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UNIQUENESS THEOREM FOR NON-ARCHIMEDEAN
ANALYTIC CURVES INTERSECTING HYPERPLANES
WITHOUT COUNTING MULTIPLICITIES

QIMING YAN

ABSTRACT. In this paper, we prove uniqueness theorems for an-
alytic curves from F to P"(F) sharing hyperplanes in general
position without counting multiplicities, where F is a complete
algebraically closed non-Archimedean field of arbitrary charac-
teristic.

1. Introduction

Let F be an algebraically closed field complete with respect to a non-
Archimedean absolute value |- |.
In [1], Adams and Straus proved the following uniqueness theorem.

THEOREM A. Let f and g be two nonconstant meromorphic functions on F,
where F has characteristic zero. Let aq,as,a3 and ay be four distinct values.
Assume that f~Y(a;) =g~ (a;) for i=1,2,3,4. Then f=g.

Obviously, Theorem A is an analog of Nevanlinna’s five-value theorem in
the complex case (see [4]). Furthermore, they gave the example

z Z2

- - d -z
o) =577 ad g(o)=5—

to show that Theorem A is optimal since f~1(0) = g=1(0), f~1(1) =g~ (1),
and f~1(00) = g~ (o<).

In 2001, Ru [5] extended Theorem A to non-Archimedean analytic curves
in projective space.
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A non-Archimedean analytic curve f is a map f=[fo: - : fa]: F —
P*(F), where fo,...,f, are entire functions on F without common zeros.
(fo,---, fn) is called a reduced representation of f.

A non-Archimedean analytic curve f : F — P"(F) is said to be linearly non-
degenerate (over F) if f(F) is not contained in any proper linear subspace of
P™(F).

Hyperplanes Hi,...,H, in P*(F) are said to be in general position if any
n—+ 1 of them are linearly independent.

Ru showed the following theorem.

THEOREM B ([5, Theorem 2.2]). Let f,g: F — P™*(F) be two linearly non-
degenerate analytic curves, where F has characteristic zero. Let Hy, ..., H3p41
be hyperplanes in P*(F) located in general position Assume that f~1(H;) =
9~ (H;) for 1< <3n+1and f~H(H)Nf~ (Hj) =0 fori#j. If f(2) = g(2)
for every point z € U3n+1 Y(H;j), then f=g.

In this paper, we will improve and generalize Theorem B as follows.

THEOREM 1. Let f,g: F —P"(F) be two linearly non-degenerate analytic
curves, where F has characteristic zero. Let Hq,.. H2n+2 be hyperplanes
in P*"(F) located in geneml posztwn Assume that f Y(H;) =g ' (Hj) for
1<j<2n+2and f~Y(H;)Nf~1(H;) =0 fori#j. Iff() g(z) for every
point z € U2n+2 L(Hj), then f=g.

REMARK 1. (a) When n =1, Theorem 1 reduces to Theorem A.

(b) Our key technique is Lemma 5, which gives a new estimate for the
divisor of (f, H;)(g,H;) — (f, H;)(g,H;) #0. This method does not work for
NN fn, where f1,...,f\ are linearly non-degenerate analytic curves.
Hence, we cannot improve Theorem 2.1 in [5].

Now, we consider that F has positive characteristic.

Denote £ the ring of entire functions on F and M the field of meromorphic
functions on F. If F has positive characteristic p and s is a positive integer,
let E[p*] =1 [p°] be the fraction field of £[p®]. Note that
M([p**1] € M[p?] (see Proposition 3.4 in [2]).

If an analytic curve f : F — P"(F) is linearly non-degenerate over F, where
F has positive characteristic p, then f is also linearly non-degenerate over
M(p?] for some integer s > 1 (see Lemma 5.2 in [2]). Hence, we can define
the index of independence of f be the smallest integer s such that f linearly
non-degenerate over F remains linearly non-degenerate over M|[p®].

We can generalize Theorem 1 to the case of positive characteristic.

THEOREM 2. Let F have positive characteristic p, and f,g: F — P*(F) be
two analytic curves linearly non-degenemte over F with index of independence
<s. Let Hy,...,Hope-1,42 be 2p°'n + 2 hyperplanes in P"(F) located in
general posztzon Assume that f~Y(H;) = g ' (H;) for 1<j<2p*~'n+2
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and f7Y(H;)) N f7Y(H;) =0 for i # j. If f(z) =g(z) for every point z €
Uzps_lnﬁ f~Y(Hj), then f=g.

=1

There are several open questions related to the above results.

QUESTION 1. Is it true that the number of hyperplanes can be replaced by
a smaller one?

QUESTION 2. The conditions “f~'(H;) N f~Y(H;) =0 for 1 <i<j<gq”
and “f(z) = g(z) on ;5.’:1 f~Y(H;)” in the above theorems are not natural.
Can one remove them?

2. Preliminaries

Let F be an algebraically closed field of characteristic p > 0, complete with
respect to a non-Archimedean absolute value |- |.

Recall that an infinite sum converges in a non-Archimedean norm if and
only if its general term approaches zero. Thus, a function of the form

h(z) = Zanz", an €F
n=0
is well defined whenever

|anz"’ —0 asn— oo.

Functions of this type are called analytic functions of a non-Archimedean
variable. If h is analytic on F', then h is called an entire function on F. Let

h(z) = Zanz", an, €F
n=0

be an analytic function on |z| < R. For 0 <r < R, define
My, (r) = max |h(z)].

|z|=r
We have the following lemma.

LEMMA 3. [1] The following statements hold:
(1) We have Mp(r) =max,>¢ |an|r".
(2) The mazimum on the right of (1) is attained for a unique value of n except
for a discrete sequence of values {r,} in the open interval (0, R).
(3) If r ¢ {r,} and |z| =7 < R, then |h(z)| = My(r).
(4) If h is a nonconstant entire function, then My(r) — oo as r — oo.
(5) We have Myqy(r) = Mys(r)My(r) for any analytic functions f and g.

For a given entire function h(z) =>""" ;a,z", define the kth Hasse deriv-

ative of h by
DFh=Y" (Z) a2k,
n=k
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which is also analytic. Note that DYh =h and D'h =h’. In characteristic
zero, the Hasse derivative D¥h is simply h(¥) /k!. Hasse derivatives are more
useful than ordinary derivatives in positive characteristic and have similar
properties (see [2]).
LEMMA 4 (Logarithmic derivative lemma). Let h be an entire function
on F. Then
M pr, (1) <

h

1
— (r>0).
= r>0)
In particular, we have M) 5,(r) < %k for characteristic zero.

For a nonzero entire function h on F, we denote the divisor of h by v},. For
20 €F, vp(2z0) :=ord,, (h).

Denote Vé/[ the divisor of h with truncated multiplicity by a positive inte-
ger M. That means, for 29 € F, v}/ (20) := min{M, vj,(z0) }.

We define V}LF i be the divisor of all zeros of h with multiplicity k, without
counting multiplicity. Hence,

) _f0, ifun(z0) #k,
(0 T2

for z5 € F.
3. Proof of main results
Assume that f=[fo:---: fn] and g =[go : - - : gn] are linearly non-degener-
ate analytic curves. Let Hy,..., H, be ¢ (> 2n) hyperplanes, located in general
position. We denote H; = {[z¢ : --- : z,,] € P"(F)|ajozo + -+ + ajnzn = 0},

(f,Hj) = ajofo+ -+ ajnfn, and (g9,H;) = ajogo + -+ + @jngn, 1 <j < q.
Obviously, (f,H;) #0 and (g,H;)#0 for 1 <j <gq.

Proof of Theorem 1. Suppose that f # g. By changing indices if necessary,
we may assume that

(fHy) _ (f,H2) _  _ (f Hg)
(9,H1)  (9,H2) —  (9,Hx,)
group 1
(f,Hr1) _ _ (f, Hi,y)
(9, Hiy41) (9, Hi,)
group 2
(fyHiooyv1) — _ (f, Hy,)
U ) (0 H)
group t

where k; =q.
Since f # g, the number of elements of every group is at most n.
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We define the map o : {1,...,q} = {1,...,¢} by
oli) = i+n, ifi+n<g,
T \itn—gq, ifi+tn>q.

It is easy to see that o is bijective and |o(i) — i| > n (note that ¢ > 2n).

Hence, 8 gl) and Ef H“(‘); belong to distinct groups, so that (f, H;)(g, Hy(;)) —

(f, Hoi)) (g, Hi) # 0.
Weconsider (f, Hi)(g, Hoiy) — (f, Hoi))(9, Hi), 1 <i < q.

LEMMA 5. For each i €{1,...,q} and a positive integer N, we have
q
(1) o Ym0 T ¥ — N,
Jj=1,j#i,0(i)

N N 1
T, ) F Vg i,0) — NV H,0)
< V(f,Hi)(9,Ho (i) = (f,Ho (1)) (9,Hi)*

Proof. For any j € {1,...,q}\{i,0(i)}, since f =gon f~1(H;) (=g~ (H;)),
we have that a zero of (f,H;) is also a zero point of (f,H;)(g,Hy)) —
(faHa(z))(gsz)

For any 20 € f7U(H;) (=g Y (H;)), 2z is a zero of (f,Hi)(g, Hoiy) —

V(f,Hi)(g,Hgm)—(f,H(,(i))(gvHi)(Zo) > min{v(s,m,)(20), g 1) (20) }-

Note that the set f~'(H;) is the union of {z|min{v s u,)(2), V(g ) (2)} =
vy (2)} N fH(H:) and {zlmin{vg, ) (2),vig,m0 (2)} = vigm)(2)}F 0
fH(H)).

Case 1. If 2o € {z|min{v s p,)(2), V(g,1,)(2)} = v(s,1,)(2)}, then

min{v (s m,)(20), V(g 1) (20) } = V(5 1,)(20) = min{v (s m,)(20), N }.

Case 2. Consider zo € {z|min{v (s m,)(2), v(g,1,)(2)} = V(g,1,)(2)}-

For z € {z[min{v(s,m,)(2), v(g.1,)(2)} = v(g,m)(2)} N {2|v(g,m,)(2) 2 N},
we have

min{v (s m,)(20), Y(g,11,)(20) } = V(g,11,)(20) = N =min{v (s ,)(20), N'}.

For zy € {z|min{v s m,)(2), V(g,1.,)(2)} = V(g1 (2)} N {z|v(g,m,)(2) = k},
k=1,...,N —1, we have

min{l/(f’Hi)(ZO)7l/(g,Hi)(ZO)} = V(97Hi)(20) =k
> min{v(s.m,)(20), N} = (N = B)vy ., (20)-

For any z € [~ (Hy)) (=9 ' (Hy())), 20 is a zero of (f, H;)(g, Hy(;)) —
(f7 )( aHz) with

V(vai)(nga(f,))*(faHa(f,))(g,Hi)(ZO) 2 min{y(f;Hc(i))(Zo)’ l/(gvHa(i))(ZO)}'
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By the same argument, if
20 € {zlmin{v(s ) (2), Vg, 1,00 (2)} = Vs, (2) )
then
min{y(vaa(i))(ZO)’ V(Q’Ha(i))(ZO)} = l/(faHa(i))(ZO) > min{y(ﬁHa(i))(ZO)vN}'

If zp € {Z] min{y(f’Ha(i))(z), V(g’HW))(z)} = V(g,Hm))(Z)}Q{Z|V(9,Ha(i))(z) >
N}, we have

min{y(.f7Ha(i))(zo)’V(g7Ha(i))(Z0)}
= l/(g’H”(i))(Zo) >N = min{l/(f’Ha(i))(zo),N}.

If zp € {Z] min{y(f,Ha(i))(Z)aV(g,H,,(,;))(Z)} = V(g,H(,(,;))(Z)}Q{Z|V(g,H,,(i))(Z) =
k}, k=1,...,N —1, we have

min{vs,u, ) (20), Y(g,H, ) (70) }

= V(g,H, ) (%0) =k
U(i))(ZO)vN} — (N - k)z/(lngU(i))(zo).
Note that f~'(H;) N f~1(H;) =0 for all 1 <i < j<gq. We have

> min{l/(ﬁH

q
(2) Yo Yy vy — N = Dl = (N =200y s
j=1,j#i,0(i)
1 N 1
T V(g,H),=N-1 + V(f»Ha(i)) - (N - 1)1/(Q7Ha(i))v:1
1 1
— (N =20 m, =2 = =Yg Hyu)=N-1

S V(fH) (9 Ho ()~ (f Ho ) (9, Ho)

On the other hand, for each j, 1 <j <g,

(3) (N - 1)’/(19,Hj),:1 +(N - 2)”(19,Hj),:2 +ot V(lg,Hj),:Nfl
— Nl N
= NVg,my) = Vg,
Combining (2) and (3), we have (1). O

Take summation of (1) over 1 <i < g, we have

q
(¢—2) V(lf,Hj) + Z(V(I\f],Hi) + V(].:;Hi))

i=1

M=

J

Il
—

q

(V(J\}ﬂa(i)) + V(J\g/vao(i))) o NZ(V(IQVH@') + V(197Ha(i)))
i=1

+

-

Il
-

K2

q
S Z V(f’Hi)(g’Ho(i))7(f7Hﬂ(1,))(Q»Hi)'

=1
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Since o is bijective, this gives

q q

q
(q - 2) Zy(lf’Hj) + 2Z(U(]\}’H1) + V(l\g[’Hi)) - QNZV(lg’Hi)
Jj=1

i=1 i=1

q
< Z V(f,H:i)(9,Hyiy)— (£, Ho (i) (g,Hi) "
i=1

Similarly, we have
q

q q
(@=2)Y Vg +23 (W amy + Vigm)) — QNZ Vit

j=1 i=1

< ZV(f,H,i)(g,Hm))—(f,Hm))(g,Hi)-

i=1
Hence,
(¢g—2N-2) SN N
(4) Z Vg + Wgp) + 2DV + Vign,)
j=1 j=1
q
Z V(f,Hi)(9,Hoiy)— (£, Ho (i) (9,Hi)*
Take N =n and ¢ =2n + 2, we have
2n+2 2n+2
(5) 2D (Wrmy) T Vo) S D HAH o)~ (FoHa o) (0.
j=1 i=1
Denote by W(fo, ..., fn) (or W(go,...,gn)) the Wronskian of fy,..., f, (or
90s---59n). Since f and g are linearly non-degenerate, we have W (fy,...,

fn)#0 and W(go,...,gn) Z0.

LEMMA 6. Let Hy,...,Hay o be the hyperplanes in P (F), located in gen-
eral position. Then

2n+2 2n+2
(6) Z V(f,H) — VW (foronnfn) S Z Vif,1,)-
Jj=1 j=1

Proof. Since f~1(H;)N f~Y(H;) =0 for all 1 <i< j <2n+ 2, each point
z € U2n+2 L(H;) satisfies z € f~1(H;,) for some iy with 1 <iy < 2n+ 2,

and z ¢ f~(H;) for j #ip. Hence (f, H;)(z) #0 for j #ip. Assume that
(f,Hi,) Vanishes at z with vanishing order m. Without loss of generality,

we assume that a;,0 # 0. Then, W(fo, f1,..., fn) = ;%)W((f, Hi)). fi,---fn)
and W(fo,..., fn) vanishes at z with vanishing order at least m — n. Hence,

we have (6). O
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By Lemma 6 and (5), we have

2n+-2 2n+2
(7) 2 ( > V) = W ot F D Vg, — VW(.qo,...,gn))

j=1 =1
2n+2

< Z V(f,Hi)(9,Ho(i))— (£, Ho (i) (9, Hi)+
=1

Define
U= (W(for s )W (gos---r9n))°

2n+2 2n+2 2
X H ((faHz)(g7H0'(z)) - (va(r(z))(gaHl))/< H (f?H])(gvHJ)> .

j=1
By (7), U is entire. Furthermore, ¥ # 0.

By Lemma 3, there exists a sequence z; € F such that 7, = |z;| — oo,
ri & {r,}, and (f,H;)(zk) #0 for 1 <j <2n+ 2, where the set {r,} is a
discrete set.

Assume that

(8) ’fik(zk)’:Olg?gxnﬂfi(zk)” and |gj, (z1)] = max {|g;(z1)|}-

0<j<n
Now, for each fixed z;, we suppose that
|(f7H,u1)(Zk)‘ < |(f7H,u2)(Zk)| <0< |(f7H#2n+2)(Zk)}
and

|(97HV1)(21€)| < }(Q’Hvz)(zk)’ <0< |(gaHV2n+2)(Zk)|'
Solving the system of linear equations

aulOfO(zk) +- 1+ amnfn(zk) = (fa Hﬂl)(zk)a 1 S l S n—+ 1a

we have
’fik('zk)’ <y 1§r{1§af+1{‘(f’ HM)(Z}C)’} = Cl’(vaH1L+1)(Zk)‘
for a constant C; dependent only on Hy,..., Hopyo.

Similarly, we have

|95 (21)| < C2 lgrlngafﬂ{’(g,Hw)(zk)’} =Cs|(9, Hy, oy ) (20)|

for Cy > 0.
Hence, we obtain
|f1k(zk)| < B|(f7H,un+1)(Zk)| < B|(fa Hun+2)(zk)| <o < B’(f7H,u2n+2)(Zk)|

and

‘g.jk(zk?)| < B|(97HV7L+1)(Z’€)’ < B’(gvHVn+2)(Zk)‘ <- < B‘(g7HV2n+2)(zk)|=

where B > 0 is a constant independent of zy.
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9)  |¥(z)
_ W(fo,... ) @) PIW (g0, gn) () P
(H2n+2|(fv i) (ze) |19, Hj) (z1)])?

2n+2

x H| (£ Hi) (9, Hoy) — (fs Hoga) (9, Hi)) (21|

B4n+4‘W(f07 ..,fn)(Zk)|2|W(90’ . ,gn)(zk)|2

= n+1
(L= 1 H ) o)l (g, Hu) () D2 fi (20) P72 g5 (21) [P

2n+2
X H ‘ fa O’(Z) (f7 (1) )( 7Hz))(zk)‘
By Lemma 4, for 1 <a <mn,
1
M(f Hj)(a) (7“) < T_D‘7
(f.Hj)

and hence
10 ——t(2)| <
1o @<

By the properties of the Wronskian, we have

W (for- s f) i)l _ ColW((f s )s-o (f Hpo ) (20)
201 ) )| T H) )

where C3 > 0 is a constant.
By the properties of the non-Archimedean norm and (10), we have

(WS Hy)s -5 (Fs Hipp ) (21|

)

11
D T H) o)
(f’ )(011 (f7H n+1)(0‘n+1)
= et st | (R H) ‘ oty
1
m

|2k

Similarly, we have

|W((97H ) '7(gaHVn+1))(Zk)‘ 1
12 <
. 121 (g, Huy) ()| B

1665
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On the other hand, by (8) and the properties of the non-Archimedean norm,
we also have

2n—+2
(13) H| f7 U(Z)) (vao(z))(gaHl))(Zk)}
< Cylfi (2k) ‘ ‘gjk(zk)|2n+2

for a constant Cy independent of zy.
Combining (9), (11), (12) and (13), we have

Bintd . ¢
| (z)] < Ton 2ROt D)
for all k, where C' > 0 is a constant which depends only on the hyperplanes.
Let k — oo, this implies that ¥ = 0, which is a contradiction. So f=g. This
completes the proof of Theorem 1. O

Proof of Theorem 2. Suppose that f # g. Repeating the argument in the
proof of Theorem 1, we have
(g—2N —2) . 1 1 - N N
S 2 Wy T ) + 2D (Wmy + Vigm)

j=1 j=1
q
<D VD 9 Hoi)— (o Ho ) (9, H.)-
=1

Take N =p*~'n and ¢ = 2p°*~'n + 2, we have
2p 2p°~1n42
Z (f H; ) +v (g H; )) Z V(f,Hi)(9,Hoiy)— (£, Ho(i))(9,Hi) "
=1 i=1

In the positive characteristic case, we should use the generalized Wronskian
instead of the ordinary Wronskian.

Since f =[fo:--: fn] is linearly non-degenerate over M|[p®], by Theo-
rem 3.5 in [2], there exist positive integers 7i,...,v, with 7; <~;_1 + p*~!
such that

fo o fa
DVify--- DN f,
D2 fo . D2 f £0.

D’Yn fO D'Yn fn

This determinant is called the generalized Wronskian of f. For more proper-
ties of the generalized Wronskian, we refer readers to [3].

Denote by W (fo, ..., fn) (or W(go,-..,gn)) the generalized Wronskian of
f (or g), which is not identically zero.
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Similar to (6), we have

2p° " In42 2p° " 1n42 y
~ p°n
Z V(£ H;) = VW (fornsfr) = Z Y(r.Hy)
j=1 j=1
and
2p° " 1n42 2p° " In42 )
~ p°'n
V(g,H;) ~ Vi (go,nign) = Z Yig.Hy)
j=1 j=1
Hence,
2ps_1n+2 2ps_1n+2
2( Z V(FHS) = YW (foreennfa) T Z Y(g.Hj) — ”W(go,...,gm)
j=1 j=1
2p° " In42
< Z V(f,Hi)(9,Ho(i))—(f,Ho (i) (9, Hi)+
i=1
We consider
_ (~ (an"'7fn)V~V(90,"'7gn))2
- 2ps—1n+42
(IL% (f,H;)(g, Hj))?
2p°~ 1n+2
X H ((fv )( U(z ) (fa o(i) )( 7Hi))7
i=1

which is a nonzero entire function.

By Lemma 3, we can take a sequence z; € F such that ry = |z;| — oo,
re & {r,}, and (f, H;)(zx) #0 for 1 <j <2p*~'n+2, where the set {r,} is a
discrete set. Assume that

|fon (@] = max {[fi(z) [} and  [gj, ()] = max {]g;(z0)]}-

Hence, we have |f;, (zx)| — 00, |gj, (2x)] — 00 as k — oo.
By the same argument as in the proof of Theorem 1, there exist positive
constants B and C, dependent only on the hyperplanes, such that

Ba@p T =Lnt+d o
Wl < |2 20D | fi, () [P0 T =10 g, () [P 2= m

for all k. This yields that ¥ =0, which is a contradiction. (]

€
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