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ON THE BEHAVIOR OF THE COVARIANCE MATRICES IN
A MULTIVARIATE CENTRAL LIMIT THEOREM UNDER

SOME MIXING CONDITIONS

RICHARD C. BRADLEY

Abstract. In a paper that appeared in 2010, C. Tone proved
a multivariate central limit theorem for some strictly station-
ary random fields of random vectors satisfying certain mixing

conditions. The “normalization” of a given “partial sum” (or

“block sum”) involved matrix multiplication by a “standard −1/2

power” of its covariance matrix (a symmetric, positive definite

matrix), and the limiting multivariate normal distribution had

the identity matrix as its covariance matrix. The mixing as-
sumptions in Tone’s result implicitly imposed an upper bound

on the ratios of the largest to the smallest eigenvalues in the co-
variance matrices of the partial sums. The purpose of this note

is to show that in Tone’s result, for the entire collection of the

covariance matrices of the partial sums, there is essentially no

other restriction on the relative magnitudes of the eigenvalues or

on the (orthogonal) directions of the corresponding eigenvectors.

For simplicity, the example given in this note will involve just
random sequences, not the broader context of random fields.

1. Introduction

A multivariate central limit theorem was proved by C. Tone [26] for some
strictly stationary random fields of random vectors satisfying certain mixing
conditions. As in a somewhat related result in [6] under different dependence
assumptions, the “normalization” of a given “partial sum” (or “block sum”)
involved matrix multiplication by a “standard −1/2 power” of its covariance
matrix (a symmetric, positive definite matrix), and the limiting multivariate
normal distribution had the identity matrix as its covariance matrix. (More
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on that below.) The mixing assumptions in Tone’s [26] result implicitly im-

posed an upper bound on the ratios of the largest to the smallest eigenvalues

in the covariance matrices of the partial sums. The purpose of this note is to

show that in Tone’s result, for the entire collection of the covariance matrices

of the partial sums, there is essentially no other restriction on the relative

magnitudes of the eigenvalues or on the (orthogonal) directions of the cor-

responding eigenvectors. This will be elucidated with an example described

in Theorem 1.4 below, after a special case of Tone’s result is stated in The-

orem 1.3. For simplicity, our attention in this note will be confined to just

sequences (of random vectors), instead of the broader context of random fields.

First, Notations 1.1 and 1.2 will give some definitions and notations and

will also briefly review some well known, standard, elementary mathematics

that will be needed.

Notations 1.1. In what follows, the entries of matrices are real numbers.

The transpose of any given matrix M will be denoted M t.

Now suppose m is a positive integer. In some of the notations below, the

dependence on this given positive integer m will be tacitly understood and

not indicated explicitly.

(A) A given element x ∈Rm will be represented as a “column vector” (an

m × 1 matrix): x := [x1, x2, . . . , xm]t. For such an x, denote the Euclidean
norm as ‖x‖ := (x2

1 + x2
2 + · · · + x2

m)1/2. The origin in Rm will be denoted

0m := [0,0, . . . ,0]t.

(B) A symmetric m×m matrix A is “positive semi-definite” if xtAx ≥ 0

for all x ∈Rm, and A is “positive definite” if xtAx> 0 (strict inequality) for

all x ∈Rm − {0m}.
(C) If A is a symmetric, positive definite (hence nonsingular) m×m matrix

and r is a real number, then Ar denotes the symmetric, positive definite “rth

power” matrix of A.

(It is of course defined by Ar := UDrU t where (i) U is an (m×m) orthog-

onal matrix and D a diagonal matrix such that A= UDU t and (ii) Dr is the

diagonal matrix in which, for each i ∈ {1, . . . ,m}, the ith diagonal element

is dri where di (a positive number, an eigenvalue of A) is the ith diagonal

element of D. The matrix Ar will thereby be uniquely defined, even though

in general the choice of matrices U and D in this procedure is not unique.)

(D) For any given symmetric, positive definite m×m matrix A= (aij ,1≤
i, j ≤m), define the following two quantities:

ηmin(A) := min
x∈Rm:‖x‖=1

xtAx, and(1.1)

ηmax(A) := max
x∈Rm:‖x‖=1

xtAx.(1.2)
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In (1.1)–(1.2), the min and max are both achieved for elements x on the unit
sphere, and they are equal respectively to the smallest and largest eigenvalues
of A. Each entry aij of A satisfies |aij | ≤ ηmax(A).

(E) For any two positive numbers a and b such that a < b, let Λ(m,a,b)

denote the set of all symmetric, positive definite m × m matrices A such
that a ≤ ηmin(A) ≤ ηmax(A) ≤ b (that is, the set of all such matrices whose
eigenvalues are all between a and b inclusive).

(F) For each ε > 0, let B
(m)
sym[ε] denote the set of all symmetric (not neces-

sarily positive semi-definite) m×m matrices B := (bij ,1≤ i, j ≤m) such that
|bij | ≤ ε for all (i, j) ∈ {1, . . . ,m}2.

(G) If a, b, and ε are positive numbers such that mε < a < b, and A ∈
Λ(m,a,b) and B ∈B

(m)
sym[ε], then A+B ∈ Λ(m,a−mε,b+mε). (The point is that

for such a B, if x ∈ Rm is such that ‖x‖ = 1, then |xtBx| ≤ mε simply by
persistent trivial applications of the Cauchy inequality |ytz| ≤ ‖y‖ · ‖z‖ for
y, z ∈Rm.)

Notations 1.2. Now suppose (Ω,F , P ) is a probability space. Again sup-
pose m is a positive integer.

(A) An “Rm-valued random variable” is a random vector with m (random
real) coordinates. Such random vectors V will be represented as “random
column vectors” (i.e., m× 1 random matrices): V := [V1, V2, . . . , Vm]t.

In the case where E‖V ‖2 <∞ (that is, EV 2
i <∞ for each i ∈ {1, . . . ,m}—

recall Notations 1.1(A)), the (m×m) covariance matrix of V will be denoted
ΣV . If also EV = 0m (that is, EVi = 0 for each i), then one has the trivial
representation ΣV = EV V t. The matrix ΣV is of course (symmetric and)
positive semi-definite. (In the mean 0m case, recall that for any x ∈ Rm,
xtΣV x=E(xtV )(xtV )t =E(xtV )2 ≥ 0.)

(B) Suppose X := (Xk, k ∈ Z) is a strictly stationary sequence of Rm-
valued random variables. For each n ∈ N, define the partial sum (again, a
“random m× 1 column vector”) Sn = S(X,n) :=X1 +X2 + · · ·+Xn. (Here
and below, N denotes the set of all positive integers.)

Our work will involve the case where EX0 = 0m and E‖X0‖2 <∞. For
typographical convenience, the covariance matrix of X0 will be written ΣX(0),
and for each n ∈ N, the covariance matrix of the normalized partial sum
n−1/2Sn will be written (with perhaps slight abuse of notation) as ΣS(X,n)/

√
n

(it is of course equal to n−1ΣS(X,n)).
(C) Next, let us turn to measures of dependence. For any two σ-fields A

and B (⊂F), define the following four measures of dependence: First, define

α(A,B) := sup
A∈A,B∈B

∣∣P (A∩B)− P (A)P (B)
∣∣.(1.3)

Next, define the “maximal correlation coefficient” [10]

ρ(A,B) := sup
∣∣Corr(g,h)∣∣,(1.4)
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where the supremum is taken over all pairs of real-valued, square-integrable
random variables g and h such that g is A-measurable and h is B-measurable.
Finally, define

β(A,B) := sup
1

2

I∑
i=1

J∑
j=1

∣∣P (Ai ∩Bj)− P (Ai)P (Bj)
∣∣(1.5)

as well as the “coefficient of information” (see, e.g., [21] or [13])

I(A,B) := sup
I∑

i=1

J∑
j=1

P (Ai ∩Bj) log

(
P (Ai ∩Bj)

P (Ai)P (Bj)

)
,(1.6)

where in each of (1.5) and (1.6) the supremum is taken over all pairs of finite
partitions {A1,A2, . . . ,AI} and {B1,B2, . . . ,BJ} of Ω such that Ai ∈ A for
each i and Bj ∈ B for each j. (Here and below, “log” denotes the natural
logarithm.) In (1.6), the summand is taken to be 0 if either P (Ai) or P (Bj)
is 0. It is well known (see, e.g., [3, v1, Proposition 3.11 and Theorem 5.3(III)])
that for any two σ-fields A and B,

4α(A,B) ≤ ρ(A,B), and(1.7)

2α(A,B) ≤ β(A,B)≤
√

I(A,B).(1.8)

(D) Now again suppose X := (Xk, k ∈Z) is a strictly stationary sequence of
Rm-valued random variables. (No assumptions on moments.) For any integer

j, define the σ-fields Fj
−∞ := σ(Xk, k ≤ j) and F∞

j := σ(Xk, k ≥ j). (Here and
below, σ(· · · ) denotes the σ-field ⊂F generated by (· · · ).) For each positive
integer n, define the following five dependence coefficients:

α(n) = α(X,n) := α
(
F0

−∞,F∞
n

)
;(1.9)

ρ(n) = ρ(X,n) := ρ
(
F0

−∞,F∞
n

)
;(1.10)

β(n) = β(X,n) := β
(
F0

−∞,F∞
n

)
;(1.11)

I(n) = I(X,n) := I
(
F0

−∞,F∞
n

)
; and(1.12)

ρ∗(n) = ρ∗(X,n) := supρ
(
σ(Xk, k ∈ Γ), σ(Xk, k ∈Δ)

)
(1.13)

where the supremum in (1.13) is taken over all pairs of nonempty, disjoint
subsets Γ and Δ of Z such that dist(Γ,Δ) :=ming∈Γ,h∈Δ |g−h| ≥ n. (The sets
Γ and Δ can be “interlaced,” i.e., with each one containing elements between
ones in the other set.) Of course by strict stationarity, α(n) = α(Fj

−∞,F∞
j+n)

for any integer j; and the analogous comment applies to (1.10), (1.11), and
(1.12).

The given strictly stationary sequence X is said to satisfy

“strong mixing” [23] if α(n)→ 0 as n→∞,
“ρ-mixing” [15] if ρ(n)→ 0 as n→∞,
“absolute regularity” [29] if β(n)→ 0 as n→∞,
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“information regularity” [21], [29] if I(n)→ 0 as n→∞, and
“ρ∗-mixing” [24], [25] if ρ∗(n)→ 0 as n→∞.

(The mixing condition in [24] looked somewhat different from ρ∗-mixing, but
turned out to be equivalent to it in the context in that paper; see [3, v1,
Theorem 5.13].) By (1.7)–(1.8) and (1.9)–(1.13), the following implications
hold:

(i) ρ∗-mixing implies ρ-mixing,
(ii) ρ-mixing implies strong mixing,
(iii) information regularity implies absolute regularity, and
(iv) absolute regularity implies strong mixing.

With the possible exception of information regularity, all of these condi-
tions have played a major role in limit theory for weakly dependent random
variables; see, for example, the books [1], [3], [9], [17], and [22]. Informa-
tion regularity is sometimes a handy tool in the study of stationary Gaussian
sequences; see, for example, [13, Chapter 4] or [3, v3, Chapter 27].

Peligrad [19, Corollary 2.3] proved a central limit theorem for strictly sta-
tionary sequences of real-valued, square-integrable random variables satisfying
the dependence assumptions ρ∗(1)< 1 and α(n)→ 0 as n→∞. That result
was generalized to strictly stationary random fields of real-valued random
variables by Perera [20, Proposition 3] (with the sums being taken over a
broad class of sets of indices, not just “rectangular blocks”). It was gener-
alized again in [3, v3, Corollary 29.33]—again to strictly stationary random
fields of real-valued random variables—with another, less restrictive general-
ization (to random fields) of the dependence coefficient ρ∗(1) (but with the
sums taken over just the usual “rectangular blocks” of indices). Later, for an
arbitrary positive integer m, Tone [26, Theorem 1.1] generalized that latter
result to strictly stationary random fields of Rm-valued random variables. For
simplicity, we shall state her result here for just the special case of random
sequences:

Theorem 1.3 (Tone [26]; Peligrad [19] for m = 1). Suppose m is a pos-
itive integer. Suppose X := (Xk, k ∈ Z) is a strictly stationary sequence of
Rm-valued random variables such that EX0 = 0m and E‖X0‖2 < ∞, and
the covariance matrix ΣX(0) is positive definite (hence nonsingular). Suppose
also that ρ∗(X,1) < 1 and that α(X,n)→ 0 as n→∞. Then the following
two statements hold:

(1) For each n ∈ N, the covariance matrix ΣS(X,n) is positive definite
(hence, nonsingular).

(2) One has that (see Notations 1.1(C) and 1.2(A))

Σ
−1/2
S(X,n)S(X,n)⇒N(0m, Im) as n→∞.(1.14)
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Here in (1.14), the notation ⇒ means convergence in distribution on (the
Borel σ-field of) Rm, and the notation N(0m, Im) refers to the multivariate
normal distribution on Rm whose mean vector is 0m and whose covariance
matrix is the m×m identity matrix Im. The left-hand side of (1.14) is an
Rm-valued random variable (“random m× 1 column vector”) resulting from
the matrix multiplication indicated there.

Under different dependence assumptions, again in the more general context
of strictly stationary random fields, Bulinskii and Kryzhanovskaya [6, Equa-
tion (1.13) and Theorem 2] reformulated a multivariate central limit theorem
in [7] into the form (1.14), with the same use of the “standard −1/2 power”
of the covariance matrix ΣS(X,n) as “normalization,” and then treated a re-
lated central limit theorem of the form (1.14) involving the use of the “stan-

dard −1/2 power” of a sample covariance matrix Σ̂S(X,n) as “normalization.”
(Those results will not be treated further here.)

Here is our main result (recall Notations 1.1(E)).

Theorem 1.4. Suppose m is a positive integer. Suppose a, b and τ are
positive real numbers such that a < b. Then there exists a strictly stationary
Gaussian sequence X := (Xk, k ∈ Z) of Rm-valued, mean-0m random vari-
ables with the following properties:

(1) ρ∗(X,1)< 1.
(2) max{I(X,1), β(X,1), α(X,1), ρ(X,1)} ≤ τ .
(3) max{I(X,n), β(X,n), α(X,n), ρ(X,n)}→ 0 as n→∞.
(4) For every element (m×m matrix) G ∈Λ(m,a,b), there exists an infinite

set Q⊂N such that

ΣS(X,n)/
√
n →G as n→∞, n ∈Q.(1.15)

Statements (2) and (3) have some redundancy (see (1.7)–(1.8)), but that
is harmless. Of course (1.15) means that for every (i, j) ∈ {1,2, . . . ,m}2, the
(i, j)-entry of the matrix ΣS(X,n)/

√
n converges to the (i, j)-entry of the ma-

trix G as n → ∞, n ∈ Q. Also, the statement that X is a “Gaussian se-
quence” means of course that for any positive integer L and any distinct in-
tegers k(1), k(2), . . . , k(L), the joint distribution of the random vectors Xk(1),
Xk(2), . . . ,Xk(L) is a (possibly degenerate) multivariate normal distribution

on RLm.
Theorem 1.4 will be proved in Section 3, after some preliminary work is

done in Section 2. In the rest of Section 1 here, a few comments on this
theorem will be given.

Under the assumptions of Theorem 1.3, Tone [26, Claim 3.1] showed that
for the covariance matrices ΣS(X,n), the ratio of the largest to smallest eigen-
values is bounded, and that in fact there exists a pair of positive numbers
a < b such that ΣS(X,n)/

√
n ∈ Λ(m,a,b) for all n ∈N. Thus in property (4) in
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Theorem 1.4, the restriction to matrices in Λ(m,a,b) (for some pair of positive
numbers a < b) is unavoidable.

In Theorem 1.4, property (3) cannot be extended to include ρ∗(X,n)→ 0
as n → ∞, for that (in conjunction with certain other properties in Theo-
rem 1.4) would force the covariance matrices ΣS(X,n)/

√
n to converge to a

limiting matrix as n→∞ (a fact implicitly contained in another, somewhat
related result of Tone [27, Theorem 3.2]), contradicting property (4). Also,
in Theorem 1.4, the larger the ratio b/a is, the closer ρ∗(X,1) has to be to 1.
That insight ultimately goes back (in light of basic results in [15]) to work of
Moore [18] involving a closely related condition.

For random sequences and random fields respectively, classes of examples
constructed in [3, v3, Theorem 26.8] and [4, Theorem 1.9] “separate” various
different but related mixing assumptions used in [2], [3], [19], [20], [26], [27],
[28] and other related works. In particular, the latter class of examples (in
[4]) “separates” the two generalizations (to random fields) of the dependence
coefficient ρ∗(1) (in [20], and in [3] and [26]) implicitly alluded to prior to
Theorem 1.3.

In (1.15), regardless of whether or not the eigenvalues of G are simple,
one can trivially consider a further subsequence in which the eigenvalues and
m orthogonal unit eigenvectors of the matrices ΣS(X,n)/

√
n all converge; by

a simple calculation, their limits must be the eigenvalues and m orthogonal
unit eigenvectors of G. As a consequence, in Theorem 1.3, for the covari-
ance matrices ΣS(X,n), the relative magnitudes of the eigenvalues, and the
respective (orthogonal) directions of their eigenvectors, can range essentially
arbitrarily—within some upper bound (as noted above) on the ratio of the
largest to smallest eigenvalues. In this respect, Theorem 1.4 helps to “sep-
arate” Theorem 1.3 from other, more conventional multivariate central limit
theorems (such as the one in [27, Theorem 3.2] alluded to above) in which
there is a “limiting covariance matrix.”

It was noted above that in the special case of real-valued random variables
(i.e. m= 1), Theorem 1.3 boils down to a central limit theorem of Peligrad
[19]. The author [2] (see also [3, v3, Theorem 27.12]) gave a construction (a
variant of ones in [11] and [5]) that showed that in that result of Peligrad, the
growth of the variances need not be asymptotically linear, but can instead
“wobble” between two different linear rates of growth. That construction was
in spirit (though not fully in letter) a version of Theorem 1.4 for the case
m= 1 (real-valued random variables).

As was noted above, Theorem 1.3 is actually just a special case of a result of
Tone [26, Theorem 1.1], which in its full generality involved random fields (of
Rm-valued random variables) indexed by Zd for an arbitrary positive integer
d. By modifying the arguments below, one can prove a version of Theorem 1.4
for such random fields for arbitrary (m and) d. However, in the case d≥ 2,
for such a construction, the information in Theorem 1.4 that pertains to the
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dependence coefficients β(n) and I(n) unavoidably becomes false and has to
be omitted; see [3, v3, Theorem 29.9].

As a simple corollary of Theorem 1.4 itself, one can derive a version of
Theorem 1.4 in which the sequence X is not Gaussian. One can simply apply
Theorem 1.4 itself with a replaced by some number a′ ∈ (0, a), then fix ε > 0

such that a′+ε < a, and then replace Xk by Xk+[V
(1)
k , V

(2)
k , . . . , V

(m)
k ]t where

(V
(i)
k , k ∈ Z, i ∈ {1, . . . ,m}) is a family of independent, identically distributed

real-valued random variables, this family being independent of the sequence

X , with the V
(i)
k ’s each taking the values

√
ε and −√

ε with probability 1/2
each.

2. Preliminaries

This section will lay some groundwork for the proof, in Section 3, of The-
orem 1.4.

The random sequence X described in Theorem 1.4 will be constructed (in
Section 3) from a family of independent “building block” random sequences
of a relatively simple structure. The following lemma will play a role in that
process of “assembly.”

Lemma 2.1. Suppose (Ω,F , P ) is a probability space, L is a positive integer,
and A� and B�, 	 ∈ {1,2, . . . ,L} are σ-fields (⊂F) such that the σ-fields A� ∨
B�, 	 ∈ {1, . . . ,L} are independent. Then

ρ

(
L∨

�=1

A�,

L∨
�=1

B�

)
= max

1≤�≤L
ρ(A�,B�), and(2.1)

I

(
L∨

�=1

A�,

L∨
�=1

B�

)
=

L∑
�=1

I(A�,B�).(2.2)

Proofs of these equalities can be found for example, in [3, v1, Theorems 6.1
and 6.2(VIII)]. Equation (2.1) is due to Csáki and Fischer [8, Theorem 6.2].
Equation (2.2) is a classic fact from information theory; see, for example, its
role in Pinsker [21].

The “building blocks” for the construction (in Section 3) of the sequence X
for Theorem 1.4 will be stationary Gaussian sequences of centered real -valued
random variables. They will be identified (in Section 3) via a careful choice of
their spectral densities. The rest of Section 2 here will lay some groundwork
for that procedure.

Notations 2.2. With slight abuse of terminology, a real Borel function f
on [−π,π] will be said to be “symmetric” if f(−λ) = f(λ) for a.e. λ ∈ [−π,π].

(A) Suppose f is a real, nonnegative, Borel, symmetric, integrable function
on [−π,π]. Suppose W := (Wk, k ∈Z) is a strictly stationary sequence of real-
valued, centered, square-integrable random variables. Then f is a “spectral
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density function” for the sequence W if the following holds:

∀k ∈Z, EWkW0 =

∫ π

−π

eikλf(λ)
dλ

2π
.(2.3)

If W has a spectral density function, then it will be unique modulo sets of
Lebesgue measure 0. The convention on spectral density used here is as in
[3]; it differs by a factor of 2π from a more standard convention used in other
references.

(B) For each positive integer n, define the real, nonnegative, symmetric,
continuous function (the Fejér kernel) Fn on [−π,π] as follows:

Fn(λ) :=

{
(1/n) · [sin2(nλ/2)]/[sin2(λ/2)] if λ ∈ [−π,π]− {0},
n if λ= 0.

(2.4)

(C) It is well known that if W and f are as in (A) above, with f being the
spectral density function of W , then for each positive integer n,

E
[
(W1 +W2 + · · ·+Wn)/

√
n

]2
=

∫ π

−π

Fn(λ)f(λ)
dλ

2π
.(2.5)

See e.g. [3, v1, the Note after Lemma 8.18].

Lemma 2.3. Suppose W := (Wk, k ∈ Z) is a stationary real mean-zero
Gaussian random sequence that has a spectral density f on [−π,π] that is
bounded a.e. between two positive constants. Then ρ∗(W,1)< 1.

An elementary proof of this lemma can be found in [3, v1, Theorem 9.8(III)].
(It yields the inequality ρ∗(W,1)≤ 1− a/b where 0< a< b and a≤ f ≤ b a.e.
The sharper inequality ρ∗(W,1) ≤ (1− a/b)/(1 + a/b) holds as a result of a
more sophisticated argument of Moore [18] in a closely related context.)

The analysis that follows will now involve certain real, Borel, symmet-
ric functions f on [−π,π] that can take (perhaps even exclusively) negative
values—with the intent to use, for some such functions f later on, the positive
function λ �→ ef(λ) as the spectral density for a stationary Gaussian sequence.

Notations 2.4. (A) For any (not necessarily nonnegative) real, Borel,
square-integrable, symmetric function f on [−π,π], define the quantity

Ψ(f) :=
∞∑
k=1

kψ2
f,k,(2.6)

where for each k ∈N,

ψf,k := 2 ·
∫ π

−π

eikλf(λ)
dλ

2π
.(2.7)

Of course
∑∞

k=1ψ
2
f,k <∞; and with ψf,0 := (2π)−1

∫ π

−π
f(λ)dλ, one has that∑∞

k=0ψf,k cos(kλ) converges in L2 to f (and one can say more). However,
the quantity Ψ(f) may be infinite.
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(B) For any two real, Borel, square-integrable, symmetric functions f and
g on [−π,π], one has that ψf+g,k = ψf,k + ψg,k for each k (see (2.7)), and by

(2.6) and Minkowski’s inequality, [Ψ(f + g)]1/2 ≤ [Ψ(f)]1/2+[Ψ(g)]1/2 (where
if necessary, ∞1/2 :=∞).

(C) Suppose a and b are real numbers such that a < b. Suppose f, f1, f2,
f3, . . . is a sequence of real, Borel, symmetric functions on [−π,π] that are
each bounded a.e. between a and b, and fn → f a.e. as n → ∞. If τ is a
positive number and Ψ(fn)≤ τ for every n ∈N, then Ψ(f)≤ τ .

(This formulation is unnecessarily restrictive, but will fit our applications
later on. The point is that for each k, ψf(n),k (where f(n) means fn) converges

to ψf,k as n→∞, and hence for each positive integer L,
∑L

k=1 kψ
2
f,k ≤ τ , and

hence the same is true with L replaced by ∞.)
(D) If f is a real, Borel, square-integrable, symmetric function on [−π,π]

such that Ψ(f)<∞, then
∫ π

−π
ef(λ) dλ <∞. (This is a special case of a classic

result of Lebedev and Milin [16]. For a detailed exposition of this, see, for
example, [3, v3, Appendix, Theorem A2744(VII)].)

Lemma 2.5. For every ε > 0, there exists δ = δ(ε)> 0 such that the follow-
ing holds:

Suppose W := (Wk, k ∈ Z) is a stationary real mean-zero Gaussian ran-
dom sequence with a spectral density function g of the form g(λ) = ef(λ),
λ ∈ [−π,π], where f is a real, Borel, square-integrable, symmetric function on
[−π,π] such that Ψ(f)≤ δ; then I(W,1)≤ ε.

This lemma is implicitly contained in arguments of Ibragimov, Rozanov,
and Solev in [12], [14] (see also [13, Chapter 4]). A detailed, explicit proof of
this lemma can be found in [3, v3, Theorem 27.11].

Lemma 2.6. Suppose Υ1, and Υ2, and θ are real numbers such that

Υ1 < θ <Υ2.(2.8)

Suppose δ > 0 and ε > 0.
Suppose N is a positive integer.
Suppose f is a real, continuous, symmetric function on [−π,π] such that

Υ1 < f(λ)<Υ2 for all λ ∈ [−π,π] and(2.9)

Ψ(f) < δ.(2.10)

Then one has that there exists a real, continuous, symmetric function h=
h(f,Υ(1),Υ(2),θ,δ,ε,N) on [−π,π] (where the notations Υ(1) and Υ(2) mean Υ1

and Υ2) with the following five properties:

For every λ ∈ [−π,π], Υ1 < h(λ)<Υ2;(2.11)

Ψ(h)< δ;(2.12) ∣∣h(0)− θ
∣∣ < ε;(2.13)
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−π

∣∣h(λ)− f(λ)
∣∣dλ < ε; and(2.14)

for every n ∈ {1,2, . . . ,N},(2.15) ∣∣∣∣
∫ π

−π

Fn(λ) · eh(λ) dλ−
∫ π

−π

Fn(λ) · ef(λ) dλ
∣∣∣∣ < ε.

Proof. Refer to (2.8) and (2.9). We shall first carry out the proof of
Lemma 2.6 under the following extra assumption:

θ > f(0).(2.16)

Since f is (by assumption) continuous on the closed interval [−π,π], it
follows (see (2.8), (2.9), and (2.16)) that there exists a number c0 (henceforth
fixed) with the following three properties:

0< c0 <min
{
1, θ− f(0)

}
;(2.17)

Υ1 < f(λ)− c0 < f(λ) + c0 <Υ2 for all λ ∈ [−π,π]; and(2.18) ∣∣f(λ)− f(0)
∣∣<Υ2 − θ for all λ ∈ [−c0, c0].(2.19)

For each c ∈ (0, c0], define the positive numbers ac,k, k ∈N as follows:

ac,k :=

{
(c2/π) · (1/k) if k = 1 or 2,

(c2/π) · (1/k) · 1/(logk) if k ≥ 3.
(2.20)

Then for each c ∈ (0, c0], one has by (2.17) and (2.20) that

θ− f(0)> ac,1 > ac,2 > ac,3 > · · · ↓ 0(2.21)

and that
∑∞

k=1 ac,k = ∞. Accordingly, for each c ∈ (0, c0], let M(c) denote
the greatest positive integer such that (see the first inequality in (2.21))

M(c)∑
k=1

ac,k ≤ θ− f(0).(2.22)

For each c ∈ (0, c0], define the real, continuous, symmetric function gc on
[−π,π] as follows: For λ ∈ [−π,π],

gc(λ) :=

M(c)∑
k=1

ac,k cos(kλ).(2.23)

Now suppose c is an arbitrary fixed number such that c ∈ (0, c0]. From
(2.23), (2.20), the monotonicity in (2.21), and a standard fact for trigonomet-
ric series with nonnegative, monotonically decreasing coefficients (see [3, v3,
Appendix, Lemma A2712]—take the real parts there—or [30, p. 3, Theorem
2.2]), one has that for any λ ∈ [c, π],∣∣gc(λ)∣∣ ≤ (π/λ) · ac,1 = (π/λ) ·

(
c2/π

)
≤ c.
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Next, suppose for just a moment that λ ∈ (0, c]. Then 0< λ≤ c≤ c0 < 1 by
(2.17). Let I denote the positive integer such that I < 1/λ≤ I + 1. Then for
all k ∈ {1,2, . . . , I}, one has that kλ < 1 and hence cos(kλ)> 0. If M(c)≤ I ,
then it follows from (2.23) and (2.20) that gc(λ) > 0. If instead M(c) > I ,

then one has
∑I

k=1 ac,k cos(kλ)> 0 and (since 1≤ λ · (I +1)) again by (2.20),
(2.17), and the monotonicity in (2.21) (again see [3, v3, Lemma A2712] or
[30, p. 3])∣∣∣∣∣

M(c)∑
k=I+1

ac,k cos(kλ)

∣∣∣∣∣ ≤ (π/λ) · ac,I+1 ≤ (π/λ) ·
(
c2/π

)
·
(
1/(I + 1)

)
≤ c2 < c,

and hence gc(λ) ≥ −c by (2.23). Putting all these pieces together (see also
(2.22) and (2.23) again), one now has that∣∣gc(λ)∣∣ ≤ c for all λ ∈ [c, π]; and(2.24)

−c≤ gc(λ)≤
M(c)∑
k=1

ac,k ≤ θ− f(0) for all λ ∈ [0, c].(2.25)

(Equation (2.25) was shown above for λ ∈ (0, c]; it extends to λ= 0 by conti-
nuity of the function gc.) By (2.18), (2.24), and (2.18) again (keeping in mind
our ongoing assumption c ∈ (0, c0]), one has that for all λ ∈ [c, π],

Υ1 < f(λ)− c≤ f(λ) + gc(λ)≤ f(λ) + c <Υ2.

By (2.18), (2.25), and (2.19), for all λ ∈ [0, c],

Υ1 < f(λ)− c≤ f(λ) + gc(λ)≤ f(λ) + θ− f(0)<Υ2 − θ+ θ =Υ2.

Hence by symmetry, one now has that

Υ1 < f(λ) + gc(λ)<Υ2 for all λ ∈ [−π,π].(2.26)

Equations (2.24), (2.25), and (2.26) were shown for any arbitrary c ∈ (0, c0].
Our plan now is to let the function h be defined by

h := f + gc(2.27)

for some sufficiently small c ∈ (0, c0]. To start off, note that under (2.27) for
any given c ∈ (0, c0], (2.11) holds by (2.26).

Next, by (2.20), for each c ∈ (0, c0],

∞∑
k=1

k · a2c,k =
(
c4/π2

)
·
[
1 + (1/2) +

∞∑
k=3

1/
[
k(logk)2

]]
<∞;

and in fact the middle term converges to 0 as c→ 0+. Hence by (2.23) and
(2.6)–(2.7), Ψ(gc) → 0 as c → 0+. Hence by (2.10) and Notations 2.4(B),
[Ψ(f + gc)]

1/2 < δ1/2 for all c ∈ (0, c0] sufficiently small. Thus under (2.27),
Equation (2.12) holds for all c ∈ (0, c0] sufficiently small.
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Next, for each c ∈ (0, c0], by the definition of the positive integer M(c) (see
the entire sentence containing (2.22)), followed by (2.20), one has that

0≤
[
θ− f(0)

]
−

M(c)∑
k=1

ac,k <

M(c)+1∑
k=1

ac,k −
M(c)∑
k=1

ac,k = ac,M(c)+1 ≤ c2/π.

That is, by (2.23), 0≤ [θ−f(0)]−gc(0)< c2/π, that is, 0≤ θ− [f(0)+gc(0)]<
c2/π. Hence under (2.27), Equation (2.13) holds for all c ∈ (0, c0] sufficiently
small.

Next, by (2.24) and symmetry, for every λ ∈ [−π,π] − {0}, gc(λ) → 0 as
c → 0+. Hence by (2.9), (2.26), and dominated convergence, (2.14) holds
(under (2.27)) for all c ∈ (0, c0] sufficiently small. Also, since each Fejér kernel
(see (2.4)) is bounded, and by (2.9) and (2.26) the functions exp(f(λ)) and
exp(f(λ) + gc(λ)) (for c ∈ (0, c0]) are uniformly bounded (between expΥ1

and expΥ2), one has by dominated convergence that (under (2.27)) Equation
(2.15) holds for all c ∈ (0, c0] sufficiently small. Thus under (2.27), Equations
(2.11)–(2.15) hold for all c ∈ (0, c0] sufficiently small. Thus, Lemma 2.6 holds
under the extra assumption (2.16).

It will be useful to note that, again under the extra assumption (2.16), one
can expand the statement of Lemma 2.6 to include the following variant of
(2.15):

For every n ∈ {1,2, . . . ,N},(2.28) ∣∣∣∣
∫ π

−π

Fn(λ) · e−h(λ) dλ−
∫ π

−π

Fn(λ) · e−f(λ) dλ

∣∣∣∣ < ε.

To accomplish this, one shows that under (2.27), Equation (2.28) holds for
all c ∈ (0, c0] sufficiently small. The argument is essentially the same as the
corresponding one for (2.15) in the preceding paragraph.

Now let us briefly take care of the cases where (2.16) does not hold. Refer
to (2.8) and (2.9) again. If θ = f(0), then let h := f and we are done. Finally,
if θ < f(0), then by replacing Υ1, Υ2, θ, and f by −Υ2, −Υ1, −θ, and −f
(note that Ψ(−f) = Ψ(f) by (2.6)–(2.7)), one trivially converts to the case

where (2.16) holds. (The resulting function, say h̃, is then multiplied by −1
to produce the final function h. In order for (2.15) to result at the end of this
“trivial conversion argument,” it was vital to derive the “extra” fact (2.28)
at the end of the argument under (2.16) above.) That completes the proof of
Lemma 2.6. �

3. Proof of Theorem 1.4

The proof will be written out here for the case m≥ 2. (The argument for
the case m= 1 is similar but less complicated.) The proof will be divided into
several “steps.” (One of those “steps” will be a “lemma.”)
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Step 3.1. Refer to the statement of Theorem 1.4. Decreasing τ and/or a
and/or increasing b if necessary, we assume without loss of generality that

0 < a< 1< b and(3.1)

0 < τ < 1.(3.2)

Let us identify the set of all (real) m×m matrices with Rm2

(with each

entry in the matrix identified with a coordinate in Rm2

). The set Rm2

is

separable. Hence, every nonempty subset of Rm2

is separable (an elementary

fact—see for example, [3, v3, Appendix, Lemma A3101]). Accordingly, let Λ̃
be a countable dense subset of Λ(m,a,b). Let G1,G2,G3, . . . be a sequence of

elements of Λ̃ such that (for convenience) each element of Λ̃ is listed infinitely
many times in that sequence.

In order to prove Theorem 1.4, it suffices to construct a strictly stationary,
mean-0m Gaussian sequence X := (Xk, k ∈Z) of Rm-valued random variables
such that properties (1), (2), and (3) in Theorem 1.4 hold as well as the follow-
ing property: (4′) There exists a strictly increasing sequence (N1,N2,N3, . . . )
of positive integers, and a positive number Θ, such that (recall Notations
1.1(F)) for all n ∈N sufficiently large,

Σ
S(X,N(n))/

√
N(n)

−Gn ∈B(m)
sym

[
2−nΘ

]
.(3.3)

(Here and throughout the rest of this note, when the notation Nn appears in a
subscript, it will be written N(n) for typographical convenience.) It will then

follow trivially that each member G ∈ Λ̃ would be the limit of a subsequence
of the matrices Σ

S(X,N(n))/
√

N(n)
(for the integers n such that Gn =G); and

property (4) in Theorem 1.4 would then follow as an easy consequence.
We shall return to the matrices Gn in Step 3.5 below.

Step 3.2. Refer again to (3.1). In what follows, for convenience, our at-
tention will be “expanded” from Λ(m,a,b) to Λ(m,a/2,2b).

Define the positive number

γ := a/
(
20m2

)
.(3.4)

Define the (“lattice”) set

L := {. . . ,−3γ,−2γ,−γ,0, γ,2γ,3γ, . . .}(3.5)

(that is, the set of all real numbers of the form kγ, k ∈ Z). Let ΛL denote
the set of all m×m matrices H := (hij ,1≤ i, j ≤m) ∈ Λ(m,a/2,2b) such that

hij ∈ L for every (i, j) ∈ {1, . . . ,m}2. By Notations 1.1(D), (E) (see the second
sentence after (1.2)), the set Λ(m,a/2,2b) is bounded (as represented as a subset

of Rm2

). It follows that ΛL is a finite set. Of course the set ΛL is nonempty.
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(For example, cIm ∈ ΛL where c is an element of L such that a/2< c < a—
such a c exists by (3.4).) Define the positive integer

L := cardΛL.(3.6)

Let the elements of ΛL be denoted as Q
(1)
1 ,Q

(1)
2 , . . . ,Q

(1)
L , with the represen-

tation

Q
(1)
� :=

(
q
(1)
�ij ,1≤ i, j ≤m

)
(3.7)

for 	 ∈ {1,2, . . . ,L}. These matrices Q
(1)
� are of course symmetric and positive

definite (since they belong to Λ(m,a/2,2b)).

Step 3.3. Two other classes of matrices will be needed. (These matrices
will be symmetric but not positive definite.)

For each u ∈ {1, . . . ,m}, let Q(2)
u := (q

(2)
uij ,1≤ i, j ≤m) denote the (symmet-

ric) m×m matrix defined by

q
(2)
uij :=

{
1 if (i, j) = (u,u),

0 for all other (i, j).
(3.8)

Now recall the assumption m≥ 2 made in the first sentence of Section 3.
Let T denote the set of all ordered pairs (u, v) ∈ {1, . . . ,m}2 such that u < v.

For each ordered pair (u, v) ∈ T, let Q
(3)
uv := (q

(3)
uvij ,1 ≤ i, j ≤ m) denote the

(symmetric) m×m matrix defined by

q
(3)
uvij :=

{
1 if (i, j) ∈ {(u,u), (u, v), (v,u), (v, v)},
0 for all other (i, j).

(3.9)

Now to set the stage for the next lemma (and for some other calculations
below), note that trivially by (3.1) and (3.4), γ/(2bL)< γ < 10mγ < 1.

Lemma 3.4. For every matrix G ∈Λ(m,a,b), there exists an array

c = c(G)(3.10)

:=
{
c
(1)
� , 	 ∈ {1,2, . . . ,L}; c(2)u , u ∈ {1,2, . . . ,m}; c(3)uv , (u, v) ∈T

}
of positive numbers such that the following statements hold:

∀	 ∈ {1, . . . ,L}, γ/(2bL)≤ c
(1)
� ≤ 1;(3.11)

∀u ∈ {1, . . . ,m}, 2mγ ≤ c(2)u ≤ 10mγ;(3.12)

∀(u, v) ∈T, 2γ ≤ c(3)uv ≤ 5γ;(3.13)

and

G=

L∑
�=1

c
(1)
� Q

(1)
� +

m∑
u=1

c(2)u Q(2)
u +

∑
(u,v)∈T

c(3)uvQ
(3)
uv .(3.14)



692 R. C. BRADLEY

Proof. Represent the matrix G by

G := (gij ,1≤ i, j ≤m).(3.15)

Of course by the hypothesis and Notations 1.1(E), G is symmetric. For each
(i, j) ∈ {1, . . . ,m}2, let κij denote the integer such that (see (3.4))

κijγ ≤ gij < (κij + 1)γ.(3.16)

Then κij = κji. Define the (symmetric) m×m matrix H := (hij ,1≤ i, j ≤m)
as follows:

∀i ∈ {1, . . . ,m}, hii := (κii − 8m)γ; and(3.17)

∀(i, j) ∈T, hij = hji := (κij − 3)γ.(3.18)

Now for each (i, j) ∈ {1, . . . ,m}2,
|gij − hij | ≤ |gij − κijγ|+ |κijγ − hij |.(3.19)

In the right-hand side of (3.19), the first term is bounded above by γ (by
(3.16)), and the second term is either 8mγ (if i= j) or 3γ (if i �= j), by (3.17)–

(3.18). Hence, G−H ∈B
(m)
sym[9mγ]. Recall from (3.4) and (3.1) that 9m2γ <

a/2 < b. Since (by hypothesis) G ∈ Λ(m,a,b), it now follows from Notations
1.1(G) that H ∈ Λ(m,a/2,2b). Hence, by (3.17)–(3.18) and the sentence after
(3.5), H ∈ ΛL. Accordingly (see the sentence after (3.6)), let 	′ denote the
element of {1, . . . ,L} such that

Q
(1)
�′ =H.(3.20)

Define the array c= c(G) in (3.10) (in a slightly unconventional order) as
follows: First,

c
(1)
�′ := 1 and ∀	 ∈ {1, . . . ,L} −

{
	′

}
, c

(1)
� := γ/(2bL).(3.21)

Next, for convenience, referring to (3.7), define the m×m symmetric matrix
S := (sij ,1≤ i, j ≤m) as follows:

∀(i, j) ∈ {1, . . . ,m}2, sij :=
∑

�∈{1,...,L}−{�′}
c
(1)
� q

(1)
�ij .(3.22)

(By (3.21), S = [γ/(2bL)]
∑

�∈{1,...,L}−{�′}Q
(1)
� ; however, the form (3.22) will

be a little more natural for the calculations that follow.) Next, use S to
continue the definition of the array in (3.10) as follows:

∀(u, v) ∈T, c(3)uv := [guv − huv]− suv.(3.23)

Finally, use (3.23) itself to complete the definition of the array in (3.10) as
follows:

∀u ∈ {1, . . . ,m}, c(2)u := [guu − huu]− suu −
∑

(i,j)∈T:u∈{i,j}
c
(3)
ij .(3.24)
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Now recall from the entire last paragraph of Step 3.2 that Q� ∈ Λ(m,a/2,2b)

for every 	 ∈ {1, . . . ,L}. It follows from (3.7) and Notations 1.1(D), (E) (see
the second sentence after (1.2)) that for each 	 ∈ {1, . . . ,L} and each (i, j) ∈
{1, . . . ,m}2, |q(1)�ij | ≤ 2b. Hence by (3.21) and (3.22),

∀(i, j) ∈ {1, . . . ,m}2, |sij | ≤ γ,(3.25)

that is, S ∈B
(m)
sym[γ].

Now we shall verify Equations (3.11)–(3.14) (though not quite in that or-
der).

First, (3.11) holds by (3.21) and the sentence after (3.9).
Next, for each (u, v) ∈T, by (3.23) and (3.18),

c(3)uv = [guv − κuvγ] + [κuvγ − huv]− suv(3.26)

= [guv − κuvγ] + 3γ − suv.

By (3.16) and (3.25), the far right-hand side of (3.26) is bounded below by
0+ 3γ − γ and bounded above by γ + 3γ + γ. Hence, (3.13) holds.

Next, let us verify (3.12). For any given u ∈ {1, . . . ,m}, the following holds:
The set {(i, j) ∈T : u ∈ {i, j}} has exactly m−1 elements ((1, u), . . . , (u−1, u)
and (u,u+ 1), . . . , (u,m)), and hence by (3.13) (just proved above),

2(m− 1)γ ≤
∑

(i,j)∈T:u∈{i,j}
c
(3)
ij ≤ 5(m− 1)γ.(3.27)

Now by (3.24),

c(2)u = [guu − κuuγ] + [κuuγ − huu]− suu −
∑

(i,j)∈T:u∈{i,j}
c
(3)
ij .(3.28)

By (3.16), (3.17), (3.25), and (3.27), the right side of (3.28) is bounded below
by 0+8mγ− γ− 5mγ and bounded above by γ+8mγ+ γ− 0. Hence, (3.12)
holds.

Finally, (3.14) needs to be verified. First, for (i, j) ∈T, by (3.21), (3.22),
(3.8), (3.9), (3.20) (with (3.7)), and (3.23),

L∑
�=1

c
(1)
� q

(1)
�ij +

m∑
u=1

c(2)u q
(2)
uij +

∑
(u,v)∈T

c(3)uv q
(3)
uvij(3.29)

= 1 · q(1)�′ij + sij + 0+ c
(3)
ij · 1

= hij + sij + c
(3)
ij = gij .

Next, recall that the matrices G, Q
(1)
� , Q

(2)
u , and Q

(3)
uv (and S) are symmetric.

As a trivial consequence, for (i, j) ∈ T, the far left and far right sides of
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(3.29) remain equal if the indices i and j are switched. Finally, for each
i ∈ {1, . . . ,m}, by (3.21) (again with (3.20)), (3.22), (3.8), (3.9), and (3.24),

L∑
�=1

c
(1)
� q

(1)
�ii +

m∑
u=1

c(2)u q
(2)
uii +

∑
(u,v)∈T

c(3)uv q
(3)
uvii

= 1 · hii + sii + c
(2)
i · 1 +

∑
(u,v)∈T:i∈{u,v}

c(3)uv · 1 = gii.

From all of these observations, (3.14) holds. That completes the proof of
Lemma 3.4. �

Step 3.5. This step will involve, after some preliminary work, repeated
applications of Lemma 2.6. The notation h(f,Υ(1),Υ(2),θ,δ,ε,N) in Lemma 2.6
(see the sentence after (2.10)) will be used repeatedly, and for typographical
convenience it will be written below as h(f,Υ1,Υ2, θ, δ, ε,N).

For the use of that notation, define (see (3.1), (3.2), (3.4), and (3.6)) the
real numbers

Υ1 := log
(
γ/(3bL)

)
; Υ2 := log 2; and

(3.30)
δ := δ

(
τ2/

[
2m(L+ 1+m)

])
,

where in the last equality we are using the notation in Lemma 2.5. By (3.1),
(3.4), and (3.30), Υ1 < 0<Υ2. Referring to (2.6)–(2.7), we shall say that a
given real, continuous, symmetric function f on [−π,π] satisfies “Condition
C” if (2.9) and (2.10) hold for the given values in (3.30).

Next, refer to Notations 2.2(B), involving the Fejér kernels. Of course
by Fejér’s Theorem, if f is a (say) real, continuous, symmetric function on
[−π,π], then (2π)−1

∫ π

−π
Fn(λ) · f(λ)dλ converges to f(0) as n→∞. For a

given real, continuous, symmetric function f on [−π,π] and a given ε > 0, let
N (f, ε) be a positive integer such that

∀n≥N (f, ε),

∣∣∣∣f(0)−
∫ π

−π

Fn(λ)f(λ)
dλ

2π

∣∣∣∣ ≤ ε.(3.31)

Next, refer to the sequence G1,G2,G3, . . . of matrices in Λ(m,a,b) (in fact

in Λ̃) from the second paragraph of Step 3.1. Applying Lemma 3.4 and using
the notations there, define for each positive integer n the array

cn = c(Gn)(3.32)

:=
{
c
(1)
�,n, 	 ∈ {1,2, . . . ,L}; c(2)u,n, u ∈ {1,2, . . . ,m}; c(3)u,v,n, (u, v) ∈T

}
of positive numbers (satisfying (3.11)–(3.14) with G=Gn). By (3.11), (3.12),
and (3.13), together with (3.30) and the sentence after (3.9), one has that for
each positive integer n and each number c in the array cn, Υ1 < log c≤ 0<Υ2.
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Now we shall define a sequence of positive integers (N0,N1,N2, . . . ); and
we shall define, for each positive integer n, a collection

Cn :=
{
f
(1)
�,n , 	 ∈ {1,2, . . . ,L};f (2)

u,n, u ∈ {1,2, . . . ,m};f (3)
u,v,n, (u, v) ∈T

}
(3.33)

of real, continuous, symmetric functions on [−π,π] that each satisfy Condition
C (see the sentence after (3.30)). Notice that for a given positive integer
n, there will be only finitely many functions in this array (3.33)—in fact
L + m + m(m − 1)/2 of them. The definition will be recursive in n, with
Nn−1 and Cn being defined together for n= 1,2,3, . . . . It proceeds as follows:

To start off, define the positive integer N0 := 1, and let each of the functions
in the collection C1 in (3.33) be the trivial constant function with range {0}. Of
course a constant function f on [−π,π] satisfies Ψ(f) = 0. Since Υ1 < 0<Υ2

(as was noted above), it now follows that the (constant) functions in (3.33)
(for n= 1) satisfy Condition C.

Now suppose n≥ 1 is an integer, and the positive integer Nn−1 and the real,
continuous, symmetric functions in Cn in (3.33) have already been defined, and
that those functions all satisfy Condition C. Define the positive integer

Nn :=Nn−1 +maxN
(
ef ,2−n

)
,(3.34)

where this maximum is taken over all functions f in the collection Cn in (3.33)
for the given n. (Of course for each such f , the notation ef simply refers to the
real, continuous, symmetric function λ �→ ef(λ) on [−π,π].) Now referring to
(3.30), (3.32), and the sentence after (3.32), and applying Lemma 2.6, define
the functions in the collection Cn+1 as follows: First, for each 	 ∈ {1, . . . ,L},
define the function f

(1)
�,n+1 by

f
(1)
�,n+1 := h

(
f
(1)
�,n ,Υ1,Υ2, log c

(1)
�,n+1, δ,2

−n,Nn

)
.(3.35)

Next, for each u ∈ {1, . . . ,m}, define the function f
(2)
u,n+1 by

f
(2)
u,n+1 := h

(
f (2)
u,n,Υ1,Υ2, log c

(2)
u,n+1, δ,2

−n,Nn

)
.(3.36)

Finally, for each (u, v) ∈T, define the function f
(3)
u,v,n+1 by

f
(3)
u,v,n+1 := h

(
f (3)
u,v,n,Υ1,Υ2, log c

(3)
u,v,n+1, δ,2

−n,Nn

)
.(3.37)

That completes the definition of the collection Cn+1. Note that from (2.11)–
(2.12) in Lemma 2.6, each of the functions in this collection Cn+1 satisfies
Condition C.

That completes the recursive definition of the positive integers N0,N1,
N2, . . . and the collections Cn, n ∈N. From (3.34) and the definition of N0,
one has that

1 =N0 <N1 <N2 < · · · .(3.38)
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Step 3.6. The next task is to establish a collection

C :=
{
f
(1)
� , 	 ∈ {1,2, . . . ,L};f (2)

u , u ∈ {1,2, . . . ,m};f (3)
u,v, (u, v) ∈T

}
(3.39)

of “limit functions” on [−π,π] from the collections Cn.
First, suppose 	 ∈ {1, . . . ,L}. For each positive integer n, from (3.35) and

Equation (2.14) in Lemma 2.6, one has that
∫ π

−π
|f (1)

�,n+1(λ) − f
(1)
�,n (λ)|dλ <

2−n. Hence,
∫ π

−π

∑∞
n=1 |f

(1)
�,n+1(λ)−f

(1)
�,n (λ)|dλ <∞. Hence

∑∞
n=1 |f

(1)
�,n+1(λ)−

f
(1)
�,n(λ)| <∞ for a.e. λ ∈ [−π,π]. Define the function f

(1)
� a.e. on [−π,π] as

follows:

f
(1)
� (λ) := lim

n→∞
f
(1)
�,n (λ).(3.40)

The right-hand side of (3.40) will be defined in R for a.e. λ ∈ [−π,π]. On
the null-set of values λ for which that limit does not exist in R, the quantity

f
(1)
� (λ) is left undefined here.
Next, for each u ∈ {1, . . . ,m}, going through the same procedure, but using

(3.36) instead of (3.35), define the function f
(2)
u a.e. on [−π,π] by

f (2)
u (λ) := lim

n→∞
f (2)
u,n(λ).(3.41)

Finally, for each (u, v) ∈T, again going through the same procedure, this

time using (3.37), define the function f
(3)
u,v a.e. on [−π,π] by

f (3)
u,v(λ) := lim

n→∞
f (3)
u,v,n(λ).(3.42)

That completes the definition of the collection C in (3.39). Since each of
the functions in each of the collections Cn is real and symmetric and satisfies
Condition C, it follows from (3.40)–(3.42) that each of the functions in the
collection C is a.e. real and symmetric, with its range being bounded a.e.
within the closed interval [Υ1,Υ2].

Step 3.7. Next, some calculations involving Fejér kernels will be given.
Later on, they will play a key role in obtaining bounds on the covariance
matrices for partial sums of sequences of random vectors (Rm-valued random
variables).

For each positive integer n, define the array

c∗n :=
{
c
∗(1)
�,n , 	 ∈ {1,2, . . . ,L}; c∗(2)u,n , u ∈ {1,2, . . . ,m}; c∗(3)u,v,n, (u, v) ∈T

}
(3.43)

of positive numbers as follows: First, for each 	 ∈ {1, . . . ,L}, referring to
(3.38), (3.40), and (2.4), define the positive number

c
∗(1)
�,n :=

∫ π

−π

FN(n)(λ) · exp
(
f
(1)
� (λ)

)dλ
2π

.(3.44)
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Next, for each u ∈ {1, . . . ,m}, referring to (3.41), define the positive num-
ber

c∗(2)u,n :=

∫ π

−π

FN(n)(λ) · exp
(
f (2)
u (λ)

)dλ
2π

.(3.45)

Finally, for each (u, v) ∈ T, referring to (3.42), define the positive num-
ber

c∗(3)u,v,n :=

∫ π

−π

FN(n)(λ) · exp
(
f (3)
u,v(λ)

)dλ
2π

.(3.46)

That completes the definition of the array c∗n in (3.43).
Our next task is to compare the arrays cn and c∗n in (3.32) and (3.43).
To start that process, suppose n≥ 2, and suppose 	 ∈ {1, . . . ,L}. By (3.34),

Nn >N (expf
(1)
�,n ,2

−n); and hence by (3.31),∣∣∣∣exp(
f
(1)
�,n(0)

)
−

∫ π

−π

FN(n)(λ) · exp
(
f
(1)
�,n(λ)

)dλ
2π

∣∣∣∣ ≤ 2−n.(3.47)

Also, for each integer p≥ n, one has that f
(1)
�,p+1 := h(f

(1)
�,p ,Υ1,Υ2, log c

(1)
�,p+1, δ,

2−p,Np) by (3.35), and since Nn ≤Np by (3.38) one therefore has from Equa-
tion (2.15) in Lemma 2.6 that∣∣∣∣

∫ π

−π

FN(n)(λ) · exp
(
f
(1)
�,p+1(λ)

)dλ
2π

−
∫ π

−π

FN(n)(λ) · exp
(
f
(1)
�,p (λ)

)dλ
2π

∣∣∣∣(3.48)

≤ 2−p.

By (3.47) and (3.48), using a telescoping sum, one has that

∀p≥ n+ 1,

∣∣∣∣exp(
f
(1)
�,n (0)

)
−

∫ π

−π

FN(n)(λ) · exp
(
f
(1)
�,p (λ)

)dλ
2π

∣∣∣∣(3.49)

≤ 2−n +
[
2−n + 2−(n+1) + · · ·+ 2−(p−1)

]
≤ 3 · 2−n.

Now recall that for each p ≥ 1, the function f
(1)
�,p satisfies Condition C and

is therefore bounded between Υ1 and Υ2, and hence the function expf
(1)
�,p is

bounded between expΥ1 and expΥ2. Since any given Fejér Kernel is bounded,
one now has by (3.44), (3.40), (3.49), and dominated convergence (taking the
limit as p→∞) that for our given fixed n and 	,∣∣exp(

f
(1)
�,n (0)

)
− c

∗(1)
�,n

∣∣(3.50)

=

∣∣∣∣exp(
f
(1)
�,n (0)

)
−

∫ π

−π

FN(n)(λ) · exp
(
f
(1)
� (λ)

)dλ
2π

∣∣∣∣
≤ 3 · 2−n.
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Recall our supposition here that n≥ 2. From (3.35) (with n+ 1 replaced by
n) and Equation (2.13) in Lemma 2.6, one has that∣∣f (1)

�,n (0)− log c
(1)
�,n

∣∣ < 2−(n−1).(3.51)

Since f
(1)
�,n satisfies condition C, one trivially has (see (3.30) and the sentence

after it) that f
(1)
�,n (0)< log 2. From the sentence after (3.32), one also has that

log c
(1)
�,n ≤ 0 < log 2. Since dex/dx = ex ≤ 2 for x ≤ log 2, it now follows from

(3.51) and trivial calculus that | exp(f (1)
�,n (0))−c

(1)
�,n| ≤ 4 ·2−n. Hence by (3.50),

|c∗(1)�,n − c
(1)
�,n| ≤ 7 · 2−n.

Let us display for convenient reference what we have just verified:

∀n≥ 2,∀	 ∈ {1, . . . ,L},
∣∣c∗(1)�,n − c

(1)
�,n

∣∣ ≤ 7 · 2−n.(3.52)

With arguments exactly analogous to that of (3.52), using (3.41)–(3.42) and
(3.45)–(3.46) in place of (3.40) and (3.44), one has that

∀n≥ 2,∀u ∈ {1, . . . ,m},
∣∣c∗(2)u,n − c(2)u,n

∣∣≤ 7 · 2−n(3.53)

and that

∀n≥ 2,∀(u, v) ∈T,
∣∣c∗(3)u,v,n − c(3)u,v,n

∣∣≤ 7 · 2−n.(3.54)

We shall return to (3.52)–(3.54) later on.

Step 3.8. Our task in this step is to construct the random sequence X for
Theorem 1.4. That will be done with a family of “building blocks” that are
independent of each other, each one being a stationary real mean-zero Gauss-
ian random sequence with a particular spectral density function. We shall use
the well-known fact that any real, nonnegative, Borel, symmetric, integrable
function on [−π,π] is the spectral density function of some stationary real
mean-zero Gaussian random sequence.

Refer to (3.40), (3.41), and (3.42). For each 	 ∈ {1, . . . ,L} and each p ∈
{1, . . . ,m}, letX(1,�,p) := (X

(1,�,p)
k , k ∈Z) be a stationary real mean-zero Gauss-

ian random sequence with spectral density function expf
(1)
� on [−π,π]. For

each u ∈ {1, . . . ,m}, let X(2,u) := (X
(2,u)
k , k ∈ Z) be a stationary real mean-

zero Gaussian random sequence with spectral density function expf
(2)
u on

[−π,π]. For each (u, v) ∈ T, let X(3,u,v) := (X
(3,u,v)
k , k ∈ Z) be a station-

ary real mean-zero Gaussian random sequence with spectral density function

expf
(3)
u,v on [−π,π]. Let these random sequences be constructed in such a way

that they are all independent of each other.

Refer to Notations 1.1(C). For each 	 ∈ {1, . . . ,L}, let (Q(1)
� )1/2 denote the

symmetric positive definite m×m “square root” matrix of Q
(1)
� . (Recall the

sentence after (3.7).)
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Define the sequence X := (Xk, k ∈ Z) of Rm-valued random variables as
follows: For each k ∈Z,

Xk :=

L∑
�=1

(
Q

(1)
�

)1/2[
X

(1,�,1)
k ,X

(1,�,2)
k , . . . ,X

(1,�,m)
k

]t
(3.55)

+

m∑
u=1

X
(2,u)
k eu +

∑
(u,v)∈T

X
(3,u,v)
k (eu + ev).

Here and below, for p ∈ {1, . . . ,m}, ep := [0, . . . ,0,1,0, . . . ,0]t where the 1 is
the pth coordinate. The first sum in the right-hand side of (3.55) involves
matrix multiplication; the other two involve simple scalar multiplication. By
elementary arguments, X is a strictly stationary, Gaussian sequence of Rm-
valued, mean-0m random variables. Our task now is to verify properties
(1)–(4) stipulated in Theorem 1.4. The “mixing properties” (1)–(3) will be
verified in Step 3.9, and property (4) will be verified in Step 3.10.

Step 3.9. In this step, the mixing properties (1), (2), and (3) stipulated
in Theorem 1.4 will be verified (though not in that order).

For each positive integer n, by (3.55) and Lemma 2.1 (and the independence
of the “building block” sequences in the second paragraph of Step 3.8),

ρ(X,n) ≤max
{

max
1≤�≤L,1≤p≤m

ρ
(
X(1,�,p), n

)
,(3.56)

max
1≤u≤m

ρ
(
X(2,u), n

)
, max
(u,v)∈T

ρ
(
X(3,u,v), n

)}
and

I(X,n) ≤
L∑

�=1

m∑
p=1

I
(
X(1,�,p), n

)
+

m∑
u=1

I
(
X(2,u), n

)
(3.57)

+
∑

(u,v)∈T

I
(
X(3,u,v), n

)
.

Next some calculations connected with information regularity are needed
for the “building block” sequences.

Referring to the sentence containing (3.33), one has that for each 	 ∈
{1, . . . ,L} and each positive integer n, Υ1 < f

(1)
�,n (λ)<Υ2 for all λ ∈ [−π,π],

and also Ψ(f
(1)
�,n ) < δ. Hence for each 	 ∈ {1, . . . ,L}, by (3.40) and Nota-

tions 2.4(C), Ψ(f
(1)
� ) ≤ δ. Hence for a given 	 ∈ {1, . . . ,L} and a given p ∈

{1, . . . ,m}, by the second paragraph in Step 3.8, one has from (3.30) and
Lemma 2.5 that (i) I(X(1,�,p),1)≤ τ2/[2m(L+ 1+m)], and hence by [3, v3,
Lemma 27.9(I)(II)], one also has that (ii) ρ(X(1,�,p),1)≤ [2I(X(1,�,p),1)]1/2 ≤
τ , and that (iii) I(X(1,�,p), n)→ 0 and ρ(X(1,�,p), n)→ 0 as n→∞. By ex-
actly analogous arguments, using (3.41) and (3.42) in place of (3.40), one
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obtains (i), (ii), and (iii) with X(2,u) (for u ∈ {1, . . . ,m}) and with X(3,u,v)

(for (u, v) ∈T) in place of X(1,�,p).
Hence by (3.55) and (3.57) (and (3.2)),

I(X,1)≤
[
mL+m+m(m− 1)/2

]
· τ2/

[
2m(L+ 1+m)

]
≤ τ2 ≤ τ ;

and hence by (1.8), α(X,1) ≤ β(X,1) ≤ τ ; and also by (3.55) and (3.56),
ρ(X,1)≤ τ . Also, by (3.55), (3.56), and (3.57), I(X,n)→ 0 and ρ(X,n)→ 0
as n→∞; and hence also by (1.8), α(X,n)→ 0 and β(X,n)→ 0 as n→∞.
Thus properties (2) and (3) in Theorem 1.4 hold.

Next, recall from above that for a given 	 ∈ {1, . . . ,L} and a given positive

integer n, one has that Υ1 < f
(1)
�,n(λ)<Υ2 for all λ ∈ [−π,π]. Hence by (3.40),

for a given 	 ∈ {1, . . . ,L}, Υ1 ≤ f
(1)
� (λ) ≤ Υ2 for a.e. λ ∈ [−π,π]. Hence by

the second paragraph of Step 3.8, for a given 	 ∈ {1, . . . ,L} and a given p ∈
{1, . . . ,m}, the stationary Gaussian sequence X(1,�,p) has a spectral density
function that is bounded a.e. between the two positive constants expΥ1 and
expΥ2, and hence by Lemma 2.3 it satisfies ρ∗(X(1,�,p),1) < 1. By exactly
analogous arguments, using (3.41) and (3.42) in place of (3.40), one has that
ρ∗(X(2,u),1)< 1 for u ∈ {1, . . . ,m} and that ρ∗(X(3,u,v),1)< 1 for (u, v) ∈T.
Now by (3.55) and Lemma 2.1, Equation (3.56) holds with each ρ replaced
by ρ∗. It now follows that ρ∗(X,1)< 1. Thus, property (1) in Theorem 1.4
holds.

Step 3.10. In this final step, we shall verify property (4) in Theorem 1.4,
by showing that for the sequence (N1,N2,N3, . . . ) of positive integers defined
in Step 3.5 (see (3.38)), there exists a positive number Θ such that (3.3) holds
for all n≥ 2.

Refer again to the second paragraph of Step 3.8, where the sequences
X(1,�,p), X(2,u), and X(3,u,v) are defined. One of course has that for each
	 ∈ {1, . . . ,L}, each p ∈ {1, . . . ,m}, and each n ∈N, E[n−1/2S(X(1,�,p), n)] =
0; and the analogous comment applies with X(1,�,p) replaced by X(2,u) or
X(3,u,v). (That should be kept in mind in the calculations that follow.) By
(3.44) and Notations 2.2(B), (C) (and the second paragraph of Step 3.8), for
each 	 ∈ {1, . . . ,L}, each p ∈ {1, . . . ,m} and each n ∈N,

E
[
N−1/2

n S
(
X(1,�,p),Nn

)]2
(3.58)

=

∫ π

−π

FN(n)(λ) · exp
(
f
(1)
� (λ)

)dλ
2π

= c
∗(1)
�,n .

By similar arguments using (3.45) and (3.46) in place of (3.44), one has that
for each u ∈ {1, . . . ,m} and each n ∈N,

E
[
N−1/2

n S
(
X(2,u),Nn

)]2
(3.59)

=

∫ π

−π

FN(n)(λ) · exp
(
f (2)
u (λ)

)dλ
2π

= c∗(2)u,n ,
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and that for each (u, v) ∈T and each n ∈N,

E
[
N−1/2

n S
(
X(3,u,v),Nn

)]2
(3.60)

=

∫ π

−π

FN(n)(λ) · exp
(
f (3)
u,v(λ)

)dλ
2π

= c∗(3)u,v,n.

In what will now follow, we shall repeatedly use the fact that if V is an
Rm-valued random variable such that EV = 0m and E‖V ‖2 <∞, then the
m×m covariance matrix ΣV can be written simply as ΣV =EV V t.

For each 	 ∈ {1, . . . ,L} and each n ∈ N, define the Rm-valued random
variable

Y (�)
n := n−1/2

[
S

(
X(1,�,1), n

)
, S

(
X(1,�,2), n

)
, . . . , S

(
X(1,�,m), n

)]t
.

By (3.58) and the independence of the sequencesX(1,�,p), p ∈ {1, . . . ,m} (again
see the second paragraph of Step 3.8), one has that for each 	 ∈ {1, . . . ,L} and

each n ∈N, the Rm-valued random variable Y
(�)
N(n) has mean vector 0m and

covariance matrix EY
(�)
N(n)(Y

(�)
N(n))

t = c
∗(1)
�,n Im. Hence for each 	 ∈ {1, . . . ,L}

and each n ∈ N (recall that the matrix (Q
(1)
� )1/2 is symmetric), the Rm-

valued random vector

N−1/2
n

N(n)∑
k=1

(
Q

(1)
�

)1/2[
X

(1,�,1)
k ,X

(1,�,2)
k , . . . ,X

(1,�,m)
k

]t
=

(
Q

(1)
�

)1/2
Y

(�)
N(n)

has mean vector 0m and covariance matrix

E
(
Q

(1)
�

)1/2
Y

(�)
N(n)

(
Y

(�)
N(n)

)t((
Q

(1)
�

)1/2)t
(3.61)

=
(
Q

(1)
�

)1/2
c
∗(1)
�,n Im

(
Q

(1)
�

)1/2
= c

∗(1)
�,n Q

(1)
� .

By (3.59) and the entire sentence containing (3.8), for each u ∈ {1, . . . ,m},
the Rm-valued random variable

N−1/2
n

N(n)∑
k=1

X
(2,u)
k eu =N−1/2

n

[
S

(
X(2,u),Nn

)]
eu

trivially has mean vector 0m and covariance matrix

c∗(2)u,n eue
t
u = c∗(2)u,n Q(2)

u .(3.62)

Similarly, by (3.60) and the entire sentence containing (3.9), for each (u, v) ∈
T, the Rm-valued random variable

N−1/2
n

N(n)∑
k=1

X
(3,u,v)
k (eu + ev) =N−1/2

n

[
S

(
X(3,u,v),Nn

)]
(eu + ev)

has mean vector 0m and covariance matrix

c∗(3)u,v,n(eu + ev)(eu + ev)
t = c∗(3)u,v,nQ

(3)
u,v.(3.63)
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Now we use the elementary equality ΣY+Z+···+V =ΣY +ΣZ + · · ·+ΣV for
an arbitrary finite collection Y,Z, . . . , V of independent Rm-valued random
variables whose coordinates have finite second moments. By (3.55) and the
independence of the sequences in the second paragraph of Step 3.8, followed
by the entire sentences containing (3.61), (3.62), and (3.63), one has that for

each n ∈N, the Rm-valued random variable N
−1/2
n S(X,Nn) has mean vector

0m and covariance matrix

G∗
n :=

L∑
�=1

c
∗(1)
�,n Q

(1)
� +

m∑
u=1

c∗(2)u,n Q(2)
u +

∑
(u,v)∈T

c∗(3)u,v,nQ
(3)
u,v.(3.64)

Now from (3.32) and (3.14), for each n ∈N,

Gn =

L∑
�=1

c
(1)
�,nQ

(1)
� +

m∑
u=1

c(2)u,nQ
(2)
u +

∑
(u,v)∈T

c(3)u,v,nQ
(3)
u,v.(3.65)

Recall from the final paragraph of Step 3.2 that Q
(1)
� ∈ Λ(m,a/2,2b) for each

	 ∈ {1, . . . ,L}. By (3.7) and Notations 1.1(D), (E) (see the second sentence

after (1.2)), one has that |q(1)�ij | ≤ 2b for each 	 ∈ {1, . . . ,L} and each (i, j) ∈
{1, . . . ,m}2. Taking that together with the entire sentences containing (3.8)
and (3.9), and then using (3.52), (3.53), and (3.54), one obtains from (3.64)
and (3.65) that for each n≥ 2,

G∗
n −Gn ∈B(m)

sym

[(
(2b ·L) + (1 ·m) +

(
1 ·m(m− 1)/2

))
· 7 · 2−n

]
.

Referring again to the entire sentence containing (3.64), one has that for the
positive number Θ := 7 · [2bL+m+m(m− 1)/2], Equation (3.3) holds for all
n≥ 2. That completes the proof of property (4) in Theorem 1.4. The proof
of Theorem 1.4 is complete.
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