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TORIC IDEALS FOR HIGH VERONESE SUBRINGS
OF TORIC ALGEBRAS

TAKAFUMI SHIBUTA

Abstract. We prove that the defining ideal of a sufficiently high
Veronese subring of a toric algebra admits a quadratic Gröbner

basis consisting of binomials. More generally, we prove that the

defining ideal of a sufficiently high Veronese subring of a standard

graded ring admits a quadratic Gröbner basis. We give a lower

bound on d such that the defining ideal of dth Veronese sub-
ring admits a quadratic Gröbner basis. Eisenbud–Reeves–Totaro

stated the same theorem without a proof with some lower bound

on d. In many cases, our lower bound is less than Eisenbud–
Reeves–Totaro’s lower bound.

1. Introduction

We denote by N = {0,1,2,3, . . .} the set of nonnegative integers. For a
multi-index a = (a1, . . . , ar) ∈ Nr and variables x = x1, . . . , xr, we write xa =
xa1

1 · · · xar
r and |a| = a1 + · · · + ar. For a given positive integer d, we set

Nr
d = {a ∈ Nr | |a| = d}. We denote by ei the vector with 1 in the ith position

and zeros elsewhere. In this paper, “quadratic” means “of degree at most
two.”

Let B =
⊕

i∈N
Bi be a standard N-graded ring (that is, B is generated by B1

over B0 as an algebra) with B0 = K a field. For d ∈ N, we call B(d) =
⊕

i∈N
Bdi

the dth Veronese subring of B. In this paper, we investigate Gröbner bases
of the defining ideal of B(d). We say that a homogeneous ideal admits qua-
dratic Gröbner basis if there exists a Gröbner basis consisting of homogeneous
polynomials of degree at most 2 with respect to some term order.

We call a finite collection A = {m(1), . . . ,m(s)} ⊂ Zn, m(i) = (m(i)
1 , . . . ,

m
(i)
n ), a configuration if there exists a vector 0 �= λ = (λ1, . . . , λn) ∈ Qn such
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that λ · m(i) =
∑

j λj · m
(i)
j = 1 for all i. We denote by K[A] the standard

N-graded K-algebra K[zm(1)
, . . . ,zm(s)

]. For a configuration A, let φA be the
ring homomorphism

φA : K[y1, . . . , ys] → K
[
z±1
1 , . . . , z±1

n

]

yi �→ zm(i)
=

n∏
j=1

z
m

(i)
j

j .

We denote KerφA by PA and call it a toric ideal of A. It is known that the
toric ideal PA is a homogeneous ideal generated by the binomials u − v where
u and v are monomials of K[y1, . . . , ys] with φA(u) = φA(v). We consider
the toric ideal PA(d) which is the defining ideal of the dth Veronese subring
K[A](d) = K[A(d)] of K[A] where

A(d) =
{
a1m(1) + · · · + asm(s) | (a1, . . . , as) ∈ Ns

d

}
.

We will prove the following theorem.

Theorem 1 (Theorem 3.16). PA(d) admits a quadratic Gröbner basis for
all sufficiently large d.

We prove this theorem in the more general situation: Let S = K[y1, . . . , ys]
be a standard graded polynomial rings over a field K, and I a homogeneous
ideal of S. Let R[d] = K[xa | a ∈ Ns

d] be a polynomial ring whose variables
correspond to the monomials of degree d in S, and φd : R[d] → S a ring ho-
momorphism φd(xa) = ya. Then R[d]/φ−1

d (I) ∼= (S/I)(d). The main result of
this paper is the next theorem.

Theorem 2 (Theorem 3.14). Let I ⊂ S be a homogeneous ideal, and ≺
a term order on S. Let {ya(1)

, . . . ,ya(r) }, a(i) = (ai1, . . . , ais) ∈ Ns, be the
minimal system of generators of in≺(I). Then φ−1

d (I) admits a quadratic
Gröbner basis if

d ≥ s
(
max{aij | 1 ≤ i ≤ r,1 ≤ j ≤ s} + 1

)
/2.

Note that Theorem 2 implies Theorem 1. Eisenbud–Reeves–Totaro [7]
proved that in the case where the coordinates y1, . . . , ys of S are generic,
φ−1

d (I) admits quadratic Gröbner basis for d ≥ reg(I)/2. Our lower bound
s(max{aij | 1 ≤ i ≤ r,1 ≤ j ≤ s} + 1)/2 seems large compared with reg(I)/2,
but is easy to compute. Let δ(in≺(I)) = max{ai1 + · · · + ais | 1 ≤ i ≤ r}.
Eisenbud–Reeves–Totaro gave a easily computable rough lower bound
(sδ(in≺(I)) − s + 1)/2 (with ≺ and coordinates y1, . . . , ys chosen so that
δ(in≺(I)) is minimal). In many cases, our lower bound is less than Eisenbud–
Reeves–Totaro’s rough lower bound. Since coordinate transformation does
not preserve the property that an ideal is generated by binomials, we can not
use generic coordinates to prove Theorem 1. Our proof does not need any
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coordinate transformation. Eisenbud–Reeves–Totaro stated that the asser-
tion of Theorem 2 holds true for d ≥ s�δ(in≺(I))/2� without a proof (see [7]
comments after Theorem 11). Our lower bound is often less than Eisenbud–
Reeves–Totaro’s lower bound s�δ(in≺(I))/2�.

One of the reasons why we are interested in whether a given homogeneous
ideal admits quadratic Gröbner basis is that this is a sufficient condition for
the residue ring to be a homogeneous Koszul algebra. We call a graded ring B
homogeneous Koszul algebra if its residue field has a linear minimal graded free
resolution. Fröberg [8] proved that if I is generated by monomials of degree
two then S/I is Koszul. Hence if I ⊂ S = K[y1, . . . , ys] admits a quadratic
initial ideal, then B = S/I is a homogeneous Koszul algebra by a deformation
argument. Therefore, Theorem 2 implies the theorem of Backelin.

Theorem 1.1 (Backelin [1]). A Veronese subring B(d) of a standard N-
graded ring B = K[B1] over a field K is a homogeneous Koszul algebra for all
sufficiently large d ∈ N.

In the case of I = 0, Barcanescu and Manolache [2] proved that Veronese
subrings of polynomial rings are Koszul. We also prove that the defining ideals
of Veronese subrings of polynomial rings admit quadratic Gröbner bases with
respect to a certain term order (Theorem 3.8). See [3], [7] and [6] for other
term orders that give quadratic Gröbner bases.

2. Preliminaries on Gröbner bases

Here, we recall the theory of Gröbner bases. See [4], [5] and [9] for details.
Let R = K[x1, . . . , xr] be a polynomial ring over a field K. The monomial

xa in R is identified with lattice point a ∈ Nr. A total order ≺ on Nr is a term
order if the zero vector 0 is the unique minimal element, and a ≺ b implies
a + c ≺ b + c for all a, b, c ∈ Nr. We define xa ≺ xb if a ≺ b. We denote by
M the set of all monomials of R. Let a = (a1, . . . , ar), b = (b1, . . . , br) ∈ Nr.

Definition 2.1 (Lexicographic order). The lexicographic order ≺lex with
xr ≺ · · · ≺ x1 is defined as follows: a ≺lex b if aj<bj where j = min{i | ai �= bi}.

Definition 2.2 (Reverse lexicographic order). The reverse lexicographic
order ≺rlex with xr ≺ · · · ≺ x1 is defined as follows: a ≺rlex b if |a| < |b| or
|a| = |b| and aj>bj where j = max{i | ai �= bi}.

Definition 2.3. Let ≺ be a term order on R, f ∈ R, and I an ideal
of R. The initial term in≺(f) is the highest term of f with respect to ≺.
We call in≺(I) = 〈in≺(f) | f ∈ I〉 the initial ideal of I with respect to ≺. We
say that a finite subset G of I is a Gröbner basis of I with respect to ≺ if
in≺(I) = 〈in≺(g) | g ∈ G〉.

We give a criterion for a given finite subset of a toric ideal to be a Gröbner
basis.
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Lemma 2.4. Let ≺ be a term order of R, PA = KerφA ⊂ R a toric ideal,
and G a finite subset of PA. Then G is a Gröbner basis of PA with respect to
≺ if and only if for any monomial u /∈ 〈in≺(g) | g ∈ G〉,

u = min≺
{
v ∈ M | φA(u) = φA(v)

}
.

Proof. Let u be a monomial. For a monomial v satisfying φA(u) = φA(v),
we have u − v ∈ PA. Therefore u = min≺ {v ∈ M | φA(u) = φA(v)} if and only
if u /∈ in≺(PA). Since G is a Gröbner basis of PA if and only if u /∈ in≺(PA)
for any monomial u /∈ 〈in≺(g) | g ∈ G〉, we conclude the assertion. �

For a weight vector ω = (ω1, . . . , ωr) ∈ Nr, we can grade the ring R by
associating weights ωi to xi. To distinguish this grading from the standard
one, we say that polynomials or ideals of R are ω-homogeneous if they are
homogeneous with respect to the graded structure given by ω.

Definition 2.5. Given a polynomial f ∈ R and a weight vector ω, the
initial form inω(f) is the sum of all monomials of f of the highest weight
with respect to ω. We call inω(I) = 〈inω(f) | f ∈ I〉 the initial ideal of I with
respect to ω. If inω(I) is a monomial ideal, we call G a Gröbner basis of I
with respect to ω.

We define a new term order constructed from ω and a term order.

Definition 2.6. For a weight vector ω and a term order ≺, we define a
new term order ≺ω constructed from ω with ≺ a tie-breaker as following;
xa ≺ω xb if ω · a < ω · b, or ω · a = ω · b and xa ≺ xb.

We end this section with the following useful propositions about weighted
order. See [9] for the proofs.

Proposition 2.7. in≺(inω(I)) = in≺ω (I).

Proposition 2.8. For any term order ≺ and any ideal I ⊂ R, there exists
a weight vector ω ∈ Nr such that in≺(I) = inω(I).

3. Proof of the main theorem

3.1. Quadratic Gröbner bases of Kerφd. Let S = K[y1, . . . , ys] be a
standard graded polynomial rings over a field K, R[d] = K[xa | a ∈ Ns

d] a
polynomial ring whose variables correspond to the monomials of degree d in
S, and φd : R[d] → S the ring homomorphism φd(xa) = ya. We denote by M
the set of all monomials of R[d]. In this section, we prove that Kerφd has a
quadratic Gröbner basis with respect to a certain reverse lexicographic order.

Definition 3.1. Let ≺ be a term order on R[d]. For a monomial u ∈ R[d],
we define

mv≺(u) = min≺
{
xa ∈ R[d] | ya divides φd(u)

}
.
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Lemma 3.2. Let ≺ a reverse lexicographic order on R[d], and u ∈ R[d] a
monomial. Then

min≺
{
v ∈ M | φd(u) = φd(v)

}

= mv≺(u) · min≺

{
v′ ∈ M

∣∣∣ φd(u)
φd(mv≺(u))

= φd

(
v′)}.

Proof. Since φd(u)/φd(mv≺(u)) is a monomial whose degree is divisible
by d, there exists a monomial v′ ∈ M such that φd(v′) = φd(u)/φd(mv≺(u)).
Let u0 = min≺ {v ∈ M | φd(u) = φd(v)}. Since ≺ is a reverse lexicographic
order and u0 ≺ mv≺(u) · v′, u0 is divided by mv≺(u). Hence, the assertion
follows. �

We will give a criterion for a finite subset of Kerφd to be a Gröbner basis
of Kerφd with respect to a reverse lexicographic order.

Proposition 3.3. Let ≺ be a reverse lexicographic order on R[d], and G a
finite subset of Kerφd. Then G is a Gröbner basis of Kerφd with respect to
≺ if and only if mv≺(u) divides u for any monomial u /∈ 〈in≺(g) | g ∈ G〉.

Proof. Suppose that G is a Gröbner basis, and let u /∈ 〈in≺(g) | g ∈ G〉 =
in≺(I) be a monomial. Then mv≺(u) divides u by Lemmas 2.4 and 3.2.

Conversely, suppose that mv≺(u) divides u for any monomial u /∈ 〈in≺(g) |
g ∈ G〉. We will prove u = min≺ {v ∈ M | φd(u) = φd(v)} by induction on the
degree of u. Since u/mv≺(u) is also not in 〈in≺(g) | g ∈ G〉, it holds that

u/mv≺(u) = min≺
{
v ∈ M | φd

(
u/mv≺(u)

)
= φd(v)

}
by the assumption of induction. By Lemma 3.2, we conclude

u = mv≺(u) ·
(
u/mv≺(u)

)
= mv≺(u) · min≺

{
v ∈ M | φd

(
u/mv≺(u)

)
= φd(v)

}
= min≺

{
v ∈ M | φd(u) = φd(v)

}
.

Hence, G is a Gröbner basis of I by Lemma 2.4. �

Definition 3.4. Let a = (a1, . . . , as) ∈ Ns, and σ ∈ Ss be a permutation
of indices such that aσ(1) ≤ aσ(2) ≤ · · · ≤ aσ(s). We define Γ(a) ∈ Ns to be

Γ(a) = (aσ(1), aσ(2), . . . , aσ(s)).

Definition 3.5. Let ≺Γ be a reverse lexicographic order on R[d] such that
the order on variables is defined as follows: xa ≺Γ xb if Γ(b) ≺lex Γ(a) or
Γ(b) = Γ(a) and b ≺lex a.

Example 3.6. In the case of s = 2 and d = 4,

x(2,2) ≺Γ x(3,1) ≺Γ x(1,3) ≺Γ x(4,0) ≺Γ x(0,4).
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In the case of s = 3 and d = 3,

x(1,1,1) ≺Γ x(2,1,0) ≺Γ x(2,0,1) ≺Γ x(1,2,0) ≺Γ x(1,0,2) ≺Γ x(0,2,1)

≺Γ x(0,1,2) ≺Γ x(3,0,0) ≺Γ x(0,3,0) ≺Γ x(0,0,3).

The following are some typical and important properties of the term order
≺Γ.

Lemma 3.7. Let a = (a1, . . . , as),b = (b1, . . . , bs) ∈ Ns
d.

(1) Γ(a) is the minimal element of {(aσ(1), aσ(2), . . . , aσ(s)) | σ ∈ Ss} with re-
spect to the lexicographic order.

(2) If #{i | ai �= 0} > #{i | bi �= 0} where #F is the cardinality of the set F ,
then a ≺Γ b.

(3) Suppose that aj − ai ≥ 2 for some 1 ≤ i, j ≤ s, and let a′ = a + ei − ej .
Then xa′ ≺Γ xa.

(4) Suppose that aj − ai = 1 for some 1 ≤ i, j ≤ s, and let a′ = a + ei − ej .
Then xa′ ≺Γ xa if and only if i < j.

(5) Let u ∈ R[d] be a monomial, and suppose that xa = mv≺Γ(u). If aj − ai ≥ 2
for some 1 ≤ i, j ≤ s, then the degree of φd(u) in the variable yi is ai.

Proof. The assertions of (1), (2), and (3) follow immediately from the def-
inition of the term order ≺Γ.

(4) Note that Γ(a) = Γ(a′), and a′ is the vector obtained from a by swap-
ping the ith and jth components. Hence xa′ ≺Γ xa if and only if a ≺lex a′,
which is equivalent to i < j.

(5) Assume, to the contrary, that the degree of φd(u) in the variable yi is
strictly greater than ai. Then ya′

divides φd(u) where a′ = a + ei − ej . By
(3), we have xa′ ≺Γ xa which contradicts the definition of mv≺Γ(u). �

Theorem 3.8. Let

GΓ =
{
xa+eixb+ej − xa+ej xb+ei | a,b ∈ Ns

d−1,1 ≤ i < j ≤ s
}
.

Then GΓ is a Gröbner basis of Kerφd with respect to ≺Γ.

Proof. As (a + ei) + (b + ej) = (a + ej) + (b + ei) for a,b ∈ Ns
d−1, GΓ is a

finite subset of Kerφd. Let u ∈ R[d] be a monomial such that xa = mv≺Γ(u)
does not divide u. To conclude the assertion, it is enough to show that u ∈
〈in≺Γ(g) | g ∈ GΓ〉 by Proposition 3.3. Take a = (a1, . . . , as),b = (b1, . . . , bs) ∈
Ns

d such that

xa = mv≺Γ(u),

xb = min≺Γ

{
xc ∈ R[d] | xc divides u

}
.

Note that a �= b and xa ≺Γ xb. Let τ ∈ Ss be a permutation of indices such
that bτ(1) ≤ · · · ≤ bτ(s). Since

(bτ(1), bτ(2), . . . , bτ(s)) = Γ(b) �lex Γ(a) �lex (aτ(1), aτ(2), . . . , aτ(s))
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by Lemma 3.7(1), and (bτ(1), . . . , bτ(s)) �= (aτ(1), . . . , aτ(s)), there exists 1 ≤ j ≤
s such that aτ(i) = bτ(i) for all i < j and

bτ(j) < aτ(j).

As |a| = |b| = d, there exists k > j such that

bτ(k) > aτ(k).

As yb divides φd(u) and bτ(k) > aτ(k), we have

aτ(j) − aτ(k) ≤ 1

by Lemma 3.7(5). As

aτ(j) − aτ(k) = (aτ(j) − bτ(j)) + (bτ(j) − bτ(k)) + (bτ(k) − aτ(k)),

and aτ(j) − bτ(j), bτ(k) − aτ(k) > 0, we have

bτ(k) − bτ(j) > 0.

Since ya divides φd(u), the degree of φd(u/xb) in the variable yτ(j) is not
less than aτ(j) − bτ(j) > 0, and thus there exists c = (c1, . . . , cs) ∈ Ns

d such that
cτ(j) > 0 and xc divides u/xb. We set

b′ = b + eτ(j) − eτ(k),

c′ = c − eτ(j) + eτ(k).

Then xbxc − xb′ xc′ ∈ GΓ and xbxc divides u. To complete the proof, we will
show that xbxc is the initial term of xbxc − xb′ xc′ . Since xb ≺Γ xc and ≺Γ

is a reverse lexicographic order, it is enough to show that xb′ ≺Γ xb. In the
case of bτ(k) − bτ(j) ≥ 2, we have xb′ ≺Γ xb by Lemma 3.7(3). In the case of
bτ(k) − bτ(j) = 1, we have

aτ(j) − aτ(k) = (aτ(j) − bτ(j)) − 1 + (bτ(k) − aτ(k)) ≥ 1,

and hence aτ(j) − aτ(k) = 1. Let a′ = a − eτ(j) +eτ(k). Then ya′
divides φd(u)

as bτ(k) > aτ(k). Thus xa ≺Γ xa′ by the definition of mv≺Γ(u). This implies
τ(j) < τ(k) by Lemma 3.7(4). Therefore, xb′ ≺Γ xb again by Lemma 3.7(4).

�

See [3], [7] and [6] for other term orders that give quadratic Gröbner bases
of Kerφd.

We already proved Theorem 2 in the case of I = 0. In the rest of this paper,
we prove that there exists a term order on R[d] such that the initial ideal of
φ−1

d (I) is generated by quadratic monomials for all sufficiently large d for any
homogeneous ideal I ⊂ S. First, we will prove this in the case where I is a
monomial ideal, and then reduce the general case to the monomial ideal case.



902 T. SHIBUTA

3.2. In the case of monomial ideals.

Definition 3.9. Let I ⊂ S be a monomial ideal, and ≺ any term order on
R[d]. We define

L≺(I) =
〈

M ∩
(
φ−1

d (I) \ in≺(Kerφd)
)〉

to be the monomial ideal of R[d] generated by all monomials in φ−1
d (I) \

in≺(Kerφd), and M≺(I) to be the minimal system of generators of L≺(I)
consisting of monomials.

Lemma 3.10. Let I ⊂ S be a monomial ideal, and ≺ any term order on
R[d]. Let G be a Gröbner basis of Kerφd with respect to ≺. Then G ∪ M≺(I)
is a Gröbner basis of φ−1

d (I) with respect to ≺.

Proof. First, we note that G ∪ M≺(I) ⊂ φ−1
d (I). Take f ∈ φ−1

d (I), and
let g be the remainder on division of f by G. Then any term of g is not
in in≺(Kerφd). Hence different monomials appearing in g map to different
monomials under φd. Since I is a monomial ideal, it follows that all terms
of g are in L≺(I). Thus, the remainder on division of g by M≺(I) is zero.
Therefore, a remainder on division of f by G ∪ M≺(I) is zero. This implies
that G ∪ M≺(I) is a Gröbner basis of φ−1

d (I). �

Proposition 3.11. Let a = (a1, . . . , as) ∈ Ns, and a = max{ai | i = 1, . . . ,
s}. Assume that d ≥ s(a+1)/2. Let u ∈ (φ−1

d (I) \ in≺(Kerφd) be a monomial
of degree ≥ 2, and set xb = mv≺Γ(u), b = (b1, . . . , bs) ∈ Ns

dxc = mv≺Γ(u/xb),
c = (c1, . . . , cs) ∈ Ns

d. Then xbxc ∈ φ−1
d (ya). In particular, L≺Γ(ya) is gener-

ated by quadratic monomials.

Proof. First, note that xc is well defined since xb divides u by Lemma 3.2.
Assume, to the contrary, that xbxc /∈ φ−1

d (ya). Since ya does not divide
yb+c = φd(xbxc), we have bi + ci < ai for some 1 ≤ i ≤ s. On the other
hand, since |b + c| = 2d ≥ s(a + 1), there exists 1 ≤ j ≤ s (j �= i) such that
bj + cj > a+1. Hence, (bj + cj) − (bi + ci) = (bj + cj − a)+(a − bi + ci) ≥ (bj +
cj − a) + (ai − bi + ci) ≥ 3. Thus, we have bj − bi ≥ 2 or cj − ci ≥ 2. Since ya

divides φd(u) and bi + ci < ai, the degree of φd(u) in the variable yi is strictly
greater than bi, and the degree of φd(u/xb) in the variable yi is strictly greater
than ci. This contradicts to Lemma 3.7(5). Hence, xbxc ∈ φ−1

d (ya). Since
xbxc divides u if u �= xb by Lemma 3.2, L≺Γ(ya) is generated by quadratic
monomials. �

Theorem 3.12. Let I ⊂ S be a monomial ideal with a system of generators
{ya(1)

, . . . ,ya(r) }, a(i) = (ai1, . . . , ais) ∈ Ns, and set

a = max{aij | 1 ≤ i ≤ r,1 ≤ j ≤ s}.

If d ≥ s(a + 1)/2, then in≺Γ(φ−1
d (I)) is generated by quadratic monomials.
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Proof. Let u ∈ φ−1
d (I) be a monomial. Then u ∈ φ−1

d (ya(i)
) for some i.

Thus it follows that L≺Γ(I) =
∑r

i=1 L≺Γ(ya(i)
). Hence, M≺Γ(I) consists of

quadratic monomials by Proposition 3.11. By Lemma 3.10, the Gröbner basis
of φ−1

d (I) with respect to ≺Γ is the union of M≺Γ(I) and GΓ in Theorem 3.8.
This proves the assertion. �

3.3. In the case of homogeneous ideals. Let I ⊂ S be a homogeneous
ideal, and fix a weight vector ω of S such that inω(I) is a monomial ideal. We
denote by φ∗

dω the weight vector on R[d] that assign ω · a to the weight of xa

for a ∈ Ns
d. Since the weight of xa coincides with the weight of ya = φd(xa),

φd is a homogeneous homomorphism of degree zero with respect to the graded
ring structures on R[d] and S defined by φ∗

dω and ω. For the simplicity of
the notation, we regard zero-polynomial as a homogeneous (ω-homogeneous)
polynomial of any degree (weight).

Lemma 3.13. With the notation as above, inφ∗
dω(φ−1

d (I)) = φ−1
d (inω(I)).

Proof. First, note that inφ∗
dω(φ−1

d (I)) and φ−1
d (inω(I)) are both homoge-

neous and φ∗
dω-homogeneous. Since φd sends φ∗

dω-homogeneous polynomi-
als to ω-homogeneous polynomials, we have φd(inφ∗

dω(g)) = inω(φd(g)) for all
g ∈ R[d]. Hence it follows that inφ∗

dω(φ−1
d (I)) ⊂ φ−1

d (inω(I)).
We will prove the converse inclusion. Let {f1, . . . , fr } be a Gröbner ba-

sis of I with respect to ω consisting of homogeneous polynomials. Let g ∈
φ−1

d (inω(I)) be a homogeneous and φ∗
dω-homogeneous polynomial. We set

� and m to be the degree and the weight of g. Then φd(g) is a homoge-
neous and ω-homogeneous polynomial of degree d� and of weight m. Since
φd(g) ∈ inω(I), there exist homogeneous and ω-homogeneous polynomials
h1, . . . , hr such that φd(g) =

∑r
i=1 hi · inω(fi), and hi · inω(fi) is of degree

d� and of weight m. We set q =
∑r

i=1 hifi. Then q is a homogeneous polyno-
mial of degree d� satisfying q ∈ I , and inω(q) =

∑r
i=1 hi · inω(fi) = φd(g). We

write q = inω(q) +
∑

i<m qi where qi is a homogeneous and φ∗
dω-homogeneous

polynomial of degree d� and of weight i. For i < m, there exists gi ∈ R[d]

a homogeneous and ω-homogeneous polynomial of degree � and of weight i
such that φd(gi) = qi. Then φd(g +

∑
i<m gi) = q and inφ∗

dω(g +
∑

i<m gi) = g.
Therefore, we have g ∈ inφ∗

dω(φ−1
d (I)). �

Now, we are ready to prove the main theorem of this paper.

Theorem 3.14. Let I ⊂ R[d] be a homogeneous ideal, and fix a weight
vector ω of S such that inω(I) is a monomial ideal. Let {ya(1)

, . . . ,ya(r) },
a(i) = (ai1, . . . , ais) ∈ Ns, be the minimal system of generators of inω(I) and
set

a = max{aij | 1 ≤ i ≤ r,1 ≤ j ≤ s}.
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Let ≺Γω be the term order on R[d] constructed from φ∗
dω with ≺Γ a tie-breaker

as in Definition 2.6. Then in≺Γω
(φ−1

d (I)) is generated by quadratic monomials
if d ≥ s(a + 1)/2.

Proof. By Proposition 2.7 and Lemma 3.13, we have

in≺Γω

(
φ−1

d (I)
)

= in≺Γ

(
inφ∗

dω

(
φ−1

d (I)
))

= in≺Γ

(
φ−1

d

(
inω(I)

))
.

Since inω(I) is a monomial ideal, the assertion follows from Theorem 3.12. �

Observation 3.15. Let the notation be as in Theorem 3.14. We will
compare our lower bound on d with Eisenbud–Reeves–Totaro’s lower bound.
We set δ(inω(I)) = max{ai1 + · · · + ais | 1 ≤ i ≤ r}.

Eisenbud–Reeves–Totaro [7] proved that φ−1
d (I) has quadratic initial ideal

for d ≥ reg(I)/2 in the case where the coordinates y1, . . . , ys of S are generic.
Our lower bound s(a + 1)/2 seems large compared with reg(I)/2, but is easy
to compute. Eisenbud–Reeves–Totaro also gave a easily computable rough
lower bound (sδ(inω(I)) − s + 1)/2. Our lower bound is less than Eisenbud–
Reeves–Totaro’s rough lower bound if and only if a + 2 ≤ δ(inω(I)). Thus,
there exist a lot of examples in which our lower bound is less than Eisenbud–
Reeves–Totaro’s rough lower bound.

If the coefficient field K is finite, or we are interested in Gröbner bases
consisting of binomials, we can not deal with generic coordinates. Eisenbud–
Reeves–Totaro stated without a proof that φ−1

d (I) has quadratic initial ideal if
d ≥ s�δ(inω(I))/2� (with ≺ and coordinates y1, . . . , ys chosen so that δ(in≺(I))
is minimal, see [7] comments after Theorem 11). If δ(in≺(I)) is odd, our lower
bound is always not greater than Eisenbud–Reeves–Totaro’s lower bound
s�δ(in≺(I))/2�. If δ(in≺(I)) is even, our lower bound is greater than
Eisenbud–Reeves–Totaro’s lower bound only in the case where the inequality
a ≥ δ(inω(I)) holds. This inequality holds if and only if there exist 1 ≤ i ≤ r,
1 ≤ j ≤ s and N ∈ N such that ya(i)

= yN
j and degya(k) ≤ N for all 1 ≤ k ≤ r

which does not occur very often.

Applying Theorem 3.14 to toric ideals, we obtain the next theorem.

Theorem 3.16. With the notation as in the introduction, PA(d) admits a
quadratic Gröbner basis for sufficiently large d.

Remark 3.17. It is easy to show that if I admits a squarefree initial
ideal, then φ−1

d (I) also admits a squarefree initial ideal using Lemma 3.10
and Lemma 3.13 (the lexicographic order in [6] gives squarefree initial ideal
of Kerφd, and if I is a squarefree monomial ideal then so is L≺(I) in Defini-
tion 3.9 for any term order ≺). However, in≺Γ(Kerφd) is not squarefree, and
it seems to be an open question whether φ−1

d (I) admits a quadratic squarefree
initial ideal if I has a squarefree initial ideal.
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