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MOVING AVERAGES IN THE PLANE

LAURENT MOONENS AND JOSEPH M. ROSENBLATT

Abstract. We study the almost everywhere behavior of the max-
imal operator associated to moving averages in the plane, both

for Lebesgue derivatives and ergodic averages. We show that the

almost everywhere behavior of the maximal operator associated

to a sequence of moving rectangles vi +Qi, with (0,0) ∈Qi, de-
pends both on the way the rectangles are moved by vi and the
structure of the rectangles (Qi) as a partially ordered set.

Given a sequence of rectangles Q0,Q1, . . . in the plane whose lower left
corner is the origin, a result by Stokolos [15, Lemma 1] guarantees that the
associated maximal operator M defined by

Mf(x) = sup
i

1

|Qi|
1Qi ∗ |f |(x)

does not satisfy an inequality of weak type (1,1) in case the sequence Q∗
0,

Q∗
1, . . . of dyadic approximations of Q0,Q1, . . . , contains arbitrarily many in-

comparable rectangles. Using general principles instead of Stokolos’ direct
method, we show that [15, Lemma 1] implies that M cannot satisfy an in-
equality of weak type in any Orlicz space φ(L) with φ(x) = o(x log+(x)),
showing immediately that the a.e. finiteness of Mf does not occur in those
spaces. This is the object of Section 1.1.

On the other hand, rewriting conveniently Stokolos’ proof (which is our
Lemma 4) allows us to obtain similar results in case the sequence Q0,Q1, . . .
is shifted by a sequence of vectors v1, v2, . . . . In particular, we demonstrate
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how the almost everywhere behavior of the maximal operator M ′ defined by

M ′f(x) = sup
i

1

|Qi|
1vi+Qi ∗ |f |(x),

certainly relies on the the sequence (vi), but even more so on the nature of
(Qi). We show this in Section 1.2.

According to a transfer lemma (Lemma 42, see Appendix B), part of those
results can be formulated in the ergodic context (see Sections 2.1 and 2.2).
A result by Bellow, Jones and Rosenblatt [2] then allows us to study the
behavior of the latter maximal operator on Lp(X) with 1≤ p≤∞.

In the paper, we use material about Orlicz spaces as well as transfer results;
those elements will be found in the Appendices.

1. Moving averages in the plane: The differentiation context

We study first the behaviour of standard averaging in R
2, both in the

differentiation and ergodic contexts.

1.1. Standard averages for differentiation. In the sequel, we will call
standard rectangle any rectangle of the form [0, α]× [0, β] in R

2.

Definition 1. Two standard rectangles Q1 and Q2 in R
2 are called in-

comparable, and we write Q1 �Q2, in case neither Q1 ⊆Q2 nor Q2 ⊆Q1.
Moreover, a family Q of standard rectangles is called

• independent in case Q1 �Q2 holds for any distinct Q1,Q2 ∈Q;
• dependent in case there exists distinct elements Q1,Q2 ∈Q where Q1 �Q2

does not hold;
• a chain in case Q is totally ordered by inclusion.

We also introduce the following definition. In the sequel, we let N =
{0,1,2, . . .} denote the set of all natural numbers, and we let N∗ =N \ {0}.

Definition 2. A sequence Q of standard rectangles is said to have infinite
width in case for every k ∈ N, there exists integers 1 ≤ i1 < i2 < · · · < ik for
which {Qij : 1≤ j ≤ k} is independent. It is said to have finite width in case
it is not of infinite width.

According to Dilworth’s theorem (see Dilworth [5, Theorem 1.1, p. 161]),
we have the following alternative.

Lemma 3. A sequence Q of standard rectangles has either infinite width,
and it is not a finite union of chains, or it has finite width and it is a finite
union of chains.

Proof. Clearly, if Q has infinite width then it cannot be a finite union
of chains. If Q does not have infinite width, there exists k ∈ N

∗ such that
for any family of indices 1 ≤ i1 < i2 < · · · < ik we have Qij ∼ Qil for some
1 ≤ j < l ≤ k; that is to say that every subset of Q counting k elements is
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dependent. According to Dilworth’s theorem (see Dilworth [5, Theorem 1.1,
p. 161]), Q can be written as an union of finitely many chains. �

The key for the study of this case is a result by Stokolos [15, Lemma 1]. We
make some simplifications in Stokolos’ proof and use some notation that we
believe helps motivate and explain the result. In particular, we will be using
the Rademacher functions (ri) which are defined on [0,1) as follows. Let
r1(x) = 1[0,1/2)(x). Then inductively let ri(x) = ri−1(2x mod 1) for i ≥ 2.
The Rademacher functions (ri) form an IID sequence on [0,1] taking on only
the values 0 and 1 (see Zygmund [16, p. 6]).

Lemma 4 (Stokolos). We assume that we have an independent family of
standard dyadic rectangles {Qi : 1 ≤ i ≤ k}. There are Lebesgue measurable
sets Θ and Y in [0,1]2 with the following properties:

(i) Θ⊂ Y ;
(ii) |Y | ≥ 1

4k2
k|Θ|;

(iii) for all x ∈ Y , there exists u0 = u0(x) ∈ [0,1]2 and ν0 = ν0(x), 1≤ ν0 ≤ k
such that x ∈ u0 +Qν0 and

|(u0 +Qν0)∩Θ|
|Qν0 |

≥ 1

2k−1
.

Proof. We may assume that Qi = [0,2−mi ]× [0,2−ni ] where 1≤ n1 < · · ·<
nk and m1 > · · ·>mk ≥ 1. Let Θ be such that the characteristic function 1Θ
is given by

1Θ(ξ, η) =

k∏
i=1

rmi(ξ)

k∏
j=1

rnj (η).

For 1≤ ν ≤ k, we also define Yν similarly by

1Yν (ξ, η) =
k∏

i=ν

rmi(ξ)
ν∏

j=1

rnj (η).

We let Y =
⋃k

ν=1 Yν .
Now we can compute |Θ| as follows:

|Θ|=
∫ ∫

1Θ(ξ, η)dξ dη =

∫ ∫ k∏
i=1

rmi(ξ)

k∏
j=1

rnj (η)dξ dη =
1

22k
,

using the independence of the Rademacher functions. It is worthwhile to also
observe that Θ consists of 2−2k2m12nk dyadic rectangles of side length 2−m1

parallel to the ξ-axis and side length 2−nk parallel to the η-axis.
Similarly, we compute:

|Yν |=
∫ ∫

1Yν (ξ, η)dξ dη =

∫ ∫ k∏
i=ν

rmi(ξ)
ν∏

j=1

rnj (η)dξ dη =
1

2k+1
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using the independence of the Rademacher functions. In this case, Yν consists
of 2−(k+1)2mν2nν rectangles of side length 2−mν parallel to the ξ-axis and side

length 2−nν parallel to the η-axis. It follows that Θ⊂ Yν and |Θ|
|Yν | =

2
2k

for all

ν = 1, . . . , k.
In order to estimate |Y |, we first estimate, for each 2≤ ν ≤ k, the measure

of the set Eν defined by

Eν = Yν ∩
ν−1⋃
p=1

Yp ⊆ Yν .

To this purpose, we first notice that given x= (ξ, η) ∈Eν we have, by defini-
tion of Yν and Yp, 1≤ p≤ ν − 1:

k∏
i=ν

rmi(ξ)

ν∏
j=1

rnj (η) = 1 and

k∏
i=p0

rmi(ξ)

p0∏
j=1

rnj (η) = 1 for some 1≤ p0 ≤ ν − 1.

As p0 ≤ ν − 1, this yields in particular

k∏
i=ν−1

rmi(ξ)

ν∏
j=1

rnj (η) = 1.

We hence get

|Eν | ≤
∫ ∫ k∏

i=ν−1

rmi(ξ)

ν∏
j=1

rnj (η)dξ dη =
1

2k+2
=

1

2
|Yν |,

so that one finally estimates

|Y |= |Y1|+
k∑

ν=2

|Yν \Eν |= |Y1|+
k∑

ν=2

(
|Yν | − |Eν |

)
≥ 1

2

k∑
ν=1

|Yν |=
1

4
k2k|Θ|.

This inequality gives us the basic estimates on the sizes of the sets Θ and Y
that we wanted. We now need to verify that the proportionality facts hold for
suitable rectangles. To that purpose, fix x ∈ Y and denote by ν0 = ν0(x) the
smallest integer 1≤ ν ≤ k for which x ∈ Yν holds. If we take the 2−mν0 ×2−nν0

rectangle R0 =R0(x)⊂ Yν0 which contains x, then we have R0 = u0+Qν0 for
some u0 = u0(x) ∈ [0,1]2. Because Θ⊂ Yν , we have

|R0 ∩Θ|
|R0|

=
|Yν ∩Θ|
|Yν |

=
|Θ|
|Yν |

=
1

2k−1
.

Given what we have observed already, the only part of this that needs some
explanation is the first equality. But this equality holds because Yν is a union
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of Nν = 2−(k+1)2mν2nν disjoint 2−mν × 2−nν rectangles whose intersections
with Θ have the same measure, i.e. |R0 ∩Θ|. So

|Yν ∩Θ|
|Yν |

=
Nν |R0 ∩Θ|
Nν |R0|

=
|R0 ∩Θ|
|R0|

.

The proof is complete. �
Remark 5. Let us see what this construction becomes in the simplest case,

where the mi and nj are changing by 1 each time the index i or j changes
by 1. That is, mi = k− i+ 1 and ni = i for i= 1, . . . , k, and

Ri =
[
0,2−mi

]
×

[
0,2−ni

]
=

[
0,2−(k−i+1)

]
×

[
0,2−i

]
.

Then Θ consists of 2−2k2m12nk = 2−2k2k2k = 1 rectangle, namely [0,2−k]×
[0,2−k]. Also, each Yν consists of 2−(k+1)2mν2nν = 2−(k+1)2k−ν+12ν = 1 rec-
tangle, namely [0,2−ν ]× [0,2−(k−ν+1)]. In particular, Yν =Rk−ν+1.

Remark 6. With slightly more work, the above construction can be carried
out so that Y is in a preassigned rectangle [0, δ]× [0, δ] and so has as small
diameter as we would like.

In the sequel, we fix a sequence Q = (Qi) of standard rectangles. We
associate to Q a differentiation basis

BQ =
{
x+Qi : x ∈R

2, i ∈N
∗},

and we let, for x ∈R
2,

BQ(x) = {R ∈ BQ : R � x}.
We define the maximal differentiation operator DQ on L1(R2) by

DQf(x) = sup

{
1

|R|

∫
R

f : R ∈ BQ(x)

}
.

We introduce the following definition.

Definition 7. Given a sequence Q= (Qi) of standard rectangles, we de-
note by Q∗ = (Q∗

i ) the sequence of standard dyadic rectangles obtained in
the following way: for each i ∈N, Q∗

i = [0,2−mi ]× [0,2−ni ] (mi, ni ∈ Z) is the
standard dyadic rectangle of minimal measure containing Qi.

As Stokolos observes in [15, Remark 1, p. 106], Lemma 4 provides a lower
estimate on the measure of the level sets of the maximal differentiation op-
erator when working with a sequence Q of standard rectangle such that Q∗

has infinite width.
Using Lemma 4, we can now prove the following result. Let Φ0(t) := t(1 +

log+ t) (see Appendix A and Example 41).

Corollary 8. Let Q be a family of standard dyadic rectangles. If Q
has infinite width, then for each λ ≥ 1 there exists a sequence of functions
(fk)⊆ L∞

+ (R2) satisfying the following conditions: for each k ∈N
∗,
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(i) fk vanishes outside [0,1]2;
(ii)

∫
R2 Φ0(|fk|)dx≥ 1

2k‖fk‖1;
(iii) |{x ∈R

2 : DQfk ≥ λ}| ≥ 1
2λ

∫
R2 Φ0(|fk|)dx for k sufficiently large;

(iv) for any Orlicz function Φ satisfying Φ= o(Φ0) at ∞ we have

lim
k→∞

∫
R2 Φ0(|fk|)dx∫
R2 Φ(C|fk|)dx

=∞,

for each C > 0.

Proof. Take k ∈ N
∗. Since Q has infinite width, find indices 1≤ i1 < i2 <

· · · < ik for which {Qij : 1 ≤ j ≤ k} is independent. For each 1 ≤ j ≤ k, let

Q̃j = Qij and choose sets Θk and Yk in [0,1]2 associated to Q̃j , 1 ≤ i ≤ k

according to Lemma 4. Let fk = 2k−1λ1Θk
. It is clear that fk is supported

in [0,1]2, and (i) is proved.
To prove (ii), begin by observing that∫

R2

Φ0

(
|fk|

)
dx = |Θk|2k−1λ

[
1 + logλ+ (k− 1) log 2

]
= 2−k−1λ

[
1 + logλ+ (k− 1) log 2

]
.

On the other hand, we have

‖fk‖1 = 2k−1λ|Θk|= 2−k−1λ.

We hence get:∫
R2

Φ0

(
|fk|

)
dx=

[
1 + logλ+ (k− 1) log 2

]
‖fk‖1 ≥

1

2
k‖fk‖1.

To show (iii), observe now that given x ∈ Yk, we have

DQfk(x)≥
1

|Q̃ν0 |

∫
u0+Q̃ν0

2k−1λ1Θk
(y)dy = 2k−1λ

|(u0 + Q̃ν0)∩Θk|
|Q̃ν0 |

≥ λ,

where u0 and ν0 are associated to x by Lemma 4. In particular, we get∣∣{x ∈R
2 : DQf(x)≥ λ

}∣∣≥ |Yk| ≥
1

4
k2k|Θk|=

1

2
k2−k−1.

This finally yields, for k sufficiently large:∣∣{x ∈R
2 : DQfk(x)≥ λ

}∣∣ ≥ 1

2λ
λk2−k−1

=
1

2λ

k

1 + logλ+ (k− 1) log 2

∫
R2

Φ0

(
|fk|

)
dx

≥ 1

2λ

∫
R2

Φ0

(
|fk|

)
dx,

and the proof of (iii) is complete.



MOVING AVERAGES IN THE PLANE 765

To prove (iv), fix an Orlicz function Φ satisfying limt→∞
Φ(t)
Φ0(t)

= 0 and let

C > 1 be a constant. Observing that for any k ∈N
∗ we have∫

R2 Φ(C|fk|)dx∫
R2 Φ0(|fk|)dx

=
Φ(2k−1λC)

Φ0(2k−1λ)
=

Φ(2k−1λC)

Φ0(2k−1λC)
· Φ0(2

k−1λC)

Φ0(2k−1λ)
.

On the other hand, using the doubling condition Φ0 satisfies (see Appendix A
and Example 41) it is easily shown that Φ0(2

k−1λC)/Φ0(2
k−1λ) is bounded

by a constant depending only on λ as k goes to ∞; it hence follows that

lim
k→∞

∫
R2 Φ(C|fk|)dx∫
R2 Φ0(|fk|)dx

= 0,

and the proof is complete. �

Assume that Q is a sequence of standard rectangles such that Q∗ has
infinite width. It now follows immediately from Corollary 8 that the maximal
operator DQ cannot be of weak type (Φ,Φ) in case Φ is an Orlicz function
satisfying Φ = o(Φ0) at ∞, where Φ0 is the Orlicz function in Example 41. Let
us first illustrate this by showing that the maximal operator DQ cannot satisfy
a weak (1,1) inequality. To this purpose, we proceed towards a contradiction,
and assume there exists a constant C > 0 independent of k such that for any
k ∈N

∗ we have

(1)
∣∣{x ∈R

2 : DQfk(x)> 1/2
}∣∣ ≤ 2C‖fk‖1.

We let Q̃ = (Q̃i) be defined by Q̃i =
1
2Qi. Observing that Q̃∗ has infinite

width (as one easily checks it), we apply Corollary 8 to Q̃∗ and λ = 3, and
denote by (fk) the associated sequence of functions. Using the inequality

DQfk(x)≥
1

4
DQ̃∗fk(x),

valid for each x ∈R
2 and each k ∈N

∗, we get∣∣{x ∈R
2 : DQ̃∗fk(x)> 2

}∣∣ ≤ ∣∣{x ∈R
2 : DQfk(x)> 1/2

}∣∣ ≤ 2C‖fk‖1.

On the other hand, according to Corollary 8(ii), (iii), we have for k sufficiently
large: ∣∣{x ∈R

2 : DQ̃∗fk(x)> 2
}∣∣ ≥ ∣∣{x ∈R

2 : DQ̃∗fk(x)≥ 3
}∣∣

≥ 1

6

∫
R2

Φ0

(
|fk|

)
dx≥ 1

12
k‖fk‖1,

which is contradictory to the previous estimate.
Going back to the general case, let Φ be an Orlicz function satisfying Φ =

o(Φ0) at ∞. We now show that DQ cannot satisfy an inequality of weak type
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(Φ,Φ). To see it, we proceed again towards a contradiction: assume that
there would exist a constant C > 0 such that

(2)
∣∣{x ∈R

2 : DQf(x)> λ
}∣∣ ≤ ∫

R2

Φ

(
C|f |
λ

)
dx,

holds for every f ∈ LΦ
+(R

2) and every λ > 0. Let us keep the notations used

before and let (fk) be the sequence of functions associated to Q̃∗ and λ= 3
by Corollary 8. We would then have, according to Corollary 8(iii), for k
sufficiently large:

1

6

∫
R2

Φ0

(
|fk|

)
dx ≤

∣∣{x ∈R
2 : DQ̃∗fk(x)≥ 3

}∣∣
≤

∣∣∣∣
{
x ∈R

2 : DQfk(x)>
1

2

}∣∣∣∣ ≤
∫
R2

Φ
(
2C|fk|

)
dx.

This would contradict, for k sufficiently large, Corollary 8(iv); hence DQ

cannot satisfy an inequality of weak type as above.
Given a sequence of standard rectangles Q, we are actually interested in

studying the behavior of the maximal operator M∗
Q associated to Q—which,

unlike DQ, remains relevant in the study of moving averages—defined by

MQf(x) = sup
i∈N∗

1

|Qi|
1Qi ∗ f(x),

for a.e. x ∈R
2.

Remark 9. In fact, the maximal operatorsDQ andMQ are distributionally
equivalent ; more precisely, for each f ∈ L1

+(R
2) and each λ > 0, we have:

(i) |{x ∈R
2 : MQf(x)> λ}| ≤ |{x ∈R

2 : DQf(x)> λ}|;
(ii) |{x ∈R

2 : DQf(x)> λ}| ≤
∑1

p,q=0 |{x ∈R
2 : MQ(f ◦ Tp,q)(x)>

λ
4 }|;

where for 0≤ p, q ≤ 1, the operator Tp,q : R
2 → R

2 is defined by Tp,q(ξ, η) =
((−1)pξ, (−1)qη).

As (i) follows immediately from the inequality DQf(x) ≥ MQf(x), valid
for each f ∈ L1

+(R
2) and each x ∈ R

2, only (ii) has to be explained. To that
purpose, fix f ∈ L1

+(R
2) and observe that for x ∈R

2 with DQf(x)> λ, there
exists i ∈N

∗ and u ∈R
2 such that

(3) x ∈ u+Qi and
1

|Qi|

∫
u+Qi

f > λ.

It follows from (3) that we have

1∑
p,q=0

1

|Qi|

∫
x+Tp,qQi

f =
1

|Qi|

∫
⋃1

p,q=0 x+Tp,qQi

f ≥ 1

|Qi|

∫
u+Qi

f > λ;
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this yields |Qi|−1
∫
x+Tp,qQi

f > λ/4 for some 0≤ p, q ≤ 1; that is

1

|Qi|

∫
T|p−1|,|q−1|x−Qi

f ◦ T|p−1|,|q−1| >
λ

4
.

We conclude from this discussion that

{
x ∈R

2 : DQf(x)> λ
}
⊆

1⋃
p,q=0

Tp,q

{
x ∈R

2 : MQ(f ◦ Tp,q)(x)>
λ

4

}
.

The maximal operator MQ has the following a.e. behaviour.

Theorem 10. Let Q be a sequence of standard cubes. We have the follow-
ing properties:

(i) if Q∗ has finite width and if f ∈ L1
+(R

2), then MQf <∞ almost every-
where on R

2;
(ii) if Q∗ has infinite width and if Φ is an Orlicz function satisfying Φ =

o(Φ0) at ∞, then there exists f ∈ LΦ
+(R

2) for which MQf =∞ almost ev-
erywhere on R

2; in particular, there exists f ∈ L1
+(R

2) for which MQf =
∞ almost everywhere on R

2;
(iii) in general, for any Q, if f ∈ L logL+(R

2), then MQf <∞ almost every-
where on R

2; in particular, if f ∈ Lp(R2) for some 1< p≤∞, then we
have MQf <∞, a.e. in R

2.

In order to prove Theorem 10, we need to make a few observations.

Remark 11. If Φ is an Orlicz function, then one easily shows from the
Lebesgue dominated convergence theorem that if (ρk)⊆C∞

c (Rn) is a regular-
izing sequence (see Appendix B for a precise definition), then

‖f − ρk ∗ f‖Φ → 0, k→∞.

In particular, C∞
c (Rn) is dense in LΦ(Rn).

Remark 12. Let Φ be an Orlicz function. Before proving Theorem 10, it
should be readily noticed that for any measurable set A ⊆ R

2 having finite
Lebesgue measure, Jensen’s inequality applied to the normalized Lebesgue
measure on A yields the following inequality for each f ∈ LΦ(R2):

Φ
(
|A|−1|1A ∗ f |

)
≤Φ

(
1

|A|

∫
A

∣∣f(· − ξ)
∣∣dξ) ≤ 1

|A|

∫
A

Φ
(∣∣f(· − ξ)

∣∣)dξ.
It hence follows from an application of Fubini’s theorem that the operator

LΦ
(
R

2
)
→ LΦ

(
R

2
)
, f �→ |A|−11A ∗ f,

has strong type (Φ,Φ).
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Proof of Theorem 10. To prove (i), assume that Q∗ has finite width; in
particular, it is a finite union of chains Q∗

1, . . . ,Q
∗
l . It follows from Zygmund

[16] (yet in the ergodic case) that for each 1 ≤ j ≤ l, MQ∗
j
is of type (1,1).

Using the inequality

MQf(x)≤ 4MQ∗f(x),

valid for each measurable f and each x ∈ R
2, we then observe that for each

λ > 0 and each f ∈ L1
+(R

2) we have{
x ∈R

2 : MQf(x)> 4λ
}
⊆

{
x ∈R

2 : MQ∗f(x)> λ
}
.

As one easily checks, also, that

{
x ∈R

2 : MQ∗f(x)> λ
}
⊆

l⋃
j=1

{
x ∈R

2 : MQ∗
j
f(x)> λ

}
,

one finishes the proof of (i) by applying [13, Theorem 3].
If (ii) did not hold, we would deduce from Stein [14, Theorem 3] that MQ,

and hence DQ, is of weak type (Φ,Φ), contradicting Remark 2.
Finally, it follows from Jessen, Marcinkiewicz and Zygmund [8, Theorems

B or 4] that DQ satisfies an inequality of weak type in either L logL(R2)
or Lp(R2) in case p <∞, or an inequality of strong type in L∞(R2) in case
p=∞. We then infer from Remark 9 that MQ satisfies a similar inequality.
If f ∈ L∞

+ (R2), then the same conclusion follows from Bellow and Jones [3,
Corollary 1]. �

Remark 13. Observe that (ii) is the analogue of Stokolos [15, Theorem 1,
part 2] for the maximal operator MQ. We obtained it here using general
principles instead of a direct computation.

Remark 14. Let Q be a family of standard rectangles, define Q̃= (Q̃i) by

Q̃i =
1
2Qi, and assume that the following property is satisfied:

for each k ∈N
∗, there exists a subfamily Q̃∗

k of Q̃∗ containing exactly(∗)
k distinct rectangles with equal areas.

Then, a much simpler argument (due to B. Reznick) shows that MQ cannot
satisfy a weak (1,1) inequality. One sees it using the following:

Claim 15. For each even k ∈ N
∗, we have |

⋃
Q̃∗

k| ≥ 1
3kαk, where αk de-

notes the value of the area of each rectangle in Q̃∗
k.

Proof. Fix an even k ∈N
∗, write k = 2l and begin by choosing an ordering

Q̃∗
k = (Q̃1

k, . . . , Q̃
k
k) making their sides c1, . . . , ck along the x-axis into a de-

creasing sequence. In particular, we have ci+1 ≤ ci/2 for each 1≤ i≤ k − 1,
and, in general, for 1≤ i≤ i+ j ≤ k, ci+j ≤ 2−jci; in particular, we have∣∣Q̃i

k ∩ Q̃i+j
k

∣∣ ≤ 2−jαk.
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It is obvious that ∣∣∣∣∣
k⋃

i=1

Q̃i
k

∣∣∣∣∣ ≥
∣∣∣∣∣

l⋃
r=1

Q̃2r
k

∣∣∣∣∣.
On the other hand, a simple induction argument then shows that∣∣∣∣∣

l⋃
r=1

Q̃2r
k

∣∣∣∣∣ ≥
l⋃

r=1

∣∣Q̃2r
k

∣∣− ∑
1≤s<t≤l

∣∣Q̃2s
k ∩ Q̃2t

k

∣∣ = lαk −
l∑

t=2

t−1∑
s=1

2−2(t−s)αk.

As one easily computes

l∑
t=2

t−1∑
s=1

2−2(t−s) =
1

3

l∑
t=2

(
1− 4−t

)
≤ l

3
,

one finally gets ∣∣∣∣∣
l⋃

r=1

Q̃2r
k

∣∣∣∣∣ ≥ lαk −
1

3
lαk =

1

3
(2l)αk,

which yields the result. �

Keeping the notations of the preceding proof, fix an integer k ≥ 2, let Ak =⋂
Q̃∗

k and observe that |Ak| ≤ 2−kαk. Define fk ∈ L1
+(R

2) by fk = |Ak|−11Ak
.

Given 1≤ i≤ k, observe that for any x ∈ Q̃i
k \Ak, we have

1

|Q̃i
k|

1Q̃i
k
∗ fk(x) =

1

|Ak|
1

|Q̃i
k|

∫
Q̃i

k

1Ak
(x− ξ)dξ =

1

|Ak|
|Q̃i

k ∩ (x−Ak)|
|Q̃i

k|
=

1

αk
,

for in such a case, we have |Q̃i
k ∩ (x−Ak)|= |Ak|. Consequently, we get∣∣∣∣

{
x ∈R

2 : MQ̃∗fk(x)≥
1

αk

}∣∣∣∣
≥

∣∣∣∣∣
k⋃

i=1

(
Q̃i

k \Ak

)∣∣∣∣∣ ≥
∣∣∣∣∣

k⋃
i=1

Q̃i
k

∣∣∣∣∣− |Ak|

≥
(
k

3
− 1

2k

)
αk ≥

1

3
(k− 1)αk =

1

3
(k− 1)

‖fk‖1
1
αk

.

It then follows from the inequality MQfk(x) ≥ 1
4MQ̃∗fk(x), valid for each

x ∈R
2, that we have∣∣∣∣

{
x ∈R

2 : MQfk(x)>
3

αk

}∣∣∣∣ ≥ (k− 1)
‖fk‖1
( 3
αk

)
;

hence MQ cannot be of weak type (1,1).

Remark 16. Given a sequence Q of standard rectangles satisfying
diam(Qi)→ 0 as i→∞, we can make the following observations:
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(i) for any Q, the sequence of functions defined by

x �→ 1

|Qi|
χQi ∗ f(x),

converges in L1-norm to f ;
(ii) if Q∗ has finite width, then the sequence of functions defined in (i) con-

verges pointwise a.e. to f for all f ∈ L1(R2);
(iii) if Q∗ has infinite width, then the sequence of functions defined in (i) fails

to converge pointwise a.e. for some f ∈ L1(R2) and hence for a generic
f ∈ L1(R2);

(iv) in general, for any Q, the sequence of functions defined in (i) converges
pointwise a.e. to f for all f ∈ L logL(R2).

1.2. Moving averages for differentiation. In order to deal with moving
averages, we shall need to prove a result about the independence of translates
of the Rademacher functions.

Given t0 ∈ [0,1) and a function f defined on [0,1), we let τt0f be defined
on [0,1) by τt0f(t) = f((t+ t0) mod 1).

Lemma 17. For any sequence (ti)⊆ [0,1), the translated Rademacher func-
tions τtiri, i ∈N

∗ form an IID sequence on [0,1).

Proof. It is clear that the functions τtiri, i ∈N
∗ are identically distributed

for each sequence (ti)⊆ [0,1) because each one is a characteristic function on
a set of Lebesgue measure 1/2.

To prove that they form an independent sequence, we begin by proving the
following identity.

Claim 18. For any sequence (ti)⊆ [0,1), we have

(4)
∣∣{τt1r1 = 1, . . . , τtkrk = 1}

∣∣= 1

2k
.

Proof. We proceed by induction on k. We first notice that the result is
trivial for k = 1. Assuming it has been proved for k ≤ l − 1 with l ≥ 2, we
observe that by invariance under translation, it suffices to prove the identity
(4) for a sequence (ti) satisfying t1 = 0. But then what we have to show is
that∫ 1/2

0

1{τt2r2=1}(t) · · ·1{τtlrl=1}(t)dt=

∫ 1/2

0

τt2r2(t) · · · τtlrl(t)dt=
1

2l
.

For 1≤ i≤ l− 1, let si = 2ti+1, and observe that we have, for 0≤ t < 1/2:

τtiri(t) = ri
[
(t+ ti) mod 1

]
= ri−1

[
(2t+ 2ti) mod 1

]
= τsi−1ri−1(2t).

Using the substitution s= 2t, we hence get∫ 1/2

0

τt2r2(t) · · · τtlrl(t)dt=
1

2

∫ 1

0

τs1r1(s) · · · τsl−1
rl−1(s)ds=

1

2
· 1

2l−1
=

1

2l
,
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using the induction hypothesis, which proves the claim. �

Claim 19. For each sequence (ti)⊆ [0,1), each k ∈ N
∗ and any choice of

δi ∈ {0,1}, 1≤ i≤ k, we have

∣∣{0≤ t < 1 : τtiri(t) = δi,1≤ i≤ k
}∣∣ = 1

2k
.

Proof. Let I = {1 ≤ i ≤ k : δi = 1} and J = {1 ≤ i ≤ k : δi = 0}. Writ-
ing Ei = {0 ≤ t < 1 : τtiri(t) = 1} for each 1 ≤ i ≤ k, we have, according to
Claim 18:

∣∣{0≤ t < 1 : τtiri(t) = δi,1≤ i≤ k
}∣∣ = ∫ 1

0

∏
i∈I

1Ei

∏
j∈J

(1− 1Ej )

=
∑
J ′⊆J

(−1)#J ′
∫ 1

0

∏
i∈I

1Ei

∏
j∈J ′

1Ej

=
∑
J ′⊆J

(−1)#J ′
(
1

2

)#I(
1

2

)#J ′

=
∏
i∈I

1

2

∏
j∈J

(
1− 1

2

)

=
∏
i∈I

1

2

∏
j∈J

1

2

=
1

2k
,

which proves the claim. �

We can now finish the proof of Lemma 17. Fix a sequence (ti)⊆ [0,1) and
observe that, because the Rademacher functions are characteristic functions
on sets with measure 1/2, it is easy to see that for any Borel sets E1, . . . ,En,
we have ∣∣∣∣∣

n⋂
i=1

(τtiri)
−1(Ei)

∣∣∣∣∣ =
n∏

i=1

∣∣(τtiri)−1(Ei)
∣∣.

Actually, the calculation above is proving this when each Ei contains either 0
or 1, and this calculation also implies this result when the Ei either contain
just 0, just 1, or both values. The case where some Ei does not contain either
0 or 1 is trivial. This finishes the argument for independence. �

Let us now look at the moving averages that come out of the method of
Stokolos. For computational convenience, we are going to work in T

2 where
T= [0,1] mod 1; that is, in the torus.
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Lemma 20. We assume that that we have pairwise incomparable dyadic
rectangles based at the origin Qi ⊆ T

2∩ [0,1)2, 1≤ i≤ k, together with vectors
vi ∈ T

2, 1 ≤ i ≤ k. We also let Ri = vi +Qi, 1 ≤ i ≤ k. There are Lebesgue
measurable sets Θ and Z in T

2 with the following properties:

(i) |Z| ≥ 1
250k2

k|Θ|;
(ii) for all x ∈ Z, there exists ν0 = ν0(x) such that

|(x−Rν0)∩Θ|
|Rν0 |

≥ 1

2k+1
.

Proof. Write as in Lemma 4 Qi = [0,2−mi ]× [0,2−ni ] where 1≤ n1 < · · ·<
nk and m1 > · · ·>mk ≥ 1. Define Θ and Yν , 1≤ ν ≤ k as in Lemma 4. For
each 1≤ ν ≤ k, let Y ′

ν = vν +Yν . We begin by estimating the measure of some
relevant intersections.

Claim 21. For each w ∈ T
2 and any 1≤ ν, p≤ k, we have |Yν ∩ (w+Yp)| ≤

2p−ν2−k−1.

Proof. To show this, we write w = (α,β) for some α,β ∈ [0,1) and we
compute∣∣Yν ∩ (w+ Yp)

∣∣
=

∫ ∫
T2

1Yν1w+Yp

=

∫ ∫
T2

k∏
i1=ν

rmi1
(ξ)

ν∏
j1=1

rnj1
(η)

k∏
i2=p

rmi2
(ξ − α)

p∏
j2=1

rnj2
(η− β)dξ dη

≤
∫ ∫

T2

s−1∏
i1=p

rmi1
(ξ − α)

k∏
i2=s

rmi2
(ξ)

s∏
j=1

rnj (y)dξ dη

=
1

2ν−p

1

2k+1
,

using Lemma 17. �

Using Claim 21, we can now estimate the measure of the set Y ′ =
⋃k

ν=1 Y
′
ν .

To that purpose, assume that k ≥ 2 and denote by K ≥ 1 the largest integer
for which 2K ≤ k. We then use the inclusion–exclusion principle to compute

∣∣Y ′∣∣ ≥
∣∣∣∣∣

K⋃
ν=1

v2ν + Y2ν

∣∣∣∣∣ ≥
K∑

ν=1

|Y2ν | −
K∑

ν=1

ν−1∑
p=1

∣∣(v2ν + Y2ν)∩ (v2p + Y2p)
∣∣.

Using the equality |Y2ν |= 2−k−1 valid for each 1≤ ν ≤K together with the
fact that for 1≤ ν ≤K and 1≤ p≤ ν − 1 we have∣∣(v2ν + Y2ν)∩ (v2p + Y2p)

∣∣ = ∣∣Y2ν ∩
[
(v2p − v2ν) + Y2p

]∣∣ ≤ 1

4ν−p

1

2k+1
.



MOVING AVERAGES IN THE PLANE 773

This follows from Claim 21. Hence,

∣∣Y ′∣∣ ≥ K

2k+1
− 1

2k+1

K∑
ν=1

ν−1∑
p=1

1

4ν−p
=

1

2k+1

[
K −

K∑
ν=1

1

3

4ν−1 − 1

4ν−1

]
≥ 2K

3

1

2k+1
.

It follows from the inequality k ≥ 2 that K ≥ k/4, so we finally get∣∣Y ′∣∣ ≥ k

6

1

2k+1
=

1

12
k2k|Θ|,

for |Θ|= 2−2k.
We now proceed to construct a set Z having the stated properties. Recall

that for each 1≤ ν ≤ k, Yν can be written as

Yν =

Nν⋃
q=1

(uν,q +Qν),

for some uν,q ∈ T
2, 1≤ q ≤Nν where Nν = 2−(k+1)2mν2nν . We then let, for

1≤ ν ≤ k,

Z0
ν =

Nν⊔
q=1

(
uν,q +Q+

ν

)
and Zν = vν +Z0

ν ,

where we introduced the following notation: given a rectangle Q= [0, a]× [0, b]
with 0≤ a, b < 1, we let Q+ = [a/2, a]× [b/2, b] denote its upper right corner—
similarly we’ll also set Q− = [0, a/2] × [0, b/2] be its lower left corner. We

furthermore let Z =
⋃k

ν=1Zν .
To estimate |Z|, we again use the inclusion–exclusion principle as follows:

we first assume that k ≥ 4 and choose K ≥ 1 the largest integer for which
3K ≤ k. We then have

|Z| ≥
∣∣∣∣∣

K⋃
ν=1

Z3ν

∣∣∣∣∣ ≥
K∑

ν=1

|Z3ν | −
K∑

ν=1

ν−1∑
p=1

∣∣(v3ν +Z0
3ν

)
∩

(
v3p +Z0

3p

)∣∣.
Using the equalities |Z0

3ν |= 1
4 |Y3ν | valid for each 1≤ ν ≤K, together with the

inclusions

(v3ν +Z3ν)∩ (v3p +Z3p)⊆ (v3ν + Y3ν)∩ (v3p + Y3p),

valid for each 1≤ ν ≤K and each 1≤ p≤ ν − 1, we get, using Claim 21 and
proceeding as before:

|Z| ≥ K

2k+3
−

K∑
ν=1

ν−1∑
p=1

1

8ν−p

1

2k+1
=

1

2k+1

[
K

4
−

K∑
ν=1

1

7

8ν−1 − 1

8ν−1

]
≥ 3K

28

1

2k+1
.

Yet as k ≥ 4 implies that K ≥ k/12, we finally obtain:

|Z| ≥ k

125

1

2k+1
=

1

250
k2k|Θ|.
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Now fix x ∈ Z and denote by ν00(x) the smallest integer 1 ≤ ν0 ≤ k for
which one has x ∈ Zν0 and observe that∣∣(x−Rν0)∩Θ

∣∣ = ∣∣[x− (vν0 +Qν0)
]
∩Θ

∣∣ = ∣∣[(x− vν0)−Qν0

]
∩Θ

∣∣;
noticing that x− vν0 belongs to uν0,q +Q+

ν0
for some 1≤ q ≤Nν0 , we see that

uν0,q +Q−
ν0

⊆ (x−vν0)−Qν0 (to see this, say that x−vν0 = uν0,q +y, y ∈Q+
ν0
;

now if we take z ∈Q−
ν0
, we have to show that

uν0,q + z ∈ uν0,q + y−Qν0 ;

this is obvious for y− z ∈Qν0). We hence have∣∣(x−Rν0)∩Θ
∣∣ ≥ ∣∣(uν0,q +Q−

ν0

)
∩Θ

∣∣ = ∣∣(uν0,q +Qν0)∩Θν0

∣∣,
where Θν0 = {(ξ, η) ∈ Θ : rmν0−1(ξ)rnν0+1(η) = 1} ⊆ Yν0 . It is obvious that

|Θν0 | ≥ 1
4 |Θ|. On the other hand, as in Lemma 4, we now observe that Yν0 is an

union ofNν0 rectangles uν0,q+Qν0 , 1≤ q ≤Nν0 and that for any 1≤ q, r ≤Nν0

we have ∣∣(uν0,q +Qν0)∩Θν0

∣∣ = ∣∣(uν0,r +Qν0)∩Θν0

∣∣.
We then infer from the inclusion Θν0 ⊆ Yν0 that

|(uν0,q +Qν0)∩Θν0 |
|uν0,q +Qν0 |

=
Nν0 |(uν0,q +Qν0)∩Θν0 |

Nν0 |uν0,q +Qν0 |
=

|Θν0 |
|Yν0 |

≥ 1

4

|Θ|
|Yν0 |

=
1

2k+1
.

The proof is complete for |uν0,q +Qν0 |= |Rν0 |. �

Given a sequence R = (Ri) of rectangles, we define a maximal operator
MR on L1(R2) by

(5) MRf(x) = sup
i∈N∗

1

|Ri|
1Ri ∗ f(x).

Lemma 20 is a key tool in the study of the behaviour of the maximal opera-
tor MR when the sequence R is obtained from a sequence (Qi) of standard
rectangles in [0,1)2 by translations:

Ri = vi +Qi where vi ∈R
2, i ∈N

∗.

It allows us to prove an analogue of Corollary 8 in the moving context.

Corollary 22. Let Q be a family of standard rectangles in [0,1)2, fix a
sequence (vi) ⊆ R

2, let R = (Ri) be the sequence of rectangles in R
2 defined

by Ri = vi +Qi and assume that we have Ri ⊆ [0,1)2 for each i ∈ N
∗. If Q∗

has infinite width, then for each λ ≥ 1 there exists a sequence of functions
(fk)⊆ L∞

+ (R2) satisfying the following conditions: for each k ∈N
∗,

(i) fk vanishes outside [0,1]2;
(ii)

∫
R2 Φ0(|fk|)dx≥ 1

2 (k+ 1)‖fk‖1;
(iii) |{x ∈R

2 : MRfk(x)≥ λ}| ≥ 1
500λ

∫
R2 Φ0(|fk|)dx;
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(iv) for any Orlicz function Φ satisfying Φ= o(Φ0) at ∞ and for each C > 0
we have

lim
k→∞

∫
R2 Φ0(|fk|)dx∫
R2 Φ(C|fk|)dx

=∞.

Proof. We view [0,1)2 as a subset of T2. Take k ∈ N
∗. As Q has infinite

width, find indices 1 ≤ i1 < i2 < · · · < ik such that {Qij : 1 ≤ j ≤ k} is inde-

pendent. Choose sets Θk and Zk in T
2 associated to Qij and vij , 1≤ i≤ k

according to Lemma 20. Let fk = 2k+1λ1Θk
. It is clear that fk is supported

in [0,1]2, and (i) is proved.
To prove (ii), begin by observing that∫

R2

Φ0

(
|fk|

)
dx = |Θk|2k+1λ

[
1 + logλ+ (k+ 1) log 2

]
= 21−kλ

[
1 + logλ+ (k+ 1) log 2

]
.

On the other hand, we have

‖fk‖1 = 2k+1λ|Θk|= 21−kλ.

We hence get:∫
R2

Φ0

(
|fk|

)
dx=

[
1 + logλ+ (k+ 1) log 2

]
‖fk‖1 ≥

1

2
(k+ 1)‖fk‖1.

We prove (iii) as follows: fix x ∈ Zk and choose an integer 1≤ ν0 = ν0(x)≤ k
according to Lemma 20(ii). Compute now

MRfk(x)≥
1

|Riν0
|1Riν0

∗ fk(x) = 2k+1λ
|(x−Riν0

)∩Θk|
|Riν0

| ≥ λ.

We hence have Zk ⊆ {x ∈R
2 : MRfk(x)≥ λ}. It follows that for k sufficiently

large, we have

∣∣{x ∈R
2 : MRfk(x)≥ λ

}∣∣ ≥ |Zk| ≥
1

250
k2k|Θk|=

1

500λ
k
(
21−kλ

)
=

1

500λ

k

1 + logλ+ (k+ 1) log 2

∫
R2

Φ0

(
|fk|

)
dx

≥ 1

500λ

∫
R2

Φ0

(
|fk|

)
dx.

Finally, the proof of (iv) is virtually identical to the proof of Corollary 8(iv).
�

Remark 23. Under the hypotheses of Corollary 22, it now follows immedi-
ately from Corollary 22 that the maximal operator MR cannot satisfy a weak
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(1,1) inequality, for otherwise there would exist a constant C > 0 independent
of k such that for any sufficiently large k ∈N

∗ we have

1

500

∫
R2

Φ0

(
|fk|

)
dx ≤

∣∣{x ∈R
2 : MRfk(x)≥ 1

}∣∣
≤

∣∣{x ∈R
2 : MRf(x)> 1/2

}∣∣≤ 2C‖fk‖1,
which would contradict Corollary 22(ii) for k sufficiently large.

Remark 24. Under the same hypotheses, it also follows from Corollary
22(iv) that the maximal operator MR cannot satisfy an inequality of weak
type in LΦ(R2), in case Φ is a Young function satisfying Φ = o(Φ0) at ∞,
where Φ0 is the Orlicz function in Example 41. To see this, we observe that
if there would exist a constant C > 0 such that∣∣{x ∈R

2 : MRf(x)> λ
}∣∣ ≤ ∫

R2

Φ

(
C|fk|
λ

)
dx,

holds for every f ∈ LΦ
+(R

2) and every λ > 0, then if (fk) is the sequence of
functions coming out of Corollary 22, we would have for k sufficiently large:

1

500

∫
R2

Φ0

(
|fk|

)
dx ≤

∣∣{x ∈R
2 : MRfk(x)≥ 1

}∣∣
≤

∣∣∣∣
{
x ∈R

2 : MRfk(x)>
1

2

}∣∣∣∣ ≤
∫
R2

Φ
(
2C‖fk‖

)
dx,

which would contradict Corollary 22(iv) for k sufficiently large.

We summarize the facts about the behaviour of MR that come out from
the preceding remarks, in the following result.

Proposition 25. Assume that the hypotheses of Corollary 22 are satisfied.
If Φ is an Orlicz function satisfying Φ= o(Φ0) at ∞, where Φ0 is the Orlicz
function of Example 41, then there exists f ∈ LΦ

+(R
2) for which MRf(x) =∞

holds a.e. in R
2; in particular, there exists f ∈ L1

+(R
2) such that MRf =∞

a.e. on R
2.

Proof. The proof is virtually identical to the proof of Theorem 10(ii). �

Remark 26. As a counterpart to Proposition 25, we refer to the end of
Section 2.2 for a positive result along the lines of Theorem 10(i).

2. Moving averages in the plane: The ergodic context

In this section, we fix a Lebesgue probability space (X,μ) together with
commuting, invertible measure-preserving transformations S,T : X →X . We
moreover assume that the action

Z
2 ×X →X, (k, l) �→ SkT lx

is free, i.e. that μ{x : SkT lx= x}= 0 unless k = l= 0.
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2.1. Standard averages in the ergodic context: The L1 behaviour. A
standard rectangle in Z

2 is a set Q⊆R
2 of the form Q= Z

2∩ [0,m]× [0, n] for
integers m,n ∈N

∗; we then let 
(Q) =m, L(Q) = n, while Q̄ will stand for the
associated rectangle Q̄ = [0,m] × [0, n] in R

2. Conversely, given a standard
rectangle Q in Z

2, we let �Q� denote the largest standard rectangle in Z
2

contained in Q.
A standard dyadic rectangle in Z

2 is a rectangle of the form [0,2m]× [0,2n].
The dyadic mother Q∗ of a standard rectangle Q in Z

2 is the standard dyadic
rectangle containing Q that has the least number of elements.

For our purposes, we will call an admissible sequence of standard rectangles
any sequence Q= (Qi) of standard rectangles in Z

2 such that both sequences
(
(Qi)) and (L(Qi)) tend to ∞.

The definitions we made in the differentiation context naturally generalize
to the present setting.

Definition 27. Two standard rectangles Q1 and Q2 in Z
2 are called in-

comparable, and we write Q1 �Q2, in case neither Q1 ⊆Q2 nor Q2 ⊆Q1.
Moreover, a family Q of standard rectangles in Z

2 is called

• independent in case Q1 �Q2 holds for any distinct Q1,Q2 ∈Q;
• dependent in case there exist distinct elements Q1,Q2 ∈Q where Q1 �Q2

does not hold;
• a chain in case Q is totally ordered by inclusion.

Definition 28. A sequence Q of standard rectangles in Z
2 is said to have

infinite width in case for every k ∈N, there exists integers 1≤ i1 < i2 < · · ·< ik
for which {Qij : 1≤ j ≤ k} is independent. It is said to have finite width in
case it is not of infinite width.

Dilworth’s alternative still holds.

Lemma 29. A sequence Q of standard rectangles in Z
2 has either infinite

width, and it is not a finite union of chains, or it is finite width and it is a
finite union of chains.

To any admissible sequence Q = (Qi) of standard rectangles in Z
2, one

naturally associates a maximal operator MQ defined on L1(X,μ) by

MQf(x) = sup
i∈N∗

1

#Qi

∑
(k,l)∈Qi

f
(
SkT lx

)
.

The behavior of MQ may be studied according to the comparability properties
of the dyadic approximations of its elements.

Theorem 30. Let Q be a sequence of standard rectangles in Z
2. The

following properties are satisfied:

(i) if Q∗ has finite width, then for any f ∈ L1(X,μ) we have MQf < ∞,
μ-a.e. on X ;
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(ii) if Q∗ has infinite width and if Φ is an Orlicz function satisfying Φ= o(Φ0)
at ∞, then there exists f ∈ LΦ

+(X,μ) such that MQf =∞ holds μ-a.e. on
X ; in particular then there exists f ∈ L1

+(X,μ) for which MQf = ∞,
μ-a.e. on X .

Proof. To prove (i), assume that Q∗ has finite width; it then follows from
Hagelstein and Stokolos [7, Theorem 1] that the maximal operator MQ is of
weak type (1,1). One hence finishes the proof of (i) by applying Sawyer [13,
Theorem 3].

As the proof of (ii) would need a more general transfer lemma along the
lines of Lemma 42 in order to transfer the inequality (2) in the ergodic context,
we only prove (ii) in L1(R2) for brevity’s sake. To this purpose let us proceed
towards a contradiction, and assume that (ii) does not hold. In this case, it
follows from Stein [14, Corollary 1] that the maximal operator MQ satisfies
an inequality of weak type (1,1). By Rokhlin’s lemma as in Ornstein and
Weiss [10], this implies that the maximal operator mQ defined on 
1(Z2) by

mQϕ(m,n) = sup
i∈N∗

1

#Qi

∑
(k,l)∈Qi

∣∣ϕ(m+ k,n+ l)
∣∣

for m,n ∈ Z, satisfies an inequality of weak type (1,1) in 
1(Z2).
By our transfer lemma (Lemma 42, see Appendix B), there would exist a

constant C > 0 such that for any f ∈ L1(R2) and any λ > 0:

∣∣{x ∈R
2 : MQ̄f(x)> λ

}∣∣ ≤ C‖f‖1
λ

;

where Q̄= (Q̄i) is the sequence of standard rectangles in R
2 associated to Qi,

i ∈N
∗.

On the other hand, observe now that if we define a sequence Q̃= (Q̃i) of

standard rectangles in Z
2 by Q̃i = �Q̄i/2�, then Q̃∗ = (Q̃∗

i ) also has infinite

width. For each i ∈N
∗, let Q′

i = Q̃∗
i and observe that (using the notations of

Lemma 42) we have f1Q′
i
= 1Q̄′

i
. Fix k ∈ N

∗. According to the fact that Q̃∗

has infinite width, find integers 1 ≤ i1 < i2 < · · · < ik such that Q̄′
i1
, . . . , Q̄′

ik

form an independent family of standard rectangles in R
2. Choose next an

a > 0 such that we have Q̄′
ij
⊆ [0, a)2 for each 1≤ j ≤ k, let Q′′

j = a−1Q̄′
ij

for

each 1 ≤ j ≤ k and let fk denote the function associated to Q̄′′
1 , . . . , Q̄

′′
k and

λ= 5 by Corollary 8.
For each k ∈ N

∗, define gk = dafk, where the dilation dafk ∈ L1(R2) is
defined at x ∈ R

2 by the formula dafk(x) = a2fk(ax). Observe in particular
that, for any x ∈R

2 and 1≤ j ≤ k, we have

1Q′′
j
∗ fk(x) =

∫
Q′′

j

fk(x− ξ)dξ =

∫
Q̄′

ij

a2fk(x− aη)dη = 1Q̄′
j
∗ gk(x/a).
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It follows from the proof of Corollary 8(ii), (iii) that we have, for k sufficiently
large, ∣∣∣∣

{
x ∈R

2 : max
1≤j≤k

1

|Q′′
j |

1Q′′
j
∗ fk(x)≥ 5

}∣∣∣∣ ≥ 1

20
k‖fk‖1.

Using the equality |Q̄′
ij
|= a2|Q′′

j |, we hence get, for k sufficiently large:∣∣∣∣
{
x ∈R

2 : max
1≤j≤k

1

|Q̄′
ij
|1Q̄′

ij
∗ gk(x)≥ 5a2

}∣∣∣∣
=

1

a2

∣∣∣∣
{
y ∈R

2 : max
1≤j≤k

1

|Q′′
j |

1Q′′
j
∗ fk(y)≥ 5

}∣∣∣∣
≥ 1

20a2
k‖fk‖1 =

1

20a2
k‖gk‖1.

We hence get, using the inequality MQgk(x) ≥ 1
4MQ̃∗gk(x), valid for each

x ∈R
2 and each k ∈N

∗ sufficiently large:

C‖gk‖1
a2

≥
∥∥{

x ∈R
2 : MQgk(x)> a2

}∥∥
≥

∣∣∣∣
{
x ∈R

2 : max
1≤j≤k

1

|Q̄′
ij
|1Q̄′

ij
∗ gk(x)≥ 5a2

}∣∣∣∣≥ 1

20a2
k‖gk‖1;

which is impossible when k is large enough. �

Remark 31. We can also prove an analogue of Theorem 10(iii), but do
not do so here for brevity’s sake.

Remark 32. It is noteworthy to observe that an analogue of Remark 16
can be stated in the ergodic context, for admissible sequences Q = (Qi) of
standard rectangles in Z

2.

2.2. Moving averages in the ergodic context: The L1 behavior. We
first recall a result by Bellow, Jones and Rosenblatt in [2] concerning one-
dimensional moving averages. The context is the following: let Ω ⊆ Z× N

∗

and define, for each α > 0:

Ωα =
{
(k, r) ∈Ω :

∣∣k− k′
∣∣ ≤ α

(
r− r′

)
for some

(
k′, r′

)
∈Ω

}
.

One further defines, given r ∈N
∗ and α> 0, the cross-section

Ωα(r) =
{
k ∈ Z : (k, r) ∈Ωα

}
.

One also associates to Ω a maximal operator MΩ defined on L1(X,μ) by

MΩf(x) = sup
(k,r)∈Ω

1

r+ 1

r∑
j=0

∣∣f(
T k+jx

)∣∣.
Theorem 33 (Bellow, Jones and Rosenblatt). The following two assertions

are satisfied:
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(i) if there exist constants α > 0 and A≥ 0 having the property that for any
r ∈ N

∗, #Ωα(r)≤ Ar, then MΩ is of weak type (1,1) and of strong type
(p, p) for any 1< p≤∞.

(ii) if MΩ is of weak type (p, p) for some 1< p<∞, then for any α > 0 there
exists Aα ≥ 0 having the property that for any r ∈ N

∗, then #Ωα(r) ≤
Aαr.

We now let Q= (Qi) be a sequence of standard rectangles in Z
2, and we

fix a sequence v= (vi)⊆N
2; we also define a sequence R= (Ri) of rectangles

in Z
2 by letting Ri = vi +Qi for each i ∈ N. The maximal operator MR is

defined in the natural way by

MRf(x) = sup
i∈N

1

#Ri

∑
(k,l)∈Ri

f
(
SkT lx

)
.

Denoting by p and q the orthogonal projections on the x- and y-axis, respec-
tively, we associate to the sequence R, the following nets:

Ω(v,Q) =
{(

p(vi),#p(Qi)
)
: i ∈N

}
⊆N×N

∗,

�(v,Q) =
{(

q(vi),#q(Qi)
)
: i ∈N

}
⊆N×N

∗.

Lemma 34. Assume that Q is a sequence of standard rectangles in Z
2, and

fix a sequence v = (vi) ⊆ N
2. As usual, define a sequence of rectangles R =

(Ri) by letting Ri = vi+Qi for i ∈N. Consider the following two statements:

(i) the maximal operator MR is of weak type (1,1);
(ii) there exists constants α > 0 and A≥ 0 such that for any r ∈N

∗, we have

#
(
Ω(v,Q)

)
α
(r)≤Ar and #

(
�(v,Q)

)
α
(r)≤Ar.

Then, (i) implies (ii) and the converse holds in case Q is a chain of rectangles.

Proof. To show that (i) implies (ii), begin by observing that Rokhlin’s
lemma (see Ornstein and Weiss [10]) together with Calderón’s transfer prin-
ciple (see Calderón [4]) implies that for any commuting, measure-preserving
transformations S′, T ′ : X →X , the maximal operatorM ′

R defined on L1(X,μ)
by

M ′
Rf(x) = sup

i∈N

1

#Ri

∑
(k,l)∈Ri

f
(
S′kT ′lx

)
,

is of weak type (1,1) provided (i) holds. Taking either S′ = S and T ′ = idX
or S′ = idX and T ′ = T , and observing that for any i ∈N:

1

#p(Qi)

#p(Qi)∑
j=1

f
(
Sp(vi)+jx

)
=

1

#Ri

∑
(k,l)∈Ri

f
(
Sk idlX x

)
,

1

#q(Qi)

#q(Qi)∑
j=1

f
(
T q(vi)+jx

)
=

1

#Ri

∑
(k,l)∈Ri

f
(
idkX T lx

)
,



MOVING AVERAGES IN THE PLANE 781

we see that the maximal operators MΩ(v,Q) and M�(v,Q) are of weak type
(1,1). Assertion (ii) then follows from Bellow, Jones and Rosenblatt theorem
(Theorem 33).

Assume now that Q is increasing and satisfies (ii). According to Theo-
rem 33 and to Avramidou [1, Theorem 1.1], we obtain that the correct factors
(which, in this case, equal Avramidou’s modified correct factors)

Mi(R) = #∪
{
p(Ri)− p(Rj) : 1≤ j ≤ i

}
and

Ni(R) = #∪
{
q(Ri)− q(Rj) : 1≤ j ≤ i

}
satisfy the inequalities

Mi(R)≤C#p(Ri) and Ni(R)≤C#q(Ri)

for each i ∈ N, where C > 0 is a constant independent from i. Yet defining
the joint correct factor

Pi(R) =#∪ {Ri −Rj : 1≤ j ≤ i}
for i ∈ N, and observing that we have Pi(R) ≤ Mi(R)Ni(R), we see that
Pi(R) ≤ C2#Ri holds for each i ∈ N; it hence follows from Rosenblatt and
Wierdl [12, Theorem 5.8] that MR is of weak type (1,1). �

We now state the analogue of Theorem 30 in the context of moving aver-
ages.

Theorem 35. Let Q, v and R be as above, and let Ω = Ω(v,Q) and
�=�(v,Q) be the associated nets. The following properties hold:

(i) assume that Q∗ has finite width; if moreover there exists constants α> 0
and A> 0 such that for any r ∈N

∗ we have:

#Ωα(r)≤Ar and #�α(r)≤Ar,

then for any f ∈ L1(X,μ) we have MRf <∞, μ-a.e. on X ;
(ii) if Q∗ has infinite width and if Φ is an Orlicz function satisfying Φ= o(Φ0)

at ∞, then there exists f ∈ LΦ
+(X,μ) such that MRf =∞, μ-a.e. on X ;

in particular there exists f ∈ L1
+(X,μ) for which MQf =∞, μ-a.e. on X .

Proof. The proof of (ii) is virtually identical to the proof of Theorem 30,
and relies on Corollary 22 instead of Corollary 8 in the case of L1(X,μ); for
brevity’s sake, we omit the proof in the general Orlicz space LΦ(X,μ).

To prove (i), let Q, v and R be as above, and assume that Q∗ has
finite width. Writing—according to Dilworth’s alternative (Lemma 29)—
Q∗ = Q∗

1 ∪ · · · ∪ Q∗
n where the Q∗

j , 1 ≤ j ≤ n are increasing sequences of
rectangles extracted from Q∗, let (vj), 1≤ j ≤ n be the corresponding subse-
quences of v. Condition (i) then easily follows from Sawyer [13, Theorem 1]
since the following two statements are equivalent:

(A) for any f ∈ L1(X,μ), we have MRf <∞ for μ-a.e. on X ;
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(B) there exists constants α > 0 and A> 0 such that for any r ∈N
∗ and any

1≤ j ≤ n, we have

#
(
Ω

(
vj ,Q

∗
j

))
α
(r)≤Ar and #

(
�

(
vj ,Q

∗
j

))
α
(r)≤Ar.

It indeed follows from Lemma 34 and from simple computations analogous to
those made in the proof of Theorem 10(i). �

Remark 36. Going back to the differentiation context as announced in
Remark 26, and letting Q be a sequence of standard rectangles in R

2 and
v = (vi) ⊆ R

2 be a sequence of vectors in R
2, we denote, as expected, by p

and q the projections on the x- and y- axes, respectively.
Given a set Ω⊆R× [0,∞), we let, for any α > 0:

Ωα :=
{
(x, t) ∈R× [0,∞) :

∣∣x− x′∣∣≤ α
∣∣t− t′

∣∣ for some
(
x′, t′

)
∈Ω

}
,

while we let, for t≥ 0:

Ω(t) :=
{
x ∈R : (x, t) ∈Ω

}
.

To Q and v, we then associate two sets

Ω(v,Q) =
{(

p(vi),
∣∣p(Qi)

∣∣) : i ∈N
}
⊆R× [0,∞),

�(v,Q) =
{(

q(vi),
∣∣q(Qi

)
|
)
: i ∈N

}
⊆R× [0,∞).

Using Nagel and Stein [9, Section 2, Theorem 1] instead of Bellow, Jones and
Rosenblatt (Theorem 33), we could then state an analogue result to [Theo-
rem 35(i) in the context of differentiation:

Theorem 37. Assume that Q∗ is a chain of rectangles in R
2, let R= (Ri)

be defined by Ri := vi+Qi for i ∈N and let Ω := Ω(v,Q) and � :=�(v,Q) be
the associated sets. Then the maximal operator MR defined in (5) is of weak
type (1,1) in case there exists constants α > 0 and A ≥ 0 such that for any
0≤ t <∞, we have ∣∣Ωα(t)

∣∣ ≤At and
∣∣�α(t)

∣∣ ≤At.

The proof of Theorem 35(i) indeed translates to the differentiation context.

2.3. Further results in higher exponent Lebesgue spaces. In this
whole section, we assume, as before, that Q is a sequence of standard rectan-
gles in Z

2, we fix a sequence v = (vi) in N
2 and define a sequence R= (Ri)

of rectangles in Z
2 by Ri = vi +Qi, i ∈ N. We also define operators Ai and

Bi on L1(X,μ) by

Aif(x) =
1

#p(Ri)

∑
k∈p(Ri)

f
(
Skx

)
and(6)

Bif(x) =
1

#q(Ri)

∑
l∈q(Ri)

f
(
T lx

)
,

and we denote by A∗ and B∗ the associated maximal operators.
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Assuming that the maximal operator MR is of weak type (p0, p0) for some
1 < p0 < ∞, it follows from Rokhlin’s lemma (see Ornstein and Weiss [10])
and from the Calderón transfer principle (see Calderón [4]) that for any pair
S′, T ′ of commuting, measure preserving transformations of X , the maximal
operator M ′

R associated in the obvious way to R, S′ and T ′, is of weak type
(p0, p0). Denoting by (A′

i) and (B′
i) the sequence of linear operators associated

in the obvious way to R, S′ and T ′ as in (6), we observe that a computation
along the lines of the first part of the proof of Lemma 34 shows that the two
associated maximal operators A′

∗ and B′
∗ are of weak type (p0, p0). Applying

Bellow, Jones and Rosenblatt theorem (Theorem 33) twice then yields the
fact that both maximal operators A∗ and B∗ are of weak type (1,1) and of
strong type (p, p) for any 1< p≤∞. It then follows from Zygmund [17, II,
Theorem 4.34 and Remark p. 119] that there exists a constant C > 0 such
that for any f ∈ L logL(X,μ), we have

(7) max
{∥∥A′

∗f
∥∥
1
,
∥∥B′

∗f
∥∥
1

}
≤C

(
1 +

∫
X

Φ0

(
|f |

)
dμ

)
.

On the other hand, one easily observes that for any i ∈N and f ∈ L1
+(X,μ),

we have
1

#Ri

∑
(k,l)∈Ri

f
(
S′kT ′lx

)
=A′

i ◦B′
if(x);

we thus have, for i ∈N:

1

#Ri

∑
(k,l)∈Ri

f
(
S′kT ′lx

)
=A′

i ◦B′
if(x)≤A′

i ◦B′
∗f(x),

which yields the inequality

(8) M ′
Rf ≤A′

∗ ◦B′
∗.

Yet given f ∈ L logL+(X,μ), equation (7) shows that we have B′
∗f ∈

L1
+(X,μ). According to the fact that A′

∗ is of weak type (1,1) (see the dis-
cussion above) we hence get

M ′
Rf(x) =A′

∗ ◦B′
∗f(x)<∞,

for μ-a.e. x ∈X . Let us summarize the preceding discussion in the following
statement.

Theorem 38. Assume that the operator MR is of weak type (p0, p0)
for some 1 < p0 < ∞. Then, for any measure preserving transformations
S′, T ′ : X → X , the maximal operator M ′

R associated to S′, T ′ and R in
the obvious way by

M ′
Rf(x) = sup

i∈N

1

#Ri

∑
(k,l)∈Ri

f
(
S′kT ′lx

)
,

verifies M ′
Rf(x)<∞ for any f ∈ L logL+(X,μ).
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Remark 39. In case Q has infinite width, Theorem 30(ii) (see also Hagel-
stein and Stokolos [6]) shows the latter theorem is “the best we can expect”.

Appendix A: Material from Orlicz spaces

For our purposes, we call an Orlicz function any function Φ : [0,∞) →
[0,∞) satisfying the following conditions:

(O1) Φ is convex and increasing;
(O2) Φ(0) = 0;
(O3) the function t �→Φ(t1/2) is concave.

It should immediately be noticed that any function verifying (O1)–(O3) as
above also satisfies the following doubling condition:

(Δ2) there exists C > 0 such that for any 0≤ t <∞, Φ(2t)≤CΦ(t).

Given a Young function Φ and a measure space (X,μ), we define for every
measurable f : X →R a number

‖f‖Φ = inf

{
α > 0 :

∫
X

Φ

(
|f(x)|
α

)
dμ(x)≤ 1

}
,

and we denote by L Φ(X) the collection of all measurable functions f on X
for which ‖f‖Φ <∞, while LΦ(X) denotes the space obtained by identifying,
in L Φ(X), two almost everywhere equal functions. Here f ∈ L Φ(x) if and
only if

∫
X
Φ(|f(x)|)dμ(x)<∞. According to Rao and Ren [11, Proposition 3,

p. 60; Theorem 10, p. 67], we find the following result:

Theorem 40. The space (LΦ(X),‖ · ‖Φ) is a Banach space.

Example 41. We denote by Φ0 the Orlicz function defined on [0,∞) by

Φ0(t) = t(1 + log+ t),

and we let L logL(X) = LΦ0(X) whenever (X,μ) is a measure space; we also
let ‖f‖L logL = ‖f‖Φ0 for f ∈ L logL(X). We readily notice that Φ0 satisfies
(Δ2).

It will be convenient to use the following terminology, as in Stein [14, p.
154]: we will say that an operator T mapping LΦ(X,μ) into the space of
L0(X,μ) of measurable functions is

• of (strong) type (Φ,Φ) in case there exists a constant C > 0 such that for
any f ∈ LΦ(X,μ) one has∫

X

Φ
(
|Tf |

)
dμ≤

∫
X

Φ
(
C|f |

)
dμ.

• of weak type (Φ,Φ) in case there exists a constant C > 0 such that for any
f ∈ LΦ(X,μ) one has

μ
({

x ∈X :
∣∣T (x)∣∣ > λ

})
≤

∫
X

Φ

(
C|f |
λ

)
dμ.



MOVING AVERAGES IN THE PLANE 785

Appendix B: Proof of the “transfer lemma”

In the sequel, we fix n≥ 1 an integer and we let K0 = [0,1)n ⊆R
n; consis-

tently with this we also let Kx = x+K0 for each x ∈ R
n. Given f ∈ L1(Rn)

and M > 0, we let DMF ∈ L1(Rn) be defined by

DMF (x) =MnF (Mx).

We observe in particular that ‖DMF‖1 = ‖F‖1.
A regularizing sequence is a sequence of smooth, compactly supported func-

tions (ρi)⊆ L1(Rn) satisfying the following conditions:

(R1) ρi(x)≥ 0 for each i ∈N and each x ∈R
n;

(R2) suppρi ⊆ {x ∈R
n : |x| ≤ 2−i} for each i ∈N;

(R3)
∫
Rn ρi = 1 for each i ∈N.

Given a set Ω⊆R
n, we also let for i ∈N:

Ωi =
{
x ∈Ω : dist(x,∂Ω)> 2−i

}
;

and we notice that if f ∈ L1(Rn) is constant in Ω, then ρi ∗f is constant in Ωi.
Given k ∈ Z

n and M ∈ N
∗, we let K

M
k = Z

n ∩MKk. We also denote by

1(Zn) the family of all summable functions on Z

n. For each k ∈ Z
n, we define

a function δk ∈ 
1(Zn) by

δk(l) =

{
1 if l= k,

0 otherwise;

while given M ∈ N
∗, we let αM =M−n1KM

0
. Given ϕ ∈ 
1(Zn) and M ∈ N

∗,

we define DMϕ ∈ 
1(Zn) and ΔMϕ ∈ 
1(Zn) by

DMϕ=M−n
∑
k∈Zn

ϕ(k)1KM
k

and ΔMϕ=
∑
k∈Zn

ϕ(k)δMk.

We easily observe that ‖ϕ‖1 = ‖DMϕ‖1 = ‖ΔMϕ‖1.
The following result is our “transfer lemma”.

Lemma 42. Let F ⊆ 
1(Zn) be a countable collection of summable func-
tions on Z

n and define for each ϕ ∈ F a function fϕ ∈ L1(Rn) by fϕ =∑
k∈Zn ϕ(k)1Kk

. The following assertions are equivalent:

(A) there exists C = C(F , n)> 0 such that for any g ∈ L1(Rn) and λ > 0,
we have ∣∣∣{ sup

ϕ∈F
fϕ ∗ g > λ

}∣∣∣ ≤ C

λ
‖g‖1;

(B) there exists C =C(F , n)> 0 such that for any M ∈N
∗, ψ ∈ 
1(Zn) and

λ > 0 we have

#
{
sup
ϕ∈F

DMϕ ∗ ψ > λ
}
≤ C

λ
‖ψ‖1;
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(C1) there exists C = C(F , n) > 0 such that for any ψ ∈ 
1(Zn) and any
λ > 0, we have

#
{
sup
ϕ∈F

ϕ ∗ ψ > λ
}
≤ C

λ
‖ψ‖1;

(CM) there exists C = C(F , n) > 0 such that for any M ∈ N
∗, ψ ∈ 
1(Zn)

and λ > 0, we have

#
{
sup
ϕ∈F

ΔMϕ ∗ψ > λ
}
≤ C

λ
‖ψ‖1.

We shall prove the following series of implications: (B) ⇒ (A) ⇒ (B) ⇒
(C1)⇒ (CM)⇒ (B).

Proof that (B) implies (A). We will need the following observation. Given
k, l ∈ Z

n we let Ek,l := {x ∈R
n : |Kk ∩ (x−Kl)|> 0} and 1k,l := 1Ek,l

.

Claim 43. For each k, l ∈ Z
n, we have 1k,l ≤ 1Kk+l+K0 .

Proof. Assuming that x ∈ R
n satisfies |Kk ∩ (x − Kl)| > 0, observe that

we can find y ∈ K0 for which x − (l + y) ∈ Kk. In particular we have x ∈
Kk+l + y ⊆Kk+l +K0. �

We now turn on to show that (B) implies (A). Begin by observing that the
family

D =
{
DMfψ : M ∈N

∗, ψ ∈ 
1
(
Z
n
)}

is dense in L1(Rn) (to see this, notice that the latter collection is that of all
step functions in L1(Rn) subordinate to a regular grid centered at 0 whose
step is the inverse of a positive integer). It is then sufficient to show (B) for
functions g ∈ D .

On the other hand, taking g = fψ with ψ ∈ 
1(Zn), we compute for ϕ ∈ F ,
M ∈N

∗ and x ∈R
n:

fϕ ∗DMfψ(x) =

∫
Rn

fϕ(y)fψ
(
M(x− y)

)
Mn dy

=Mn

∫
Rn

M−nfϕ
(
M−1(Mx− z)

)
fψ(z)dz

=DM
((
DM−1

fϕ
)
∗ fψ

)
(x);

while on the other hand

DM−1

fϕ(x) =M−n
∑
l∈Zn

ϕ(l)1Kl

(
M−1x

)
=M−n

∑
l∈Zn

ϕ(l)1MKl
(x).

Yet we have

fDMϕ(x) =
∑
k∈Zn

DMϕ(k)1Kk
(x)

=M−n
∑
k∈Zn

∑
l∈Zn

ϕ(l)1MKl
(k)1Kk

(x)
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=M−n
∑
l∈Zn

ϕ(l)
∑
k∈Zn

1MKl
(k)1Kk

(x)

=M−n
∑
l∈Zn

ϕ(l)1MKl
(x),

so that finally

fϕ ∗DMfψ =DM (fDMϕ ∗ fψ).
Now fix η > 0 and ψ ∈ 
1(Zn). Assuming that x ∈R

n satisfies

fDMϕ ∗ fψ(x)> η

for some ϕ ∈ ϕ, observe that we have∑
k,l∈Zn

1Kk,l+K0(x)DMϕ(k)ψ(l) ≥
∑

k,l∈Zn

1k,l(x)DMϕ(k)ψ(l)(9)

= fDMϕ ∗ fψ(x)> η.

We now denote by Cn the collection of all subsets of {1,2, . . . , n} and we

observe that #Cn = 2n. Given x ∈R
n and γ ∈ Cn, we let [x]γ satisfy [x]

(i)
γ =

[x(i)]− 1 in case i ∈ γ and [x]
(i)
γ = [x(i)] otherwise. In particular, [x]∅ = [x].

Observing that for each γ ∈ Cn, we have

x ∈Kk+l +K0 for each k, l ∈ Z
n with k+ l= [x]γ ,

we write∑
k,l∈Zn

1Kk,l+K0(x)DMϕ(k)ψ(l) =
∑
γ∈Cn

∑
k∈Zn

DMϕ(k)ψ
(
[x]γ − k

)
,

and infer from (9) that

DMϕ ∗ ψ
(
[x]γ

)
=

∑
k∈Zn

DMϕ(k)ψ
(
[x]γ − k

)
>

η

2n
,

for at least one γ ∈ Cn.
Fix now λ > 0 and ψ ∈ 
1(Zn). We define for each M ∈N

∗:

BM =
{
x ∈R

n : sup
ϕ∈F

fϕ ∗DMfψ(x)> λ
}

=
{
x ∈R

n : sup
ϕ∈F

DM (fDMϕ ∗ fψ)(x)> λ
}

=

{
x ∈R

n : sup
ϕ∈F

fDMϕ ∗ fψ(Mx)>
λ

Mn

}

=M−1

{
y ∈R

n : sup
ϕ∈F

fDMϕ ∗ fψ(y)>
λ

Mn

}
.
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Calling B′
M the latter set, we now observe (applying what precedes to η =

λ/Mn) that

B′
M ⊆

⋃
γ∈Cn

{
x ∈R

n : sup
ϕ∈F

DMϕ ∗ψ
(
[x]γ

)
>

λ

(2M)n

}
,

and we see by (B) that∣∣B′
M

∣∣ ≤ ∑
γ∈Cn

#

{
k : sup

ϕ∈F
DMϕ ∗ψ(k)> λ

(2M)n

}

≤Mn 4
nC

λ
‖ψ‖1 =MnC

′

λ
‖ψ‖1.

Hence,

|BM | ≤M−n
∣∣B′

M

∣∣ ≤ C ′

λ
‖fψ‖1 =

C ′

λ

∥∥DMfψ
∥∥
1
.

This yields (A). �

Proof that (A) implies (B). Fix M ∈N
∗, ψ ∈ 
1(Zn) and compute for ϕ ∈

F and j ∈ Z
n:

DMϕ ∗ψ(j) =
∑
l∈Zn

DMϕ(l)ψ(j − l)

=M−n
∑
l∈Zn

∑
k∈Zn

ϕ(k)1MKk
(l)ψ(j − l)

=M−n
∑
k∈Zn

ϕ(k)
∑
l∈Zn

ψ(l)1MKk
(j − l)

=M−n
∑
k∈Zn

ϕ(k)
∑
l∈Zn

ψ(l)1l+MKk
(j).

Define for each i ∈N
∗ a function gMi ∈ L1(Rn) by

gMi (x) =M−n
∑
k∈Zn

ψ(k)ρi

(
x− k

M

)
.

We hence compute for ϕ ∈ F and x ∈R
n:

fϕ ∗ gMi (x) =

∫
Rn

fϕ(y)g
M
i (x− y)dy

=M−n
∑
k∈Zn

ϕ(k)
∑
l∈Zn

ψ(l)

∫
Rn

1Kk
(y)ρi

(
x− y− l

M

)
dy

=M−n
∑
k∈Zn

ϕ(k)
∑
l∈Zn

ψ(l)

∫
Rn

ρi(x− z)1 l
M +Kk

(z)dz

=M−n
∑
k∈Zn

ϕ(k)
∑
l∈Zn

ψ(l)ρi ∗ 1 l
M +Kk

(x).
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Assume now that λ > 0 is given and that j ∈ Z
n is such that for some

ϕ ∈ F we have

DMϕ ∗ ψ(j) =M−n
∑
k∈Zn

ϕ(k)
∑
l∈Zn

ψ(l)1l+MKk
(j)> λ.

Claim 44. If k, l ∈ Z
n are such that 1l+MKk

(j) = 1, then for each x ∈
( 1
MKj)i we have

ρi ∗ 1 l
M +Kk

(x) = 1.

Proof. Noticing to begin with that 1l+MKk
(j) = 1 implies that l ∈ j −

MKk. Observe now that:

(1) j −MKk is a left-open cube,
(2) for each x ∈ 1

MKj , each coordinate of Mx− j belongs to [0,1),
(3) l has integer coordinates;

we see that l ∈Mx−MKk for each x ∈ 1
MKj .

On the other hand from 1l+MKk
(j) = 1 we also infer that j ∈ l+MKk; as

l+MKk is a right-open cube in R
n, we hence infer that Kj ⊆ l+MKk, and

thus
1

M
Kj ⊆

l

M
+Kk;

from which it follows that for any x ∈ ( 1
MKj)i we have

dist

(
x,∂

(
l

M
+Kk

))
> 2−i.

It then follows from property (R2) that ρi ∗ 1 l
M +Kk

(x) = 1. The claim is

proved. �

According to the previous claim we thus have for each x ∈ ( 1
MKj)i:

fϕ ∗ gMi (x) =M−n
∑
k∈Zn

ϕ(k)
∑
l∈Zn

ψ(l)ρi ∗ 1 l
M +Kk

(x)

≥M−n
∑
k∈Zn

ϕ(k)
∑
l∈Zn

ψ(l)1l+MKk
(j)> λ.

Letting ελ = {j ∈ Z
n : supϕ∈F ϕ ∗ ψ(j)> λ} we get from the preceding com-

putations that⋃
j∈ελ

(
1

M
Kj

)
i

⊆
{
x ∈R

n : sup
ϕ∈F

(
fϕ ∗ gMi

)
(x)> λ

}
,

which yields in particular

M−n

(
1− 1

2iM

)n

#ελ ≤
∣∣∣{x ∈R

n : sup
ϕ∈F

(
fϕ ∗ gMi

)
(x)> λ

}∣∣∣
≤ C

λ

∥∥gMi ∥∥
1
≤M−nC

λ
‖ψ‖1,
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and (B) follows since i is arbitrary. �

Proof that (B) implies (C1). This is obvious, for it it sufficient to takeM =
1 in (B). �

Proof that (C1) implies (CM). We will make use of the following simple
fact.

Claim 45. Fix M ∈N
∗ and ψj ∈ 
1(Zn), j ∈K

M
0 . Then for k ∈ q +MZ

n,
q ∈K

M
0 , we have

sup
ϕ∈F

∑
j∈KM

0

δj ∗ (ΔMϕ ∗ΔMψj) = sup
ϕ∈F

ΔMϕ ∗ΔMψq(k− q).

Proof. Fix k ∈ Z
n and choose q ∈ K

M
0 and r ∈ Z

n for which k = q +Mr.
For each ϕ ∈ F we have∑

j∈KM
0

δj ∗ (ΔMϕ ∗ΔMψj)(k) =
∑

j∈KM
0

∑
l∈Zn

δj(l)ΔMϕ ∗ΔMψj(k− l)

=
∑

j∈KM
0

ΔMϕ ∗ΔMψj(k− j)

=
∑

{j∈KM
0 :k−j∈MZn}

ΔMϕ ∗ΔMψj(k− j)

= ΔMϕ ∗ΔMψq(k− q),

in particular,

sup
ϕ∈F

∑
j∈KM

0

δj ∗ (ΔMϕ ∗ΔMψj)(k) = sup
ϕ∈F

(ΔMϕ ∗ΔMψq)(k− q);

the claim is proved. �

We now show that (C1) implies condition (CM); to that purpose, call C > 0
the constant appearing in (C1). It is then obvious that for each M ∈N

∗ and
each ψ ∈ 
1(Zn) with suppψ ⊆MZ

n, we have for each λ > 0:

#
{
sup
ϕ∈F

ΔMϕ ∗ψ > λ
}
≤ C

λ
‖ψ‖1.

Given ψ ∈ 
1(Zn), M ∈N
∗ and j ∈K

M
0 , define ψM

j ∈ 
1(Zn) by

ψM
j (k) = ψ(j +Mk).

Observe that
∑

j∈KM
0
‖ψM

j ‖1 = ‖ψ‖1 and

ψ =
∑

j∈KM
0

δj ∗ΔMψj .
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In particular, we compute for λ > 0 and ψ ∈ 
1(Zn), according to Claim 45:

#
{
k ∈ Z

n : sup
ϕ∈F

ΔMϕ ∗ ψ(k)> λ
}

=
∑

q∈KM
0

#
{
k ∈ q+MZ

n : sup
ϕ∈F

ΔMϕ ∗ΔMψM
q (k− q)> λ

}

=
∑

q∈KM
0

#
{
l ∈MZ

n : sup
ϕ∈F

ΔMϕ ∗ΔMψM
q (l)> λ

}

≤ C

λ

∑
q∈KM

0

∥∥ΔMψM
q

∥∥
1

=
C

λ

∑
q∈KM

0

∥∥ψM
q

∥∥
1

=
C

λ
‖ψ‖1;

which establishes (CM). �

Proof that (CM) implies (B). The following easy fact will be useful in the
sequel.

Claim 46. For any ψ ∈ 
1(Zn), we have ‖αM ∗ψ‖1 ≤ ‖ψ‖1.

Proof. We easily compute

‖αM ∗ ψ‖1 =M−n
∑
k∈Zn

∣∣∣∣ ∑
l∈KM

0

ψ(k− l)

∣∣∣∣ ≤M−n
∑
l∈KM

0

∑
k∈Zn

∣∣ψ(k− l)
∣∣ = ‖ψ‖1.

The claim is proved. �

We will also need the following fact.

Claim 47. For each φ ∈ 
1(Zn) and each M ∈ N
∗, we have DMφ= αM ∗

ΔMφ.

Proof. To prove this claim, fix j ∈ Z
n and k ∈K

M
j . Compute then

αM ∗ΔMϕ(k) =
∑
l∈Zn

αM (l)ΔMϕ(k− l),(10)

=M−n
∑

{l∈KM
0 :k−l∈MZn}

ϕ

(
k− l

M

)

=M−nϕ

(
k− (k− jM)

M

)
=M−nϕ(j)

=DMϕ(k);
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where (10) comes from the fact that the only l ∈K
M
0 for which k − l ∈MZ

n

is the vector l= k−Mj. �
We are now able to prove that condition (CM) implies condition (B): to

that purpose assume that (CM) holds and compute for ψ ∈ 
1(Zn) and λ > 0
(using (CM) together with the previous claims):

#
{
sup
ϕ∈F

DMϕ ∗ψ > λ
}
= #

{
sup
ϕ∈F

ΔMϕ ∗ (αM ∗ ψ)> λ
}

≤ C

λ
‖αM ∗ ψ‖1 ≤

C

λ
‖ψ‖1.

Hence, (B) is proved. �
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