Ãj . Then ϕj+1∗(Ãj+1) = (ϕj∗ ◦ ηj∗)(Ãj+1) =A. �

Proposition 9.8. Suppose that Z acts on compact Abelian groups G and
H , and ϕ : G→H is a continuous equivariant surjective homomorphism. If
dimKerϕ < ∞ or the system (Kerϕ,Z) satisfies the dcc, then ϕ(Ca

+(G)) =
Ca

+(H).

Proof. We already know that ϕ(Ca
+(G))⊆Ca

+(H) (Proposition 9.2). Sup-
pose g ∈ Ca

+(H), that is, g ∈ EXPH(C+(A)) where A ⊆ L(H) is a finite-
dimensional Z-invariant subspace. By Lemma 9.4 or 9.7 there exists a finite-
dimensional Z-invariant subspace Ã⊆L(G) with ϕ∗(Ã) =A. But using The-

orem 3.6 or finite-dimensional linear algebra, ϕ∗(C+(Ã)) = C+(A). Hence,

g ∈ EXPH(ϕ∗(C+(Ã))) = ϕ(EXPG(C+(Ã)))⊆ ϕ(Ca
+(G)). �

Corollary 9.9. Every solenoidal system has the cdp.

Proof. Let (G,Z) be a solenoidal system. Due to Proposition 3.3(iii) and
the fact that G is Abelian, it suffices to show that whenever Z acts on a com-
pact group G1 and ϕ : G→G1 is a continuous equivariant surjective homo-
morphism, then ϕ(C+(G)) =C+(G1). But by Proposition 6.2, (G1,Z) is also
a solenoidal system. Then by Example 9.3, we have C+(G) = Ca

+(G)CΔ
+ (G)
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and C+(G1) = Ca
+(G1)C

Δ
+ (G1). Proposition 9.8 yields ϕ(Ca

+(G)) = Ca
+(G1)

while Lemma 8.13, Corollary 8.5(a), and Proposition 3.3(iii) allow to conclude
that ϕ(CΔ

+ (G)) =CΔ
+ (G1). So ϕ(C+(G)) =C+(G1). �

Corollary 9.10. Let Z act on compact Abelian groups G and H and
let ϕ : G→H be a continuous equivariant surjective homomorphism, whose
kernel is metrizable. Then Ca

+(H)⊆ ϕ(C+(G)).

Proof. Since Kerϕ is metrizable, it follows from Theorem 5.3 that there
exists a nonincreasing sequence (Cn)

∞
n=1 of closed Z-invariant subgroups of

Kerϕ, such that for every n ∈N, the system ((Kerϕ)/Cn,Z) satisfies the dcc
and

⋂∞
n=1Cn = {e}. Let ξn : G → G/Cn denote the projection and

ηn : G/Cn+1 → G/Cn, the homomorphism satisfying ηn ◦ ξn+1 = ξn. There
also exists a homomorphism ϕ1 : G/C1 →H , such that ϕ1 ◦ ξ1 = ϕ.

Let h ∈ Ca
+(H). We claim that there exists a sequence gj ∈ Ca

+(G/Cj),
j ∈ N, such that ϕ1(g1) = h, and gj = ηj(gj+1) for every j ∈ N. Indeed since
Kerϕ1 = (Kerϕ)/C1, by Proposition 9.8 there exists g1 ∈ Ca

+(G/C1) with
ϕ1(g1) = h. But for every j ∈ N, Kerηj = Cj/Cj+1 ≤ (Kerϕ)/Cj+1, so that
(Kerηj ,Z) satisfies the dcc. Using Proposition 9.8 the required sequence can
be constructed by induction.

Note that G is the projective limit of the sequence (G/Cj)
∞
j=1. Hence, there

exists g ∈G with ξj(g) = gj for every j ∈ N. Since gj ∈ C+(G/Cj), it follows
that g ∈C+(G). Finally ϕ(g) = (ϕ1 ◦ ξ1)(g) = h, so h ∈ ϕ(C+(G)). �

Proposition 9.11. Let G denote the solenoid generated by U ∈GL(m,Q).
Then:

(i) C+(G) = {e} if and only if every eigenvalue of U is a root of 1.
(ii) If C+(G) = {e}, then G is topologically isomorphic to Tm.
(iii) [C+(G)] =G if and only if no eigenvalue of U is a root of 1.
(iv) If [C+(G)] = G, then [C+(H)] = H for every closed connected Z-

invariant subgroup H ≤G.

Proof. (i) Recall that there exists an equivariant isomorphism Ψ of G onto
a Markov solenoid G′ generated by some U ′ ∈ GL(m,Q). Then Ψ∗ is an
equivariant isomorphism of L(G) onto L(G′). Identifying L(G) and L(G′)
with Rm, as in Example 9.3, it follows that U and U ′ are similar matrices.
Hence, it is enough to prove our claim when G is a Markov solenoid, which
we will now assume.

⇒: Since Ca
+(G) = {e}, it is clear from the description of Ca

+(G) given in

Example 9.3 that if λ is an eigenvalue of U , then |λ| ≥ 1. But as CΔ
+ (G) = {e},

U−1 ∈M(m,Z), as seen in Example 8.11. Therefore, |detU | ≤ 1. Hence, U
has only unimodular eigenvalues. If so, then det(U−1) =±1 and, hence, U ∈
M(m,Z). Thus U ∈GL(m,Z). But a matrix in GL(m,Z) has only unimodular
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eigenvalues if and only all its eigenvalues are roots of 1.7 Since U ∈GL(m,Z),
we also obtain that G is topologically isomorphic to Tm, that is, (ii) is true.

⇐: Since every eigenvalue of U is a root of 1, Ca
+(G) = {e}. Moreover,

we can find p ∈ N, such that 1 is the only eigenvalue of Up and U−p. Then
the Cayley–Hamilton theorem yields (Up − 1)m = 0 = (U−p − 1)m. This can
be used to express every power of U as a linear combination, with integral
coefficients, of the powers U j , where |j|< pm. Hence, there exists d ∈N, such
that dU j ∈M(m,Z) for every j ∈ Z. It follows that (dZ)m ⊆ Ker(EU ), and
so EU (R

m) = EU ([0, d]
m) is closed in (Tm)Z. Therefore, G = EU (R

m) and
thus G is a Lie group (isomorphic to Tm).8 Consequently, CΔ

+ (G) = {e}. So

C+(G) =Ca
+(G)CΔ

+ (G) = {e} (cf. Example 9.3).
(iii) ⇒: We argue by contradiction. Suppose that U has a root of 1 among

its eigenvalues. Then there exists p ∈N, and a nonzero ξ ∈ Zm with ξUp = ξ.
Let χ ∈ (Tm)̂ be the character defined by ξ and let χ̃= χ ◦ πT

m

0 � G. Then χ̃
is a nontrivial character on G and χ̃(EU (x)) = exp(2πiξ ·x) for every x ∈Rm,
where · is the dot product in Rm. It follows that for every n ∈ Z and x ∈Rm,
χ̃((np)EU (x)) = χ̃(EU (x)). Hence, χ̃((np)g) = χ̃(g) for every n ∈ Z and g ∈G.
Consequently, C+(G)⊆Ker χ̃, which contradicts the density of C+(G) in G.

⇐: We again argue by contradiction. If [C+(G)] �= G, then there is an
equivariant isomorphism of G/[C+(G)] onto a solenoid G′ generated by U ′ ∈
GL(m′,Q), where m′ ≤ m. By Corollaries 9.9 and 3.4, C+(G

′) = {e}, and
so all eigenvalues of U ′ are roots of 1. But G′ = ϕ(G), where ϕ : G → G′

is a continuous equivariant surjective homomorphism. ϕ induces a linear
surjection F : Rm →Rm′

, such that U ′ ◦F = F ◦U . But then every eigenvalue
of U ′ is an eigenvalue of U , contradicting the absence roots of 1 among the
eigenvalues of U .

(iv) If H is nontrivial, then it is isomorphic to a solenoid generated by U ′ ∈
GL(m′,Q). The inclusion mapping idH : H → G induces a linear injection

F : Rm′ → Rm with U ◦ F = F ◦ U ′. Hence, U ′ has no roots of 1 among its
eigenvalues. �

Example 9.12. When U ∈GL(m,Q) and Up ∈GL(m,Z) for some p ∈ N,
that is, when G is isomorphic to Tm, then U has only unimodular eigenvalues

7 This follows from Kronecker’s result [18] on polynomial equations with integral coeffi-

cients. Alternatively, one can argue as follows: Induction on m shows that if
∑m

j=0 bjx
j is

a monic polynomial in C[x], with all roots on the unit circle, then |b0|= 1 and |bj | ≤ 2m−1

for j = 1, . . . ,m− 1. Hence, there are only finitely many possibilities for the characteristic

polynomial of a matrix U ∈GL(m,Z), whose eigenvalues are unimodular. Thus the set U
consisting of the eigenvalues of all such matrices is finite. Since for every λ ∈ U and n ∈ Z,

λn ∈ U , λ must be a root of 1 (then there even exists l ∈ N such that each λ ∈ U is an lth
root of 1).
8 This argument shows that if for a matrix U ∈GL(m,Q) one can find d ∈ N, such that

dUj ∈ M(m,Z) for every j ∈ Z, then Up ∈ GL(m,Z) for some p ∈ N. A purely algebraic

proof of this fact is elementary, although nontrivial.
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if and only if all its eigenvalues are roots of 1. However, when G is not
isomorphic to Tm, it is possible for C+(G) to be nontrivial when U has only

unimodular eigenvalues. For example, U =
[ 1

2 −1
1 0

]
has unimodular eigenvalues

1
4 (1± i

√
15) which are not roots of 1. If U has only unimodular eigenvalues

but not all of them are roots of 1, Proposition 9.11(ii), Example 9.3, and
Corollary 8.12 show that C+(G) =CΔ

+ (G) is a nontrivial totally disconnected
group.

10. The compact decomposition property for compact groups

We are now in a position to obtain a characterization of those Z-actions
on compact groups which have the cdp. As Theorem 4.2 may suggest, the
Bernoullizable and poly-Bernoullian components GB and GpB play a key role
in this characterization.

Theorem 10.1. If an action of Z on a compact group G satisfies the dcc,
then the following conditions are equivalent:

(i) The action has the cdp.
(ii) GpB is totally disconnected.
(iii) dimG<∞.
(iv) If H ≤G is a closed Z-invariant subgroup and ϕ a continuous equi-

variant homomorphism of H onto a Bernoulli system (KZ,Z), then K is
finite.

Proof. (i)⇒ (ii) Let G≥G1 ≥ · · · ≥Gk ≥Gk+1 = {e} be the closed normal
Z-invariant subgroups described in Theorem 7.1. By Proposition 3.2(iii) and
Corollary 3.4, each of the systems (Gj/Gj+1,Z), j = 2, . . . , k, has the cdp.
Hence, by Theorem 4.2, Gj/Gj+1 is totally disconnected for every j = 2, . . . , k.
This implies that GpB =G2 is totally disconnected.

(ii)⇒ (iii) This is obvious because dimG/GpB <∞ by Remark 7.12.
(iii)⇒ (iv) Clearly, dimKZ < ∞, and so K is totally disconnected. But

(KZ,Z) inherits the dcc from (G,Z). Since compact open subgroups ofK form
a neighbourhood base at e in K, the dcc forces {e} to be a neighbourhood
of e. Hence, K is discrete, and so finite.

(iv)⇒ (i) Let G ≥ G1 ≥ · · · ≥ Gk ≥ Gk+1 = {e} be the closed normal Z-
invariant subgroups described in Theorem 7.1. Then each of the Bernoullian
systems (Gj/Gj+1,Z), j = 2, . . . , k, is totally disconnected, and, hence, by
Theorem 4.2, has the cdp. By Corollary 9.9, the solenoidal system (G1/G2,Z)
also has the cdp. Finally, the system (G/G1,Z) trivially has the cdp, be-
cause any action of Z on a semisimple Lie group is equicontinuous (so that
C+(G/G1,K) = K). Then the cdp of (G,Z) can be established by finite
induction, starting from (Gk,Z) and repeatedly using Corollary 3.4 and The-
orem 7.1(4) to arrive at (G,Z). �
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Theorem 10.2. The following conditions are equivalent for an action of Z
on a compact group G:

(i) The action has the cdp.
(ii) GB is totally disconnected.
(iii) (G,Z) is a pro-finite-dimensional system.
(iv) If H ≤G is a closed Z-invariant subgroup and ϕ a continuous equi-

variant homomorphism of H onto a Bernoulli system (KZ,Z), then K is
totally disconnected.

Proof. (i)⇒ (ii) If (G,Z) has the cdp, then so does (GB ,Z). Then for
every closed normal Z-invariant subgroup C of GB , such that (GB/C,Z)
satisfies the dcc, (GB/C,Z) also has the cdp. Hence, by Proposition 7.17
and Theorem 10.1, GB/C = (GB/C)pB is totally disconnected. Theorem 5.3
implies that GB is totally disconnected.

(ii)⇔ (iii) Corollary 7.18(i).
(iii)⇒ (iv) The system (H,Z) is also pro-finite-dimensional. Hence, so is

(KZ,Z). By Corollary 7.18(i), KZ, and therefore K, is totally disconnected.
(iv)⇒ (i) Let C ≤ G be a closed normal Z-invariant subgroup, such that

(G/C,Z) satisfies the dcc. Then condition (iv) for our system (G,Z) implies
condition (iv) of Theorem 10.1 for the system (G/C,Z). Hence, (G/C,Z) has
the cdp. An application of Theorems 3.8 and 5.3 yields (i). �

Corollary 10.3. An action of Z on a compact connected group G has the
cdp if and only if GB = {e}.

Proof. Corollary 7.20. �

While the cdp fails for every system (G,Z) which fails to be pro-finite-
dimensional, the question remains about the extent of this failure. When K ≤
G is a closed Z-invariant subgroup, such that C+(G)K is a proper subgroup
of C+(G,K), one would like to know how different C+(G)K and C+(G,K)
can be. In particular, is it possible for C+(G,K) to be strictly larger than K
when C+(G) = {e}? A special case of this question is whether C+(G/K) can
be nontrivial when K is normal and C+(G) = {e} (cf. Proposition 3.3(iii)).
These questions will be answered in the negative using Theorem 10.2 and
the Δ-contraction groups together with the Δ-decomposition property, to be
proven in the next section. Subsequently, we will show that for a metrizable
group, C+(G)K is always a dense subgroup of C+(G,K) (Theorem 12.2).

11. The Δ-decomposition property

Our main objective in this section is to prove the following theorem, ex-
tending Lemma 8.13 to arbitrary Z-actions on compact groups.

Theorem 11.1. Any action of Z on a compact group has the Δdp.
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Before embarking on a lengthy proof of the theorem, let us explore a few
of its consequences.

Proposition 11.2. For any action of Z on a compact group G, GB ⊆
[CΔ

+ (G)] .

Proof. First, assume that the dcc holds. Let G≥G1 ≥ · · · ≥Gk ≥Gk+1 =
{e} be the subgroups described in Theorem 7.1 and ξj : Gj → Gj/Gj+1 de-
note the projections. Since for j = 2, . . . , k, (Gj/Gj+1,Z) is a Bernoullian sys-
tem of Lie type, [CΔ

+ (Gj/Gj+1)] =Gj/Gj+1 by Corollary 8.8. Then thanks

to Corollary 8.5(a), Proposition 3.3(iii), and Theorem 11.1, ξj([C
Δ
+ (Gj)] ) =

Gj/Gj+1. Therefore, Gj = [CΔ
+ (Gj)] Gj+1 ⊆ [CΔ

+ (G)] Gj+1 for j = 2, . . . , k.

Since Gk+1 = {e}, this implies that GB =G2 ⊆ [CΔ
+ (G)] .

When the dcc does not hold, then by Theorem 5.3 it suffices to show
that for every closed normal Z-invariant subgroup C, such that the dcc holds
for (G/C,Z), we have ξC(GB) ⊆ ξC([C

Δ
+ (G)] ), where ξC : G→ G/C is the

projection. But ξC([C
Δ
+ (G)] ) = [CΔ

+ (G/C)] by Theorem 11.1 and Proposi-
tion 3.3(iii), while ξC(GB) = (G/C)B by Proposition 7.17. �

Corollary 11.3. If CΔ
+ (G) = {e}, then the system (G,Z) has the cdp.

Proof. Combine Proposition 11.2 and Theorem 10.2. �

Corollary 11.4. If C+(G) = {e}, then C+(G,K) = K for every closed
Z-invariant subgroup K ≤ G; in particular, C+(H) = {e} whenever Z acts
on a compact group H and ϕ : G→H is a continuous equivariant surjective
homomorphism.

Corollary 11.5. C+(G) =CΔ
+ (G)C+(Ge).

Proof. Let ξ : G→G/Ge denote the projection. Since G/Ge is totally dis-
connected, using Proposition 3.3(iii), Corollary 8.5(a), and Theorem 11.1, we
obtain C+(G/Ge) =CΔ

+ (G/Ge) = ξ(CΔ
+ (G))⊆ ξ(C+(G))⊆C+(G/Ge). Thus,

ξ(CΔ
+ (G)) = ξ(C+(G)) and, hence, C+(G) ⊆ CΔ

+ (G)Ge. But as CΔ
+ (G) ⊆

C+(G) and C+(G) ∩ Ge = C+(Ge), we obtain C+(G) ⊆ CΔ
+ (G)C+(Ge) ⊆

C+(G). �

Proposition 11.6. If Z acts on a finite-dimensional compact group G,
then C+(G) is, algebraically, the direct product of Ca

+(Ze(Ge)) and CΔ
+ (G).

Proof. Since Ca
+(Ze(Ge)) ∩ CΔ

+ (G) = Ca
+(Ze(Ge)) ∩ Ze(Ge) ∩ CΔ

+ (G) =

Ca
+(Ze(Ge))∩CΔ

+ (Ze(Ge)), Proposition 9.2 yields Ca
+(Ze(Ge))∩CΔ

+ (G) = {e}.
Moreover, since CΔ

+ (G) is totally disconnected (Corollary 8.12) and nor-
mal in G, while Ca

+(Ze(Ge)) is connected (Proposition 9.2), it follows that

Ca
+(Ze(Ge)) and CΔ

+ (G) commute elementwise. Hence, it remains to show

that C+(G) =Ca
+(Ze(Ge))C

Δ
+ (G).
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Let us first consider the case that the dcc holds. Since dimG < ∞,
GpB is totally disconnected (cf. Theorem 10.1). Moreover, with G1 =
Ze(Ge)GpB , G/G1 is a semisimple Lie group while (G1/GpB ,Z) is a solenoidal
system. Thus, C+(G) = C+(G1), and by Example 9.3, C+(G1/GpB) =
Ca

+(G1/GpB)C
Δ
+ (G1/GpB).

Let ξ : G→G/GpB denote the projection. Using Theorem 11.1, and Propo-
sitions 3.3(iii) and 9.8, we obtain ξ(C+(G)) = ξ(C+(G1)) ⊆ C+(G1/GpB) =
ξ(Ca

+(Ze(Ge)))ξ(C
Δ
+ (G1)). Therefore C+(G) ⊆ Ca

+(Ze(Ge))C
Δ
+ (G1)GpB =

Ca
+(Ze(Ge))C

Δ
+ (G)GpB . Hence, C+(G) ⊆ Ca

+(Ze(Ge))C
Δ
+ (G)C+(GpB) =

Ca
+(Ze(Ge))C

Δ
+ (G)CΔ

+ (GpB) = Ca
+(Ze(Ge))C

Δ
+ (G)⊆G+(G), because GpB is

totally disconnected. This finishes the proof in the case that the dcc holds.
In the general case, since dimG<∞, there is a neighbourhood of e in G

which contains no nontrivial connected subgroups. This neighbourhood con-
tains a closed normal Z-invariant subgroup C, such that the system (G/C,Z)
satisfies the dcc. But then C is necessarily totally disconnected and we can
complete the proof by using Theorem 11.1, and Propositions 3.3(iii) and 9.8,
similarly as in the dcc case (with C assuming the role of GpB). �

Corollary 11.7. If Z acts on a finite-dimensional compact Abelian group,
then C+(G) is, algebraically, the direct product of Ca

+(G) and CΔ
+ (G).

Corollary 11.8. Let Z act on compact groups G and H , and ϕ : G→H
be a continuous equivariant surjective homomorphism. If Ze(Ge) ∩Kerϕ is
finite-dimensional or metrizable, and dimH <∞, then C+(H) = ϕ(C+(G)).

Proof. Using Proposition 9.8 and Corollary 9.10, we obtain Ca
+(Ze(He))⊆

ϕ(C+(Ze(Ge))) ⊆ ϕ(C+(G)). By Theorem 11.1 and Proposition 3.3(iii),
CΔ

+ (H) = ϕ(CΔ
+ (G)) ⊆ ϕ(C+(G)). Hence, C+(H) = Ca

+(Ze(He))C
Δ
+ (H) ⊆

ϕ(C+(G))⊆C+(H). �

Corollary 11.9. Let Z act on a compact group G, where Ze(Ge) is finite-
dimensional or metrizable. If a closed Z-invariant subgroup K ≤G contains
a closed normal Z-invariant subgroup N � G, such that dim(G/N)<∞, then
C+(G,K) =C+(G)K.

Proof. Let ξ : G → G/N denote the projection. Then by Theorem 10.2
and Corollary 11.8, C+(G/N,ξ(K)) = C+(G/N)ξ(K) = ξ(C+(G)K). Hence,
C+(G,K) =C+(G)K by Proposition 3.3(ii). �

We now turn to the proof of Theorem 11.1. In view of Lemma 8.13 and
Theorem 5.3, Theorem 11.1 will be an immediate consequence of the follow-
ing projective limit result, whose proof closely follows that in [13] of Proposi-
tion 3.8.
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Lemma 11.10. Let C be a nonempty family of closed normal Z-invariant
subgroups of a compact group G, such that for every C ∈ C, the system
(G/C,Z) has the Δdp. Then the system (G/

⋂
C,Z) also has the Δdp.

The proof of Lemma 11.10 occupies the remainder of Section 11.

Lemma 11.11. Let K and H be closed Z-invariant subgroups of G. Then
CΔ

+ (G,K)∩H =CΔ
+ (H,K ∩H). Moreover, if the system (G,Z) has the Δdp,

then so does (H,Z).

Proof. According to Proposition 3.2(i), to prove the first statement, it suf-
fices to verify that for every N ∈ N (G) there exists M ∈ N (G), such that
(MK) ∩H ⊆ N(K ∩H). But M = {(MK) ∩H;M ∈ N (G)} is a directed
downward family of closed subgroups with

⋂
M=K ∩H . Then Lemma 7.14

can be applied similarly as in the proof of Proposition 8.2.
The proof of the last statement is analogous to the proof of Proposi-

tion 3.2(iii). �

Lemma 11.12. Let actions of Z on compact groups G1 and G2 have the
Δdp. Then the action of Z on (G1 ×G2) also has the Δdp.

Proof. Let ξi : G1 ×G2 → Gi be the projections (i = 1,2). Suppose K ⊆
G1×G2 is a compact Z-invariant subgroup and g = (g1, g2) ∈CΔ

+ (G1×G2,K).
Put K1 = ξ1(K) and K2 = ξ2(K ∩ ({e} × G2)). Then Ki is a compact Z-
invariant subgroup. Moreover, K ∩ ({e} ×G2) = {e} ×K2.

Since g1 ∈ CΔ
+ (G1,K1) (cf. Proposition 3.3(i) and Corollary 8.5), there

exists k1 ∈ K1 with g1k
−1
1 ∈ CΔ

+ (G1). We can also find k2 ∈ G2 with k =

(k1, k2) ∈ K. Now, gk−1 = (g1k
−1
1 , e)(e, g2k

−1
2 ) ∈ CΔ

+ (G1 × G2,K). But

(g1k
−1
1 , e) ∈ CΔ

+ (G1 ×G2). Hence, we obtain (e, g2k
−1
2 ) ∈ CΔ

+ (G1 ×G2,K) ∩
({e} × G2) = CΔ

+ ({e} × G2,{e} ×K2), by Lemma 11.11. This implies that

g2k
−1
2 ∈ CΔ

+ (G2,K2). Therefore g2k
−1
2 l−1 ∈ CΔ

+ (G2) for some l ∈K2. Conse-

quently, g[(e, l)k]−1 = (g1k
−1
1 , e)(e, g2k

−1
2 l−1) ∈CΔ

+ (G1 ×G2) and (e, l)k ∈K.

So g ∈CΔ
+ (G1 ×G2)K. �

Lemma 11.13. Let V1 and V2 be closed normal Z-invariant subgroups of G.
If the actions of Z on G/V1 and G/V2 have the Δdp, then the action on
G/(V1 ∩ V2) also has the Δdp.

Proof. Let ϕi : G→G/Vi denote the canonical homomorphisms (i= 1,2).
Then ϕ1 × ϕ2 : G→ (G/V1)× (G/V2) is a continuous equivariant homomor-
phism with Ker(ϕ1 ×ϕ2) = V1 ∩V2. H = (ϕ1 ×ϕ2)(G) is a closed Z-invariant
subgroup of (G/V1)× (G/V2). The systems (H,Z) and (G/(V1 ∩ V2),Z) are
canonically isomorphic. But by Lemma 11.12, ((G/V1)× (G/V2),Z) has the
Δdp. By Lemma 11.11, the same is true about (H,Z). Consequently, the
Z-action on G/(V1 ∩ V2) has the Δdp (cf. Corollary 8.5(a)). �
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Lemma 11.14. Let B be a directed set and (Vβ)β∈B , a nonincreasing family

of closed normal Z-invariant subgroups of G. Put Ṽ =
⋂

β∈B Vβ and denote

by ξβ : G→G/Vβ (β ∈B), and ξ̃ : G→G/Ṽ , the canonical homomorphisms.
Let g ∈ CΔ

+ (G,K), where K ⊆G is a compact Z-invariant subgroup. Sup-
pose there exists a function f = (f1, f2) : B → G × K, such that for every
β ∈B:

(1) ξβ(f1(β)f2(β)) = ξβ(g);
(2) ξβ(f1(β)) ∈CΔ

+ (G/Vβ);
(3) ξγ(f1(β)) = ξγ(f1(γ)) and ξγ(f2(β)) = ξγ(f2(γ)) for every γ ≤ β.

Then there exist x ∈G and y ∈K, such that:

(1′) ξ̃(xy) = ξ̃(g);

(2′) ξ̃(x) ∈CΔ
+ (G/Ṽ );

(3′) ξγ(x) = ξγ(f1(γ)) and ξγ(y) = ξγ(f2(γ)) for every γ ∈B.

Proof. Let β0 be any element of B. By Properties (1) and (3), for every
β ≥ β0, ξβ0(f1(β)f2(β)) = ξβ0(f1(β0)f2(β0)) = ξβ0(g). Hence, f1(β)f2(β) ∈
gVβ0 and so f(β) = (f1(β), f2(β)) ∈ gVβ0K × K. By compactness, the net
(f(β))β∈B has a convergent subnet (f(βj)). Put x = limj f1(βj) and y =
limj f2(βj).

To verify Property (1′), we use Properties (3) and (1). When γ ∈B, then,
for large enough j, we have ξγ(f1(βj)f2(βj)) = ξγ(f1(γ)f2(γ)) = ξγ(g). Hence,
f1(βj)f2(βj) ∈ gVγ , and so xy ∈ gVγ . Since this holds for every γ ∈ B, xy ∈⋂

γ∈B gVγ = gṼ . Therefore, ξ̃(xy) = ξ̃(g).

Property (3′) follows using Property (3) and the continuity of ξγ .

To verify Property (2′), let N ∈N (G/Ṽ ). Then ξ̃−1(N) ∈N (G) and using
Lemma 7.14 similarly as in the proof of Proposition 8.2, we can find j with
Vβj ⊆ ξ̃−1(N)Ṽ = ξ̃−1(N). Now, ξβj (x) = ξβj (f1(βj)) ∈ CΔ

+ (G/Vβj ). So x ∈
CΔ

+ (G,Vβj ) by Proposition 3.3(ii) (applied with the Δ-topologies). Hence,

nx ∈ ξ̃−1(N)Vβj = ξ̃−1(N) for sufficiently large n. But then nξ̃(x) = ξ̃(nx) ∈
N for sufficiently large n. Consequently, ξ̃(x) ∈CΔ

+ (G/Ṽ ), as required. �

Recall that given an ordinal α, we denote by [0, α) (resp., [0, α]) the set of
ordinals strictly smaller than α (resp., smaller or equal to α).

Lemma 11.15. Let α be a nonzero ordinal and (Vβ)β∈[0,α), a nonincreas-
ing family of closed normal Z-invariant subgroups of G, such that for every
nonzero limit ordinal β ∈ [0, α), Vβ =

⋂
γ∈[0,β) Vγ . For every β ∈ [0, α), denote

by ξβ the projection ξβ : G→G/Vβ . Suppose that for every β ∈ [0, α), the sys-
tem (G/Vβ ,Z) has the Δdp and let g ∈CΔ

+ (G,K), where K ⊆G is a compact
Z-invariant subgroup. Then there is a function f = (f1, f2) : [0, α)→G×K,
such that for every β ∈ [0, α):
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(1) ξβ(f1(β)f2(β)) = ξβ(g);
(2) ξβ(f1(β)) ∈CΔ

+ (G/Vβ);
(3) ξγ(f1(β)) = ξγ(f1(γ)) and ξγ(f2(β)) = ξγ(f2(γ)) for every γ ∈ [0, β].

Proof. Let Ω denote the set of functions ϕ= (ϕ1, ϕ2), such that:

(i) the range of ϕ is contained in G×K;
(ii) the domain of ϕ has the form [0, αϕ) where αϕ ∈ [0, α];
(iii) Properties (1), (2), (3) hold with f = ϕ, for every β ∈ [0, αϕ).

We order Ω by inclusion (i.e., ϕ⊆ ϕ′ if ϕ′ is an extension of ϕ). An application
of Zorn’s lemma shows that Ω has a maximal element, f . It remains to prove
that αf = α. This will follow if we show that every element ϕ ∈Ω with αϕ <α
has a proper extension in Ω.

Case I. αϕ = 0 (ϕ is the empty function). By Proposition 3.3(i), ξ0(g) ∈
CΔ

+ (G/V0, ξ0(K)). Since (G/V0,Z) has the Δdp, ξ0(g) = ab, where a ∈
CΔ

+ (G/V0) and b ∈ ξ0(K). Choosing x ∈ G and y ∈ K with ξ0(x) = a and
ξ0(y) = b, we define ϕ′ ∈ Ω with domain {0} = [0,1), by ϕ′(0) = (x, y).
ϕ′ trivially extends ϕ.

Case II. αϕ is a nonzero limit ordinal. We are in a position to apply Lemma
11.14 with f = ϕ and B = [0, αϕ). This yields elements x ∈G and y ∈K with

Properties (1′), (2′), (3′), where ξ̃ = ξαϕ . We define ϕ′ : [0, αϕ + 1)→G×K
by ϕ′(β) = ϕ(β) for β ∈ [0, αϕ) and ϕ′(αϕ) = (x, y). Using Properties (1′),
(2′), (3′), it is easy to see that ϕ′ ∈Ω.

Case III. αϕ has an immediate predecessor, σ. Let ξσαϕ : G/Vαϕ →G/Vσ

denote the homomorphism with ξσαϕ ◦ ξαϕ = ξσ . Since ξσαϕ is a surjection
and ξσαϕ(ξαϕ(K)) = ξσ(K), there exist s ∈G/Vαϕ and t ∈ ξαϕ(K), such that
ξσ(ϕ1(σ)) = ξσαϕ(s) and ξσ(ϕ2(σ)) = ξσαϕ(t). By Proposition 3.3 and Prop-

erty (2), s ∈ CΔ
+ (G/Vαϕ ,Ker ξσαϕ). Since (G/Vαϕ ,Z) has the Δdp, there

exists p ∈Ker ξσαϕ , such that sp−1 ∈CΔ
+ (G/Vαϕ).

Next, ξσαϕ(ξαϕ(g)) = ξσ(g) = ξσ(ϕ1(σ)ϕ2(σ)) = ξσαϕ(st). So ξαϕ(g) =

str where r ∈ Ker ξσαϕ . As ξαϕ(g) ∈ CΔ
+ (G/Vαϕ , ξαϕ(K)) (by Proposi-

tion 3.3), and ξαϕ(g) = (sp−1)(ptrt−1)t, where (sp−1) ∈ CΔ
+ (G/Vαϕ) and

t ∈ ξαϕ(K), we conclude that ptrt−1 ∈ CΔ
+ (G/Vαϕ , ξαϕ(K)) ∩ Ker ξσαϕ ⊆

CΔ
+ (G/Vαϕ , ξαϕ(K) ∩ Ker ξσαϕ) (by Lemma 11.11). Hence, by the Δdp of

(G/Vαϕ ,Z) there exists q ∈ ξαϕ(K)∩Ker ξσαϕ with ptrt−1q−1 ∈CΔ
+ (G/Vαϕ).

Thus, ξαϕ(g) = (strt−1q−1)qt where strt−1q−1 = (sp−1)(ptrt−1q−1) ∈
CΔ

+ (G/Vαϕ), qt ∈ ξαϕ(K), and q, trt−1q−1 ∈Ker ξσαϕ .

We can find x ∈ G and y ∈ K with ξαϕ(x) = strt−1q−1 and ξαϕ(y) =

qt. Then ξαϕ(xy) = strt−1q−1qt= str = ξαϕ(g), ξαϕ(x) ∈ C(G/Vαϕ), ξσ(x) =

ξσαϕ(ξαϕ(x)) = ξσαϕ(strt
−1q−1) = ξσαϕ(s) = ξσ(ϕ1(σ)), and ξσ(y) =

ξσαϕ(ξαϕ(y)) = ξσαϕ(qt) = ξσαϕ(t) = ξσ(ϕ2(σ)). Let ϕ′ : [0, αϕ + 1)→G×K
be defined by ϕ′(γ) = ϕ(γ) for γ ∈ [0, αϕ) and ϕ′(αϕ) = (x, y). Then ϕ′ is a
proper extension of ϕ in Ω. �
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Corollary 11.16. Let α be a nonzero ordinal and (Vβ)β∈[0,α), a nonin-
creasing family of compact normal Z-invariant subgroups of G, such that for
every nonzero limit ordinal β ∈ [0, α), Vβ =

⋂
γ∈[0,β) Vγ . Suppose that for ev-

ery β ∈ [0, α), the system (G/Vβ ,Z) has the Δdp. Then (G/
⋂

β∈[0,α) Vβ ,Z)

also has the Δdp.

Proof. The claim is trivial when α has an immediate predecessor, so assume
that α is a limit ordinal. Put Ṽ =

⋂
β∈[0,α) Vβ and write ξ̃ for the canonical

homomorphism ξ̃ : G→G/Ṽ .

Let g̃ ∈CΔ
+ (G/Ṽ , K̃), where K̃ ⊆G/Ṽ is a compact Z-invariant subgroup.

Let K = ξ̃−1(K̃) and g ∈ ξ̃−1({g̃}) ⊆ ξ̃−1(CΔ
+ (G/Ṽ , K̃)) = CΔ

+ (G,K) (cf.
Proposition 3.3). An application of Lemma 11.15 followed by Lemma 11.14

yields elements x ∈ G and y ∈K, such that ξ̃(x)ξ̃(y) = g̃, ξ̃(x) ∈ CΔ
+ (G/Ṽ ),

and ξ̃(y) ∈ K̃. �

Proof of Lemma 11.10. Let A denote the set of those nonzero cardinal
numbers γ for which there exists a family V , of cardinality γ, consisting
of compact normal Z-invariant subgroups of G, such that for every V ∈ V ,
the quotient (G/V,Z) has the Δdp but (G/

⋂
V ,Z) fails to have the Δdp. It

suffices to show that A=∅.
We argue by contradiction, supposing that A �=∅. Since every set of car-

dinal numbers is well ordered, A has the smallest element, α. Let V be the
corresponding family of compact normal Z-invariant subgroups.

Recall that if γ is a cardinal number, then γ is an ordinal, such that
[0, γ) has cardinality γ while [0, δ) has cardinality strictly less than γ for
every δ ∈ [0, γ). Let [0, α) � γ → Wγ ∈ V be any bijection of [0, α) onto V .
Put V0 = W0 and Vβ =

⋂
γ∈[0,β)Wγ for every nonzero ordinal β < α. Then

(Vβ)β∈[0,α) is a nonincreasing family of compact normal Z-invariant subgroups
of G and it is easy to see that for every nonzero limit ordinal β ∈ [0, α),
Vβ =

⋂
γ∈[0,β) Vγ . Since for every β ∈ [0, α), [0, β) has cardinality strictly less

than α, it follows that for every β ∈ [0, α), the system (G/Vβ ,Z) has the Δdp.
Hence, by Corollary 11.16, the quotient (G/

⋂
β∈[0,α) Vβ ,Z) also has the Δdp.

Therefore,
⋂

β∈[0,α) Vβ �=
⋂
V . This forces α to be finite, for otherwise α would

be a limit ordinal and this easily implies that
⋂

β∈[0,α) Vβ =
⋂
V . But when

α is finite, then
⋂
V =Wα−1 ∩ Vα−1 =Wα−1 ∩

⋂
β∈[0,α) Vβ and Lemma 11.13

yields a contradiction. �

12. Closures of contraction groups and the weak cdp

We will say that an action of Z on a compact group G has the weak com-
pact decomposition property, if for every closed Z-invariant subgroup K ≤G,
C+(G)K is dense in C+(G,K), that is, C+(G)K ⊆C+(G,K)⊆ [C+(G)] K.
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Lemma 12.1. Let Z act on compact groups G and H , and ϕ : G→H be
a continuous equivariant surjective homomorphism. If (H,Z) is a pro-finite-
dimensional system and Ze(Ge) is metrizable, then C+(H)⊆ [ϕ(C+(G))] and
C+(G,Kerϕ)⊆ [C+(G)] Kerϕ.

Proof. Let M be a directed downward family of closed normal Z-invariant
subgroups M ≤H , such that dim(H/M)<∞ and

⋂
M= {e}. Then Corol-

lary 11.8 yields ξM (ϕ(C+(G))) = C+(H/M), where ξM : H → H/M is the
projection. Using Proposition 3.3(ii), we then obtain C+(H)⊆ C+(H,M) =
ϕ(C+(G))M , for every M ∈ M. This implies that C+(H) ⊆ [ϕ(C+(G))] .
Another application of Proposition 3.3(ii), together with the fact that ϕ is a
closed mapping, yields C+(G,Kerϕ)⊆ [C+(G)] Kerϕ. �

Theorem 12.2. Let the radical Ze(Ge) of a compact group G be metrizable.
Then every action of Z on G has the weak cdp. Moreover, if Z acts on
a compact group H and ϕ : G → H is a continuous equivariant surjective
homomorphism, then [C+(H)] = [ϕ(C+(G))] .

Proof. LetK ≤G be a closed Z-invariant subgroup. Let ϕ : G→G/GB de-
note the projection. As (G/GB ,Z) is a pro-finite-dimensional system (Corol-
lary 7.18), C+(G/GB , ϕ(K)) =C+(G/GB)ϕ(K) by Theorem 10.2. Hence, by
Proposition 3.3(ii), C+(G,K) ⊆ C+(G,KGB) = C+(G,GB)KGB . Then by
Lemma 12.1, C+(G,K) ⊆ [C+(G)] GBKGB . But GB is a normal subgroup
contained in [C+(G)] (Proposition 11.2). So C+(G,K)⊆ [C+(G)] K.

The second statement is an immediate consequence of the first one and of
Proposition 3.3(ii). �

The remaining results in this section are motivated by the concept of the
ergodic component Gerg and by Theorem 4.11 in [26], according to which
the restriction of an ergodic action on a compact metrizable group G to the
connected component Ge, is ergodic. As will be shown in Section 13, for
metrizable groups ergodicity is equivalent to the density of C+(G) in G; thus
if C+(G) is dense in G, then C+(Ge) is dense in Ge. Proposition 12.5 shows
that the latter implication remains true when Ge is replaced by any closed
connected normal Z-invariant subgroup H with a pro-finite-dimensional Z-
action on G/H . Proposition 12.4, stating that the connectedness of G forces
the closure of C+(G) to be connected, will be used in Section 13 to prove that
the ergodic component Gerg of a connected system (G,Z) is connected.

Lemma 12.3. Let Z act on a compact group G and H ≤ G be a closed
connected normal Z-invariant subgroup, such that (G/H,Z) is a pro-finite-
dimensional system. If [C+(G)] =G and C+(H) = {e}, then H = {e}.

Proof. We will first consider the case that the system (G,Z) satisfies the
dcc. Then dimG/H <∞. But the system (H,Z) also satisfies the dcc, and
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HpB = {e}, because C+(H) = {e} (Proposition 11.2). Therefore, dimH <∞
(Theorem 10.1). Concluding, dimG<∞ and GpB is totally disconnected.

Recall that the quotient system ((Ze(Ge)GpB)/GpB ,Z) is solenoidal, while
G/(Ze(Ge)GpB) is a semisimple Lie group. The latter implies that C+(G)⊆
Ze(Ge)GpB . Therefore, G = Ze(Ge)GpB . Thus, (G/GpB ,Z) is a solenoidal
system and [C+(G/GpB)] = G/GpB . Let ϕ : G → G/GpB denote the pro-
jection. Then ϕ(H) is a closed connected Z-invariant subgroup of G/GpB .
By Proposition 9.11, [C+(ϕ(H))] = ϕ(H). But C+(ϕ(H)) = {e} (by Corol-
lary 11.4, or Theorem 10.1 and Corollary 3.5). Therefore H ⊆ GpB , and as
GpB is totally disconnected, H = {e}.

We are ready to consider the general case. By Proposition 11.2, HB =
{e} and, hence, (H,Z) is a pro-finite-dimensional system (Theorem 10.2).
But it is not difficult to see that then (G,Z) is itself pro-finite-dimensional.
Let C ≤ G be a closed normal Z-invariant subgroup, such that the sys-
tem (G/C,Z) satisfies the dcc and denote by ξC : G→ G/C the projection.
Clearly, [C+(G/C)] =G/C, while C+(ξC(H)) = {e} by Corollary 11.4. More-
over, (G/C)/ξC(H) is an equivariant image of G/H and therefore the system
((G/C)/ξC(H),Z) is pro-finite-dimensional. Hence, we can apply what we
proved assuming the dcc to conclude that ξC(H) = {e}. Since this holds for
every C, such that (G/C,Z) satisfies the dcc, H = {e}. �

Proposition 12.4. Let Z act on a compact connected group G. If (G,Z)
is a pro-finite-dimensional system or Ze(G) is metrizable, then [C+(G)] is
connected.

Proof. Let (G,Z) be a pro-finite-dimensional system. By Theorems 10.2
and 5.3, it suffices to consider the case that (G,Z) satisfies the dcc. But
then GpB = {e} by Corollary 10.3. Consequently, (Ze(G),Z) is a solenoidal
system while G/Ze(G) is a semisimple Lie group. Thus C+(G)⊆ Ze(G), and
so [C+(G)] is connected by Proposition 6.8.

Suppose that (G,Z) fails to be pro-finite-dimensional but Ze(G) is metriz-
able. By Corollary 7.19, GB is connected and by Proposition 11.2, GB ⊆
[C+(G)] . Hence, it suffices to show that [C+(G)] /GB is connected. But
by Theorem 12.2, [C+(G)] /GB = [C+(G/GB)] . Since (G/GB ,Z) is a pro-
finite-dimensional system (Corollary 7.18), the first part of the proof yields
the desired conclusion. �

Proposition 12.5. Let Z act on a compact group G and H ≤G be a closed
connected normal Z-invariant subgroup. If (G,Z) is a pro-finite-dimensional
system, or Ze(Ge) is metrizable and (G/H,Z) is a pro-finite-dimensional sys-
tem, then [C+(H)] = (H ∩ [C+(G)] )e, in particular, [C+(H)] =H whenever
[C+(G)] =G.

Proof. We will give a proof in the case that Ze(Ge) is metrizable and
(G/H,Z) is a pro-finite-dimensional system. When (G,Z) is assumed to be
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a pro-finite-dimensional system but metrizability of Ze(Ge) is not assumed,
the pro-finite-dimensionality of (G/H,Z) follows from that of (G,Z) and the
proof can be completed along the same lines, making use of the cdp instead
of the weak cdp.

We will first prove that [C+(H)] = H whenever [C+(G)] = G. To this
end, observe that C+(H) � G, because H � G. Let ξ : G→G/[C+(H)] de-
note the projection. As [C+(G)] =G, it is clear that [C+(G/[C+(H)] )] =
G/[C+(H)] . On the other hand, as Ze(H) ⊆ Ze(Ge), Theorem 12.2 im-
plies that C+(ξ(H)) = {e}. Moreover, ξ(H) is a closed connected normal Z-
invariant subgroup of G/[C+(H)] , and the system ((G/[C+(H)] )/ξ(H),Z) is
pro-finite-dimensional, as an equivariant image of (G/H,Z). Hence, Lemma
12.3 applies. We obtain ξ(H) = {e}, and so H = [C+(H)] .

Turning to the general case note that [C+(H)] is connected by Propo-
sition 12.4 (as Ze(H) ⊆ Ze(Ge)). Hence, C+(H) ⊆ (H ∩ [C+(G)] )e, and so
C+(H) = C+((H ∩ [C+(G)] )e). The system ([C+(G)] /(H ∩ [C+(G)] ),Z) is
pro-finite-dimensional since it is isomorphic to the canonical image of [C+(G)]
in G/H , while the system ((H ∩ [C+(G)] )/(H ∩ [C+(G)] )e,Z) is 0-dimen-
sional. It follows that ([C+(G)] /(H ∩ [C+(G)] )e,Z) is a pro-finite-dimen-
sional system. Since the radical of [C+(G)] is contained in the radical of
G, the assumptions in the first part of the proof will be satisfied for the sys-
tem ([C+(G)] ,Z) and the subgroup (H ∩ [C+(G)] )e. So (H ∩ [C+(G)] )e =
[C+((H ∩ [C+(G)] )e)] = [C+(H)] . �

13. Contraction groups versus ergodic and distal properties

Since [C+(G)] ⊇GB , our first lemma is significant only when GB = {e}.
Under an additional assumption, the lemma will be superseded by a much
stronger Theorem 13.4.

Lemma 13.1. If Z acts ergodically on a nontrivial compact group G, then
C+(G) �= {e}.

Proof. Suppose that the dcc holds. Since [C+(G)] ⊇ GpB (cf. Proposi-
tion 11.2), it suffices to consider the case that GpB = {e}. Then (Ze(Ge),Z)
is a solenoidal system, while G/Ze(Ge) is a semisimple Lie group. The latter
must be trivial by ergodicity. Therefore, the system (G,Z) is isomorphic to
a solenoid generated by some U ∈GL(m,Z). But it is well known that a Z-
action on such a solenoid is ergodic if and only if U has no roots of 1 among
its eigenvalues. Proposition 9.11 yields C+(G) �= {e}.

To prove the lemma without the dcc assumption, observe that there exists a
closed normal Z-invariant subgroup C ≤G, such that (G/C,Z) is a nontrivial
system satisfying the dcc. Since Z acts ergodically on G/C, C+(G/C) �= {e},
and then Corollary 11.4 shows that C+(G) �= {e}. �
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We turn to one of our final results. It concerns the connection between
contraction groups and distal properties of Z-actions on compact groups, and
is motivated by certain known results about automorphisms of (not necessary
compact) Lie groups [1] and totally disconnected locally compact groups [14].
By the work of Abels [1], a group Γ of automorphims of a Lie group acts
distally on G if and only if C(γ) = {e} for every γ ∈ Γ . Corollary 2.4 in [14]
shows that the same is true when G is a totally disconnected locally compact
group and Γ contains a polycyclic subgroup of finite index. In particular, if G
is a Lie group or a totally disconnected locally compact group, then an action
of Z on G is distal if and only if C+(G) =C−(G) = {e}.

Theorem 13.2. The following conditions are equivalent for an action of
Z on a compact group G:

(i) Z acts distally on G.
(ii) C+(G) = {e}.
(iii) C−(G) = {e}.
(iv) N (as a subsemigroup of Z) acts distally on G.

Proof. It is obvious that (i) implies (ii), (iii), and (iv), and that (iv) im-
plies (ii). To prove that (ii) implies (i), argue by contradiction. If the action is
not distal, then by Corollary 2.7(i) the ergodic component Gerg is nontrivial.
But then Lemma 13.1 yields C+(Gerg) �= {e}, which contradicts the inclu-
sion C+(Gerg)⊆ C+(G). That (iii) implies (i) follows by using the reflection
k→−k on Z. �

Remark 13.3. By Proposition 11.2 and Theorem 10.2, a distal action of
Z on a compact group G is necessarily pro-finite-dimensional; furthermore,
when the action satisfies the dcc, then, by Corollary 8.10, G is necessarily a
Lie group.

We note that Theorem 13.2, derived here as a consequence of Lemma 13.1,
is, by virtue of Corollary 2.3, equivalent to Lemma 13.1. The next theo-
rem can therefore be regarded as a strengthening of both Lemma 13.1 and
Theorem 13.2 in the case that Ze(Ge) is metrizable or (G,Z) is a pro-finite-
dimensional system.

Theorem 13.4. Let Z act on a compact group G. If the action is pro-
finite-dimensional or Ze(Ge) is metrizable, then [C+(G)] = [C−(G)] =Gerg.

Proof. It is enough to show that [C+(G)] = Gerg. By Proposition 2.8,
C+(G)⊆Gerg. But by Corollary 3.5 or Theorem 12.2, C+(G/[C+(G)] ) = {e}.
Hence,Z acts distally on G/[C+(G)] . Then Corollary 2.7(i) yields Gerg ⊆
[C+(G)] . �

Corollary 13.5. If Z acts on a compact connected group G, then Gerg is
connected.
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Proof. When Ze(G) is metrizable, this is immediate by combining Theo-
rem 13.4 and Proposition 12.4. When Ze(G) is not necessarily metrizable, let
C be a closed normal Z-invariant subgroup, such that the dcc holds for the
system (G/C,Z). Then Proposition 5.1, Theorem 13.4, and Proposition 12.4
yield that (G/C)erg is connected. But by Corollary 2.7(ii), (G/C)erg is the
image of Gerg under the canonical projection. Hence, the result follows using
Theorem 5.3. �

Schmidt [26, Theorem 4.11] showed that ergodic actions of certain count-
able groups, including Z, on compact metrizable groups remain ergodic when
restricted to the connected component of the identity. For actions of Z, this
result is a special case of our last theorem.

Theorem 13.6. Let Z act on a compact group G and H ≤G be a closed
connected normal Z-invariant subgroup, such that (G/H,Z) is a pro-finite-
dimensional system. Then Herg = (H ∩Gerg)e. In particular, if Z acts ergod-
ically on G, then it acts ergodically H .

Proof. If Ze(Ge) is metrizable, the result is an immediate consequence
of Theorem 13.4 and Proposition 12.5. Otherwise, Proposition 5.1, Theo-
rem 13.4, Proposition 12.5, and Corollary 2.7(ii) yield that whenever C ≤G
is a closed normal Z-invariant subgroup such that the dcc holds for the sys-
tem (G/C,Z), and ξC : G → G/C denotes the projection, then ξC(Herg) =
(ξC(H) ∩ ξC(Gerg))e ⊇ ξC((H ∩Gerg)e), so that HergC ⊇ (H ∩Gerg)e. Since
C can be arbitrarily small, Herg ⊇ (H ∩Gerg)e. On the other hand, it is clear
that Herg ⊆ (H ∩Gerg)e. �

Appendix: Solenoids versus Markov subgroups

We mentioned in Section 6 that every solenoid in TZ is a Markov solenoid.
Example A.1 shows solenoids which are not Markov solenoids.

Example A.1. Let U be any matrix in GL(m,Q) \GL(m,Z), such that

Up ∈GL(m,Z) for some p≥ 2 (e.g., U =
[
0 1

2
2 0

]
). Then the solenoid generated

by U is isomorphic to Tm, and so cannot be a Markov solenoid because that
would require that U ∈GL(m,Z). The following is a 2-dimensional example
of a non-Markov solenoid V which is not isomorphic to T2.

Let V ⊆ (T2)Z be generated U =
[ 0 1

6
2
3 0

]
. Then U2 = 1

9I , which forces EU to

be injective. By elementary Lie theory, V cannot be isomorphic to T2. Next,

π̂T
2

1 (V ) = {〈(s0, t0), (s1, t1)〉 ∈ (T2){0,1} ;s20 = t31, t0 = s61},
π̂T

2

2 (V )⊆ {〈(s0, t0), (s1, t1), (s2, t2)〉 ∈ (T2){0,1,2} ;s0 = s92, t0 = t92}.
Hence, 〈(1,1), (−1,1)〉, 〈(−1,1), (−1,1)〉 ∈ π̂T

2

1 (V ), and so if V were a Markov
solenoid, one could find x = (xn)n∈Z ∈ V with x0 = (1,1) and x1 = x2 =
(−1,1). But such x cannot belong to V , because 〈(1,1), (−1,1), (−1,1)〉 /∈
π̂T

2

2 (V ). Therefore, V is not a Markov solenoid.
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We note that using duality theory one can prove that each of the following
two conditions is both necessary and sufficient in order that the solenoid
generated by U ∈GL(m,Z) be a Markov solenoid:

(1) S = {ξ ∈
∏∗

k∈Z
Zm ; (∃l ∈ Z) (∀k �= l, l + 1) ξk = 0 and ξl + ξl+1U = 0}

generates the subgroup ΞU = {ξ ∈
∏∗

k∈Z
Zm ;

∑
k∈Z

ξkU
k = 0}.

(2) Zm ∩ (ZmU + · · ·+ZmUk) = Zm ∩ (ZmU) for every k ∈N.

Our second example concerns a characterization of solenoids among full
Markov subgroups V of (Tm)Z. Suppose TV (±1) are finite. As noted in
Section 6, the three statements: (a) V is a solenoid ; (b) TV is connected ;
and, (c) TV (−1) ∩ TV (1) = {e}, are equivalent when m= 1, while regardless
of the value of m, (a) implies both (b) and (c). Example A.2 shows that when
m> 1, then (b)� (c), (c)� (b), and [(b) and (c)]� (a).

Example A.2. Observe that Remark 6.3 implies that if V is a non-Markov
solenoid, then the Markov subgroup W , whose transition subgroup is TW =
π̂T

m

1 (V ), cannot be connected. Hence, Example A.1 demonstrates that there
are disconnected full Markov subgroups W of (Tm)Z for which TW (±1) are
finite and TW is connected. Thus, (b)� (a). In the second part of Example

A.1, V is the solenoid generated by U =
[ 0 1

6
2
3 0

]
. Now, U = B−1A, where

A= [ 2 0
0 1 ] and B = [ 0 3

6 0 ]. The Markov subgroup W defined by A and B (i.e.,
by the corresponding homomorphisms α,β : Tm → Tm, cf. Remark 5.5) is then
disconnected by Remark 6.3, but one can easily verify that TW = π̂T

m

1 (V ) and
TW (1)∩TW (−1)⊇ {(1,1), (−1,1)}. Therefore, (b) implies neither (a) nor (c).

On the other hand, A= [ 2 1
2 3 ] and B = [ 1 1

−1 3 ] define a Markov subgroup V ≤
(T2)Z, such that TV (1) ∩ TV (−1) = {(1,1), (−i, i), (−1,−1), (i,−i)} ∩ {(1,1),
(−1,1), (i,−1), (−i,−1)} = {(1,1)}, and 〈(−1,−1), (1,−1)〉 ∈ TV \ (TV )e.
Hence, (c) implies neither (b) nor (a).

We did not succeed in finding a 2-dimensional example in which TV is
connected, TV (1)∩ TV (−1) = {e}, but V is not a solenoid. The following is a
3-dimensional example of this situation. Let

A=
[
0 0 2
1 0 0
0 1 0

]
, B =

[
1 0 0
0 2 0
0 0 1

]
, U =B−1A=

[
0 0 2
1
2 0 0
0 1 0

]
.

Then TV = {〈(r0, s0, t0), (r1, s1, t1)〉 ∈ (T3){0,1} ; r0 = s21, s0 = t1, t
2
0 = r1} is

connected and TV (−1)∩ TV (1) = {(1,1,1), (1,1,−1)} ∩ {(1,1,1), (1,−1,1)}=
{(1,1,1)}. However, as U3 = I and U /∈GL(3,Z), the solenoid generated by
U (= Ve) is isomorphic to T3 and is not a Markov solenoid. Therefore, V
cannot be a solenoid. A similar example in which Ve is not isomorphic to T3

can be obtained by replacing B with 3B and arguing as in the second part of
Example A.1.

We note that Example A.2 also shows that Proposition 3.10 in [4], claiming
that the condition AZm + BZm = Zm (where A,B are as in (6.7)) is both
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necessary and sufficient in order that the Markov subgroup V defined by A and
B be connected (i.e., be a solenoid), is false: the first and third pair (A,B) in
Example A.2 satisfy the stated condition. The condition AZm+BZm = Zm is
equivalent to the connectedness of the transition subgroup TV of the resulting
Markov subgroup, but not to the connectedness of V .
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[24] P. R. Müller-Römer, Kontrahierende Erweiterungen und kontrahierbare Gruppen,

J. Reine. Angew. Math. 283/284 (1976), 238–264. MR 0407194
[25] A. L. Paterson, Amenability, AMS, Providence, RI, 1988. MR 0961261

[26] K. Schmidt, Dynamical systems of algebraic origin, Birkhäuser, Basel, 1995.
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