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CRITERIA FOR OPTIMAL GLOBAL INTEGRABILITY OF
HAJ�LASZ–SOBOLEV FUNCTIONS

YUAN ZHOU

Abstract. The author establishes some geometric criteria for a
domain of R

n with n ≥ 2 to support a (pn/(n − ps), p)s-Haj�lasz–
Sobolev–Poincaré imbedding with s ∈ (0,1] and p ∈ (n/(n + s),
n/s) or an s-Haj�lasz–Trudinger imbedding with s ∈ (0,1].

1. Introduction

The study of the Haj�lasz spaces Ṁ1,p was initiated by Haj�lasz [15] on
arbitrary metric measure spaces, see [15], [16], [17], [21], [22], [23], [35] for fur-
ther discussions, generalizations and connections with the classical (Hardy–)
Sobolev, Besov and Triebel–Lizorkin spaces. In particular, a fractional version
Ṁs,p with s ∈ (0,1) was introduced by Yang [35], and a Sobolev-type version
Ṁ1,p

ball on domains by Koskela and Saksman [21].
We first recall some definitions and notions. In this paper, we always let

n ≥ 2 and Ω be a domain of R
n. For every s ∈ (0,1] and measurable function

u, denote by Ds(u) the collection of all nonnegative measurable functions g
such that

(1.1)
∣∣u(x) − u(y)

∣∣ ≤ |x − y|s
[
g(x) + g(y)

]
for all x, y ∈ Ω \ E, where E ⊂ Ω with |E| = 0. We also denote by Ds

ball(u) the
collection of all nonnegative measurable functions g such that (1.1) holds for
all x, y ∈ Ω \ E satisfying |x − y| < 1

2 dist(x,∂Ω).

Definition 1.1. Let s ∈ (0,1] and p ∈ (0, ∞). Then the homogeneous
Haj�lasz space Ṁs,p(Ω) is the space of all measurable functions u such that

‖u‖Ṁs,p(Ω) ≡ inf
g∈Ds(u)

‖g‖Lp(Ω) < ∞,
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and its Sobolev-type version Ṁs,p
ball(Ω) is the space of all measurable functions

u such that
‖u‖Ṁs,p

ball(Ω) ≡ inf
g∈Ds

ball(u)
‖g‖Lp(Ω) < ∞.

Obviously, for all s ∈ (0,1] and p ∈ (0, ∞), Ṁs,p(Ω) ⊂ Ṁs,p
ball(Ω). If Ω is a

uniform domain, then Ṁs,p
ball(Ω) = Ṁs,p(Ω) for all s ∈ (0,1] and p ∈ (n/(n +

s), ∞); see [21, Theorem 19]. But, generally, we cannot expect that Ṁs,p(Ω) =
Ṁs,p

ball(Ω). For example, this fails when Ω = B(0,1) \ {(x,0) : x ≥ 0} ⊂ R
2.

Haj�lasz–Sobolev spaces are closely related to the classical (Hardy–)Sobolev
and Triebel–Lizorkin spaces. In this paper, we always denote by Ẇ 1,p(Ω)
with p ∈ (1, ∞) the homogeneous Sobolev space, by Ḣ1,p(Ω) with p ∈ (0,1]
the Hardy–Sobolev space as in [26], [27], and by F s

p,q(R
n) with s ∈ R and

p, q ∈ (0, ∞] the homogeneous Triebel–Lizorkin spaces as in [31]. It was proved
in [15], [21] that Ẇ 1,p(Ω) = Ṁ1,p

ball(Ω) for p ∈ (1, ∞) and Ḣ1,p(Ω) = Ṁ1,p
ball(Ω)

for p ∈ (n/(n + 1),1], which together with [31] implies that Ṁ1,p(Rn) =
Ṁ1,p

ball(R
n) = Ḟ 1

p,2(R
n) for all p ∈ (n/(n + 1), ∞), while for all s ∈ (0,1) and

p ∈ (n/(n + s), ∞), Ṁs,p(Rn) = Ṁs,p
ball(R

n) = Ḟ s
p,∞(Rn) as proved in [22], [35].

Now we recall some notions on imbeddings. Let Ω be a bounded do-
main of R

n, s ∈ (0,1] and p ∈ (n/(n + s), n/s). Then Ω is said to support a
(pn/(n − ps), p)s-Haj�lasz–Sobolev–Poincaré (for short, (pn/(n − ps), p)s-HSP)
imbedding if there exists a constant C > 0 such that for all u ∈ Ṁs,p

ball(Ω),

(1.2) ‖u − uΩ‖Lpn/(n−ps)(Ω) ≤ C‖u‖Ṁs,p
ball(Ω),

where uΩ ≡ 1
|Ω|

∫
Ω

u(z)dz. Similarly, Ω is said to support an s-Haj�lasz–
Trudinger (for short, s-HT) imbedding if there exists a constant C > 0 such
that for all u ∈ Ṁ

s,n/s
ball (Ω),

(1.3) ‖u − uΩ‖φs(L)(Ω) ≤ C‖u‖
Ṁ

s,n/s
ball (Ω)

,

where and in what follows, φs(t) ≡ exp(tn/(n−s)) − 1 and

(1.4) ‖u‖φs(L)(Ω) ≡ inf
{

t > 0,

∫
Ω

φs

(
|u(x)|

t

)
dx ≤ 1

}
.

It should be pointed out that since Ṁ1,p
ball(Ω) = Ẇ 1,p(Ω) for all p ∈ (1, ∞), then

(1.2) with s = 1 and p ∈ [1, n) coincides with the classical (pn/(n − p), p)-
Sobolev–Poincaré imbedding as in [5, (1.1)], and (1.3) with s = 1 coincides
with the classical Trudinger imbedding as in [5, (1.2)].

Recently, some geometric criteria were established in [3], [4], [5] for a do-
main to support a (pn/(n − p), p)-Sobolev–Poincaré imbedding for p ∈ [1, n)
or a Trudinger imbedding. More precisely, Bojarski [3] first proved that a
John domain as in Definition 2.1 always supports a (pn/(n − p), p)-Sobolev–
Poincaré imbedding for all p ∈ [1, n). Smith and Stegenga [29] proved that
a weak carrot domain as in Definition 2.2 always supports the Trudinger
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imbedding. Conversely, let Ω be a bounded planar domain or a bounded
domain in R

n with n ≥ 3 satisfying an additional separation property when
p ∈ (1, n) and a slice property when p = n; see Definitions 2.3 and 2.4 below.
Then Buckley and Koskela [4], [5] proved that if Ω supports a (pn/(n − p), p)-
Sobolev–Poincaré imbedding for some/all p ∈ [1, n), then it is a John domain,
and if Ω supports the Trudinger imbedding, then it is a weak carrot domain.

The purpose of this paper is to establish some geometric criteria for a
domain of R

n with n ≥ 2 to support a (pn/(n − ps), p)s-HSP imbedding with
s ∈ (0,1] and p ∈ (n/(n + s), n/s) or an s-HT imbedding with s ∈ (0,1].

To this end, we first establish the linear local connectivity (for short, LLC)
of a domain that supports the (pn/(n − ps), p)s-HSP imbedding, where the
notion of LLC was introduced by Gehring [8]. Recall that a domain Ω is said
to have the LLC property if there exists a positive constant b such that for all
z ∈ R

n and r > 0,
LLC(1) points in Ω ∩ B(z, r) can be joined in Ω ∩ B(z, r/b);
LLC(2) points in Ω \ B(z, r) can be joined in Ω \ B(z, br).
Then, as proved by Gehring and Martio [10], a Ẇ 1,n-extension domain has
the LLC property, and by [20, Theorem 6.4], a Ẇ 1,p-extension domain with
p ∈ (n − 1, n) has the LLC(2) property; see also [12], [13], [14], [34] and their
references. Here and in what follows, Ω is called an A-extension domain with
A = Ṁs,p

ball, Ẇ 1,p or Ḣ1,p if for every u ∈ A(Ω), there exists a v ∈ A(Rn) such
that v|Ω = u and ‖v‖A(Rn) � ‖u‖A(Ω). Here, we extend the results in [10], [20]
as follows.

Theorem 1.1. Let s ∈ (0,1] and p ∈ (n/(n + s), n/s). If Ω is a bounded
Ṁs,p

ball-extension domain or Ω is a bounded domain that supports a (pn/(n −
ps), p)s-HSP imbedding, then Ω has the LLC(2) property.

The proof of Theorem 1.1 is given in Section 3. We point out that the
approach used here is different from that used by Koskela in [20, Theo-
rem 6.4], where he used the p-capacity to prove the LLC(2) property of a Ẇ 1,p-
extension domain for p ∈ (n − 1, n). In fact, when 1 < p ≤ n − 1, as Koskela
[20] pointed out, the p-capacity makes no sense since Capp(K0,K1,R

n) = 0
for every pair of disjoint continua K0,K1 ⊂ R

n. So some new ideas are re-
quired to prove Theorem 1.1 as the result is new even in the case s = 1 and
1 < p ≤ n − 1. To this end, we will simplify this question, and then combine
some of the ideas from [4], [18], [19] and the properties of Haj�lasz–Sobolev
functions.

Then, as a corollary to Theorem 1.1, we have the following conclusion,
which complements the results in [10], [20].

Corollary 1.1. If Ω is a bounded Ẇ 1,p-extension domain when p ∈ (1, n)
or bounded Ḣ1,p-extension domain with p ∈ (n/(n + 1),1], then Ω has the
LLC(2) property.
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Applying Theorem 1.1, we further establish some geometric criteria for a
domain to support a (pn/(n − ps), p)s-HSP imbedding, which generalizes the
criteria in [3], [4].

Theorem 1.2. (i) A John domain of R
n as in Definition 2.1 always sup-

ports a (pn/(n − ps), p)s-HSP imbedding as in (1.2) for all s ∈ (0,1] and
p ∈ (n/(n + s), n/s).

(ii) Assume that Ω is a bounded domain of R
n and satisfies the separation

property as in Definition 2.3. If Ω supports a (pn/(n − ps), p)s-HSP imbedding
for some s ∈ (0,1] and p ∈ (n/(n + s), n/s), then Ω is a John domain.

To prove Theorem 1.2(ii), we will use the LLC(2) property of these domains
given in Theorem 1.1. This is slightly different from that of [4]. On the other
hand, notice that (Rn, ds, dx) is an Ahlfors n/s-regular metric measure spaces,
when ds(x, y) = |x − y|s for all x, y ∈ R

n and dx denotes the Lebesgue measure.
Observe that M

s,n/s
ball (Ω) coincides with Ṁ

1,n/s
ball (Ω, ds, dx), the Haj�lasz–Sobolev

space on domains of (Rn, ds, dx) defined similarly to Definition 1.1. Then
Theorem 1.2(i) can be deduced from results by Chua and Wheeden [7]. For
the reader’s convenience, we give a short proof, which will use the ideas from
Bojarski [3], the chain property of a John domain as proved by Boman [2],
and a key imbedding on balls established by Haj�lasz [16, Theorem 8.7].

We also establish an analogue of Theorem 1.2 at the end point p = n/s when
s ∈ (0,1], which generalizes the criteria established in [5], [6], [29], and whose
proof uses some ideas from [5], [6], [29], [30] and will be given in Section 4.
Also see [24] for similar inequalities on balls.

Theorem 1.3. (i) A weak carrot domain of R
n as in Definition 2.2 always

supports an s-HT imbedding for all s ∈ (0,1].
(ii) Assume that Ω is a bounded domain of R

n and satisfies the slice property
as in Definition 2.4. If Ω supports an s-HT imbedding for some s ∈ (0,1], then
Ω is a weak carrot domain.

Notice that, as proved in [4], [5], every simply connected domain in R
2

or every domain in R
n with n ≥ 3 that is quasiconformally equivalent to a

uniform domain satisfies the slice property and the separation property. So,
as a corollary to Theorems 1.2 and 1.3, we have the following conclusion.

Corollary 1.2. Let Ω be a bounded simply connected domain in R
2 or

a bounded domain in R
n with n ≥ 3 that is quasiconformally equivalent to a

uniform domain. Then:

(i) Ω is a John domain if and only if it supports a (pn/(n − ps), p)s-HSP
imbedding for some/all s ∈ (0,1] and p ∈ (n/(n + s), n/s);

(ii) Ω is a weak carrot domain if and only if it supports an s-HT imbedding
for some/all s ∈ (0,1].
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This paper is organized as follows. In Section 2, we recall some basic notions
and properties of the domains and Haj�lasz–Sobolev spaces. In Section 3, we
present the proof of Theorem 1.1. In Section 4, we give the proofs of Theorems
1.2 and 1.3.

2. Preliminaries

In this section, we recall some notions and basic properties of domains and
Haj�lasz–Sobolev spaces. We begin with the notion of John domain.

Definition 2.1. Let Ω be a bounded domain of R
n with n ≥ 2. Then Ω

is called a John domain with respect to x0 ∈ Ω and C > 0 if for every x ∈ Ω,
there exists a rectifiable curve γ : [0,1] → Ω parametrized by arclength such
that γ(0) = x, γ(1) = x0 and d(γ(t),Ω�) ≥ Ct.

Now we recall the notion of a weak carrot domain (or domains satisfying
the quasihyperbolic boundary condition). To this end, for every pair of points
x, y ∈ Ω, define their quasihyperbolic distance kΩ(x, y) by

kΩ(x, y) ≡ inf
γ

∫
γ

1
d(z,Ω�)

|dz|,

where the infimum is taken over all rectifiable curves γ ⊂ Ω joining x and y. As
proved in [9], kΩ is a geodesic distance, namely, there exists a curve γx,y ⊂ Ω
such that

kΩ(x, y) =
∫

γx,y

1
d(z,Ω�)

|dz|.

Definition 2.2. A domain Ω is said to satisfy a weak carrot condition (or
quasihyperbolic boundary condition) with respect to x0 ∈ Ω and C ≥ 1 if for
all x ∈ Ω,

(2.1) kΩ(x,x0) ≤ C log
(

C

d(x,Ω�)

)
.

It is easy to see that the John and weak carrot conditions are independent
of the choice of x0 in the sense that if Ω is a John or weak carrot domain
with respect to x0 and C, then for any other x1 ∈ Ω, there exists a positive
constant C̃ such that Ω is still a John or weak carrot domain with respect to
x1 and C̃, respectively. See [6] for more details.

The following characterization of a weak carrot domain established by
Smith and Stegenga [29] will be used in the proof of Theorem 1.3.

Lemma 2.1. Let Ω is a proper subdomain of R
n and let x0 ∈ Ω. Then Ω

is a weak carrot domain if and only if there exists a positive constant σ such
that ∫

Ω

exp
(
σkΩ(x0, x)

)
dx < ∞.
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We also recall the notions of a separation property and slice property in-
troduced in [4], [5].

Definition 2.3. A domain Ω has a separation property with respect to
x0 ∈ Ω and C > 1 if for every x ∈ Ω, there exists a curve γ : [0,1] → Ω with
γ(0) = x, γ(1) = x0, and such that for each t ∈ (0,1], either γ([0, t]) ⊂ B ≡
B(γ(t),Cd(γ(t),Ω�)) or each y ∈ γ([0, t]) \ B belongs to a different component
of Ω \ ∂B than x0.

Definition 2.4. A domain Ω has a slice property with respect to C > 1 if
for every pair of points x, y ∈ Ω, there exists a rectifiable curve γ : [0,1] → Ω
with γ(0) = x and γ(1) = y, and pairwise disjoint collection of open subsets
{Si}j

i=0, j ≥ 0, of Ω such that
(i) x ∈ S0, y ∈ Sj and x and y are in different components of Ω \ Si for

0 < i < j;
(ii) if F ⊂⊂ Ω is a curve containing both x and y, and 0 < i < j, then

diam(Si) ≤ C�(F ∩ Si);
(iii) for 0 ≤ t ≤ 1, B(γ(t),C−1d(γ(t),Ω�)) ⊂

⋃j
i=0 Si;

(iv) if 0 ≤ i ≤ j, then diamSi ≤ Cd(z,Ω�) for all z ∈ γi ≡ γ ∩ Si; also, there
exists xi ∈ Si such that x0 = x, xj = y and B(xi,C

−1d(xi,Ω�)) ⊂ Si.

We point out that, as proved in [4], [5], every simply connected domain in
R

2 or every domain in R
n with n ≥ 3 that is quasiconformally equivalent to

a uniform domain satisfies a slice property and a separation property. Every
John domain satisfies both a separation and a slice property; see [6].

The following conclusion is essentially established in [21] and plays an im-
portant role in the proofs of Theorems 1.1, 1.2 and 1.3. For every ρ > 0, sim-
ilarly to Ds

ball(u), we denote by Ds,ρ
ball(u) the collection of all measurable func-

tions g such that (1.1) holds for all x, y ∈ Ω \ E satisfying |x − y| < ρdist(x,∂Ω).
Notice that Ds

ball(u) = Ds,1/2
ball (u) and Ds(u) = Ds,∞

ball (u).

Lemma 2.2. Let s ∈ (0,1] and p ∈ (n/(n+s), ∞). Then u ∈ Ṁs,p
ball(Ω) if and

only if there exists a ρ ∈ (0,1) such that infg∈Ds,ρ
ball(u) ‖g‖Lp(Ω) < ∞. Moreover,

for given ρ, there exists a positive constant C such that for all u ∈ Ṁs,p
ball(Ω),

C−1‖u‖Ṁs,p
ball(Ω) ≤ inf

g∈Ds,ρ
ball(u)

‖g‖Lp(Ω) ≤ C‖u‖Ṁs,p
ball(Ω).

We also need the following imbedding, which is essentially established by
Haj�lasz [16, Theorem 8.7] when n = 1 and pointed out by Yang [35] when
s ∈ (0,1).

Lemma 2.3. Let s ∈ (0,1] and p ∈ (n/(n + s), n/s). Then for every σ > 1,
there exists a positive C constant such that for all balls or cubes B and u ∈
Ṁs,p(σB),

‖u − uB ‖Lpn/(n−ps)(B) ≤ C‖u‖Ṁs,p(σB).
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By Lemma 2.3, we have the following conclusion.

Lemma 2.4. Let s ∈ (0,1] and p ∈ (n/(n+ s), n/s). Then a bounded Ṁs,p
ball-

extension domain always supports a (pn/(n − ps), p)s-HSP imbedding.

Proof. Assume that Ω is an Ṁs,p
ball-extension domain. Let u ∈ Ṁs,p

ball(Ω).
Then there exists a v ∈ Ṁs,p

ball(R
n) such that v|Ω = u and ‖v‖Ṁs,p

ball(R
n) �

‖u‖Ṁs,p
ball(Ω). Let B be a ball of R

n such that Ω ⊂ B. Then v ∈ Ṁs,p
ball(2B)

and thus by Lemma 2.2, we have v ∈ Lpn/(n−ps)(B) and

‖v − vB ‖Lpn/(n−ps)(B) � ‖v‖Ṁs,p
ball(R

n) � ‖v‖Ṁs,p
ball(Ω)

which further implies that

‖u − uΩ‖Lpn/(n−ps)(Ω) ≤ ‖v − vΩ‖Lpn/(n−ps)(B)

� ‖v − vB ‖Lpn/(n−ps)(B) � ‖v‖Ṁs,p
ball(Ω).

This means that Ω supports a (pn/(n − ps), p)s-HSP imbedding and thus
finishes the proof of Lemma 2.4. �

Finally, we state some conventions. Throughout the paper, we denote
by C a positive constant which is independent of the main parameters, but
which may vary from line to line. Constants with subscripts, such as C0,
do not change in different occurrences. The symbol A � B or B � A means
that A ≤ CB. If A � B and B � A, we then write A ∼ B. For any locally
integrable function f , we denote by –

∫
E

f the average of f on E, namely,
–
∫

E
f ≡ 1

|E|
∫

E
f dx.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. By Lemma 2.4, it suffices to prove that a domain
which supports a (pn/(n − ps), p)s-HSP imbedding has the LLC(2) property.
Assume that Ω is a bounded domain that supports a (pn/(n − ps), p)s-HSP
imbedding. We want to show that Ω has the LLC(2) property. To this end, let
L ≡ diamΩ and x0 ∈ Ω be such that r0 ≡ d(x0,Ω�) = max{d(x,Ω�) : x ∈ Ω}.
Notice that if u(y) = 0 for all y ∈ B(x0, r0), then the (pn/(n − ps), p)s-HSP
imbedding implies that

(3.1) ‖u‖Lpn/(n−ps)(Ω) � ‖u‖Ṁs,p
ball(Ω),

where the constant depends on r0 and |Ω| but not on u.
We claim that if x,x0 ∈ Ω \ B(z, r) for z ∈ B(x0,2L) and r ∈ (0,2L), then

x,x0 are contained in the same component of Ω \ B(z, br) for some fixed
constant b ∈ (0,1), which may depend on Ω and x0 but not on z and x.

Assume that the above claim holds for the moment. Then we deduce
Theorem 1.1 from it by the following 2 steps. Let x, y ∈ Ω \ B(z, r) for z ∈ R

n

and r ∈ (0, ∞).
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Step 1. There exists a positive constant b̃ independent of x such that if
x,x0 ∈ Ω \ B(z, r), then x,x0 are contained in the same component of Ω \
B(z, b̃r). To see this, assume that x0 ∈ Ω \ B(z, r). If z /∈ B(x0,2L), then
Ω ∩ B(z, r) �= ∅ implies that r ≥ d(z,x0) − L ≥ r/2 ≥ L, and moreover Ω \
B(z, r) �= ∅ implies that Ω ∩ B(z, r/2) = ∅. Thus if x0, x ∈ Ω \ B(z, r) with
d(z,x0) ≥ 2L, then x0, x are contained in the same component of Ω \ B(z, r) if
Ω \ B(z, r) = ∅ or of Ω \ B(z, r/2) if Ω \ B(z, r) �= ∅. If z ∈ B(x0,2L), then by
the above claim, it suffices to consider the case r ≥ 2L. Since r ≥ 2L implies
d(z,Ω) ≥ r − L ≥ r/2, which means that Ω ∩ B(z, r/2) = ∅, then x0, x are
contained in the same component of Ω \ B(z, r/2).

Step 2. There exists a positive constant b independent of x, y such that
x, y are contained in the same component of Ω \ B(z, br). To see this, if
x0 ∈ Ω \ B(z, r0

10Lr), then x0, x and x0, y, and thus x, y, are contained in the
same component of Ω \ B(z, b̃ r0

10Lr). If x0 ∈ B(z, r0
10Lr), then r − r0

10Lr ≤ L,
which implies that r ≤ 2L and thus |z − x0| ≤ r0

10Lr ≤ r0/5. Obviously,

B

(
z,

r0

10L
r

)
⊂ B

(
x0,

r0

5L
r

)
⊂ B(x0, r0) ⊂ Ω,

which means that Ω \ B(z, r0
10Lr) is connected, and thus x, y are contained in

the same component of Ω \ B(z, r0
10Lr).

Therefore, with the aid of the above claim, combining Step 1 and Step 2,
we obtain Theorem 1.1. So we have reduced Theorem 1.1 to the above claim.
The remainder of the proof of Theorem 1.1 consists of the proof of the above
claim.

In the following argument, we let x ∈ Ω, z ∈ B(x0,2L) and r ∈ (0,2L)
be fixed such that x,x0 ∈ Ω \ B(z, r) as in the claim. Let bz ∈ (0,1] be the
supremum of b ∈ (0,1) such that x,x0 are contained in the same component of
Ω \ B(z, br). Without loss of generality, we assume that bz ≤ 1/10. Denote by
Ωx the component of Ω \ B(z, b0r) with b0 = 2bz containing x. Take b1 ∈ (b0,1]
such that∣∣Ωx ∩

(
B(z, r) \ B(z, b1r)

)∣∣ =
1
2

∣∣Ωx ∩
(
B(z, r) \ B(z, b0r)

)∣∣ =
1
2

∣∣Ωx ∩ B(z, r)
∣∣.

Define a function u on Ω by setting

(3.2) u(y) ≡

⎧⎨⎩
0, y ∈ Ω \ Ωx;
d(y,B(z,b0r))

b1r−b0r , y ∈ Ωx ∩ B(z, b1r);
1, y ∈ Ωx \ B(z, b1r).

Then we have the following conclusion, whose proof will be given below.

Lemma 3.1. Let u be as in (3.2) and s ∈ (0,1]. Then

g ≡ C(b1r − b0r)−sχΩx ∩B(z,r)
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is an element of Ds,1/8
ball (u), where C is a positive constant independent of

u,x, b0, b1, r.

By Lemma 2.2, Lemma 3.1 and (3.1), we further have u ∈ Ṁs,p
ball(Ω) and

‖u‖Lpn/(n−ps)(Ω) � ‖u‖Ṁs,p
ball(Ω) � ‖g‖Lp(Ω)

� (b1r − b0r)−s
∣∣Ωx ∩

(
B(z, r) \ B(z, b0r)

)∣∣1/p
,

which together with

‖u‖Lpn/(n−ps)(Ω) �
∣∣Ωx ∩

(
B(z, r) \ B(z, b1r)

)∣∣(n−ps)/pn

�
∣∣Ωx ∩

(
B(z, r) \ B(z, b0r)

)∣∣(n−ps)/pn

implies that

(3.3) b1r − b0r �
∣∣Ωx ∩

(
B(z, r) \ B(z, b0r)

)∣∣1/n
.

Hence, if b1 ≥ 1/2, then (3.3) implies that

(3.4) (1/2 − b0)r �
∣∣Ωx ∩

(
B(z, r) \ B(z, b0r)

)∣∣1/n
.

If b1 < 1/2, then following the above procedure, we can find a sequence {bj }j0
j=1

such that bj0 ≥ 1/2 and for all 0 ≤ j ≤ j0 − 1, bj < 1/2,∣∣Ωx ∩
(
B(z, r) \ B(z, bj+1r)

)∣∣ =
1
2

∣∣Ωx ∩
(
B(z, r) \ B(z, bjr)

)∣∣,
and

bj+1r − bjr �
∣∣Ωx ∩

(
B(z, r) \ B(z, bjr)

)∣∣1/n
.

This implies that
j0−1∑
j=0

(bj+1r − bjr) �
∣∣Ωx ∩

(
B(z, r) \ B(z, b0r)

)∣∣1/n
,

and hence (3.4). To control |Ωx ∩ (B(z, r) \ B(z, b0r))|1/n via b0r, define
function

(3.5) v(y) ≡ inf
γ(x0,y)

�
(
γ ∩ B(z, b0r)

)
for all y ∈ Ω, where the infimum is taken over all the rectifiable curves γ join-
ing x0 and y in Ω. Observe that for all y in the component of Ω \ B(z, b0r)
containing x0, v(y) = 0; for all y in the component Ωx \ B(z, b0r) which con-
tains x and does not contain x0, v(y) is a constant larger than or equal to b0r.
Moreover, we have the following conclusion, whose proof will be given below.

Lemma 3.2. Let v be as in (3.5) and s ∈ (0,1]. Then

h ≡ C(b0r)1−sχΩ∩B(z,b0r)

is an element of Ds,1/8
ball (v), where C is a positive constant independent of

v, z, b0, r.



1092 Y. ZHOU

By Lemma 2.2, Lemma 3.2 and (3.1), we have that v ∈ Ṁs,p
ball(Ω) and

(b0r)
∣∣Ωx ∩

(
B(z, r) \ B(z, b0r)

)∣∣(n−ps)/pn �
∣∣Ω ∩ B(z, b0r)

∣∣1/p(b0r)1−s

which implies that ∣∣Ωx ∩
(
B(z, r) \ B(z, b0r)

)∣∣ � (b0r)n.

By this and (3.4), we have (1/2 − b0)r � b0r, which implies that b0 ≥ C for
some fixed constant C ∈ (0,1) independent of x. This gives the above claim
by taking b = C/4 and thus finishes the proof of Theorem 1.1. �

Proof of Lemma 3.1. It suffices to check that for every pair of y,w ∈ Ω such
that |y − w| < dist(y,Ω�)/8,

(3.6)
∣∣u(y) − u(w)

∣∣ � |y − w|s
(b1r − b0r)s

[
χΩx ∩B(z,r)(y) + χΩx ∩B(z,r)(w)

]
.

To prove (3.6), without loss of generality, we may assume that u(w) < u(y).
Then u(y) > 0 implies that y ∈ Ωx and u(w) < 1 implies that w /∈ Ωx \ B(z,
b1r). We will consider the following three cases for w: (i) w ∈ Ωx ∩ B(z, b1r);
(ii) w ∈ Ω ∩ B(z, b0r); (iii) w ∈ Ω \ (Ωx ∪ B(z, b0r)).

Case (i). If y ∈ Ωx \ B(z, b1r), then by w ∈ Ωx ∩ B(z, b1r), we have

d
(
w,B(z, b0r)

)
= |w − z| − b0r ≥ |z − y| − |w − y| − b0r ≥ (b1r − b0r) − |w,y|,

and thus ∣∣u(y) − u(w)
∣∣ =

∣∣∣∣1 − d(w,B(z, b0r))
b1r − b0r

∣∣∣∣
≤

∣∣∣∣1 − d(w,B(z, b0r))
b1r − b0r

∣∣∣∣s ≤ |w − y|s
(b1r − b0r)s

,

which gives (3.6). If y ∈ Ωx ∩ B(z, b1r), then by |w − y| ≤ b1r − b − 0r,∣∣u(y) − u(w)
∣∣ =

∣∣∣∣d(y,B(z, b0r)) − d(w,B(z, b0r))
b1r − b0r

∣∣∣∣
≤ |w − y|

b1r − b0r
≤ |w − y|s

(b1r − b0r)s
,

which gives (3.6).
Case (ii). If y ∈ Ωx ∩ B(z, r), then

d
(
y,B(z, b0r)

)
≤ |y − w| ≤ b1r − b0r

and thus ∣∣u(y) − u(w)
∣∣ =

∣∣∣∣min
{

1,
d(y,B(z, b0r))

b1r − b0r

}∣∣∣∣
≤

∣∣∣∣min
{

1,
|w − y|

b1r − b0r

}∣∣∣∣s ≤ |w − y|s
(b1r − b0r)s

,
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which gives (3.6). If y ∈ Ωx \ B(z, r), then |w − y| ≥ (1 − b0)r ≥ b0r. Since

d
(
w,Ω�) ≤ |w − z| + d

(
z,Ω�) ≤ 2b0r,

we have that |w − y| ≥ 2d(w,Ω�). Moreover, since

d
(
y,Ω�) ≤ |y − w| + d

(
w,Ω�) ≤ 2|y − w|,

by the definition of Ds,1/8
ball (u), we do not need to check (3.6) for y ∈ Ωx \ B(z, r).

Case (iii). We will prove that in this case,

(3.7) |y − w| ≥ 1
8

max
{
d
(
y,Ω�), d(

w,Ω�)}.

Thus, we do not need to check (3.6) by the definition of Ds,1/8
ball (u). To prove

(3.7), notice that y ∈ Ωx and w /∈ Ωx ∪ B(z, b0r) implies that y and w are in
different components of Ω \ B(z, b0r). If |y − w| < d(y,Ω�)/4, then B(y,2|w −
y|) ⊂ B(y, d(y,Ω�)) ⊂ Ω. Observe that either B(y,2|w − y|) \ B(z, b0r) = ∅ or
B(y,2|w − y|) \ B(z, b0r) is connected. So y,w ∈ B(y,2|w − y|) \ B(z, b0r) ⊂
Ω means that B(y,2|w − y|) \ B(z, b0r) are connected and thus y,w are in
the same component of Ω \ B(z, b0r), which is a contradiction. If |y − w| <

d(y,Ω�)/8, then for all z �= Ω,

d(z, y) ≥ d(z,w) − d(w,y) ≥ d
(
w,Ω�)/2,

which implies that d(y,Ω�) ≥ 7d(w,Ω�)/8 and thus |y − w| < d(y,Ω�)/4. Thus,
(3.7) holds. This finishes the proof of Lemma 3.1. �

Proof of Lemma 3.2. This is quite similar to the proof of Lemma 3.1. We
sketch the proof. It suffices to check that for every pair of y,w ∈ Ω such that
|y − w| < dist(y,Ω�)/8,

(3.8)
∣∣v(y) − v(w)

∣∣ � (b0r)1−s
[
χΩx ∩B(z,b0r)(y) + χΩx ∩B(z,b0r)(w)

]
.

If both y and w are in the same component of Ω \ B(z, b0r), then (3.8) holds.
If y,w are in different components of Ω \ B(z, b0, r), by an argument similar to
that of (3.7), we can prove that (3.7) still holds, and thus we do not need to
check (3.8) for such y,w. So we can assume that one of w,y is in Ω ∩ B(z, b0r).
Notice that in this case I(w,y) ⊂ Ω, where I(w,y) denotes the line segment
joining w and y. Then∣∣u(y) − u(w)

∣∣ ≤ �
(
I(w,y) ∩ B(z, b0r)

)
≤ min

{
2b0r, |y − w|

}
� (b0r)1−s|y − w|s,

which implies (3.8). This finishes the proof of Lemma 3.2. �
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4. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. (i) Assume that Ω is a bounded John domain. Then,
as proved by Boman [2], Ω enjoys the following chain property : there exist a
positive constant C̃ and a sequence of subcubes of Ω, which is denoted by F ,
such that:

(a) χΩ(x) ≤
∑

j χQi(x) ≤
∑

j χ2Qi(x) ≤ C̃χΩ(x) for all x ∈ R
n;

(b) for a fixed subcube Q0 ∈ F and any other Q ∈ F , there exists a sub-
sequence {Qj }N

j=1 ⊂ F satisfying that Q = QN ⊂ C̃Qj , C̃−1|Qj+1| ≤ |Qj | ≤
C̃|Qj+1| and |Qj ∩ Qj+1| ≥ C̃−1 min{ |Qj |, |Qj+1| } for all j = 0, . . . ,N − 1.

Let u ∈ Ṁs,p
ball(Ω) and g ∈ Ds

ball(u) with ‖g‖Lp(Ω) � ‖u‖Ṁs,p(Ω). Then∫
Ω

∣∣u(z) − uQ0

∣∣pn/(n−ps)
dz

�
∑
Q∈F

∫
Q

∣∣u(z) − uQ

∣∣pn/(n−ps)
dz +

∑
Q∈F

|Q| |uQ − uQ0 |pn/(n−ps)

≡ I1 + I2.

Then by Lemma 2.3, n/(n − ps) > 1 and the above chain property, we have

I1 �
∑
Q∈F

(∫
2Q

[
g(z)

]p
dz

)n/(n−ps)

�
( ∑

Q∈F

∫
2Q

[
g(z)

]p
dz

)n/(n−ps)

�
(∫

Ω

[
g(z)

]p
dz

)n/(n−ps)

� ‖u‖pn/(n−ps)

Ṁs,p
ball(Ω)

.

To estimate I2, for every Q ∈ F , let {Qj }N
j=1 be as in (b). Then we have

|uQ − uQ0 | �
N −1∑
j=0

(
|uQj − uQj ∩Qj+1 | + |uQj ∩Qj+1 − uQj+1 |

)
�

N∑
j=0

–
∫

Qj

∣∣u(z) − uQj

∣∣dz

�
N∑

j=0

|Qj |s/n

(
–
∫

2Qj

[
g(z)

]p
dz

)1/p

�
∑

Q̃∈F :Q⊂2Q̃

|Q̃|s/n

(
–
∫

2Q̃

[
g(z)

]p
dz

)1/p

.
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Thus, by Q ⊂ C̃Q̃ for all Q̃ ∈ F , we obtain

I2 �
∑
Q∈F

|Q|
{ ∑

Q̃∈F :Q⊂C̃Q̃

|Q̃|s/n

(
–
∫

2Q̃

[
g(z)

]p
dz

)1/p}pn/(n−ps)

�
∑
Q∈F

∫
Q

{ ∑
Q̃∈F

|Q̃|s/n

(
–
∫

2Q̃

[
g(z)

]p
dz

)1/p

χC̃Q̃(x)
}pn/(n−ps)

dx

�
∫

Ω

{ ∑
Q̃∈F

[
M

([
|Q̃|s/n

(
–
∫

2Q̃

[
g(z)

]p
dz

)1/p

χQ̃

]1/2)
(x)

]2}pn/(n−ps)

dx,

where M denotes the Hardy–Littlewood maximal operator. Then by the
vector-valued inequality of M (see, for example, [33]), we have

I2 �
∫

Ω

{ ∑
Q̃∈F

|Q̃|s/n

(
–
∫

2Q̃

[
g(z)

]p
dz

)1/p

χQ̃(x)
}pn/(n−ps)

dx

�
( ∑

Q̃∈F

∫
2Q̃

[
g(z)

]p
dz

)n/(n−ps)

�
(∫

Ω

[
g(z)

]p
dz

)n/(n−ps)

� ‖u‖pn/(n−ps)

Ṁs,p
ball(Ω)

.

This estimate finishes the proof of Theorem 1.2(i).
(ii) Assume that Ω is bounded domain and has a separation property with

respect to x0 ∈ Ω and C0 ≥ 1. For any fixed point x ∈ Ω, let γ be a curve as
in Definition 2.3. We claim that d(γ(t),Ω�) � diamγ([0, t]) for all t ∈ [0,1].
Assume this claim holds for the moment. Then, as pointed out in [4], even
though the claim is not enough to ensure that γ is a John curve for x, it is
known that the claim is enough to guarantee that γ can be modified to yield
a John curve for x by the arguments in [25, pp. 385–386] and [28, pp. 7–8].

To prove the above claim, let N = 2 + C0/b, where b is the constant for
which LLC(2) holds. For t ∈ (0,1], if d(γ(t),Ω�) ≥ d(x0,Ω�)/N , then

γ
(
[0, t]

)
⊂ Ω ⊂ B

(
γ(t),

N diamΩ
d(x0,Ω�)

d
(
γ(t),Ω�)),

which implies the above claim. Assume that d(γ(t),Ω�) < d(x0,Ω�)/N . Now
it suffices to prove that γ([0, t]) ⊂ B(γ(t), (N − 1)d(γ(t),Ω�)). To this end, if
y ∈ γ([0, t]) \ B(γ(t), (N − 1)d(γ(t),Ω�)), since d(x0, γ(t)) ≥ (N − 1)d(γ(t),Ω�),
then by Theorem 1.1(iii), we know that x0 and y are contained in the same
component of Ω \ B(γ(t), b(N − 1)d(γ(t),Ω�)), by b(N − 1) > C0, we further
know that x0 and y are in the same component of Ω \ ∂B(γ(t),C0d(γ(t),Ω�)),
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which is a contradiction with the separation property. This verifies the above
claim and thus finishes the proof of Theorem 1.2(ii). �

To prove Theorem 1.3, we first establish the following result, which is an
improvement on [16, Theorem 8.7(ii)].

Lemma 4.1. Let s ∈ (0,1]. Then there exist positive constants 0 < C1 <

1 < C2 such that for all balls B ⊂ R
n and u ∈ Ṁs,n/s(4B),

(4.1) –
∫

B

exp
(

C1
|u(x) − uB |

‖u‖Ṁs,n/s(4B)

)n/(n−s)

dx ≤ C2.

Proof. Assume that B ≡ B(x0,2−k0) for some x0 ∈ R
n and k0 ∈ Z. Let

u ∈ Ṁs,p(4B) and g ∈ Ds(u) such that ‖g‖Ln/s(4B) ≤ 2‖u‖Ṁs,p(4B). We extend
g to the whole R

n by setting g(z) = 0 for all z ∈ R
n \ 4B. For every Lebesgue

point x of u, we have∣∣u(x) − uB(x,2−k0−1)

∣∣
≤

∑
j≥k0+1

|uB(x,2−j−1) − uB(x,2−j)| + |uB(x,2−k0+1) − uB |

�
∑

j≥k0+1

–
∫

B(x,2−j)

∣∣u(z) − uB(x,2−j)

∣∣dz

�
∑

j≥k0+1

–
∫

B(x,2−j)

∣∣u(z) − uB(x,2−j+2)\B(x,2−j+1)

∣∣dz

�
∑

j≥k0+1

–
∫

B(x,2−j)

–
∫

B(x,2−j+2)\B(x,2−j+1)

∣∣u(z) − u(y)
∣∣dy dz

�
∑

j≥k0+1

–
∫

B(x,2−j)

∫
B(x,2−j+2)\B(x,2−j+1)

|g(z) + g(y)|
|y − x|n−s

dy dz

�
∑

j≥k0+1

∫
B(x,2−j+2)\B(x,2−j+1)

| M(g)(y)|
|y − x|n−s

dy

�
∫

B(x0,2−k0+2)

| M(g)(y)|
|y − x|n−s

dy.

Similarly,

|uB − uB(x,2−k0−1)| � –
∫

B

∣∣u(z) − uB

∣∣dz �
∫

B(x0,2−k0+2)

| M(g)(y)|
|y − x|n−s

dy.

Thus, ∣∣u(x) − uB

∣∣ �
∫

B(x0,2−k0+2)

| M(g)(y)|
|y − x|n−s

dy.
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Then by [11, Lemma 7.2], for all q ≥ n/s,

‖u − uB ‖Lq(B) ≤ q1−s/n+1/q
∣∣B(0,1)

∣∣1−s/n|B|1/q
∥∥M(g)

∥∥
Ln/s(4B)

,

which together with the Ln/s(Rn)-boundedness of M implies that

–
∫

B

∣∣u(z) − uB

∣∣q dz � q1+(n−s)/(nq)
∣∣B(0,1)

∣∣nq/(n−s)‖g‖q
Ln/s(4B)

,

and hence for all q ≥ n/s − 1,

–
∫

B

∣∣u(z) − uB

∣∣qn/(n−s)
dz � nq

n − s

(∣∣B(0,1)
∣∣ nq

n − s
‖g‖n/(n−s)

Ln/s(4B)

)q

.

Then taking σ > [e|B(0,1)|n/(n − s)](n−s)/n, we have

–
∫

B

∑
j≥ �n/s�

1
j!

(
|u(x) − uB |

σ‖g‖Ln/s(4B)

)jn/(n−s)

dx

�
∑
j≥1

(
n|B(0,1)|

(n − s)σn/(n−s)

)j
jj

(j − 1)!
� 1.

Notice that by the Hölder inequality, we have

–
∫

B

�n/s�∑
j=0

1
j!

(
|u(x) − uB |

σ‖g‖Ln/s(4B)

)jn/(n−s)

dx

�
�n/s�∑
j=0

(
–
∫

B

|u(x) − uB |n/s

‖g‖n/s

Ln/s(4B)

dx

)(n−s)/(j−s)

� 1.

This gives (4.1) and thus finishes the proof of Lemma 4.1. �

Proof of Theorem 1.3. (i) Assume that Ω is a weak carrot domain. Since
Ω is bounded (see [29, Corollary 1]), we may assume that |Ω| = 1. Let

φ̃s(t) = exp
(
tn/(n−s)

)
−

j0∑
j=0

1
j!

tjn/(n−s)

for t ∈ (0, ∞), where j0 denotes the maximal integer no more than n/s − 1.
Since φ̃s(t) ∼ φs(t) for t ≥ 1, so we only need to prove (1.3) for φ̃s; see [1].
It further suffices to prove that there exists a σ ∈ (0,1) such that for all
u ∈ Ṁ

s,n/s
ball (Ω) with ‖u‖

Ṁ
s,n/s
ball (Ω)

= 1,

(4.2)
∫

Ω

φ̃s

(
σ
∣∣u(x) − uΩ

∣∣)dx ≤ 1.
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Let u ∈ Ṁ
s,n/s
ball (Ω) with ‖u‖

Ṁ
s,n/s
ball (Ω)

= 1 and write∫
Ω

φ̃s

(
σ
∣∣u(x) − uΩ

∣∣)dx =
∑

j=j0+1

1
j!

σjn/(n−s)

∫
Ω

∣∣u(x) − uΩ

∣∣jn/(n−s)
dx.

Since Ω ⊂
⋃

z∈Ω B(z, d(z,Ω�)/10), then by the standard 1/5-covering theo-
rem, there exist points {zi}i ⊂ Ω such that {B(zi, d(z,Ω�)/50)}i are pairwise
disjoint,

1 ≤
∑

i

χB(zi,d(zi,Ω�)/10) ≤ C̃χΩ

for some fixed positive constant C̃. Denote by W the collections of balls
{B(zi, d(zi,Ω�)/10)}. Let B0 be a fixed ball in W with the largest radius.
Denote by xB the center of ball B and specially x0 of B0. Then∫

Ω

∣∣u(x) − uΩ

∣∣jn/(n−s)
dx ≤ 2jn/(n−s)

∫
Ω

∣∣u(x) − uB0

∣∣jn/(n−s)
dx

≤ 2jn/(n−s)
∑

B∈W

∫
B

∣∣u(x) − uB0

∣∣jn/(n−s)
dx

≤ 4jn/(n−s)
∑

B∈W

∫
B

∣∣u(x) − uB

∣∣jn/(n−s)
dx

+ 4jn/(n−s)
∑

B∈W

|B| |uB − uB0 |jn/(n−s)

≡ I1(j) + I2(j).

Observe that
∑

B∈W ‖u‖n/s

Ṁs,n/s(4B)
≤ C̃‖u‖Ṁs,p(Ω) ≤ C̃. Choose 0 < σ <

C1/8 such that C2C̃[(4σ)(C1)−1](j0+1)n/(n−s) ≤ 1/2, where C1 and C2 are the
constants from Lemma 4.1. Then by |Ω| = 1 and Lemma 4.1, we have

∞∑
j=j0+1

1
j!

σjn/(n−s)I1(j) ≤
∑

B∈W

[
4σ(C1)−1

](j0+1)n/(n−s)

×
∫

B

∑
j=j0+1

1
j!

(C1)jn/(n−s)
∣∣u(x) − uB

∣∣jn/(n−s)
dx

≤
∑

B∈W

[
‖u‖Ṁs,n/s(4B)(4σ)(C1)−1

](j0+1)n/(n−s)

×
∫

B

exp
(

C1
|u(x) − uB |

‖u‖Ṁs,n/s(4B)

)n/(n−s)

dx

≤ C2

[
(4σ)(C1)−1

](j0+1)n/(n−s) ∑
B∈W

‖u‖n/s

Ṁs,n/s(4B)

≤ 1/2.
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To estimate I2(j), for each B ∈ W \ {B0}, let γ be the geodesic joining x0

and xB . By using the Bescovitch covering lemma (see [33]) and some argu-
ments similar to these in the proofs of [5, Theorem 4.1] and [32, Lemma 3.2],
we can find a family of balls B ≡ {Bi}N

i=0 such that

(a) Bi ≡ B(wi, d(wi,Ω�)/10) with wi ∈ γ for all i = 0, . . . ,N , w0 = x0 and
wN = xB ;

(b) Bi ∩ Bi+1 �= ∅ for all i = 0, . . . ,N − 1;
(c)

∑N
i=1 χ2Bi(z) ≤ C for all z ∈ Ω, where the constant C only depends on

the dimension n.
Let w̃i ∈ Bi ∩ Bi+1 and r̃i ≡ min{d(wi,Ω�), d(wi+1,Ω�)} for all i = 0, . . . ,

N − 1. Notice that (b) implies that
9
11

d
(
wi+1,Ω�) ≤ d

(
wi,Ω�) ≤ 11

9
d
(
wi + 1,Ω�)

for all i = 0, . . . ,N − 1. Since d(z,Ω�) ∼ d(wi,Ω�) for all z ∈ Bi, so by (c), we
have

N �
N∑

i=0

∫
Bi ∩γ

1
d(z,Ω�)

|dz| � kΩ(xB , x0).

Thus, by these, (c) and the Hölder inequality, we have

|uB − uB0 | �
N −1∑
j=0

|uBi − uB(w̃i,r̃i)| + |uB(w̃i,r̃i) − uBi+1 |

�
N∑

j=0

–
∫

2Bi

∣∣u(z) − u2Bi

∣∣dz

�
N∑

j=0

[
d
(
wi,Ω�)]−n+s

∫
2Bi

g(x)dx

�
N∑

j=0

{∫
2Bi

[
g(x)

]n/s
dx

}s/n

� N (n−s)/n �
[
kΩ(xB , x0)

](n−s)/n
.

Let C3 be the constant from the preceding inequality and notice that there
exists a positive constant C4 such that for all x ∈ B and B ∈ W \ {B0},
kΩ(xB , x0) ≤ C4kΩ(x,x0). By |Ω| = 1, we have

∞∑
j=j0+1

1
j!

σjn/(n−s)I2(j)

≤
∞∑

j=j0+1

1
j!

(4σC3)jn/(n−s)
∞∑

j=j0+1

∑
B∈W \ {B0}

|B|
[
kΩ(xB , x0)

]j(n−s)/n
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≤
∞∑

j=j0+1

1
j!

(4σC3C4)jn/(n−s)

∫
Ω\B0

[
kΩ(x,x0)

]j(n−s)/n
dx

≤
∑

j=j0+1

1
j!

(4σC3C4)jn/(n−s)σjn/(n−s)

∫
Ω

[
kΩ(x0, x)

]j
dx

≤
∫

Ω

[
exp

(
(4σC3C4)n/(n−s)kΩ(x0, x)

)
− 1

]
dx.

Then by Lemma 2.1, we can choose σ small enough such that
∞∑

j=j0+1

1
j!

σjn/(n−s)I2(j) ≤ 1/2,

which together with
∑∞

j=j0+1
1
j!σ

jn/(n−s)I1(j) ≤ 1/2 implies (4.2). This fin-
ishes the proof of Theorem 1.3(i).

(ii) Assume that Ω has the slice property with respect to y and C5 ≥ 1 as in
Definition 2.4. Then for every x ∈ Ω, by Definition 2.4, there exist a rectifiable
curve γ and a sequence of {Si}j

i=0 for some j ≥ 0, satisfying (i) through (iv)
of Definition 2.4. Without loss of generality, we may assume that j ≥ 2. In
fact, as pointed out by Buckley and Koskela [5, p. 890], Definition 2.4(iii)
and (iv) implies that j + 1 ≥ kΩ(x, y)/C5. Observe that if k(x, y) ≤ 2C5, then
(2.1) is clearly satisfied. So we only need to consider the case j ≥ 2.

For each i = 1, . . . , j − 1, define the function ui by setting

ui(z) ≡ inf
γ̃

�(γ̃ ∩ Si)

for all z ∈ Ω, where the infimum is taken over all rectifiable curves γ̃ joining
x and z. Obviously, ui(z) = 0 for z ∈

⋃i−1
k=0 Sk and ui(z) is a constant for z ∈⋃j

k=i+1 Sk. Then by an argument similar to the one in the proof of Lemma 3.2,

we can prove that u ∈ Ṁ
s,n/s
ball (Ω) and gi ≡ r1−s

i χB(xi,2C5d(xi,Ω�)) is a constant

multiple of an element of Ds,1/(16C5)
ball (u), where ri = diamSi ∼ d(xi,Ω�) by

Definition 2.4(iii). We omit the details. Then ‖ui‖Ṁs,p
ball(Ω) � r

1−s+n/p
i . Notice

that Definition 2.4(ii) implies that∣∣ui(x) − ui(y)
∣∣ ≥ C−1

5 d
(
xi,Ω�) � ri.

Moreover, define u = j−s/n
∑j−1

i=1 r−1
i ui. Then the function

g ≡ j−s/n

j−1∑
i=1

r−1
i gi = j−s/n

j−1∑
i=1

r−s
i χB(xi,2C5d(xi,Ω�))

is a constant multiple of an element of Ds,1/(16C5)
ball (u), which together with the

Fefferman–Stein vector-valued inequality of the Hardy–Littlewood maximal
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function M (see, for example, [33]) and Definition 2.4 imply that

‖u‖n/s

Ṁ
s,n/s
ball (Ω)

(4.3)

� j−1

∫
Ω

(
j−1∑
i=1

r−s
i χB(xi,2C5d(xi,Ω�))(z)

)n/s

dz

� j−1

∫
Ω

(
j−1∑
i=1

[
M

([
r−s
i χB(xi,C

−1
5 d(xi,Ω�))

]1/2)(z)
]2

)n/s

dz

� j−1

∫
Ω

(
j−1∑
i=1

r−s
i χB(xi,C

−1
5 d(xi,Ω�))(z)

)n/s

dz

� j−1

∫
Ω

j−1∑
i=1

r−n
i χB(xi,C

−1
5 d(xi,Ω�))(z)dz � 1.

On the other hand, since u(z) ≥ (j − 1)1−s/n for z ∈ Sj , then for

tn/(n−s) ≤ (j − 1)/ log
(
1 +

[
C−1

5 d
(
x,Ω�)]−n)

,

we have∫
Ω

φs

(
u(z)

t

)
dz ≥

∫
Sj

φs

(
u(z)

t

)
dz ≥

[
C−1

5 d
(
x,Ω�)]−n|Sj | > 1,

which implies that

‖u‖φs(L)(Ω) �
{

j − 1
log(1 + [C−1

5 d(x,Ω�)]−n)

}(n−s)/n

�
{

j

log(1 + [d(x,Ω�)]−1)

}(n−s)/n

.

From this, (4.3) and s-Trudinger inequality, it follows that

j � log
(
1 +

[
d
(
x,Ω�)]−1)

,

which further implies that∫
γ

1
d(z,Ω�)

|dz| � log
(
1 +

[
d
(
x,Ω�)]−1)

.

This means that Ω is a weak carrot domain and thus finishes the proof of
Theorem 1.3(ii). �
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