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FIXED POINTS IN ABSOLUTELY IRREDUCIBLE REAL
REPRESENTATIONS

HAIBO RUAN

Abstract. It has been an open question whether any bifurcation
problem with absolutely irreducible group action would lead to

bifurcation of steady states. A positive proposal is also known

as the “Ize-conjecture”. Algebraically speaking, this is to ask

whether every absolutely irreducible real representation has an

odd dimensional fixed point subspace corresponding to some sub-
groups. Recently, Reiner Lauterbach and Paul Matthews have

found counter examples to this conjecture and interestingly, all

of the representations are of dimension 4k, for k ∈ N. A natural
question arises: what about the case 4k + 2?

In this paper, we give a partial answer to this question and
prove that in any 6-dimensional absolutely irreducible real rep-
resentation of a finite solvable group, there exists an odd dimen-
sional fixed point subspace with respect to subgroups.

1. Introduction

In the course of investigating dynamical systems with symmetries, one be-
comes interested in studying properties of fixed point sets in the underlying
representation spaces. Very often the algebraic property of fixed point spaces
gives a strong indication to the topological property of the appearing dy-
namics.1 As an example, in the context of equivariant bifurcations, an odd
dimensional fixed point subspace leads to a bifurcation of steady states.
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It has been a fundamental question to the bifurcation theorists whether
any bifurcation problem with absolutely irreducible group action always leads
to bifurcation of steady states. From an algebraic viewpoint, this is to ask
whether every absolutely irreducible real representation has an odd dimen-
sional fixed point space. From a topological viewpoint, since the existence of
odd dimensional fixed point spaces gives precisely the kind of obstruction that
keeps the antipodal map from being equivariantly homotopic to the identity
map, this is to ask whether the antipodal map is never equivariantly homo-
topic to the identity map on an absolutely irreducible real representation (cf.
Lemma 2.16, Remark 2.20 and see also [1], [9], [10], [12]). However, the ques-
tion was neither considered in the representation theory nor answered in the
equivariant homotopy theory.

In [4], Mike Field quoted a private communication with Jorge Ize, who
claimed that every absolutely irreducible real representation has an odd di-
mensional fixed point space.2 However, counter examples were found by
Reiner Lauterbach and Paul Matthews recently in [11], where they showed
that there are three infinite series of groups of order 48 + 32m, for m ∈ N,
which act absolutely irreducibly on R4, and have no odd dimensional fixed
point spaces. Further counter examples were also found in dimensions 4k for
k ≤ 5. Nevertheless, no counter examples could be found in dimensions 4k+2.
Whether it is true in general that every (4k + 2)-dimensional absolutely irre-
ducible real representation has an odd dimensional fixed point space remains
open.

In this paper, we give a partial answer to this question and show that every
6-dimensional absolutely irreducible real representation of a finite solvable
group has an odd dimensional fixed point space (cf. Theorem 3.2). The reason
for the choice of finite solvable groups is that on one hand, they contain
properly Abelian groups, nilpotent groups and monomial groups, for all of
which the statement naturally holds; on the other hand, a finite solvable group
has a composition series all of whose factors are of prime order, which allows
us to inductively use results from character theory about reduced characters
of prime index normal subgroups.

The proof is essentially an algebraic proof, with inspiration coming from
character theory and equivariant degree theory. Notice that since a finite
solvable group has a composition series all of whose factors are cyclic groups
of prime order, we can assume the group G has a normal subgroup N of prime
index p such that the restricted character χN is not absolutely irreducible.
Moreover, we show that χN is either irreducible of complex type or splits into
p distinct absolutely irreducible real representations of N (cf. Corollary 2.10).

2 Jorge Ize believed this was true, since he thought that he had a topological proof of it.

However, he realized that his proof was incomplete (cf. [7]).
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In the case p = 2, we first prove a technical lemma on the characters of
degree 6 and then reduce the problem to examining a special type of groups,
namely finite solvable groups G which have an index 2 subgroup N such
that all elements in G \ N have order 4. In the case χN is irreducible of
complex type, we show that if the set S := {g2 : g ∈ G \ N } consists of at
least 2 conjugacy classes, then G has an order 8 subgroup, which produces a
1-dimensional fixed point space.

The remaining question is what happens if the set S forms a single conju-
gacy class in G. This case is analyzed by I. Martin Isaacs in his recent work
[6], where he shows that if such a group has an irreducible character of degree
2m for an odd integer m, then the square-free part of m is not divisible by
any prime p ≡ 3 (mod4). In particular, it excludes the possibility of G hav-
ing degree 6 irreducible characters, and thus closes the proof for the case χN

being irreducible of complex type. The splitting case was similar.
In the case p > 2, we adopt the concept of the basic degree from the equivari-

ant degree theory (cf. [1], [9], [10], [12]) and associate to each G-representation
V an element a(V ) in the Burnside ring (A(G), ·) of G and call it the char-
acteristic of G-representations. Without referring to the equivariant degree
theory, we show that it is invariant with respect to G-isomorphisms and mul-
tiplicative with respect to product of G-representations. Moreover, V has no
odd-dimensional fixed point spaces if and only if a(V ) = e, where e denotes
the multiplicative identity in A(G) (cf. Lemma 2.16). With this algebraic
tool at hand, we can show that the splitting case of χN is impossible without
allowing odd dimensional fixed point spaces in V . The other case of χN being
irreducible of complex type cannot happen if p > 2.

2. Preliminaries

2.1. Group representations and characters of representations. Let
F be a field, V be a finite-dimensional F-vector space, G be a compact Lie
group and GL(V ) be the space of invertible linear maps on V . Denote by
R,C,H the field of real, complex and quaternion numbers, respectively.

Definition 2.1. (i) An F-representation of G is a homomorphism of G
to GL(V ) for some V . The dimension of the representation is defined as the
dimension of V . An F-representation of G is called irreducible, if {0} and V
are the only G-invariant subspaces in V .

(ii) An irreducible R-representation is said to be of real type, complex type
or quaternionic type, if the set of commuting linear maps is isomorphic to R,
C or H. An irreducible R-representation of real type is also called absolutely
irreducible.

Definition 2.2. Let F ∈ {R,C} and ρ : G → GL(V ) be an F-representa-
tion. The character of the representation ρ is the function χ : G → F defined
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by
χ(g) := Tr

(
ρ(g)

)
,

where Tr(ρ(g)) is the trace of the linear map ρ(g) on V . With respect to the
Haar integral on G, the inner product of two characters χ, ψ is defined by

〈χ,ψ〉 :=
∫

G

χ(g) · ψ(g)dg.

The Frobenius–Schur indicator of χ is defined by

ν(χ) :=
∫

G

χ
(
g2

)
dg.

We call a character of an irreducible F-representation an irreducible F-charac-
ter.

Remark 2.3. Observe that for a finite group G, a subgroup H ⊂ G and a
character χ of G, we have

(1) 〈χH , χH 〉 ≤ |G : H| 〈χ,χ〉,
where χH is the restricted character on H , |G : H| is the index of H in G,
and the equality is achieved if and only if χ(g) = 0 for all g ∈ G \ H .

Recall the following result on Frobenius–Schur indicators.

Theorem 2.4 (Cf. [2]). Let V be an irreducible R-representation and χ be
its character. Then, V is of real type if and only if 〈χ,χ〉 = 1 and ν(χ) = 1; of
complex type if and only if 〈χ,χ〉 = 2 and ν(χ) = 0; and of quaternionic type
if and only if 〈χ,χ〉 = 4 and ν(χ) = −2.

In what follows, we denote by Irr(G,R) and Irr(G,C) the set of all irre-
ducible R-characters and C-characters, respectively. Let IrrF(G,R) ⊂ Irr(G,R)
be the set of all irreducible R-characters of F-type, for F ∈ {R,C,H}.

Recall the first orthogonality relation of irreducible characters.

Theorem 2.5 (Cf. [5]). Let χ,ψ ∈ Irr(G,C). Then,

〈χ,ψ〉 =

{
1, if χ = ψ

0, otherwise.

The following results will be used to exclude certain “singular” types of
groups in the proof of our main result (cf. Theorem 3.2).

Theorem 2.6 (I. M. Isaacs (cf. [6])). Let G be a finite solvable group and
N ⊂ G be an index 2 subgroup such that g4 = 1 for all g ∈ G \ N . Assume that
all elements of the form g2 for some g ∈ G \ N , are conjugate. Then G has
a normal 2-complement3 and if χ ∈ Irr(G,C) has degree 2m, where m is odd,
then the square-free part of m is not divisible by any prime p ≡ 3mod4.

3 A subgroup H of G is called a normal 2-complement, if H is normal in G and for every

2-Sylow subgroup P of G, HP = G and H ∩ P is trivial.
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Theorem 2.7 (I. M. Isaacs (cf. [6])). Let G be a finite solvable group and
N ⊂ G be an index 2 subgroup such that g4 = 1 for all g ∈ G \ N . Assume that
the set {g2 : g ∈ G \ N } is a union of at most 3 conjugacy classes of G. Then
if θ ∈ Irr(N,C) is real valued and nonlinear of odd degree m, then m = 3 and
θ is invariant in G.

2.2. Normal subgroups and restricted characters. Let G be a finite
group and denote by N � G a normal subgroup N in G.

Definition 2.8. Let N � G and g ∈ G. For a character ϕ of an N -
representation, define the conjugate character ϕg : N → C by ϕg(h) :=
ϕ(ghg−1).

Recall the following result on restricted characters of prime index normal
subgroups, which plays an important role in the proof of our main result.

Theorem 2.9 (Cf. [5]). Let N � G with |G : N | = p, a prime. Suppose
χ ∈ Irr(G,C). Then either

(a) χN is irreducible or
(b) χN =

∑p
i=1θi, where the θi are distinct, conjugate and irreducible.

Now suppose that χ is a character of an absolutely irreducible R-representa-
tion and N �G is a normal subgroup of prime index p. Then, χ is automatically
a character of an irreducible C-representation. By Theorem 2.9, either χN is
irreducible or it splits into p distinct irreducible characters of N .

In the case (a), χN is irreducible as a C-character. Since χN is real-
valued, it is then absolutely irreducible as an R-character. In the case (b), χN

splits into p distinct irreducible characters θ1, . . . , θp. Consider the complex
conjugation on χ. Since χ is real valued, it fixes χ and thus permutes θi’s.
If p is odd, the permutation fixes at least one of these characters, say θr.
This implies that θr is real-valued. Since every θi is conjugate to θr, θi is
real-valued for i = 1, . . . , p. Consequently, each θi is absolutely irreducible as
an R-character. Otherwise, p = 2. Then, either the complex conjugation fixes
θi, for i = 1,2, in which case each θi is absolutely irreducible, or the complex
conjugation permutes θ1 to θ2, which implies that χN is irreducible but not
absolutely irreducible as an R-character.

In summary, we have shown the following corollary.

Corollary 2.10. Let N � G with |G : N | = p, a prime. Suppose χ ∈
IrrR(G,R). Then one of the following holds:

(a) χN ∈ IrrR(N,R);
(b) χN ∈ IrrC(N,R);
(c) χN =

∑p
i=1ϕi, where the ϕi are distinct, conjugate and absolutely irre-

ducible.
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2.3. An elementary lemma on χ(g2). Let ρ : G → GL(6,R) be a 6-
dimensional real representation of a group G and χ be the corresponding
character. We call a group element g rotational, if it acts on R6 by rotations
of 3 complex planes; that is, ρ(g) has 3 pairs of complex conjugate eigenvalues
of unit modulus.

The following lemma provides an upper bound of the values of χ(g2), for
rotational elements g such that χ(g) = 0.

Lemma 2.11. Let G be a group, V be a real representation of G of dimen-
sion 6 and χ be the character of V . If g is rotational and χ(g) = 0, then
χ(g2) ≤ 2, where “=” is achieved if and only if g is of order 4.

Proof. Let Mg ∈ GL(6,R) be the matrix representation of g, and s1, s̄1, s2,
s̄2, s3, s̄3 be the eigenvalues of Mg . Write sm = xm + iym for m = 1,2,3. Then,
we have

x2
m + y2

m = 1,(2)

and
3∑

m=1

xm =
1
2

3∑
m=1

(sm + s̄m) =
1
2
χ(g) = 0.

Let x := (x1, x2, x3)T ∈ R3. Then, x lies in the cube with vertices (±1, ±1,
±1)T , as well as on the plane x1 + x2 + x3 = 0; that is, x lies in the reg-
ular hexagon with vertices (0, −1,1)T , (1, −1,0)T , (1,0, −1)T , (0,1, −1)T ,
(−1,1,0)T and (−1,0,1)T .

Thus, ‖x‖2 ≤ 12 + 12 = 2, which combined with (2) implies that

χ
(
g2

)
=

3∑
m=1

(
s2

m + s̄2
m

)
= 2

3∑
m=1

(
x2

m − y2
m

)
= 2

(
2‖x‖2 − 3

)
≤ 2.

Notice that the equality is achieved precisely when x is a vertex of the hexagon,
in which case, g is of order 4. �

2.4. Burnside ring. Let G be a compact Lie group, V be a real represen-
tation of G and χ be the corresponding character. By H ⊂ G, we mean H is
a closed subgroup in G.

Definition 2.12. For H ⊂ G, define the fixed point subspace with respect
to H by

V H := {x ∈ V : hx = x ∀h ∈ H}.

Notice that

(3) dimV H = 〈χH ,1H 〉 =
1

|H|
∑
h∈H

χ(h),

where 1H stands for the trivial character of H .
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For a G-space X ,4 denote by

XH := {x ∈ X : hx = x ⇔ h ∈ H}.

It is known that for a finite-dimensional G-representation V , VH is an open
dense subset of V H (cf. [8]). For x ∈ X , define the isotropy subgroup of x by
Gx := {g ∈ G : gx = x}. Then, x ∈ XH if and only if Gx = H .

Let H ⊂ G be a closed subgroup. Denote by

N(H) :=
{
g ∈ G : gHg−1 = H

}
the normalizer of H and by W (H) := N(H)/H the Weyl group of H in G.
The conjugacy class of H in G is denoted by (H). We write

(H1) < (H2), if H1 � gH2g
−1 for some g ∈ G.

Set
Φ0(G) :=

{
(H) : H ⊂ G s.t. dimW (H) = 0

}
.

Recall the definition of the Burnside ring of G (cf. [3]).

Definition 2.13. Let G be a compact Lie group. The Burnside ring of
G, which will be denoted by A(G), is the free Z-module generated by the set
Φ0(G) with the following multiplication:

(4) (H) · (K) =
∑
(L)

nL(H,K)(L), (H), (K) ∈ Φ0(G),

where

(5) nL(H,K) =
∣∣(G/H × G/K)L/W (L)

∣∣.
In the definition of nL(H,K), G/H × G/K is considered as a G-space with
the action given by

ϕ
(
g, (g1H,g2K)

)
= (gg1H,gg2K)

for all g, g1, g2 ∈ G. Thus, L is an isotropy subgroup of an element in G/H ×
G/K if and only if (L) = (H ∩ gKg−1) for some g ∈ G. We call (L) to be
nontrivial, if nL 
= 0.

Remark 2.14. (i) The multiplicative identity in A(G) is (G).
(ii) For L,H ⊂ G, set N(L,H) := {g ∈ G : gLg−1 ⊂ H} and

(6) n(L,H) :=
∣∣∣∣N(L,H)

N(H)

∣∣∣∣.
Notice that the number n(L,H) represents the number of different subgroups
H̃ in the conjugacy class H such that L ⊂ H̃ . It is proved that the coefficients

4 By a G-space we mean a set X together with a G-action, i.e. a map ϕ : G × X → X such
that (i) ϕ(e,x) = x for all x ∈ X , where e is the identity of G; (ii) ϕ(g2,ϕ(g1, x)) = ϕ(g2g1, x)

for all g1, g2 ∈ G and x ∈ X .
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nL(H,K) in (4) can be computed recurrently from the following relation (cf.
[1], [3])

(7) n(L,H)
∣∣W (H)

∣∣n(L,K)
∣∣W (K)

∣∣ =
∑

(L′)≥(L)

n
(
L,L′)nL′ (H,K)

∣∣W (
L′)∣∣.

(iii) In the case (H) = (K), we have

(8) (H) · (H) =
∣∣W (H)

∣∣(H) + R,

where R is the remaining part containing terms (L) such that (L) < (H).

2.5. A characteristic of a representation. Let G be a finite group and
V be a representation of G. Denote by a(V ) the G-equivariant degree of the
antipodal map in the unit ball of V . It was known in the equivariant degree
theory that a(V ) takes a value in the Burnside ring of G and the assignment
V �→ a(V ) is invariant with respect to G-isomorphisms and multiplicative with
respect to product of G-representations (cf. [1], [9], [10], [12]).

However, to avoid topological jargon and to make the exposition self-
contained, we give an algebraic definition of a(V ) and an algebraic proof
of its multiplicative property (cf. Proposition 2.18). Moreover, we show that
V has no odd-dimensional fixed point spaces if and only if a(V ) = e, where e
denotes the multiplicative identity in A(G) (cf. Lemma 2.16).

Definition 2.15. Let G be a finite group and V be a representation of G.
The following defined element a(V ) ∈ A(G) is called the characteristic of V :

a(V ) =
∑
(H)

nH(H),

where nH is defined recurrently by

(9) nH =
(−1)dimV H −

∑
(H)<(H′)n(H,H ′)nH′ |W (H ′)|

|W (H)| ,

where the numbers n(H,H ′) are defined by (6).

As an immediate consequence of the definition, the characteristic of a rep-
resentation satisfies the following property.

Lemma 2.16. Let V be a representation of a finite group G. Then, a(V ) =
(G) if and only if all the fixed point subspaces in V are even dimensional.

Proof. Write a(V ) =
∑

nH(H). Assume that all the fixed point subspaces
in V are even dimensional. Then, nG = (−1)dimV G

= 1. We prove nH = 0 for
every (H) with (H) < (G) by induction. Let (H) be a maximal conjugacy
class with (H) < (G). Then,

nH =
(−1)dimV H − n(H,G)nG|W (G)|

|W (H)| =
1 − 1 · 1 · 1

|W (H)| = 0.
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Suppose that nH = 0 for all (H) such that (Ho) < (H) < (G). Then,

nHo =
(

(−1)dimV Ho − n(H,G)nG

∣∣W (G)
∣∣

−
∑

(Ho)<(H)<(G)

n(Ho,H)nH

∣∣W (H)
∣∣)

/∣∣W (Ho)
∣∣

=
1 − 1 · 1 · 1 −

∑
0

|W (H)| = 0.

Thus, a(V ) = (G).
Assume that V has an odd-dimensional fixed point subspace with respect to

a subgroup. Let (Ho) be a maximal conjugacy class corresponding to an odd
dimensional fixed point subspace. If (Ho) = (G), then nG = (−1)dimV G

= −1
and thus n(V ) 
= (G). Otherwise, if (Ho) < (G), then nG = 1 and nH = 0 for
every (H) such that (Ho) < (H) < (G). Consequently, we have

nHo =
(

(−1)dimV Ho − n(Ho,G)nG

∣∣W (G)
∣∣

−
∑

(Ho)<(H)<(G)

n(Ho,H)nH

∣∣W (H)
∣∣)

/∣∣W (Ho)
∣∣

=
−1 − 1 · 1 · 1 −

∑
0

|W (H)| = − 2
|W (K)| 
= 0.

Thus, a(V ) 
= (G). �

Similarly, we have the following corollary.

Corollary 2.17. Let V be a representation of a finite group G such that
V G is even dimensional. If (H) is a maximal conjugacy class such that (H) <
(G) with a nonzero coefficient nH in a(V ), then nH = − 2

|W (H)| .

We show that the characteristic considered as a function defined on the
space of all representations of G satisfies a multiplicative property.

Proposition 2.18. Let V,W be two representations of a finite group G.
Then, we have

a(V × W ) = a(V ) · a(W ),

where “·” denotes the multiplication in the Burnside ring A(G) of G.
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Proof. Write a(V ) =
∑

(H)nH(H) and a(W ) =
∑

(K)mK(K). Let

a(V ) · a(W ) =
∑

(H),(K)

nHmK(H) · (K) :=
∑
(L)

pL(L),

a(V × W ) =
∑
(L)

qL(L),

where nH ,mK , pL, qL ∈ Z.
It is sufficient to show that pL = qL for every (L) ∈ Φ0(G), which we prove

by induction. If (L) = (G), then

pG
(7)
= nGmGn(G,G)

∣∣W (G)
∣∣n(G,G)

∣∣W (G)
∣∣ = nGmG

(9)
= (−1)dimV G · (−1)dimW G

= (−1)dim(V ×W )G

= qG.

Suppose that pL′ = qL′ for all (L′) > (L). Then, we have

(−1)dim(V ×W )L (9)
=

∑
(L′)≥(L)

qL′
∣∣W (

L′)∣∣n(
L,L′)

=
∑

(L′)>(L)

pL′
∣∣W (

L′)∣∣n(
L,L′) + qL

∣∣W (L)
∣∣n(L,L).

Thus, to conclude pL = qL, it is sufficient to show

(10) (−1)dim(V ×W )L

=
∑

(L′)≥(L)

pL′
∣∣W (

L′)∣∣n(
L,L′).

Notice that pL′ =
∑

(H),(K)nHmKpL′ (H,K), where pL′ (H,K) is the (L′)-
coefficient in (H) · (K) defined by (5) and (H), (K) are such that (H ∩
gKg−1) = (L′) for some g ∈ G. Thus, the right-hand side of (10) is equal to∑

(L′)≥(L)

∑
(H),(K)

nHmKpL′ (H,K)
∣∣W (

L′)∣∣n(
L,L′)(11)

=
∑

(H),(K)

nHmK

∑
(L′)≥(L)

pL′ (H,K)
∣∣W (

L′)∣∣n(
L,L′)

(7)
=

∑
(H),(K)

nHmKn(L,H)
∣∣W (H)

∣∣n(L,K)
∣∣W (K)

∣∣,
where (H), (K) are such that (H ∩ gKg−1) ≥ (L) for some g ∈ G. Notice that
(H ∩ gKg−1) ≥ (L) for some g ∈ G if and only if (H) ≥ (L) and (K) ≥ (L).
Thus, the right-hand side of (11) is equal to∑

(H)≥(L)

nHn(L,H)
∣∣W (H)

∣∣ ∑
(K)≥(L)

mKn(L,K)
∣∣W (K)

∣∣
(9)
= (−1)dimV L · (−1)dimW L

= (−1)dim(V ×W )L

,
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which proves (10). Therefore, pL = qL for all (L) and the statement fol-
lows. �

Corollary 2.19. Let V be a representation of a finite group G. Then, we
have

(12) a(V ) · a(V ) = (G).

Proof. Note that dim(V × V )L is always even dimensional whenever non-
empty, for all L ⊂ G. By Lemma 2.16, this implies that a(V × V ) = (G).
Then, it follows from the Proposition 2.18 that a(V ) · a(V ) = (G). �

Remark 2.20. The definition of the characteristic of a real representation
is in fact an algebraic version of the definition of the primary equivariant
degree of the map −Id : V → V on the unit ball of V (cf. [1] and references
therein). It is proved in the setting of equivariant topology that the primary
equivariant degree has a multiplicative property (cf. [12]). But as shown
above, important algebraic properties of the primary equivariant degree can
be recovered by using (9) directly. These properties turn out to be sufficient
for our purpose.

3. Proof

Let G be a finite group. Let V be an absolutely irreducible real repre-
sentation of G. We will show that every 6-dimensional absolutely irreducible
R-representation of a solvable finite group has at least one odd dimensional
fixed point space.

Definition 3.1. Let G be a finite group and V be an absolutely irreducible
real representation of G. Let χ be the R-character of G afforded by V . If the
restricted character χH is not absolutely irreducible for every proper subgroup
H ⊂ G, then (G,V ) is called minimal.

Theorem 3.2. Let G be a finite solvable group and V be an absolutely
irreducible real representation of G of dimension 6. Then, V has an odd-
dimensional fixed point subspace.

Proof. Let χ be the corresponding character. Without loss of generality,
we may assume that χ is faithful and (G,V ) is minimal. Otherwise, if χ is
not faithful, then one considers G/ker(χ) for ker(χ) := {g ∈ G : χ(g) = χ(1)};
or if (G,V ) is not minimal, then one considers H ⊂ G, on which χ remains
absolutely irreducible. Then, the problem is reduced to a (solvable) group of
order lower than G.

Since G is a finite solvable group, it has a normal subgroup of prime in-
dex. Let N ⊂ G be a normal subgroup of prime index p. Denote by χN the
restricted character of N . As we assume (G,V ) to be minimal, χN is not ab-
solutely irreducible. Thus, by Corollary 2.10, we have either χN ∈ IrrC(N,R),
or χN =

∑p
i=1λi for distinct λi ∈ IrrR(N,R) that are conjugate in G.
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Without loss of generality, we assume

(13) χ(σ) ∈ {2, −2, −6} for any involution σ ∈ G

since any involution having 1 as an eigenvalue of odd multiplicity, induces an
odd dimensional fixed point subspace in V .

Case I : Suppose p = 2.
By Theorem 2.4 and Corollary 2.10, we have 〈χN , χN 〉 = 2, independent of

the reducibility of χN . Combined with 〈χ,χ〉 = 1, by Remark 2.3, we have

(14) χ(g) = 0 ∀g ∈ G \ N.

Thus, by (13), there exist no involutions in G \ N . On the other hand, since
|G : N | = 2, every g ∈ G \ N satisfies that g2k ∈ N and g2k+1 ∈ G \ N for all
k ∈ N. Consequently, g2k+1 is not an involution for all k ∈ N. Thus, we have
(C1) In the case I, we have Ord(g) = 4k, k ≥ 1, for g ∈ G \ N .

Case I.A: Suppose χN ∈ IrrC(N,R).
By Theorem 2.4, we have ν(χN ) = 0 and ν(χ) = 1. It follows that

(15)
1

|N |
∑

g∈G\N

χ
(
g2

)
= 2.

Let χ̂N be the character of V when considered as a complex representation.
Since χN ∈ IrrC(N,R), the C-representation χ̂N is reducible. Moreover, by
Theorem 2.9, we have

χ̂N = λ1 + λ2,

for two distinct irreducible C-representations λ1, λ2 ∈ IrrC(N,C) of degree 3.
Let W be the underlying representation space of λ1. By (6.6)(ii) in [2], we
have

C ⊗ V = W ⊕ W,

where W is the complex conjugate representation of W . Thus,
(C2) In the case I.A, the matrix representation Mn for every element n ∈ N ,

when considered as a complex matrix, is similar to a diagonal matrix

Mn := diag[ε1, ε2, ε3, ε̄1, ε̄2, ε̄3],

where εr = 1, r is the order of n and ε̄i is the complex conjugate of εi.
Case I.A.a: There exists g ∈ G \ N such that either χ(g2) > 2 or Ord(g) > 4.
We first prove

(C3) In the case I.A.a, if there exists go ∈ G \ N such that Ord(go) > 4 and
χ(g2

o) ≥ 2, then V has an odd-dimensional fixed point subspace.

Proof. Set ho := g2
o and denote by Mho (resp. Mgo) the matrix represen-

tation of ho (resp. go). We show that Mho has exactly 2 pairs of nonreal
complex eigenvalues.

If Mho has 1 pair of nonreal complex eigenvalues, then by (C2), Mho is
similar to diag[δ1, δ2, r, δ1, δ2, r̄], for δ1, δ2 ∈ { ±1}. But χ(ho) ≥ 2, thus we
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have δ1 = δ2 = 1. Consequently, Mgo is similar to diag[ε1, ε2, s, ε3, ε4, s̄], for
εi ∈ { −1,1}. Observe that

∑4
i=1εi ∈ { ±4, ±2,0} and s + s̄ ∈ (−2,2) \ {0}.

Therefore, χ(go) 
= 0, which is a contradiction to (14).
Suppose that Mho has 3 pairs of nonreal complex eigenvalues and write

Mho as diag[r1, r2, r3, r̄1, r̄2, r̄3]. Thus, Mgo = diag[s1, s2, s3, s̄1, s̄2, s̄3], where
s2

i = ri. By (14) and Lemma 2.11, we conclude that Ord(go) = 4, which is a
contradiction to our assumption.

Therefore, we showed that Mho has exactly 2 pairs of nonreal complex
eigenvalues. Thus, by (C2), Mho is similar to diag[δ, r1, r2, δ, r̄1, r̄2], where
δ ∈ {±1}. But χ(ho) ≥ 2, so we have δ = 1. Let H := 〈ho〉 and H ′ := 〈go〉.
Then, it follows that dimV H = 2. On the other hand, we have (cf. (3))

dimV H′
=

1
|H ′ |

∑
g∈H′

χ(g)
(14)
=

1
|H ′ |

∑
g∈H

χ(g)

=
1

2|H|
∑
g∈H

χ(g) =
1
2

dimV H .

Thus, dimV H′
= 1, which is an odd-dimensional fixed point subspace in V .

�Proof of (C3)

We now show that under the assumption of case I.A.a, there exists an odd-
dimensional fixed point subspace in V . Assume that there exists go ∈ G \ N
such that χ(g2

o) > 2. By (13), g2
o is not an involution. By (C1), Ord(go) > 4.

Thus, (C3) applies and we can conclude the existence of an odd-dimensional
fixed point subspace in V .

Otherwise, assume that χ(g2) ≤ 2 for all g ∈ G \ N but there exists go ∈ G \
N such that Ord(go) > 4. Then, by (15), we have χ(g2) = 2 for all g ∈ G \ N .
In particular, χ(g2

o) = 2. Thus, (C3) applies and the statement follows.
By (C1) and (15), the complementary case of case I.A.a in case I.A is the

following
Case I.A.b: For all g ∈ G \ N , we have Ord(g) = 4 and χ(g2) = 2.
In what follows, we write σ as −1, if χ(σ) = −6. Since χ is assumed to be

faithful, such element is unique.
Consider the set S := {g2 : g ∈ G \ N }. By Theorem 2.6, S is composed of

at least 2 distinct conjugacy classes of G. We show that
(C4) In the case I.A, there exists a go ∈ G \ N such that go commutes with

an involution σ ∈ G with σ /∈ { −1, g2
o , −g2

o }.

Proof. Let c1, c2 be 2 distinct conjugacy classes of G, containing g2
1 , g2

2

respectively, for some gi ∈ G \ N such that χ(g2
i ) = 2, i = 1,2.

Assume that one of the ci’s has even size, say |c1| = 2k, k ∈ N. Then,
c1 contains an element σ, which is different from g2

1 , such that g1σ = σg1.
Indeed, consider the conjugation action on c1 by g1, which will be denoted by
ρ1. Notice that ρ1 ∈ Aut(c1) � S2k. Since ρ1 fixes at least one element in c1,
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namely g2
1 , we have that ρ1 ∈ S2k−1. On the other hand, since Ord(g1) = 4,

we have Ord(ρ1) ∈ {1,2,4}. Consequently, ρ1 fixes at least another element
in c1, say σ, which is not g2

1 . Since χ(σ) = χ(g2
1) = 2, we also have that

σ /∈ {−1, −g2
1 }. Thus, (C4) holds.

Otherwise, assume both c1 and c2 have odd sizes, say |c1| = 2r + 1, |c2| =
2s + 1, for r, s ∈ N. Since χ(g2

i ) = 2, ci does not contain −1, for i = 1,2. In
particular, |ci| ≥ 3, for i = 1,2. Consider the conjugation action on c1 by g2,
which is denoted by ρ2. Then, ρ2 ∈ Aut(c1) � S2r+1. Again, since Ord(g2) =
4, we have Ord(ρ2) ∈ {1,2,4}. Therefore, ρ2 fixes at least one element in c1,
say σ, which is clearly different from g2

2 . Also, since χ(σ) = χ(g2
1) = 2, we

have that σ /∈ {−1, −g2
2 }. Thus, (C4) holds. �Proof of C4

Let go, σ be given by (C4). Consider the group

H ′ := H ∪ σH =
{
1, go, g

2
o , g3

o , σ, σgo, σg2
o , σg3

o

}
.

By (14), χ(go) = χ(g3
o) = χ(σgo) = χ(σg3

o) = 0. Thus, we have

dimV H′
=

1
8
(
χ(1) + χ

(
g2

o

)
+ χ(σ) + χ

(
σg2

o

))
=:

1
8
(6 + 2 + x + y).

Since −1 /∈ H ′, by (13), x, y ∈ {2, −2}. Consequently, from dimV H′ ∈ Z, it
follows that x + y = 0 and thus dimV H′

= 1.
Case I.B : Suppose that χN = λ + λg , where λ, λg are distinct conjugate

absolutely irreducible N -representations, and g ∈ G \ N .
Since ν(λ) = ν(λg) = ν(χ) = 1, we have

(16)
∑

g∈G\N

χ
(
g2

)
= 0.

Case I.B.a: There exists go ∈ G \ N such that Ord(go) > 4.
Let H ′ be the group generated by go and H := H ′ ∩ N . Notice that a half

of the elements in H ′ has character 0 (cf. (14)). Moreover, we have

χN (h) = λ(h) + λg(h) = λ(h) + λgo(h) = 2λ(h) ∀h ∈ H.(17)

Denote by W the underlying representation space of λ. Then, (17) implies
that H acts faithfully on W . Now that H is a cyclic group of order larger than
2, which acts faithfully on a 3-dimensional representation, so dimWH = 1. On
the other hand, we have

dim(V )H′
=

1
2|H|

∑
h∈H

χ(h)

=
1

2|H|
∑
h∈H

2λ(h) = dimWH .

Consequently, the group H ′ has a 1-dimensional fixed point space in V .
Case I.B.b: For all g ∈ G \ N , we have Ord(g) = 4.
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Combined with (14), we have that every element g ∈ G \ N is similar to
one of the following three diagonal matrices

Diag[1,1, −1, −1, i, −i], in which case χ
(
g2

)
= 2;

Diag[1, −1, i, −i, i, −i], in which case χ
(
g2

)
= −2;

Diag[i, −i, i, −i, i, −i], in which case χ
(
g2

)
= −6.

Notice that in the case χ(g2) = −2, the group generated by g has a 1-
dimensional fixed point space. Thus, without loss of generality, we assume

χ
(
g2

)
∈ {2, −6} ∀g ∈ G \ N.

Taking into account of (16), we have that −1 ∈ G. Moreover,{
g2 : g ∈ G \ N

}
= { −1} ∪

{
g2 : χ

(
g2

)
= 2, g ∈ G \ N

}
.

Denote by S′ := {g2 : χ(g2) = 2, g ∈ G \ N }. Then, by Theorem 2.7, S′ is a
union of at least 3 conjugacy classes. Let c1 and c2 be two of the conjugacy
classes in S′. By the argument used in the proof of the claim (C4), we have
(C5) In the case I.B.b, there exists a go ∈ G \ N such that χ(g2

o) = 2 and go

commutes with an involution σ ∈ G with σ /∈ {−1, g2
o , −g2

o }.
Thus, a similar argument leads to the fact that the group generated by go has
a 1-dimensional fixed point space in V .

Case II : Suppose p > 2.
Case II.A: Suppose χN ∈ IrrC(N,R).
Then, by Theorem 2.4, we have ν(χN ) = 0 and thus 〈χN , χN 〉 = 2.
On the other hand, complexify the real representation V as a complex one

and denote by χ̂ the corresponding character. Though χ(g) = χ̂(g) for g ∈ G,
we keep the seperate notations. Since χN ∈ IrrC(N,R) is irreducible of com-
plex type, χ̂N becomes reducible when considered as a complex representation.
By Theorem 2.9, we have χ̂N =

∑p
i=1λi, where λi ∈ Irr(N,C) are distinct and

irreducible. By Theorem 2.5, we have 〈χ̂N , χ̂N 〉 =
∑p

i=1〈λi, λi〉 = p. Conse-
quently,

2 = 〈χN , χN 〉 = 〈χ̂N , χ̂N 〉 = p,

which contradicts the assumption p > 2.
Case II.B : Suppose that χN =

∑p
i=1λi, where λi ∈ IrrR(N,R), i = 1,2, . . . ,

p, are distinct absolutely irreducible N -representations which are conjugate
in G.

By the conjugacy relation, we have λi(1) = λj(1) for i, j ∈ {1,2, . . . , p}. Set
r := λ1(1). Then, 6 = χN (1) = p · r. Since p > 2, we conclude that p = 3.

Write χN = λ1+λ2+λ3. Then, λi is afforded by a 2-dimensional real vector
space, which will be denoted by Vi, for i = 1,2,3. Consider the characteristic
a(Vi) of Vi, for i = 1,2,3 (cf. Definition 2.15). Then, by (12), we have

(18) a(Vi) · a(Vi) = (N).
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Assume that V has only even dimensional fixed point subspaces. Then, by
Lemma 2.16 and Proposition 2.18, we obtain (N) = a(V1) · a(V2) · a(V3). Since
(a(Vi))2 = (N), we have

a(V1) = a(V2) · a(V3),(19)
a(V2) = a(V1) · a(V3),(20)
a(V3) = a(V1) · a(V2).(21)

Write

a(V1) := (N) + nH(H) + R1,

a(V2) := (N) + mK(K) + R2,

a(V3) := (N) + lL(L) + R3,

where (H), (K), (L) are maximal conjugacy classes such that nH ,mK , lL 
= 0
and Ri denotes the remainder, for i = 1,2,3. Then,

a(V2) · a(V3) := (N) + mK(K) + lL(L) + mK lL(K)(L)(22)
+ mK(K)R3 + lL(L)R2 + R2 + R3 + R2R3

(19)
= (N) + nH(H) + R1.

Comparing the leading terms, we have either (H) = (K) or (H) = (L). Sim-
ilarly, by (20)–(21), we have either (K) = (H) or (K) = (L); and either
(L) = (K) or (L) = (H). It follows that

(23) (H) = (K) = (L).

Substitute (23) in (22), we have

(N) + (mK + lL)(H) + mK lL(H)(H)(24)
+ mK(H)R3 + lL(H)R2 + R2 + R3 + R2R3

= (N) + nH(H) + R1,

where (H) · (H) = |W (H)|(H) + R (cf. (8)). Thus, by comparing the (H)-
coefficients in (24), we obtain

mK + lL + mklL
∣∣W (H)

∣∣ = nH .

Similar analysis of (20)–(21) leads to

nH + lL + nH lL
∣∣W (H)

∣∣ = mK ,

nH + mK + nHmK

∣∣W (H)
∣∣ = lL.

Therefore, nH = mK = lL = − 1
|W (H)| , which is a contradiction to Corol-

lary 2.17. Consequently, V must have an odd dimensional fixed point sub-
space. �
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