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HIGGS BUNDLES FOR THE LORENTZ GROUP

MARTA APARICIO ARROYO AND OSCAR GARCÍA-PRADA

Abstract. Using the Morse-theoretic methods introduced by
Hitchin, we prove that the moduli space of SO0(1, n)-Higgs bun-
dles when n is odd has two connected components.

Introduction

Let G be a real semisimple Lie group and let H ⊆ G be a maximal compact
subgroup. Let ι : HC → GL(mC) be the complexified isotropy representation
defined in terms of the Cartan decomposition of the Lie algebra of G. Let X be
a compact Riemann surface of genus g ≥ 1. A G-Higgs bundle over X is a pair
(E,ϕ) consisting of a principal HC-bundle E over X and a holomorphic section
ϕ of the bundle associated to ι twisted by the canonical line bundle of X . For
these objects, there is a notion of (poly)stability that allows to construct the
moduli space of isomorphism classes of polystable G-Higgs bundles. Higgs
bundles were introduced by Hitchin in [13], [14] when G is complex and in
[15] when G is the split real form of a complex semisimple Lie group. Other
real forms, especially of Hermitian type have been studied in [2], [4], [8] and
other papers.

In [1], a systematic study has been initiated for G = SO0(p, q)—the con-
nected component of the identity of SO(p, q). In this paper, we report on the
solution to the problem of counting the number of connected components of
the moduli space of polystable SO0(1, n)-Higgs bundles when n is odd. We
prove the following.

Theorem (see Theorem 9.3). The moduli space of SO0(1, n)-Higgs bundles
when n > 1 is odd has two connected components.
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An important motivation to study G-Higgs bundles comes from their rela-
tion with representations of the fundamental group of the surface X in G.
Namely, for a semisimple algebraic Lie group G we say that a represen-
tation of π1(X) in G—that is a homomorphism of π1(X) in G—is reduc-
tive if the Zariski closure of its image is a reductive group. The moduli
space of equivalence classes of reductive representations is an algebraic va-
riety [11]. Non-Abelian Hodge theory [5], [6], [7], [8], [13], [20], [21] says
precisely that this variety is homeomorphic to the moduli space of polystable
G-Higgs bundles. We thus have the following as a corollary of our main the-
orem.

Theorem. The moduli space of reductive representations of the fundamen-
tal group of an orientable compact surface in SO0(1, n) when n > 1 is odd has
two connected components.

The main tool to prove our result is the use of the Morse-theoretic tech-
niques introduced by Hitchin [13], [15]. These techniques have by now been
used to count the number of connected components of the moduli space of
G-Higgs bundles for several groups (see, e.g., [2], [3], [8], [10], [12], [16]).
A main step is to identify the critical subvarieties of the Hitchin–Morse func-
tion defined by the L2-norm of the Higgs field. This has been carried out
in [1] in full generality for SO0(p, q). Now, the problem of identifying the
local minima—which is what allows the counting of connected components—
in general is far more involved technically than for the other groups stud-
ied in the literature. This is however possible for SO0(1, n) when n is odd.
The main technical bulk of the paper is devoted to identifying in this case,
first the smooth minima in the moduli space, and then the possibly singu-
lar points, which consist of stable but not simple Higgs bundles and strictly
polystable Higgs bundles. We expect that our results may be of interest
both in geometry and physics since SO(1, n) is the Lorentz group of special
relativity and its adjoint form is the group of isometries of real hyperbolic
space.

1. SO0(1, n)-Higgs bundles

Let X be a compact Riemann surface. Let G be a real semisimple Lie group,
H be a maximal compact subgroup of G and HC be its complexification. Let

ι : HC → GL
(
mC

)
,

be the complexified isotropy representation, defined in terms of the Cartan
decomposition g = h + m of the Lie algebra of G and using the fact that
[h,m] ⊆ m.

Definition 1.1. A G-Higgs bundle is a pair (E,ϕ) where E is a princi-
pal HC-bundle over X and ϕ is a holomorphic section of the vector bundle
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E(mC) ⊗ K = (E ×ι mC) ⊗ K, where K is the canonical line bundle over X .
The section ϕ is called the Higgs field.

When G is a real compact reductive Lie group, the Cartan decomposition
of the Lie algebra is g = h and then the Higgs field is equal to zero. Hence, a
G-Higgs bundle is in fact a principal GC-bundle.

If G is a complex Lie group, we consider the underlying real Lie group GR.
In this case, the complexification HC of a maximal compact subgroup is again
the Lie group G and since

gR = h + ih,

the isotropy representation coincides with the adjoint representation of G on
its Lie algebra.

The special orthogonal group SO(1, n) is the subgroup of SL(n+1,R) con-
sisting of all linear transformations of a n + 1 dimensional real vector space
which leave invariant a non-degenerate symmetric bilinear form of signature
(1, n). Using the standard non-degenerate symmetric bilinear form of signa-
ture (1, n) on Rn+1

ε(x, y) = −x1y1 + x2y2 + · · · + xn+1yn+1,

this means that,

SO(1, n) =
{
A ∈ SL(n + 1,R) | AtI1,nA = I1,n

}
,

where I1,n =
( −1

In

)
.

The Lie group SO(1, n) is a non-compact real form of SO(n + 1,C). It
has dimension n(n + 1)/2, is semisimple for n ≥ 2 and has two connected
components. Let SO0(1, n) be the connected component of the identity.

The Lie algebra of SO(1, n) and then of its identity component SO0(1, n)
is so(1, n), which has Cartan decomposition

so(1, n) = h + m,

where h = so(n) is the Lie algebra of the maximal compact subgroup SO(1) ×
SO(n) of SO0(1, n). If we use the standard non-degenerate symmetric bilinear
form of signature (1, n), we have that

so(1, n) =
{
X ∈ sl(n + 1,R) | XtI1,n + I1,nX = 0

}
=

{(
0 X2

Xt
2 X3

) ∣∣ X3 real skew-sym. of rank n,X2 ∈ R
n

}
,

and then

h =
{(

0 0
0 X3

) ∣∣ X3 ∈ so(n)
}

,

and

m =
{(

0 X2

Xt
2 0

) ∣∣ X2 ∈ R
n

}
.
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The involution of so(n + 1,C) that defines so(1, n) as a real form is σ(X) =
I1,nX̄I1,n, that is

so(1, n) =
{
X ∈ so(n + 1,C) | I1,nX̄I1,n = X

}
=

{
X ∈ sl(n + 1,C) | X + Xt = 0, I1,nX̄I1,n = X

}
=

{(
0 iX2

−iXt
2 X3

) ∣∣ X3 real skew-sym. of rank n,X2 ∈ R
n

}
.

Observe that there is an isomorphism(
0 iX2

−iXt
2 X3

)
→

(
0 X2

Xt
2 X3

)
=

(
−i 0
0 In

)(
0 iX2

−iXt
2 X3

)(
i 0
0 In

)
.

The Cartan decomposition of the complex Lie algebra is

so(n + 1,C) = so(n,C) ⊕ mC,

where

mC =
{(

0 X2

−Xt
2 0

) ∣∣ X2 ∈ C
n

}
,

and the complexified isotropy representation is

ι : {1} × SO(n,C) → GL
(
mC

)
,

where

ι

(
1 0
0 b

)(
0 X2

−Xt
2 0

)
=

(
1 0
0 b

)(
0 X2

−Xt
2 0

)(
1 0
0 b−1

)

=
(

0 X2b
−1

−bXt
2 0

)
∈ mC.

From Definition 1.1, an SO0(1, n)-Higgs bundle is a pair (E,ϕ) consist-
ing of a holomorphic principal SO(1,C) × SO(n,C)-bundle E over X and a
holomorphic section ϕ ∈ H0(E(mC) ⊗ K).

If (E,ϕ) is an SO0(1, n)-Higgs bundle, the principal SO(1,C) × SO(n,C)-
bundle E is the fibred product

E = ESO(1,C) × ESO(n,C)

of two principal bundles with structure groups SO(1,C) and SO(n,C) respec-
tively. Using the standard representations of SO(1,C) and SO(n,C) in C and
C

n we can associate to E a triple (V,W,QW ) where V ∼= O, W is a holomor-
phic vector bundle of rank n and trivial determinant, QW : W ⊗ W → C is
a non-degenerate symmetric quadratic form, which induces an isomorphism
qW : W

∼
W ∗.

The vector bundle E(mC) can be expressed in terms of V ∼= O and W as
follows:

E
(
mC

)
=

{
(η, ν) ∈ Hom(W, O) ⊕ Hom(O,W ) | ν = −η�}

,
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where η� = q−1
W ◦ ηt,

O
η�

ηt

W

qW

W ∗,

that is, E(mC) ∼= Hom(W, O). Then, in terms of vector bundles, the Higgs
field is a section η ∈ H0(Hom(W, O) ⊗ K), that is

η : W → O ⊗ K,

and hence SO0(1, n)-Higgs bundles (E,ϕ) are in one-to-one correspondence
with tuples (O,W,QW , η).

Let (E,ϕ) be an SO0(1, n)-Higgs bundle. Extending the structure group
of E from SO(1,C) × SO(n,C) to SO(n+1,C), the pair (ESO(n+1,C), ϕ), with

ϕ ∈ H0
(
ESO(1,C)×SO(n,C)

(
mC

)
⊗ K

)
⊂ H0

(
ESO(n+1,C)

(
so(n + 1,C)

)
⊗ K

)
,

is an SO(n + 1,C)-Higgs bundle.
In terms of vector bundles, if E is the vector bundle associated to ESO(n+1,C)

via the standard representation of SO(n + 1,C) in C
n+1 and (O,W,QW , η)

is the tuple corresponding to (E,ϕ), then E = O ⊕ W , and the SO(n + 1,C)-
Higgs bundle associated to (O,W,QW , η) is the triple(

E = O ⊕ W,Q =
(

1
QW

)
, φ =

(
η

−η�

))
.

2. Stability conditions

In this section, we study the notions of semistability, stability and polysta-
bility for SO0(1, n)-Higgs bundles, for the associated SO(n+1,C)-Higgs bun-
dles and the relation between them. These notions have been studied in [1]
applying the general notions given by Bradlow, Garćıa-Prada, Gothen and
Mundet i Riera [5], [8], that generalize the results given by Ramanathan [18]
for principal bundles.

We will express these notions in term of filtrations. In the case of SO0(1, n)-
Higgs bundles, since SO(1,C) = {1}, they will only involve conditions on the
filtrations of the principal SO(n,C)-Higgs bundle (W,QW ).

Definition 2.1. Let (O,W,QW , η) be an SO0(1, n)-Higgs bundle with
n �= 2, then it is semistable if for any filtration

W = (0 ⊂ W1 ⊂ · · · ⊂ Ws = W ),

satisfying Wj = V
⊥QW
s−j and any element μ ∈ Λ(W ) with

Λ(W ) =
{
μ = (μ1, μ2, . . . , μs) ∈ R

s | μi ≤ μi+1, μs−i+1 + μi = 0 for any i
}
,
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such that η ∈ H0(N ⊗ K), where

N = N(W , μ) =
∑
μi ≥0

Hom(Wi, O),

we have
d(W , μ) ≥ 0.

The tuple (O,W,QW , η) is stable if it is semistable and for any choice of the
filtration W and non-zero μ ∈ Λ(W ), such that η ∈ H0(N ⊗ K), we have

d(W , μ) > 0.

Finally, the tuple (O,W,QW , η) is polystable if it is semistable and for any
filtration W as above and non-zero μ ∈ Λ(W ) satisfying μi < μi+1 for each i,
η ∈ H0(N ⊗ K) and d(W , μ) = 0, there is a splitting

W 
 W1 ⊕ W2/W1 ⊕ · · · ⊕ W/Ws−1

satisfying

QW (Wi/Wi−1,Wj/Wj−1) = 0 unless i + j = s + 1,

with respect to which

η ∈ H0

(⊕
μi=0

Hom(Wi/Wi−1, O) ⊗ K

)
.

Definition 2.2. The moduli space of polystable SO0(1, n)-Higgs bundles
is defined as the set of isomorphisms classes of polystable SO0(1, n)-Higgs
bundles and is denoted by M(SO0(1, n)).

This moduli space has the structure of a complex algebraic variety (see
[19]).

In the following proposition, we prove that the notions of semistability and
stability can be simplified.

Proposition 2.3. Let (O,W,QW , η) be an SO0(1, n)-Higgs bundle with
n �= 2. It is semistable if and only if for any isotropic subbundle W ′ ⊂ W
such that η(W ′) = 0 the inequality degW ′ ≤ 0 holds. It is stable if and only if
it is semistable and for any non-zero isotropic subbundle W ′ ⊂ W such that
η(W ′) = 0 we have degW ′ < 0.

Proof. Let (O,W,QW , η) be an SO0(1, n)-Higgs bundle and assume that for
any isotropic subbundle W ′ ⊂ W such that η(W ′) = 0, we have degW ′ ≤ 0.
We want to prove that (O,W,QW , η) is semistable.

Choose a filtration W = (0 ⊂ W1 ⊂ · · · ⊂ Ws = W satisfying Wj = W
⊥QW
s−j

for any j. We have to understand the geometry of the convex set

Λ =
{
μ ∈ Λ(W ) | η ∈ N

}
⊂ R

s.
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Let
J =

{
i | η(Wi) = 0

}
= {i1, . . . , ik }.

One checks easily that if μ ∈ Λ(W ), then

μ ∈ Λ ⇔ μa = μb for any il ≤ a ≤ b ≤ il+1.

The set of indices J is symmetric, that is

i ∈ J ⇔ s − i ∈ J .

Let J ′ = {i ∈ J | 2i ≤ s} and define for any i ∈ J ′ the vector

Li = −
∑
c≤i

ec +
∑

d≥s−i+1

ed,

where {e1, . . . , es} is the canonical basis of R
s. The set Λ is the positive span

of the vectors {Li | i ∈ J ′ } and we have that

d(W , μ) ≥ 0 for any μ ∈ Λ ⇔ d(W ,Li) ≥ 0 for any i.

We also have that

d(W ,Li) = − degWs−i − degWi.

Since degWs−i = degWi, then d(W ,Li) = −2degWi ≥ 0 is equivalent to
degWi ≤ 0, which holds by assumption. Hence, (O,W,QW , η) is semistable.

Conversely, if (O,W,QW , η) is semistable, for any isotropic subbundle
W ′ ⊂ W such that η(W ′) = 0 we have that the condition degW ′ ≤ 0 is im-
mediately satisfied by applying the semistability condition of the filtration
0 ⊂ W ′ ⊂ W ′ ⊥QW ⊂ W .

Finally, the proof of the second statement on stability is very similar to
case of semistability and we then omit it. �

Remark 2.4. The case n = 2 requires special attention. Observe that
a principal SO(2,C)-bundle (E,Q) decomposes as E = L ⊕ L−1, where L
is a line bundle and Q =

(
1

1
)
. Then, any principal SO(2,C)-bundle has

an isotropic subbundle with degree greater or equal than zero. However,
SO(2,C) ∼= C

∗ has no proper parabolic subgroups, and the stability condition
can not be simplified in terms of isotropic subbundles. It seems that this case
was overlooked in [18].

We now study the relation between the stability of an SO0(1, n)-Higgs
bundle and the stability of its associated SO(n + 1,C)-Higgs bundle. To do
this, we introduce the notions of semistability, stability and polystability for
SO(n,C)-Higgs bundles.

Definition 2.5. An SO(n,C)-Higgs bundle (E,Q,φ) (n �= 2) is semistable
if for any filtration

E = (0 ⊂ E1 ⊂ · · · ⊂ Ek = E),
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1 ≤ k ≤ n, satisfying Ej = E
⊥Q

k−j , and any element of

Λ(E ) =
{
λ = (λ1 ≤ λ2 ≤ · · · ≤ λk) ∈ R

k | λk−i+1 + λi = 0 for any i
}

such that φ ∈ H0(N(E , λ) ⊗ K), where

N(E , λ) =
⋂

λj ≤λi

{
f ∈ so(E) | f(Ei ⊂ Ej)

}
we have

d(E , λ) =
k−1∑
j=1

(λj − λj+1)degEj ≥ 0.

The triple (E,Q,φ) is stable if it is semistable and for any choice of the
filtration E and non-zero λ ∈ Λ(E ) such that φ ∈ H0(N(E , λ) ⊗ K), we have

d(E , λ) > 0.

Finally, the triple (E,Q,φ) is polystable if it is semistable and for any filtra-
tion E as above and λ ∈ Λ(E ) satisfying λi < λi+1 for each i, φ ∈ H0(N(E , λ) ⊗
K) and d(E , λ) = 0, there is an isomorphism

E 
 E1 ⊕ E2/E1 ⊕ · · · ⊕ Ek/Ek−1

satisfying
Q(Ei/Ei−1,Ej/Ej−1) = 0 unless i + j = k + 1.

Furthermore, via this isomorphism,

φ ∈ H0

(⊕
i

Hom(Ei/Ei−1,Ei/Ei−1) ⊗ K

)
.

There is a simplification of the semistability and stability conditions, which
is next described.

Proposition 2.6. An SO(n,C)-Higgs bundle (E,Q,φ) (n �= 2) is semi-
stable if and only if for any isotropic subbundle E′ ⊂ E such that φ(E′) ⊆
E′ ⊗ K the inequality degE′ ≤ 0 holds, and it is stable if it is semistable and
for any non-zero isotropic subbundle E′ ⊂ E such that φ(E′) ⊆ E′ ⊗ K we
have degE′ < 0.

Proof. This proof is analogous to the proof of Theorem 4.2 in [9].
Let (E,Q,φ) be an SO(n,C)-Higgs bundle and assume that for any isotropic

subbundle E′ ⊂ E such that φ(E′) ⊆ E′ ⊗ K one has degE′ ≤ 0. We are going
to prove that (E,Q,φ) is semistable.

Choose any filtration E = (0 ⊂ E1 ⊂ · · · ⊂ Ek = E) satisfying Ej = E
⊥Q

k−j for
any j and consider the set

Λ(E , φ) =
{
λ ∈ Λ(E ) | φ ∈ N(E , λ)

}
⊂ R

k.
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Let J = {j | φ(Ej) ⊆ Ej ⊗ K} = {j1, . . . , jr }. One checks easily that if λ =
(λ1, . . . , λk) ∈ Λ(E ) then

λ ∈ Λ(E , φ) ⇔ λa = λb for any ji ≤ a ≤ b ≤ ji+1.

The set of indices J is symmetric, that is,

j ∈ J ⇔ k − j ∈ J .

To check this, we have to prove that φ(Ej) ⊆ Ej ⊗ K implies that φ(E⊥Q

j ) ⊆
E

⊥Q

j ⊗ K. Suppose that this is not true, then there is a j with φ(Ej) ⊆ Ej ⊗ K

and there exists some w ∈ E
⊥Q

j such that φ(w) /∈ E
⊥Q

j ⊗ K. Then there exists
v ∈ Ej such that Q(v,φ(w)) �= 0. However, since φ ∈ H0(so(E) ⊗ K), we must
have

Q
(
v,φ(w)

)
= Q

(
v, −φ�(w)

)
= −Q

(
φ(v),w

)
,

and the latter vanishes because by assumption φ(v) belongs to Ej . So we
have reached a contradiction.

Let J ′ = {j ∈ J | 2j ≤ k} and define for any j ∈ J ′ the vector

Lj = −
∑
c≤j

ec +
∑

d≥k−j+1

ed,

where {e1, . . . , ek } is the canonical basis of R
k. We know that the set Λ(E , φ)

is the positive span of the vectors {Lj | j ∈ J ′ }. Consequently, we have

d(E , λ) ≥ 0 for any λ ∈ Λ(E , φ) ⇔ d(E ,Lj) ≥ 0 for any j

and d(E ,Lj) = − degEk−j − degEj . Since degEk−j = degEj , d(E ,Lj) ≥ 0
is equivalent to degEj ≤ 0, which holds by assumption. Hence, (E,Q,φ) is
semistable.

Conversely, if (E,Q,φ) is semistable then for any isotropic subbundle
E′ ⊂ E such that φ(E′) ⊆ E′ ⊗ K we have degE′ ≤ 0 is immediate by ap-
plying the semistability condition of the filtration 0 ⊂ E′ ⊂ E′ ⊥Q ⊂ E.

Finally, the proof of the second statement on stability is very similar to the
case of semistability, we thus omit it. �

Proposition 2.7. Let (O,W,QW , η) be an SO0(1, n)-Higgs bundle and let
(E,Q,φ) be the corresponding SO(n + 1,C)-Higgs bundle. If (O,W,QW , η) is
stable, then (E,Q,φ) is stable as an SO(n + 1,C)-Higgs bundle.

Proof. Let (O,W,QW , η) be a semistable SO0(1, n)-Higgs bundle and con-
sider the associated SO(n + 1,C)-Higgs bundle (E,Q,φ). We will see that for
every isotropic subbundle E′ ⊂ E such that φ(E′) ⊆ E′ we have degE′ ≤ 0.

If E′ ⊂ E is an isotropic subbundle, we consider the projection p : E → W
and the subbundles W ′ = p(E′) and V ′ = E′ ∩ O. Observe that V ′ = O or 0.
We have the exact sequence

0 → V ′ → E′ → W ′ → 0
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and the equality
degE′ = degW ′.

Since Q =
(

1
QW

)
, we have(

E′)⊥E =
(
V ′ ⊕ W ′)⊥E =

(
V ′)⊥E ∩

(
W ′)⊥E

=
[(

V ′)⊥ O ⊕ W
]

∩
[
V ⊕

(
W ′)⊥W

]
=

(
V ′)⊥ O ⊕

(
W ′)⊥W

,

and then, the condition E′ ⊆ (E′)⊥E implies V ′ ⊆ (V ′)⊥ O and W ′ ⊆ (W ′)⊥W ,
that is, V ′ and W ′ are isotropic subbundles of O and W respectively. This
implies that V ′ = 0. On the other hand, since φ(E′) ⊆ E′ ⊗ K and φ =(

η
−η� )

, we have that η(W ′) = 0.
The semistability condition for (O,W,QW , η) gives degE′ = degW ′ ≤ 0

and then we conclude that the semistability of an SO0(1, n)-Higgs bundle
implies the semistability of its associated SO(n + 1,C)-Higgs bundle.

Let now E′ ⊂ E be a non-zero isotropic subbundle such that φ(E′) ⊆ E′ ⊗
K. Since E′ �= 0 and it is isotropic, W ′ = p(E′) is non-zero. The stability
condition for (O,W,QW , η) gives degE′ = degW ′ < 0 and we conclude. �

3. Polystable SO0(1,2m + 1)-Higgs bundles

The main result in this section is Theorem 3.1 which gives a full description
of polystable SO0(1, n)-Higgs bundles.

For this, we describe now a special principal SO(n,C)-bundle which arises
from a U(n′)-Higgs bundle. If W ′ is a holomorphic vector bundle of rank n′,
we can obtain a principal SO(2n′,C)-bundle considering the orthogonal bundle
(W ′ ⊕ W ′ ∗, 〈·, · 〉) where 〈·, · 〉 denotes the dual pairing. In the following, we
shall slightly abuse language saying simply that (W ′ ⊕ W ′ ∗, 〈 ·, · 〉) is a U(n)-
Higgs bundle.

Theorem 3.1. Let (O,W,QW , η) be a polystable SO0(1, n)-Higgs bundle.
There is a decomposition, unique up to reordering, of this Higgs bundle as
a sum of stable Gi-Higgs bundles, where Gi is one of the following groups:
SO0(1, ni), SO(ni) or U(ni).

Proof. Let (O,W,QW , η) be a polystable SO0(1, n)-Higgs bundle. For the
pair (W,QW ) we fix a filtration W = (0 ⊂ W1 ⊂ · · · ⊂ Ws = W ) with Wj =
W

⊥QW
s−j and an element μ ∈ Λ(W ) with μ1 < · · · < μs and μs−i+1 +μi = 0, such

that η ∈ H0(
⊕

μi ≥0 Hom(Wi, O) ⊗ K) and d(W , μ) = 0. Since (O,W,QW , η)
is polystable, we have

W 
 W1 ⊕ W2/W1 ⊕ · · · ⊕ W/Ws−1,

with
QW (Wi/Wi−1,Wj/Wj−1) = 0 unless i + j = s + 1,
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and

η ∈ H0

(⊕
μi=0

Hom(Wi/Wi−1, O) ⊗ K

)
.

From the condition

QW (Wi/Wi−1,Wj/Wj−1) = 0 unless i + j = s + 1,

we have that the bilinear form QW gives an isomorphism between (Wi/Wi−1)∗

and Ws−i+1/Ws−i. We have the exact sequence

W ⊥
i W ⊥

i−1

p
(Wi/Wi−1)∗,

where p is given by w �→ QW (W, ·), and then

(Wi/Wi−1)∗ ∼= W ⊥
i−1/W ⊥

i
∼= Ws−i+1/Ws−i.

Suppose that n is odd and that we have a filtration W = (0 ⊂ W1 ⊂ · · · ⊂
Ws = W ) where s is even, then W ⊥

s
2

= Ws− s
2

= W s
2
. On the other hand,

rk(W ⊥
s
2

) = n − rk(W s
2
), that implies rk(W s

2
) = n

2 , which is not a natural num-
ber. Then, if n is odd, all the possible filtrations W = (0 ⊂ W1 ⊂ · · · ⊂
Ws = W ), have odd length s, and the value 0 always appears in the mid-
dle of μ1 < · · · < μs. When the rank n is even, we have filtrations for all
1 ≤ s ≤ n. When s is odd, we have μ s+1

2
= 0 and in the even case, we have

μ s
2

< μ s
2+1, with μ s

2
= −μ s

2+1 < 0.
The Higgs field can be not equal to zero only when μ s+1

2
= 0, that is

η ∈ H0
(
Hom(W s+1

2
/W s−1

2
, O) ⊗ K

)
.

Since
(W s+1

2
/W s−1

2
)∗ ∼= W s+1

2
/W s−1

2
,

the tuple
(O,W s+1

2
/W s−1

2
,QW , η)

is in itself an SO0(1, ni)-Higgs bundle, where ni = rk(W s+1
2

/W s−1
2

). Observe
that QW denotes now the restriction to W s+1

2
/W s−1

2
.

If 0 = η ∈ H0(Hom(W s+1
2

/W s−1
2

, O) ⊗ K), (O,W s+1
2

/W s−1
2

,QW , η) is the
sum of the trivial bundle together with an SO(ni)-Higgs bundle

(W s+1
2

/W s−1
2

,QW ).

When μi �= 0, we have a pair of U(ni)-Higgs bundles

Wi/Wi−1 and Ws−i+1/Ws−i,

dual one to the other. In this case ni = rk(Wi/Wi−1) = rk(Ws−i+1/Ws−i).
Each piece in the decomposition is also polystable, and we can repeat the

process and obtain a decomposition where all the pieces are stable Higgs
bundles (using the Jordan–Hölder reduction, [8, Sec. 2.10]). �
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Observe that there can only be one summand with Gi = SO0(1, ni) in the
decomposition.

Suppose that in the decomposition of a polystable SO0(1, n)-Higgs bundle
(O,W,QW , η) there is a summand which is an SO(2)-Higgs bundle, that is, a
principal SO(2,C)-bundle E = L ⊕ L−1. The isotropic subbundles L and L−1,
which have opposite degrees, do not violate the stability condition for E (since
there are no parabolic subgroups in SO(2,C)) but they violate the stability
condition for (O,W,QW , η).

Analogously, if there is a summand in the decomposition which is a U(ni)-
Higgs bundles E, then E∗ is also in the decomposition of (O,W,QW , η), and
since deg(E) = − deg(E), one or both vector bundles violate the stability
condition for (O,W,QW , η).

Then we have the following results.

Proposition 3.2. If a polystable SO0(1, n)-Higgs bundle (O,W,QW , η) de-
composes as a sum of stable Gi-Higgs bundles where Gi = SO0(1, ni) and
SO(ni) with ni �= 2, then (O,W,QW , η) is stable.

Proposition 3.3. In the decomposition of a strictly polystable SO0(1, n)-
Higgs bundle (O,W,QW , η) there must be at least a Gi-Higgs bundle with
Gi = U(ni) or SO(2).

Theorem 3.1 gives us a decomposition of a polystable SO0(1, n)-Higgs bun-
dles as a sum of stable Gi-Higgs bundles, where Gi is one of the following
groups: SO0(1, ni), SO(ni) or U(ni). From the following result we have that,
in fact, any polystable SO0(1, n)-Higgs bundles can be decomposed as a sum
of Gi-Higgs bundles which represent smooth points in the moduli space.

Proposition 3.4. Let (O,W,QW , η) be a polystable SO0(1, n)-Higgs bun-
dle. There is a decomposition, unique up to reordering, of this Higgs bundle
in a sum of smooth Gi-Higgs bundles, with Gi = SO0(1, ni), SO(ni) or U(ni),
where each Gi-Higgs bundle represents a smooth point in the moduli space.

Proof. The starting point is Theorem 3.1.
A stable U(n)-Higgs bundle represents a smooth point in the moduli space

of U(n)-Higgs bundles.
A stable SO(n)-Higgs bundle represents a smooth point if and only if it

is stable and simple. On the other hand, any stable SO(n)-Higgs bundle
which is not simple can be expressed, using Theorem 5.2, as a direct sum of
SO(ni)-Higgs bundles that represent smooth points of the moduli space.

Finally, as we know from Corollary 4.4, a stable SO0(1, n)-Higgs bundle
represents a smooth point of the moduli space if and only if it is simple, but
if a stable SO0(1, n)-Higgs bundle is non-simple, from Theorem 5.5 we have
that it decomposes as a sum of stable and simple SO0(1, ni) and SO(ni)-Higgs
bundles and we conclude. �
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4. Smoothness and deformation theory

It is known that a stable vector bundle is simple and that it is a smooth
point of the moduli space of polystable vector bundles. On the other hand, a
stable principal SO(n,C)-bundle with n �= 2 represents a smooth point of the
moduli space M(SO(n)) if and only if it is simple (see [17]). Observe that,
for n = 2, we have SO(2,C) ∼= C

∗ and then any SO(2)-Higgs bundle is stable,
simple and represents a smooth point of the moduli space. Thus, except in
the case n = 2, the stability of a special orthogonal bundle does not imply
simplicity. In this section we study the smoothness conditions in the moduli
space M(SO0(1, n)) adapting the results in [9, Sec. 3.3] to our case.

Definition 4.1. A G-Higgs bundle (E,ϕ) is said to be simple if Aut(E,
ϕ) = ker ι ∩ Z(HC), where H ⊂ G is a maximal compact subgroup, Z(HC)
denotes the centre of its complexification and ι : HC → GL(mC) is the com-
plexified isotropy representation corresponding to the Cartan decomposition
g = h + m of the Lie algebra of G.

A G-Higgs bundle is then simple if the group of automorphisms is as small
as possible. To be in ker ι means to be compatible with the Higgs field.

If (E,Q) is an SO(n)-Higgs bundle with n > 2, that is, a principal SO(n,C)-
bundle, it has Higgs field equal to zero and then it is simple if and only if

Aut(E,Q) = Z
(
SO(n,C)

)
=

{
In, n odd,
±In, n even.

The group of automorphisms of an SO0(1, n)-Higgs bundle is

Aut(O,W,QW , η) =
{
(1, g) ∈ Aut(O) × Aut(W,QW ) | η ◦ g = η

}
,

and hence (O,W,QW , η) is simple if and only if

Aut(O,W,QW , η) = ker ι ∩ {1} × Z
(
SO(n,C)

)
= {In+1}.

Let us consider the deformation complex of an SO0(1, n)-Higgs bundle

C•(O,W,QW , η) : so(O) ⊕ so(W ) → Hom(W, O) ⊗ K,
(0, g) �→ ηg

(see [9, Definition 3.6]). We have the following result.

Proposition 4.2. If (O,W,QW , η) is an SO0(1, n)-Higgs bundle, we have
the following:

(1) The space of endomorphisms of (O,W,QW , η) is isomorphic to the hyper-
cohomology group H

0(C•(O,W,QW , η)).
(2) The space of infinitesimal deformations of (O,W,QW , η) is isomorphic to

the first hypercohomology group H1(C•(O,W,QW , η)).
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It follows from Proposition 4.2, and the existence of local universal families
(see [19]), that, for every SO0(1, n)-Higgs bundle (O,W,QW , η) representing a
smooth point of the moduli space, the tangent space at this point is canonically
isomorphic to H

1(C•(O,W,QW , η)).

Proposition 4.3. If an SO0(1, n)-Higgs bundle (O,W,QW , η) is stable,
simple and satisfies

H
2
(
C•(O,W,QW , η)

)
= 0,

then it is a smooth point of the moduli space.

A G-Higgs bundle (E,ϕ) is infinitesimally simple if

End(E,ϕ) ∼= H
0
(
C•(E,ϕ)

)
is isomorphic to H0(E(kerdι ∩ z)). Stable implies infinitesimally simple.

Let (O,W,QW , η) be an SO0(1, n)-Higgs bundle and consider the associated
SO(n + 1,C)-Higgs bundle (E,Q,φ) and the deformation complex

C•(E,Q,φ) : so(E)
ad(ϕ)

so(E) ⊗ K.

Since SO(n + 1,C) is complex, infinitesimally simple in this case means

H
0
(
C•(E,Q,φ)

)
= 0

(kerdι = ker(ad) = 0) and, as in the real case, stable implies infinitesimally
simple. There is an isomorphism

H
2
(
C•(E,Q,φ)

)
= H

0
(
C•(E,Q,φ)

)∗
,

and we have the following relation

H
0
(
C•(E,Q,φ)

) ∼= H
0
(
C•(E,ϕ)

)
⊕ H

2
(
C•(E,ϕ)

)∗
.

Then, if (E,Q,φ) is stable, H
0(C•(E,Q,φ)) = 0 and this implies

H
0
(
C•(E,ϕ)

)
= H

2
(
C•(E,ϕ)

)
= 0.

Using Proposition 2.7, we obtain the following description.

Corollary 4.4. If an SO0(1, n)-Higgs bundle (O,W,QW , η) is stable and
simple, then it is a smooth point of the moduli space.

Corollary 4.5. Let (O,W,QW , η) be a stable SO0(1, n)-Higgs bundle
which represents a smooth point of the moduli space, then

H
0
(
C•(O,W,QW , η)

)
= H

2
(
C•(O,W,QW , η)

)
= 0.

The expected dimension of the moduli space M(SO0(1, n)) (see [8]), is

dimH
1
(
C•(O,W,QW , η)

)
= −χ

(
C•(O,W,QW , η)

)
=

n(n + 1)(g − 1)
2

,

where dim(SO0(1, n)) = n(n+1)
2 .
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5. Stable and non-simple SO(n) and SO0(1, n)-Higgs bundles

In this section we give a description of the stable SO(n) and SO0(1, n)-Higgs
bundles that fail to be simple.

Lemma 5.1. If an SO(n)-Higgs bundle (E,Q) decomposes as a sum of Gi-
Higgs bundles and one of them is an SO(ni)-Higgs bundle with ni > 2 which
is not stable or an SO(2)-Higgs bundle, then (E,Q) is not stable.

Proof. If there is a summand which is an SO(2)-Higgs bundle Ei = L ⊕ L−1,
the isotropic subbundles L and L−1, which have opposite degrees, do not
violate the stability condition for E but they violate the stability condition
for (E,Q). If a summand (Ei,Qi) is a non-stable SO(ni)-Higgs bundle, there
is a proper isotropic subbundle Fi ⊂ Ei such that degFi ≥ 0. Since Qi is
the restriction of Q to Ei, Fi is an isotropic subbundle of E that violates its
stability. �

Theorem 5.2. Let (E,Q) be a stable SO(n)-Higgs bundle with n �= 2, that
is, a principal SO(n,C)-bundle, which is not simple, then it decomposes as a
sum of stable and simple SO(ni)-Higgs bundles with ni �= 2. Moreover, in the
decomposition there must be at least one SO(ni)-Higgs bundle with ni odd.

Proof. Since (E,Q) is not simple and

Z
(
SO(n,C)

)
=

{
In, n odd,
±In, n even,

if n even, there is an automorphism f ∈ Aut(E,Q) \ {±In} and if n is odd,
there is an automorphism f ∈ Aut(E,ϕ) \ {In}.

Suppose that f = λIn with λ ∈ C
∗. It has to preserve the orthogonal struc-

ture of E, that is,

Q
(
f(e), f

(
e′)) = λ2Q

(
e, e′) = Q

(
e, e′),

and this happens if and only if λ = ±1. On the other hand, the determinant
of f has to be equal to one. Then, the only possibilities are f = ±In if n is
even and f = In if n is odd, which are exactly the cases that we are excluding.

The group Aut(E,ϕ) is reductive. This implies that f may be chosen in
such a way that there is a splitting E =

⊕
Ei such that f restricted to Ei is

λiIn with λi ∈ C
∗.

Since
Q(ei, ej) = Q

(
f(ei), f(ej)

)
= λiλjQ(ei, ej),

then Q(Ei,Ej) can only be non-zero when λiλj = 1. Since Q is non-degener-
ate, the possible values of λ come in pairs (λi, λ

−1
i ) corresponding to (Ei,E

∗
i ).

If λi = ±1, we have λi = λ−1
i and then E1

∼= E∗
1 and E−1

∼= E∗
−1. Since

detf =
∏

i λ
rkEi

i = 1, we do not have the value λi = 0.
Suppose that there is a λi �= ±1, then Ei ⊂ E is an isotropic subbundle

of E. If degEi ≥ 0, this subbundle violates the stability condition for (E,Q).
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If degEi < 0, then degE∗
i > 0 and again (E,Q) is not stable. Hence, λi = ±1

and (E,Q) = (E1,Q1) ⊕ (E−1,Q−1).
From Lemma 5.1, we have that these summands are stable SO(ni)-Higgs

bundles with ni �= 2.
If there is a summand which is a non-simple SO(ni)-Higgs bundle, applying

the argument of this proof inductively we conclude that a stable but non-
simple SO(n)-Higgs bundle can be decomposed as a sum of SO(ni)-Higgs
bundles that represent smooth points of the moduli space.

Finally, since (E,Q) is not simple, there must be at least an SO(ni)-Higgs
bundle with ni even in the decomposition. This condition allows us to take
the automorphism −1 in this summand and guarantee the non-simplicity. �

Lemma 5.3. If an SO0(1, n)-Higgs bundle (O,W,QW , η) decomposes as
a sum of Gi-Higgs bundles and one of them is an SO0(1, ni)-Higgs bundle
(O,Wi,QW , ηi) which is not stable, then (O,W,QW , η) is not stable.

Proof. Since (O,Wi,QW , ηi) is not stable, there is an isotropic subbun-
dle W ′ ⊂ Wi (such that ηi(W ′) ⊆ O ⊗ K) with degW ′ ≥ 0. But W ′ is
also an isotropic subbundle of W and violates the stability condition for
(O,W,QW , η). �

Lemma 5.4. If an SO0(1, n)-Higgs bundle (O,W,QW , η) decomposes as a
sum of Gi-Higgs bundles and one of them is an SO(2)-Higgs bundle or an
SO(ni)-Higgs bundle which is not stable, then (O,W,QW , η) is not stable.

Proof. It can be deduced from the proof of Lemma 5.1 and Lemma 5.3. �

Theorem 5.5. Let (O,W,QW , η) be a stable SO0(1, n)-Higgs bundle which
is not simple, then it decomposes as a sum of a stable and simple SO0(1, ni)-
Higgs bundle and stable and simple SO(ni)-Higgs bundles with ni �= 2. More-
over, in the decomposition there must be at least one SO(ni)-Higgs bundle
with ni even.

Proof. Suppose that the Higgs field is equal to zero, then the SO0(1, n)-
Higgs bundle (O,W,QW , η) is the sum of the trivial bundle together with
a stable principal SO(n,C)-bundle (W,QW ), that is, a stable SO(n)-Higgs
bundle. If (W,QW ) is simple, then we have the result. If it is not, we conclude
using Theorem 5.2.

Suppose now that η �= 0. Since (O,W,QW , η) is not simple, there is an
automorphism f ∈ Aut(O,W,QW , η) \ {I}. If f = (f1, f2), since f1 ∈ Aut(O),
we have f1 = 1.

Suppose that f = (f1, f2) = (1, μI) is a multiple of the identity in W (μ ∈
C

∗). The determinant of f2 has to be equal to 1 and f2 has to preserve the
orthogonal structure, that is,

QW

(
f2(w), f2

(
w′)) = μ2QW

(
w,w′) = QW

(
w,w′).
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On the other hand, since we are supposing that f2 is a multiple of the identity,
the condition f1 ◦ η = η ◦ f2 is equivalent to f1 = f2, that is f = I , which is
exactly the case that we are excluding. Thus, f is not of this form.

Since the group Aut(W,QW ) is reductive, there is a splitting W =
⊕

Wi

such that f2 = μiI in Wi (μi ∈ C
∗). Since

QW (wi,wj) = QW

(
f2(wi), f2(wj)

)
= μiμjQW (wi,wj),

then QW (Wi,Wj) can only be non-zero when μiμj = 1. Since QW is non-
degenerate, the possible values of μ come in pairs (μi, μ

−1
i ) corresponding to

(Wi,W
∗
i ). If μi = ±1, we have μi = μ−1

i and then W1
∼= W ∗

1 and W−1
∼= W ∗

−1.
Since detf2 =

∏
i μ

rkWi

i = 1, we do not have μi = 0.
Since f preserves the Higgs field, for each component ηi ∈ H0(Hom(Wi,

O) ⊗ K), we have that
ηi

(
f2(w)

)
= μiηi(w)

is equal to
f1

(
ηi(w)

)
= ηi(w)

for all w ∈ Wi, and then, μi �= 1 implies ηi = 0.
Suppose that there is a μi �= ±1. Then, in particular, μi �= 1 and we have

ηi = 0, that is, η(Wi) = 0. Since

QW (Wi,Wi) = QW

(
f2(Wi), f2(Wi)

)
= μ2

i QW (Wi,Wi),

and μ2
i �= 1, we have QW (Wi,Wi) = 0 and hence, Wi ⊂ W is an isotropic

subbundle. If degWi ≥ 0, this subbundle violates the stability condition for
(O,W,QW , η). If degWi < 0, then degW ∗

i > 0 and again (O,W,QW , η) is not
stable and we get a contradiction. Then μi = ±1.

Since 1 = detf2 = 1rkW1 · (−1)rkW−1 we have rkW−1 even.
We have the following decomposition

(O,W,QW , η) = (O,W1, η1) ⊕ W−1.

Since f2 is not a multiple of the identity, W1 and W−1 are non-zero, and since
η �= 0, then η1 �= 0. Thus, (O,W,QW , η) is a sum of a SO0(1, ni)-Higgs bundle
(O,W1, η1) together with an SO(ni)-Higgs bundle W−1.

From Lemma 5.3 and Lemma 5.4, we have that these summands are stable
Gi-Higgs bundles (SO(ni) with ni �= 2).

If W−1 is non-simple, we have from Theorem 5.2 that it decomposes as a
sum of stable and simple orthogonal bundles. If (O,W1, η1) is a non-simple
SO0(1, ni)-Higgs bundle, applying the argument of this proof inductively we
conclude that it can be decomposed as a sum of stable and simple Gi-Higgs
bundles with Gi = SO0(1, ni) and SO(ni).

Since all the summands are simple and (O,W,QW , η) is not simple, it must
have at least one summand of this type: a stable and simple SO(ni)-Higgs
bundle with ni even. This condition allow us to take the automorphism −1
in this summand and guarantee the non-simplicity. �
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6. Topology of the moduli spaces

Let (O,W,QW , η) be an SO0(1, n)-Higgs bundle. We have a topological
invariant c associated to it, which is given by the following exact sequence

1 → π1

(
SO(n,C)

)
→ S̃O(n,C) → SO(n,C) → 1,

where S̃O(n,C) is the universal cover of SO(n,C) and the associated long
cohomology sequence

H1
(
X, S̃O(n,C)

)
H1

(
X,SO(n,C)

) c
H2

(
X,π1

(
SO(n,C)

))
.

This invariant

c ∈ H2
(
X,π1

(
SO(n,C)

)) ∼= π1

(
SO(n,C)

)
measures the obstruction to lifting (W,QW ) to a principal S̃O(n,C)-bundle.
Observe that when n ≥ 3, the universal cover of SO(n,C) is Spin(n,C). We
have that

π1

(
SO(n,C)

)
=

⎧⎨
⎩

1, n = 1,
Z, n = 2,
Z/2, n ≥ 3.

When n ≥ 3, the invariant c ∈ Z/2 corresponds to the second Stiefel–Whitney
classe of the orthogonal bundle that we obtain from the reduction of the
structure group of (W,QW ) from SO(n,C) to the real group SO(n).

Since detW = O, using the application

H1
(
X,SO(n,C)

) det
J(X)

in the Jacobian of X and the identification

H1(X,Z2) ∼= J2(X) =
{
L ∈ J(X) | L2 ∼= O

}
,

the first Stiefel–Whitney classes of the bundle is zero.
We define the moduli space of polystable SO0(1, n)-Higgs bundles with

invariant c as

Mc

(
SO0(1, n)

)
=

{
(O,W,QW , η) ∈ M

(
SO0(1, n)

)
such that c(W,QW ) = c

}
.

The invariant c gives a first decomposition of the moduli space

M
(
SO0(1, n)

)
=

∐
c

Mc

(
SO0(1, n)

)
.

To obtain the number of connected components, it is necessary to distinguish
which of these components Mc(SO0(1, n)) are connected and which decom-
pose as a union of connected components.
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7. Hitchin fuction

To simplify, we denote M := Mc(SO0(1, n)). Morse-theoretic techniques
for studying the topology of moduli spaces of Higgs bundles were introduced
by Hitchin [13], [15]. In this section, we describe briefly Hitchin’s method and
we begin the study of our particular case.

The moduli space of equivalence classes of reductive representations in a Lie
group G is homeomorphic to the moduli space of polystable G-Higgs bundles.
The proof of this result involves the moduli space of solutions to the Hitchin’s
equations. It was proved by Hitchin [13] and by Simpson [21] for a complex
Lie group and by Bradlow, Garćıa-Prada, Gothen and Mundet i Riera [5], [8]
in the real case, that M(G) is homeomorphic to the moduli space of solutions
to the Hitchin’s equations, MHit(G), which is defined as the space of pairs
(A,ϕ), where A is a connection on a smooth principal H-bundle EH and
ϕ ∈ Ω1,0(EH(mC)), satisfying

FA −
[
ϕ, τ(ϕ)

]
= 0,

∂̄A(ϕ) = 0,

modulo gauge equivalence.
Using the homeomorphism MHit

c (SO0(1, n)) ∼= M, the Hitchin function is
defined as the positive function

f : M → R,

given by

[A,ϕ] �→ ‖ϕ‖2 =
∫

X

|ϕ|2 dvol,

where [·, ·] denotes the equivalence class in the moduli space MHit
c (SO0(1, n))

and | · | is the harmonic metric that gives the reduction to SO(1) × SO(n).
Equivalently, we can define the map over the moduli space of Higgs pairs, for
a fixed (E,ϕ) ∈ M, by using the L2-norm ‖ · ‖ of the metric that solves the
Hitchin’s equations.

Proposition 7.1. The function f([A,ϕ]) = ‖ϕ‖2 is a proper map.

The proof of this result was given by Hitchin in [13, Proposition 7.1].
Even if M is not smooth, as in our case, the fact that f is a proper map

gives information about the connected components of M.

Proposition 7.2. Let M ′ ⊆ M be a closed subspace and let N ′ ⊆ M ′ be
the subspace of local minima of f on M ′. If N ′ is connected, then M ′ is
connected.

This result is in fact more general. The proper function f has a minimum
on each connected component of M ′, and then the number of connected
components of M ′ is bounded by the number of connected components of N ′.
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Thus, we are interested in computing the critical points and more precisely
the local minima of f .

To study the critical points of the Hitchin function we use the following
results (see [13]).

Proposition 7.3. The restriction of f([A,ϕ]) = ‖ϕ‖2 to the smooth locus
Ms ∈ M is a moment map for the Hamiltonian circle action

[A,ϕ] �→
[
A,eiθϕ

]
.

Proposition 7.4. A smooth point of the moduli space M is a critical point
of f if and only if it is a fixed point of the circle action, and the subbundle
ν−(Ml) where the Hessian of the Hitchin function is negative definite equals
the subbundle of ν(Ml) on which the circle acts with negative weights.

Using Proposition 7.4, the critical points of f are of two types:
(1) The Higgs field ϕ = 0.
(2) If ϕ �= 0, [A,ϕ] is a fixed point of the circle action if and only if[

A,eiθϕ
]
= [A,ϕ] for all eiθ ∈ S1.

Then, there is a 1-parameter family of gauge transformations

g(θ) =
(
g1(θ), g2(θ)

)
such that

(7.1)
(
A,eiθϕ

)
= g(θ) · (A,ϕ) =

(
g(θ) · A,g(θ) · ϕ

)
.

If the family {g(θ) = (g1(θ), g2(θ))} is generated by an infinitesimal gauge
transformation ψ = (ψ1, ψ2), we have that

g(θ) · ϕ = ι
(
g(θ)

)
(ϕ) = Ad

(
g(θ)

)
(ϕ) = exp

(
ad(θψ)

)
(ϕ),

and taking d
dθ

∣∣
θ=0

in the second term of the brackets in (7.1) we obtain

d

dθ

(
eiθϕ

)∣∣∣∣
θ=0

= iϕ,

and
d

dθ

(
g(θ) · ϕ

)∣∣∣∣
θ=0

=
d

dθ
exp

(
ad(θψ)

)
(ϕ)

∣∣∣∣
θ=0

= ad(ψ)(ϕ) = [ψ,ϕ].

Then
[ψ,ϕ] = iϕ.

Let A = (A1,A2). Since g1(θ) and g2(θ) act on A1 and A2 separately, we
can consider ψ1 and ψ2 generating the action of {g1(θ)} and {g2(θ)}. The
equation (7.1) gives the following condition for the action on the connections

gi(θ) · Ai = gi(θ) ◦ Ai ◦ gi(θ)−1 = Ai,

or equivalently
Ai ◦ gi(θ) = gi(θ) ◦ Ai,
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that is, the automorphism gi(θ) is parallel with respect to the connection Ai.
Then we have

dAi(ψi) = 0.

That is, the family {g(θ) = (g1(θ), g2(θ))} is generated by an infinitesimal
gauge transformation ψ = (ψ1, ψ2) which is covariantly constant, that is,

dA1(ψ1) = dA2(ψ2) = 0

and with
[ψ,ϕ] = iϕ.

Proposition 7.5. An SO0(1, n)-Higgs bundle (O,W,QW , η) ∈ M with η �=
0 represents a fixed point of the circle action if and only it is a Hodge bundle
(complex variation of Hodge structure), that is, if and only if the vector bundles
W have a decomposition

W =
s⊕

r=−s

Wr,

with Wr
∼= (W ∗)−r and ψ2|Wr = ir for an infinitesimal gauge transformation

ψ2. The only piece of the Higgs field not equal to zero is

η : W−1 → O ⊗ K
(
and η� : O → W1 ⊗ K

)
.

Proof. The condition dA2(ψ2) = 0 in the context of Higgs bundles means
that the infinitesimal gauge transformation ψ2 gives a decomposition

W =
⊕

r

Wr,

where r ∈ R and ψ2|Wr = ir. Moreover, since ψ2 is locally in so(n), it satis-
fies ψ2 = −ψ�

2 . If qW is the isomorphism between W and W ∗ given by the
orthogonal form QW , we have ψ�

2 = q−1
W ◦ ψt

2 ◦ qW , and for all w ∈ Wr we have

ψt
2

(
qW (w)

)
= qW

(
ψ�

2 (w)
)

= −qW

(
ψ2(w)

)
= −irqW (w),

that is,
w ∈ Wr ⇔ qW (w) ∈

(
W ∗)

−r
.

Hence, we have an isomorphism Wr
∼= (W ∗)−r.

If w ∈ Wr and w′ ∈ Wl,

QW

(
ψ2(w),w′) = QW

(
irw,w′) = irQW

(
w,w′)

and, on the other hand,

QW

(
ψ2(w),w′) = QW

(
w,ψ�

2

(
w′)) = QW

(
w, −ψ2

(
w′))

= QW

(
w, −ilw′) = −ilQW

(
w,w′),

that is,
i(r + l)QW

(
w,w′) = 0.
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Then, all the Wl are orthogonal to Vr (including l = r) under QW except
l = −r. Since QW is non-degenerate,

QW

(
w,w′) = 0 for all w′ ∈ W ⇒ w = 0,

and then, given 0 �= w ∈ Wr, there is a w′ ∈ W with QW (w,w′) �= 0, that is, a
w′ ∈ W−r. Then

W =
s⊕

r=−s

Wr.

We also know that the endomorphism ψ2 is trace free, then

0 = Tr(ψ2) = i
s∑

r=−s

r rk(Wr) ⇔
s∑

r=−s

r rk(Wr) = 0.

The condition [ψ,ϕ] = iϕ for the solution (A,ϕ) is equivalent in this context
to

−ηψ2 = iη.

If w ∈ Wr, we have

−η
(
ψ2(w)

)
= −η(irw) = −irη(w) = iη(w) ⇔ r = −1 (η �= 0),

and we conclude. �

From Proposition 7.5 together with Proposition 7.4, we have that if an
SO0(1, n)-Higgs bundle, (O,W,QW , η), represents a smooth point of the mod-
uli space, it is a critical point of the Hitchin function if and only if it is a Hodge
bundle, but observe that not every Hodge bundle represents a smooth point.

8. Smooth minima

In this section, we study the smooth minima of the Hitchin function in the
moduli space of SO0(1, n)-Higgs bundles.

Let (E,ϕ) be an SO0(1, n)-Higgs bundle and let (ESO(n+1,C), ϕ) be the asso-
ciated SO(n + 1,C)-Higgs bundle. Consider also the tuple (O,W,QW , η) cor-
responding to (E,ϕ) and the triple (E,Q,ϕ) corresponding to (ESO(n+1,C), ϕ).
We have that

ESO(n+1,C)

(
so(n + 1,C)

)
=

{
f ∈ End(E) | f + f � = 0

}
= so(E),

E
(
hC

)
=

{(
0 0
0 f4

)
∈ End(E)

∣∣ f4 + f �
4 = 0

}
∼= so(O) ⊕ so(W ) ⊂ End(O) ⊕ End(W ),

E
(
mC

)
=

{(
0 f2

−f �
2 0

)
∈ End(E)

}
∼= Hom(W, O).

In fact,
ESO(n+1,C)

(
so(n + 1,C)

)
= E

(
hC

)
⊕ E

(
mC

)
,

which is induced by the Cartan decomposition of the Lie algebra so(n+1,C).
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If (O,W,QW , η) is a Hodge bundle, from Proposition 7.5 we have that there
is an infinitesimal gauge transformation ψ2 such that

W =
s⊕

r=−s

Wr,

with Wr
∼= (W ∗)−r, ψ2|Wr = ir and

η : W−1 → O ⊗ K.

This decompositions of W gives decompositions

End(W ) =
2s⊕

k=−2s

( ⊕
i−j=k

Hom(Wj ,Wi)
)

,

Hom(W, O) =
s⊕

k=−s

Hom(Wk, O).

If gk,l ∈ Hom(Wk,Wl), using the isomorphism qW induced by the orthogo-
nal form QW we have that the diagram

W ∗
l

gt
k,l

∼=

W ∗
k

∼=

W−l

g�
k,l

W−k,

is commutative, and then, the skew-symmetry in so(W ) ⊂ End(W ) is equiv-
alent to the condition g−l,−k + g�

k,l = 0, that is, the following sets are related
by skew-symmetry

gk,l ←→ −g�
k,l,

Hom(Wk,Wl) ←→ Hom(W−l,W−k).

Observe that when k = l, the endomorphism and gk,l is skew-symmetric. Anal-
ogously, in E(mC) we have the relation:

hk ←→ −h�
k ,

Hom(Wk, O) ←→ Hom(O,W−k).

Then, the decomposition of W also induces decompositions of E(hC) ∼=
so(O) ⊕ so(W ) ∼= so(W ) and E(mC) ∼= Hom(W, O), which gives a decomposi-
tion of the deformation complex of Section 4:

C•(O,W,QW , η) : so(W ) → Hom(W, O) ⊗ K,

given by
C•(O,W,QW , η) =

⊕
k

C•
k(O,W,QW , η),
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where C•
k(O,W,QW , η) are the subcomplexes

C•
k(O,W,QW , η) : so(W )k → Hom(W, O)k+1 ⊗ K.

This induces a decomposition of the infinitesimal deformation space given by

H
1
(
C•(O,W,QW , η)

)
=

⊕
k

H
1
(
C•

k(O,W,QW , η)
)
.

A convenient reference for the following results is Garćıa-Prada, Gothen
and Mundet i Riera [8].

Proposition 8.1. Let (O,W,QW , η) be an SO0(1, n)-Higgs bundle which
represents a smooth point of the moduli space M and which is a critical point
of f . The hypercohomology group H

1(C•
k(O,W,QW , η)) is isomorphic to the

eigenspace of the Hessian of f with eigenvalue −k. Then, (O,W,QW , η) cor-
responds to a local minimum of f if and only if

H
1
(
C•

k(O,W,QW , η)
)

= 0 for k > 0.

To give a criterion for deciding when the hypercohomology H(C•
k(E,ϕ))

vanishes, we use the Euler characteristic of the complex C•
k(O,W,QW , η). If

we denoted by hi(O,W,QW , η) the dimension of the hypercohomology group
H

i(C•
k(O,W,QW , η)), the Euler characteristic is defined by

χ
(
C•

k(O,W,QW , η)
)

= h0
(
C•

k(O,W,QW , η)
)

− h1
(
C•

k(O,W,QW , η)
)

+ h2
(
C•

k(O,W,QW , η)
)
.

Proposition 8.2. Let (O,W,QW , η) be an SO0(1, n)-Higgs bundle which
represents a fixed point under the circle action on M. Then

χ
(
C•

k(O,W,QW , η)
)

≤ 0,

and equality holds if and only if the map

C•
k(O,W,QW , η) : so(W )k → Hom(W, O)k+1 ⊗ K

is an isomorphism.

If (O,W,QW , η) represents a smooth point of M(SO0(1, n)), using Corol-
lary 4.5, we have that

H
0
(
C•

k(O,W,QW , η)
)

= H
2
(
C•

k(O,W,QW , η)
)
= 0,

and then,

−χ
(
C•

k(O,W,QW , η)
)
= h1

(
C•

k(O,W,QW , η)
)

for all k. Applying Proposition 8.1, we have the following criterion for local
minima of f .
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Proposition 8.3. Let (O,W,QW , η) be an SO0(1, n)-Higgs bundle which
represents a smooth point of M and which is a critical point of f . Then it
represents a local minimum if and only if

C•
k(O,W,QW , η) : so(W )k → Hom(W, O)k+1 ⊗ K

is an isomorphism for all k > 0.

Applying this criterion we obtain the following result.

Theorem 8.4. A smooth point of the moduli space of polystable SO0(1, n)-
Higgs bundles with n > 2 is a minimum of the Hitchin function if and only if
it has zero Higgs field.

Proof. Let (O,W,QW , η) be a smooth point of the moduli space with η �= 0
which is a minimum of the Hitchin function. Since it is stable, we know from
Theorem 3.1 and Propositions 3.2 and 3.3 that it decomposes as a sum of
stable Gi-Higgs bundles where Gi = SO0(1, ni) and SO(ni) with ni �= 2. Since
(O,W,QW , η) is a critical point, from Proposition 7.5, the SO0(1, ni)-Higgs
bundle in the decomposition is of the form

W i
−1 → O → W i

1,

where ni = 2rk(W i) (and 0 < deg(W i
−1) ≤ 2g − 2). Observe that, since O and

the other SO(ni)-Higgs bundles in the decomposition are self-dual, then they
have weight 0.

Since (O,W,QW , η) is a minimum of the Hitchin function, using Proposi-
tion 8.3, the subcomplex

C•
2 (O,W,QW , η) : Λ2W i

1 → 0

has to be an isomorphism. Then rk(W i
1) = rk(W i

−1) = 1.
Since the Hitchin function is additive with respect to the direct sum and

(O,W,QW , η) is a minimum, each Gi-Higgs bundle in the decomposition has
to be a minimum. Using the criterion of Proposition 8.3, we have that the
SO0(1,2)-Higgs bundle (O,W i

1 ⊕ W i
−1, η) is a minimum. The summands cor-

responding to SO(ni)-Higgs bundles are minima, because they have Higgs
field equal to zero. Consider now the sum of this Higgs bundle together with
an SO(ni)-Higgs bundle (E,Q) in the decomposition of (O,W,QW , η). (Since
n > 2, there is at least one summand of this type.) The subcomplex

C•
1

(
O,W i

1 ⊕ W i
−1 ⊕ E,η

)
: Hom

(
W i

−1,E
)

→ 0

is not an isomorphism and then (O,W i
1 ⊕ W i

−1 ⊕ E,η) is not a minimum. We
get a contradiction and we conclude that the Higgs field η has to be equal to
zero. �
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9. Minima in the whole moduli space

In the previous section, we characterized the minima of the Hitchin func-
tional in the smooth locus of the moduli space of SO0(1, n)-Higgs bundle. In
this section, we extend the characterization to the whole moduli space for n
odd. This allows us to solve the problem of counting the connected compo-
nents of M(SO0(1, n)) with n odd.

Theorem 9.1. All the minima of the Hitchin function in the moduli space
of polystable SO0(1, n)-Higgs bundles, with n odd, have the Higgs field equal
to zero.

Proof. From Theorem 8.4, we have that the smooth minima of the Hitchin
function in the moduli space of polystable SO0(1, n)-Higgs bundles have zero
Higgs field. In particular, this is true for n odd.

1. If (O,W,QW , η) is a stable but non-simple SO0(1, n)-Higgs bundle (n
odd) with η �= 0 which is a fixed point of the circle action, using Theorem 5.5
and Proposition 7.5, we obtain that it decomposes as a sum of a smooth
minimum in M(SO0(1, ni)) of the form

W i
−1 → O → W i

1,

together with a sum of SO(ni)-Higgs bundles with ni �= 2 where at least one
has rank ni even. The first summand is necessary to guarantee the con-
dition η �= 0 and the condition for the rank ni to be even determines the
non-simplicity of (O,W,QW , η).

As in the proof of Theorem 8.4, since the Hitchin function f is additive
with respect to the direct sum, if (O,W,QW , η) is a minimum, each Higgs
bundle in its decomposition has to be a minimum.

Since n ≥ 3, there is at least one SO(ni)-Higgs bundle in the decomposition.
If we consider this summand (E,Q) together with the one of the form W−1 →
O → W1, we obtain an SO0(1, ni + 2)-Higgs bundle that represents a smooth
point of the moduli space. Using the same argument as in Theorem 8.4, we
deduce that it is not a minimum (observe that E ∼= E∗ and then it has weight
zero). This implies that (V,QV ,W,QW , η) is not a minimum and we conclude.

2. If (O,W,QW , η) is a strictly polystable SO0(1, n)-Higgs bundle (n odd)
with η �= 0 which is a fixed point of the circle action, it decomposes as a sum
of a smooth minimum in M(SO0(1,2)) of the form

W−1 → O → W1,

together with a sum of SO(ni)-Higgs bundles with and at least one summand
of one of the following types: an SO(2)-Higgs bundle or a U(ni)-Higgs bundle.
The existence of this summand in the decomposition is necessary to guarantee
the strict polystability of (O,W,QW , η).

Since n is odd, n − 2 is also odd, and since

U(ni) ↪→ SO(2ni) ↪→ SO0(1, n − 2),
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with 2ni even, there is at least one SO(ni)-Higgs bundle (E,Q) in the decom-
position (and ni is odd).

As in the stable but non-simple case, if we consider this summand (E,Q)
together with the one of the form W i

−1 → O → W i
1 , we obtain an SO(1, ni +2)-

Higgs bundle which represents a smooth point of the moduli space and which
is not a minimum and we conclude. �

Remark 9.2. If n is even, we can not guarantee the existence of an SO(ni)-
Higgs bundle in the decomposition in the second part of the proof and then
this result cannot be generalized to the even case.

Using the characterization of the minima given by Theorem 9.1, we solve
the problem of counting the connected components of M(SO0(1, n)) with n
odd.

Theorem 9.3. The moduli space of SO0(1, n)-Higgs bundles when n > 1 is
odd has 2 connected components.

Proof. Observe that the topological invariant associated to an SO0(1, n)-
Higgs bundle (O,W,QW , η) with n ≥ 3 is the Stiefel–Whitney class w2 ∈
π1(SO(n,C)) ∼= Z2 = {0,1}. From Theorem 9.1 we have that, when n is
odd, there are no minima of the Hitchin function with non-zero Higgs field,
and then M(SO0(1, n)) (n odd) is the disjoint union of the moduli spaces
M0(SO0(1, n)) and M1(SO0(1, n)), which are connected. �
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