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HOMOGENEOUS PARACONTACT METRIC
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Dedicated to Professor Domenico Perrone in the occasion of his sixtieth
birthday

Abstract. The complete classification of three-dimensional ho-
mogeneous paracontact metric manifolds is obtained. In the sym-
metric case, such a manifold is either flat or of constant sec-
tional curvature −1. In the non-symmetric case, it is a Lie group
equipped with a left-invariant paracontact metric structure.

1. Introduction

An almost paracontact structure on a (2n+1)-dimensional smooth manifold
M is a triplet (ϕ, ξ, η), where ϕ is a (1,1)-tensor, ξ a global vector field and
η a 1-form, such that

(i) ϕ(ξ) = 0, η ◦ ϕ = 0,
(1.1)

(ii) η(ξ) = 1, ϕ2 = Id − η ⊗ ξ

and the restriction J of ϕ on the horizontal distribution Kerη is an almost
paracomplex structure (that is, the eigensubbundles T+, T − corresponding to
the eigenvalues 1, −1 of J have equal dimension n). A pseudo-Riemannian
metric g on M is said to be compatible with the almost paracontact structure
(ϕ, ξ, η) if and only if

(1.2) g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ).

Remark that, by (1.1) and (1.2), η(X) = g(ξ,X) for any compatible metric.
Any almost paracontact structure admits a compatible metric. Moreover,
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compatible metrics necessarily have signature (n + 1, n) [14]. If

(1.3) g(X,ϕY ) = (dη)(X,Y ),

then the manifold (M,η, g) (or (M,ϕ, ξ, η, g)) is called a paracontact metric
manifold and g the associated metric.

Almost paracontact structures were introduced in [11]. Since then, para-
contact and almost paracontact metric manifolds have been studied by sev-
eral authors, even if most of the results focused on the very special case of
paraSasakian manifolds. A remarkable exception is given by [10], where har-
monicity of “natural” maps between almost contact and paracontact metric
manifolds is discussed in a unified way. Another is the recent paper [14], where
a systemathic study of paracontact metric manifolds was undertaken, intro-
ducing all the technical apparatus which is needed for further investigations.

The aim of this paper is to obtain the complete classification of homoge-
neous paracontact metric manifolds in dimension three. This will also provide
some interesting explicit examples of paracontact metric manifolds which in
general are not paraSasakian. Similarly to the contact case, a paracontact
manifold (M,η) is said to be homogeneous if there exists a connected Lie
group G of diffeomorphisms acting transitively on M and leaving η invariant.
If g satisfies (1.3) and G is a group of isometries, then (M,η, g) is said to be
a homogeneous paracontact metric manifold.

In dimension three, a metric g compatible with a paracontact structure
(ϕ, ξ, η) has signature (2,1), that is, g is Lorentzian. The author proved in [3]
that a simply connected complete homogeneous Lorentzian three-manifold
is either symmetric or locally isometric to a three-dimensional Lie group
equipped with a left-invariant Lorentzian metric.

We shall prove that a symmetric paracontact metric three-space is either
flat or of constant sectional curvature −1. This result is the paracontact
analogue of the contact result proved in [2], and completes the classification
of paracontact manifolds of constant sectional curvature, which in dimension
2n + 1 ≥ 5 was given in [14]. The classification of homogeneous paracontact
metric three-manifolds is resumed in the following.

Theorem 1.1. A simply connected complete homogeneous paracontact met-
ric three-manifold is isometric to a Lie group G equipped with a left-invariant
paracontact metric structure (ϕ, ξ, η, g). More precisely, one of the following
cases occurs:

(i) If G is unimodular, then there exists a pseudo-orthonormal frame field
{e1, e2, e3}, with e3 time-like, such that the Lie algebra of G is one of the
following:
(1) [e1, e2] = γe2 − βe3, [e1, e3] = −βe2 + γe3, [e2, e3] = 2e1, with γ �= 0.

Then, G is either the identity component of O(1,2) or S̃L(2,R).
(2) [e1, e2] = −γe3, [e1, e3] = −βe2, [e2, e3] = 2e1.
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In this case, G is

(2a) the identity component of O(1,2) or S̃L(2,R) if β,γ > 0 or β,γ < 0;
(2b) Ẽ(2) if β > 0 = γ or β = 0 > γ;
(2c) E(1,1) if β < 0 = γ or β = 0 < γ;
(2d) either SO(3) or SU(2) if β > 0 and γ < 0;
(2e) the Heisenberg group H3 if β = γ = 0.

(3) [e1, e2] = −e2 + (2ε − β)e3, [e1, e3] = −βe2 + e3, [e2, e3] = 2e1, with ε = ±1.

In this case, G is

(3a) the identity component of O(1,2) or S̃L(2,R) if β �= ε;
(3b) Ẽ(2) if β = ε = 1;
(3c) E(1,1) if β = ε = −1.

(ii) if G is non-unimodular, then there exists a pseudo-orthonormal frame
field {e1, e2, e3}, with e3 time-like, such that the Lie algebra of G is one of the
following:

(4) [e1, e2] = [e1, e3] = 0, [e2, e3] = 2e1 + δe2, with δ �= 0.

(5) [e1, e2] = −[e1, e3] = −β(e2 + e3), [e2, e3] = 2e1 + δ(e2 + e3), with δ �= 0.

Paracontact three-manifolds of constant sectional curvature equal to either
0 or −1 are included in the classification given in Theorem 1.1 above. In
particular, in case (2a) with α = β = γ = 2, unimodular Lie groups O(1,2)
or S̃L(2,R) have constant sectional curvature −1, while in case (2b) with
α = β = 2, unimodular Lie group Ẽ(2) is flat ([3], [4]).

Theorem 1.1 is the paracontact counterpart of the classification of homo-
geneous contact Riemannian three-manifolds obtained in [12]. Comparing
Theorem 1.1 with Theorem 3.1 of [12], one can see how Lorentzian settings
and paracontact structures allow more cases than their Riemannian and con-
tact analogues.

The paper is organized in the following way. In Section 2, we will report
and prove some basic facts about paracontact metric manifolds and homoge-
neous Lorentzian manifolds. The classification of three-dimensional symmet-
ric paracontact metric spaces will be given in Section 3. In Section 4, we shall
prove Theorem 1.1, classifying left-invariant paracontact metric structures on
three-dimensional Lorentzian Lie groups.

2. Preliminaries

Let (M,η, g) be a paracontact metric manifold. By ∇ and R, we shall
denote the Levi–Civita connection and the curvature tensor of M , respectively,
the latter taken with the sign convention R(X,Y ) = ∇[X,Y ] − [∇X , ∇Y ] (note
that this convention is opposite to the one used in [14]). Taking into account
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(1.1) and (1.3), tensors

(2.1) h =
1
2

Lξϕ, 
 = R(ξ, ·)ξ,

L being the Lie derivative, are defined on (M,η, g) and play an important
role in describing its geometry. In particular, as proved in [14], h is self-
adjoint, hϕ = −ϕh and hξ = trh = 0. Moreover, the covariant derivative and
the curvature satisfy the following properties:

∇ξξ = 0, ∇ξϕ = 0,(2.2)
∇ξX = −ϕX + ϕhX,(2.3)

(∇ξh)X = −ϕX + h2ϕX − ϕ
X,(2.4)


X + ϕ
ϕX = 2h2X − 2ϕ2X.(2.5)

We recall the following definition.

Definition 2.1. A paracontact metric manifold (M,η, g) is said to be
(i) paraSasakian if it is normal, that is, equivalently,

(2.6) (∇Xϕ)Y = −g(X,Y )ξ + η(Y )X.

(ii) K-paracontact if h = 0, that is, equivalently, ξ is a Killing vector field.

We explicitly remark that, contrary to the contact Riemannian case, |h|2 =
0 is a necessary but not sufficient condition in order to have a K-paracontact
manifold, since in pseudo-Riemannian settings it holds whenever hX is light-
like for any tangent vector X . Moreover, every paraSasakian manifold is
K-paracontact (Theorem 2.8 of [14]). Even if the the converse does not hold
in general, we can prove the following.

Theorem 2.2. A three-dimensional K-paracontact metric manifold (M,
η, g) is paraSasakian.

Proof. Up to some changes of sign, the argument is very similar to the one
used in the contact Riemannian case (see, for example, Chapter 6 of [1]). For
this reason, the details will be omitted. For any three-dimensional paracontact
metric manifold (M,η, g), one can prove that

(2.7) (∇Xϕ)Y = −g(X − hX,Y )ξ + η(Y )(X − hX).

In particular, if (M,η, g) is K-paracontact, then h = 0 and (2.7) becomes
(2.6). Hence, (M,η, g) is paraSasakian. �

We also recall that any (almost) paracontact metric manifold (M2n+1, η, g)
admits a special kind of local pseudo-orthonormal basis, called a ϕ-basis [14].
Such a basis is of the form {ξ,E1, . . . ,En, ϕE1, . . . , ϕEn}, where ξ,E1, . . . ,En

are space-like vector fields and so, by (1.2), vector fields ϕE1, . . . , ϕEn are
time-like.
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We now turn our attention to homogeneous paracontact metric mani-
folds, seeking some restrictions, due to homogeneity, on the characteristic
vector field ξ. For this reason, we report here the definitions of homogeneous
geodesics and geodesic vectors in a homogeneous space.

Let (M = K/H,g) be a pseudo-Riemannian reductive homogeneous man-
ifold, k = m ⊕ h the corresponding reductive split of the Lie algebra of K.
A geodesic Γ through the origin o ∈ M = K/H is called homogeneous if it is
the orbit of a one-parameter subgroup. The following characterization holds.

Proposition 2.3 ([9]). A geodesic Γ(t) of M = K/H , with Γ(0) = o and
Γ′(0) = Xm ∈ m (≡ To(K/H)), is homogeneous if and only if there exists Xh ∈
h such that X = Xm + Xh ∈ k satisfies

(2.8)
〈
[X,Y ]m,Xm

〉
= k〈Xm, Y 〉

for all Y ∈ m and some k ∈ R depending on Xm.

A vector X ∈ k satisfying (2.8) is called a geodesic vector. When Xm is
either space-like or time-like, applying (2.8) we get at once k = 0, while for a
light-like vector Xm, k may be any real constant. We are now ready to prove
the following theorem.

Theorem 2.4. If (M = K/H,η, g) is a reductive homogeneous paracontact
metric manifold, then ξ ∈ m is a geodesic vector.

Proof. The characteristic vector field ξ belongs to m, because K leaves
both η and g invariant. For the same reason, Kerη ⊂ m. So, we can fix a
basis {ξ, e1, . . . , e2n} of m with {e1, . . . , e2n} spanning Kerη and it suffices to
check (2.8) for these vectors. For any i = 1, . . . ,2n, taking into account (1.1)
and (1.3), we have〈

[ξ, ei]m, ξ
〉

= η[ξ, ei] = −2(dη)(ξ, ei) = −2g(ξ,ϕei) = 0

and so, ξ is a geodesic vector field. �

We now consider the special case of a paracontact Lie group. If G is a Lie
group, equipped with a homogeneous paracontact metric structure (ϕ, ξ, η, g),
the same argument illustrated in [12] for the contact case shows that this
structure is invariant under left translations. Hence, denoting by g the Lie
algebra of G, we have ξ ∈ g, η is a 1-form over g, Kerη ⊂ g. Moreover, starting
from a ϕ-basis of tangent vectors at e ∈ G, we use left translations to build a
ϕ-basis {ξ,E1, . . . ,En, ϕE1, . . . , ϕEn} of the Lie algebra g. We now prove the
following theorem.

Theorem 2.5. If (ϕ, ξ, η, g) is a left-invariant paracontact metric structure
on a pseudo-Rieman-nian Lie group G, then tradξ = 0, that is, ξ belongs to
the unimodular kernel u of g.
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Proof. With respect to a ϕ-basis {ξ,E1, . . . ,En, ϕE1, . . . , ϕEn} of g, taking
into account (1.1) and (1.3), we get

tradξ =
∑

i

〈
[ξ,Ei],Ei

〉
−

∑
i

〈
[ξ,ϕEi], ϕEi

〉
= −

∑
i

〈∇Eiξ,Ei〉 +
∑

i

〈∇ϕEiξ,ϕEi〉

=
∑

i

〈ϕEi − ϕhEi,Ei〉 −
∑

i

〈
ϕ2Ei − ϕhϕEi, ϕEi

〉
= −

∑
i

〈ϕhEi,Ei〉 −
∑

i

〈
ϕ2hEi, ϕEi

〉
= −

∑
i

〈ϕhEi,Ei〉 +
∑

i

〈ϕhEi,Ei〉 = 0.
�

Remark 2.6. Arguments similar to the ones we used to prove Theorems 2.4
and 2.5 also apply to the contact Riemannian case. Thus,

(i) the characteristic vector field of a homogeneous contact Riemannian man-
ifold is a geodesic vector;

(ii) the characteristic vector field of a left-invariant contact metric structure
on a Riemannian Lie group belongs to its unimodular kernel.

Property (ii) was proved in [12] in dimension three. Apart from this, up to
our knowledge, these basic properties were not pointed out in so far.

We end this section reporting the classification of homogeneous Lorentzian
three-manifolds.

Theorem 2.7 ([3]). A three-dimensional simply connected complete ho-
mogeneous Lorentzian manifold (M,g) is either symmetric, or M = G is a
three-dimensional Lie group and g is left-invariant. Precisely, one of the fol-
lowing cases occurs:

• If G is unimodular, then there exists a pseudo-orthonormal frame field
{e1, e2, e3}, with e3 time-like, such that the Lie algebra of G is one of the
following:

(a)

[e1, e2] = αe1 − βe3,

(g1) : [e1, e3] = −αe1 − βe2,(2.9)
[e2, e3] = βe1 + αe2 + αe3, α �= 0.

If β �= 0, G is the identity component of the pseudo-orthogonal group O(1,2)
or the universal covering of the special linear group S̃L(2,R), while if β = 0,
G = E(1,1) is the group of rigid motions of the Minkowski two-space.
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(b)

[e1, e2] = γe2 − βe3,

(g2) : [e1, e3] = −βe2 + γe3, γ �= 0,(2.10)

[e2, e3] = αe1.

In this case, G = O(1,2) or S̃L(2,R) if α �= 0, while G = E(1,1) if α = 0.
(c)

[e1, e2] = −γe3,

(g3) : [e1, e3] = −βe2,(2.11)

[e2, e3] = αe1.

The following Table 1 (where Ẽ(2) and H3, respectively denote the universal
covering of the group of rigid motions in the Euclidean two-space and the
Heisenberg group) lists all the Lie groups G which admit a Lie algebra g3,
according to the different possibilities for α, β and γ.

(d)

[e1, e2] = −e2 + (2ε − β)e3, ε = ±1,

(g4) : [e1, e3] = −βe2 + e3,(2.12)

[e2, e3] = αe1.

Table 2 describes all Lie groups G admitting a Lie algebra g4.

• If G is non-unimodular, then there exists a pseudo-orthonormal frame field
{e1, e2, e3}, with e3 time-like, such that the Lie algebra of G is one of the

Table 1. Lie groups with a Lie algebra g3

G α β γ

O(1,2) or S̃L(2,R) + + +
O(1,2) or S̃L(2,R) + − −
SO(3) or SU(2) + + −
Ẽ(2) + + 0
Ẽ(2) + 0 −
E(1,1) + − 0
E(1,1) + 0 +
H3 + 0 0
H3 0 0 −
R ⊕ R ⊕ R 0 0 0
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Table 2. Lie groups with a Lie algebra g4

G (ε = 1) α β

O(1,2) or S̃L(2,R) �= 0 �= 1
E(1,1) 0 �= 1
E(1,1) < 0 1
Ẽ(2) > 0 1
H3 0 1

G (ε = −1) α β

O(1,2) or S̃L(2,R) �= 0 �= −1
E(1,1) 0 �= −1
E(1,1) > 0 −1
Ẽ(2) < 0 −1
H3 0 −1

following:

(e)

[e1, e2] = 0,

(g5) : [e1, e3] = αe1 + βe2,(2.13)
[e2, e3] = γe1 + δe2, α + δ �= 0, αγ + βδ = 0.

(f)

[e1, e2] = αe2 + βe3,

(g6) : [e1, e3] = γe2 + δe3,(2.14)
[e2, e3] = 0, α + δ �= 0, αγ − βδ = 0.

(g)

[e1, e2] = −αe1 − βe2 − βe3,

(g7) : [e1, e3] = αe1 + βe2 + βe3,(2.15)
[e2, e3] = γe1 + δe2 + δe3, α + δ �= 0, αγ = 0.

3. Three-dimensional paracontact symmetric spaces

We first recall the classification of Lorentzian symmetric three-spaces.

Theorem 3.1 ([4]). A three-dimensional Lorentzian locally symmetric
space is locally isometric to either

(i) a Lorentzian space form S
3
1, R

3
1 or H

3
1;

(ii) a direct product R × S
2
1, R × H

2
1, S

2 × R or H
2 × R; or

(iii) a symmetric space admitting a parallel null (that is, light-like) vector
field.

In order to classify locally symmetric paracontact metric three-manifolds,
we start with the following.

Lemma 3.2. If a paracontact metric manifold is locally symmetric, then
∇ξh = 0.
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Lemma 3.2 easily follows from (2.3) and (2.5) and can be proved exactly
as its contact Riemannian analogue obtained in [2].

Note that for any paracontact metric manifold (M,η, g) with ∇ξh = 0, by
(2.4) and (1.1) it follows at once

(3.1) R(ξ,X)ξ = −X + η(X)ξ + h2X

for any tangent vector X . If M is three-dimensional, consider a pseudo-
orthonormal basis {E1,E2} of Kerη, with E2 time-like. Using (1.1) and (1.3)
we can easily conclude that {E1, ϕE1 = ±E2} is a ϕ-basis. Being self-adjoint,
the restriction of h to Kerη with respect to {E1,E2} has the general form

hE1 = a11E1 − a12E2, hE2 = a12E1 − a11E2

for some smooth functions a11, a12. Hence,

(3.2) h2 =
(
a2
11 − a2

12

)
I2

and so, h2 is diagonalizable even if, contrary to the contact Riemannian case,
h itself may be not diagonalizable. In particular, using (3.2) into (3.1), we
also have

(3.3) g
(
R(ξ,E1)ξ,E2

)
= g

(
R(ξ,E2)ξ,E1

)
= 0.

We now prove that Lorentzian locally symmetric three-spaces corresponding
to cases (ii), (iii) of Theorem 3.1 do not admit a paracontact metric structure,
unless they are flat. We start with the reducible case.

Proposition 3.3. If a reducible Lorentzian locally symmetric three-space
(M,g) admits a paracontact metric structure, then (M,g) is flat.

Proof. By Theorem 3.1, (M,g) is locally isometric to the Lorentzian prod-
uct of a real line with a surface of constant curvature k. Suppose such a space
admits a paracontact metric structure (ϕ, ξ, η) associated to its symmetric
Lorentzian metric g. We treat the different cases separately.

(a) Products R1 × M2(k). Since ξ is space-like, it cannot be tangent to the
unidimensional factor. We denote by e3 = ∂

∂t the local unit vector field tangent
to R1, by e1 the unit vector field in the direction of the projection of ξ on M2

and by e2 a local unit vector field tangent to M2 and orthogonal to e1. Then,
we have ξ = ae1 + ce3, with a2 − c2 = 1. Moreover, Kerη = Span{E1,E2},
where we put E1 = e2,E2 = ce1 + ae3. Since the manifold is reducible, we
have at once

R(ξ,E1)ξ = ka2E1, R(ξ,E2)ξ = 0.

Equation (3.1) then yields h2E1 = (1 + ka2)E1 and h2E2 = E2 and so (3.2)
implies ka2 = 0. If k �= 0, then a = 0 and −c2 = 1, which cannot occur. Hence,
k = 0 and the manifold is flat.
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(b) Products R × M2
1 (k). The characteristic vector field ξ cannot be every-

where tangent to the unimodular factor. In fact, in this case a local pseudo-
orthonormal basis {e2, e3 = ϕe2} of M2

1 spans Kerη and so, the paracontact
condition (1.3) gives

1 = g(e2, e2) = (dη)(e2, ϕe2) = − 1
2
η[e2, e3] = 0,

which cannot occur. Denote by e1 = ∂
∂t the local unit vector field tangent to R

and by w the the projection of ξ on M2. If w is either space-like or time-like,
we can proceed exactly as in the previous case to conclude that k = 0 and the
manifold is flat.

Thus, we are left with the case where the projection of ξ on M2
1 is a light-

like vector field, that is (locally) ξ = e1 + w, with w �= 0 and |w|2 = 0.
Choose a local pseudo-orthonormal basis {e2, e3} of vector fields tangent

to M2
1 with e3 time-like, so that w = b(e2 + e3). It is easy to check that Kerη

is (locally) spanned by the pseudo-orthonormal frame field {E1,E2}, where
we put

E1 =
1√
2

(
−e1 +

b2 + 1
2b

e2 +
b2 − 1

2b
e3

)
,

E2 =
1√
2

(
e1 +

3b2 − 1
2b

e2 +
3b2 + 1

2b
e3

)
.

The reducibility of the manifold easily implies

R(ξ,E1)ξ = − kb√
2
(e2 + e3) = − k

2
(E1 + E2)

and applying (3.3), we then have 0 = g(R(ξ,E1)ξ,E2) = k
2 . Thus, the manifold

is flat. �

With regard to Lorentzian three-spaces admitting a parallel null vector
field, we prove the following more general result.

Theorem 3.4. If a Lorentzian three-manifold (M,g) with a parallel null
vector field admits a paracontact metric structure (ϕ, ξ, η, g) satisfying ∇ξh = 0
(in particular, a locally symmetric paracontact metric structure), then (M,g)
is flat.

Proof. A Lorentzian three-manifold (M,g) with a parallel null vector field
w admits a system of canonical local coordinates (t, x, y), adapted to a parallel
plane field in such a way that w = ∂

∂t and there exists a smooth function
f = f(x, y), such that

(3.4) g =

⎛
⎝0 0 1

0 ε 0
1 0 f

⎞
⎠ ,
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where ε = ±1. From now on, we shall take ε = 1, so that the Lorentzian metric
g has signature (+,+, −). A general description of these manifolds was given
in [7]. Denote by U the open subset of R

3 where local coordinates (t, x, y)
are defined. As shown in [7], on U the Levi–Civita connection ∇ of (M,g) is
completely determined by

(3.5) ∇∂x∂y =
1
2
fx∂t, ∇∂y∂y =

1
2
fy∂t − 1

2
fx∂x,

where we put ∂t = ∂
∂t , ∂x = ∂

∂x and ∂y = ∂
∂y . Next, the only non-vanishing

local components of the curvature tensor are

(3.6) R(∂x, ∂y)∂x = − 1
2
fxx∂t, R(∂x, ∂y)∂y =

1
2
fxx∂x.

We now put V1 = {p ∈ U : f(p) > 0}, V2 = {p ∈ U : f(p) < 0} and V3 = {p ∈
U : f = 0 in a neighbourhood of p}. Then, V1 ∪ V2 ∪ V3 is a dense open subset
of U . If we prove that the curvature vanishes at each point of Vi, i = 1,2,3, by
a continuity argument we can conclude that U is flat and hence, so is (M,g).

If p ∈ V3, then fxx(p) = 0 and (3.6) yields at once that the curvature van-
ishes at p.

Next, as f > 0 on V1, using (3.4) (with ε = 1), a direct calculation gives
that vector fields

(3.7) e1 =
1√
f

∂y, e2 = ∂x, e3 =
√

f∂t − 1√
f

∂y

form a pseudo-orthonormal frame field on V1, with e3 time-like.
Let now (ϕ, ξ, η, g) be a paracontact metric structure of M satisfying ∇ξh =

0, where g is the metric (3.4). With respect to {ei} described in (3.7), the
characteristic vector field is (locally) given by ξ = ae1 + be2 + ce3, for some
smooth functions a, b, c such that a2 + b2 − c2 = 1, and Kerη = Span{E1,E2},
with E2 time-like, where we put

E1 = − b√
a2 + b2

e1 +
a√

a2 + b2
e2,

E2 =
ac√

a2 + b2
e1 +

bc√
a2 + b2

e2 +
√

a2 + b2e3.

Using (3.6) and (3.7), a standard calculation now gives

R(ξ,E1)ξ =
fxx

2f
· a2 + b2 − ac√

a2 + b2

{
be1 + (c − a)e2 + be3

}
,

(3.8)
R(ξ,E2)ξ =

fxx

2f
· b√

a2 + b2

{
be1 + (c − a)e2 + be3

}
.

Applying (3.3) to (3.8), we then find

fxx

2f
· b

(
a2 + b2 − ac

)
= 0.
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We now prove that fxx = 0 on V1 (and so, V1 is flat by (3.6)). In fact, if
fxx �= 0 at some point p ∈ V1, equation above necessarily yields either b = 0 or
a2 +b2 − ac = 0 at p and we show that both conditions lead to a contradiction.

Suppose first that b(p) = 0. Then, using (3.8) into (3.1), we easily find(
h2E1

)
p

=
(

1 − fxx

2f
· a(c − a)2

)
E1p,

(
h2E2

)
p

= E2p,

which, by (3.2), implies at once fxx · a(c − a)2 = 0 at p. As fxx(p) �= 0, either
a(p) = 0 or a(p) = c(p). Correspondingly, either ξp = c(p)e3p is a time-like
vector or ξp = a(p)(e1 + e3)p is light-like, which cannot occur.

In the same way, if a2 + b2 − ac = 0 at p, then(
h2E1

)
p

= E1p,
(
h2E2

)
p

=
(

1 − fxx

2|f | · b2

√
a2 + b2

)
E2p.

Thus, (3.2) gives again b(p) = 0, contradicting the fact that ξp is space-like.
A similar argument leads to conclude that V2 is flat. In fact, as f < 0 on

V2, by (3.4) we find that vector fields

(3.9) e′
1 =

√
|f |∂t +

1√
|f |

∂y, e′
2 = ∂x, e′

3 =
1√

|f |
∂y

form a pseudo-orthonormal frame field on V2, with e3 time-like. Denoted
by (ϕ, ξ, η, g) a paracontact metric structure of M satisfying ∇ξh = 0, on
V2 we have ξ = ae′

1 + be′
2 + ce′

3, for some smooth functions a, b, c such that
a2 + b2 − c2 = 1, and Kerη = Span{E′

1,E
′
2}, with E′

2 time-like, where

E′
1 = − b√

a2 + b2
e′
1 +

a√
a2 + b2

e′
2,

E′
2 =

ac√
a2 + b2

e′
1 +

bc√
a2 + b2

e′
2 +

√
a2 + b2e′

3.

By (3.6) and (3.9) we now obtain

R
(
ξ,E′

1

)
ξ =

fxx

2|f | · a2 + b2 + ac√
a2 + b2

{
be′

1 − (a + c)e′
2 − be′

3

}
,

(3.10)
R

(
ξ,E′

2

)
ξ = − fxx

2|f | · b√
a2 + b2

{
be′

1 − (a + c)e′
2 − be′

3

}
and (3.3) yields

fxx

2|f | · b
(
a2 + b2 + ac

)
= 0.

Making use of (3.1) and (3.10) and proceeding as in the case of V1, we conclude
that if fxx �= 0 at some point p ∈ V2, then ξp is not space-like. As this cannot
occur, fxx = 0 on V2, that is, V2 is flat by (3.6) and this ends the proof. �

We now complete the description of locally symmetric paracontact metric
three-manifolds, proving the main result of this section.
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Theorem 3.5. A three-dimensional locally symmetric paracontact metric
manifold (M,η, g) is either flat or of constant sectional curvature −1.

Proof. Theorem 3.1, together with Proposition 3.3 and Theorem 3.4, imply
that (M,g) has necessarily constant sectional curvature k.

Since (M,g) is symmetric, ∇ξh = 0 by Lemma 3.2 and so, (3.1) holds.
Consider now a local ϕ-basis {e,ϕe} of Kerη, with ϕe time-like. We already
remarked that in general we have he = ae − bϕe,hϕe = be − aϕe and h2 =
(a2 − b2)I2. By (3.1), it now follows k = a2 − b2 − 1.

Using (2.3), we easily obtain η(∇eϕe) = a − 1 and η(∇ϕee) = a+1. There-
fore,

∇eϕe = (a − 1)ξ + βe, ∇ϕee = (a + 1)ξ + αϕe,

which also easily imply

∇ee = bξ + βϕe, ∇ϕeϕe = bξ + αe

for some smooth functions α,β. We can now calculate R(e,ϕe)e = kϕe =
(a2 − b2 − 1)ϕe using formulae above and we find(

a2 − b2 − 1
)
ϕe(3.11)

= −(a + 1)∇eξ − e(α)ϕe − α(a − 1)ξ + b∇ϕeξ + ϕe(β)ϕe + bβξ

− 2∇ξe + β(bξ + βϕe) − α
(
(a + 1)ξ + αϕe

)
.

Applying η to both sides of (3.11), we then get 2(bβ − aα) = 0. By the same
argument, calculating R(e,ϕe)ϕe, we obtain(

a2 − b2 − 1
)
e(3.12)

= −b∇eξ − e(α)e − bαξ + (a − 1)∇ϕeξ + ϕe(β)e + β(a + 1)ξ

− 2∇ξϕe + β
(
(a − 1)ξ + βe

)
− α(bξ + αe),

from which, applying η to both sides, we find 2(aβ − bα) = 0. Thus, bβ − aα =
aβ − bα = 0 and we have to consider two different cases. First, if a2 − b2 = 0,
then k = −1 and the conclusion follows. On the other hand, if a2 − b2 �= 0,
then α = β = 0 and equations (3.11), (3.12) easily yield

∇ξe = −
(
a2 − b2 − 1

)
ϕe, ∇ξϕe = −

(
a2 − b2 − 1

)
e.(3.13)

Taking into account (2.3), we also have [ξ, e] = be+(2 − a2 − b2 − a)ϕe. Using
this formula and (3.13) to calculate (a2 − b2 − 1)e = R(ξ, e)ξ, a straightforward
calculation gives

2
(
a2 − b2 − 1

)
{ae − bϕe} = 0.

Since a = b = 0 contradicts a2 − b2 �= 0, we necessarily have k = a2 − b2 − 1 = 0.
Therefore, (M,η, g) is flat and this ends the proof. �

Remark 3.6. If (M,η, g) is a three-dimensional paracontact metric man-
ifold of constant sectional curvature k = −1, then (3.1) gives h2 = 0, which
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in general does not ensure h = 0. We shall prove that h = 0 for the paracon-
tact metric structure on H

3
1(−1) in the next section, realizing H

3
1(−1) as a

Lorentzian Lie group.
As proved in [14], in dimension 2n+1 ≥ 5, if a paracontact metric manifold

has constant curvature k, then k = −1 and |h|2 = 0. Theorem 3.5 above com-
pletes the classification of paracontact metric manifolds of constant sectional
curvature.

4. Three-dimensional paracontact Lie groups

We now decide, for any admissible form of the Lie algebra of a three-
dimensional Lorentzian Lie group, whether there exists a compatible left-
invariant almost paracontact metric structure. We treat the unimodular and
non-unimodular cases separately.

Unimodular cases. Let (ϕ, ξ, η) be a left-invariant almost paracontact met-
ric structure on a unimodular Lorentzian Lie group (G,g). Then, Theorem 2.5
does not give restrictions on the characteristic vector field ξ.

In connection with Theorem 1.1, every three-dimensional simply connected
complete homogeneous Lorentzian manifold admits a homogeneous Lorentzian
structure and so, is reductive (see [3]). By Theorem 2.4, the characteristic
vector field ξ is a space-like unit geodesic vector. Geodesic vector fields on
unimodular Lorentzian Lie groups were classified in [5]. Therefore, from ([5],
Section 4) we can deduce the list of possible characteristic vector fields for the
different unimodular Lie algebras. The result is resumed in the Table 3, were
Lie algebras g1 − g4 are described by equations (2.9)–(2.15), respectively.

We now check, case by case, whether vector fields above give rise to a
left-invariant paracontact metric structure.

(g2): Let (G,g) be a Lorentzian Lie group having a unimodular Lie algebra
g2, and suppose that (ϕ, ξ, η) is a left-invariant paracontact metric structure
on G, having g as associated metric. By Table 3, ξ = ±e1. It suffices to
consider the case when ξ = e1, since for ξ = −e1 we only have to replace η by
−η and we obtain isometric structures.

Table 3. Geodesic vector fields of 3D Lorentzian Lie algebras

Lie algebra ξ as a geodesic vector
g1 none
g2 ±e1

g3 with α �= γ �= β �= α ±e1, ±e2

g3 with α = β, α = γ or β = γ all space-like unit vector fields
g4 with α �= β − ε ±e1

g4 with α = β − ε all space-like unit vector fields
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Since Kerη is orthogonal to ξ, the paracontact distribution is spanned by
{e2, e3}. Being pseudo-orthonormal, {ξ, e2, e3} form a ϕ-basis. We use (2.10)
to express the paracontact metric condition (1.3) for vector fields ξ = e1, e =
e2, ϕe = e3 and we have

0 = g(ξ, e) = − 1
2
η
(
[ξ,ϕe]

)
, 0 = g(ξ,ϕe) = − 1

2
η
(
[ξ, e]

)
,

1 = g(e, e) = − 1
2
η
(
[e,ϕe]

)
= ∓ 1

2
α.

Hence, α = ±2 is a necessary and sufficient condition for the Lorentzian metric
g of G to be associated to the paracontact metric structure (ϕ, ξ, η). As in
[12], we can restrict to the case when α > 0, since for α < 0 it suffices to
replace e2 by −e2 in (2.10). Thus, α = 2 and {ξ = e1, e = e2, ϕe = −e3}. By
Theorem 2.7, G is either O(1,2) or S̃L(2,R). This proves the case (1) in
Theorem 1.1.

To complete this case, we shall now describe explicitly the left-invariant
paracontact metric structure on a three-dimensional Lorentzian Lie group
endowed with a Lie algebra g2. As we proved, this left-invariant paracontact
metric structure, unique up to isometries, is determined by the characteristic
vector field ξ = e1, the 1-form η = θ1 dual to e1 with respect to the left-
invariant Lorentzian metric g and the (1,1)-tensor ϕ such that ϕe2 = −e3.
With respect to the ϕ-basis {ξ, e,ϕe}, the Lie algebra is described by

[ξ, e] = γe + βϕe, [ξ,ϕe] = βe + γϕe, [e,ϕe] = −2ξ.

Using Lie brackets above to calculate h = 1
2 Lξϕ, a straightforward calculation

gives h = 0.
(g3) with α �= β �= γ �= α: If (G,g) is a Lorentzian Lie group with unimod-

ular Lie algebra g3 and (ϕ, ξ, η) is a corresponding left-invariant paracontact
metric structure on G, then either ξ = ±e1 or ξ = ±e2 by Table 3. The role
of e1 and e2 in (2.11) is perfectly interchanging and different signs for ξ give
isometric structures. So, it suffices to describe the case when ξ = e1. As in
the previous case, Kerη is spanned by {e2, e3} and {ξ, e = e2, ϕe = ±e3} is a
ϕ-basis. Expressing (1.3) by means of (2.11), we get

0 = g(ξ, e) = − 1
2
η
(
[ξ,ϕe]

)
, 0 = g(ξ,ϕe) = −η

(
1
2
[ξ, e]

)
= 0,

1 = g(e, e) = − 1
2
η
(
[e,ϕe]

)
= ∓ 1

2
α.

As before, it suffices to consider the case when α > 0 (note that this simplifi-
cation was already used for Table 1 in [13] and [3]) and we have α = 2 and a
ϕ-basis of the form {ξ = e1, e = e2, ϕe = −e3}.

(g3) with α = β: When at least two among α,β, γ coincide, a Lorentzian
Lie group (G,g) with unimodular Lie algebra g3 is naturally reductive [6]. In
particular, all vectors in g3 are geodesic.
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Suppose now that (ϕ, ξ, η) is a corresponding left-invariant paracontact
metric structure on G. Then, ξ = ae1 + be2 + ce3 may be any space-like unit
vector in the Lie algebra. However, since α = β and both e1, e2 are space-like,
we can replace {e1, e2} by {ẽ1 = 1√

a2+b2
(ae1 + be2), ẽ2 = 1√

a2+b2
(be1 − ae2)}.

The Lie algebra maintains the same form (2.11) with respect to the new basis
{ẽ1, ẽ2, e3} (for some new constants α̃ = β̃), but now ξ is a linear combination
of ẽ1, e3 only. Thus, without loss of generality, we can write ξ = ae1 + ce3,
with a2 − c2 = 1.

Put E1 = e2,E2 = ±(ce1 +ae3), so that {E1,E2} forms a pseudo-orthonor-
mal frame field of the paracontact distribution Kerη. Without loss of gen-
erality, we can assume ϕE1 = E2 = ce1 + ae3. By (2.11), we have [ξ,E1] =
−αce1 − γae3. So, applying (1.3), we get

0 = g(ξ,E2) = − 1
2
η
(
[ξ,E1]

)
= − 1

2
(
αcη(e1) + γaη(e3)

)
,

which, taking into account η(E2) = 0, gives ac(γ − α) = 0. Hence, either ac = 0
or α(= β) = γ. Note that a �= 0, since ξ is space-like. If c = 0, then ξ = (±)e1

and {ξ, e2, ±e3} is a ϕ-basis. Then, we have that (1.3) holds if and only if
α = β = 2, and putting e = e2 we get

he = (2 − γ)e, hϕe = −(2 − γ)ϕe.

Hence, h is diagonalizable. Unless α = β = γ = 2, h �= 0 and so, these para-
contact Lie groups are not paraSasakian.

If α = β = γ, then (G,g) has constant sectional curvature k = − α2

4 �= 0 [4].
Being G paracontact, Theorem 3.5 implies that k = −1 and so, α = β = γ =
(±)2 and G is isometric to H

3
1(−1). Calculating the Lie brackets of the ϕ-basis

{ξ, e = E1, ϕe = −E2} by (2.11), we now have

(4.1) [ξ, e] = 2ϕe, [ξ,ϕe] = 2e, [e,ϕe] = −2ξ,

from which it follows at once that (1.3) holds. Hence, (4.1) is the general form
of the unimodular Lie algebra (2.11) of a Lorentzian Lie group G of constant
sectional curvature −1, admitting a left-invariant paracontact metric struc-
ture. It easily follows from (4.1) that h = 0, that is, because of Theorem 2.2,
such a structure is paraSasakian.

(g3) with either α = γ or β = γ: clearly, it suffices to consider the case
when β = γ, since one can interchange space-like vectors e1 and e2 in (2.11).

Suppose that (ϕ, ξ, η) is a corresponding left-invariant paracontact metric
structure on such a Lorentzian Lie group (G,g). Being G naturally reductive
[6], ξ = ae1 + be2 + ce3 may be any space-like vector with a2 + b2 − c2 = 1.
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If b2 −c2 > 0, we replace e2, e3 by {ẽ2 = 1√
b2−c2 (be2+ce3), ẽ3 = 1√

b2−c2 (ce2+
be3)}. The Lie algebra maintains the same form (2.11) and ξ is a linear com-
bination of e1, ẽ2. Proceeding as in the previous case (and skipping the con-
stant sectional curvature case, which we already treated), we conclude that
ξ = (±)e1, {ξ, e2, ±e3} is a ϕ-basis and (1.3) is satisfied if and only if α = 2.

In the same way, if b2 − c2 < 0, we replace e2, e3 by {ẽ2 = 1√
c2−b2

(ce2 +
be3), ẽ3 = 1√

c2−b2
(be2 + ce3)} and ξ is a linear combination of e1, ẽ3 only. The

same argument shows that ξ = (±)e1, {ξ, e2, ±e3} is a ϕ-basis and (1.3) is
equivalent to requiring that α = 2.

Now, we are left with the case b2 − c2 = 0, that is, c = εb, with ε = ±1. If
b = c = 0, then ξ = (±)e1 and once again we conclude that α = 2 is a necessary
and sufficient condition for (1.3). On the other hand, if b �= 0, changing the
sign of e1, e3 if needed, we have ξ = e1 + b(e2 + e3) and an orthonormal basis
of Kerϕ is given by

E1 =
1√
2

(
−e1 +

b2 + 1
2b

e2 +
b2 − 1

2b
e3

)
,

E2 =
1√
2

(
e1 +

3b2 − 1
2b

e2 +
3b2 + 1

2b
e3

)
.

Hence, {ξ, e = E1, ϕe = ±E2} is a ϕ-basis of the Lie algebra. Using (2.11) and
the fact that b is a constant, we then have

[ξ, e] = − 1√
2

(
αe1 +

3b2 − 1
2b

γe2 +
3b2 + 1

2b
γe3

)

and condition (1.3) gives

0 = g(ξ,ϕe) = (dη)(ξ, e) = − 1
2
η
(
[ξ, e]

)
=

√
2(α − γ).

Thus, α = β = γ and G has constant sectional curvature − α2

4 . If α = 0,
then (1.3) yields a contradiction, since 1 = g(e, e) = − 1

2η[e,ϕe] = 0. By Theo-
rem 3.5, we then necessarily have − α2

4 = −1, that is, α = (±)2.
Summarizing, α = 2 is (up to isometries) a necessary and sufficient condi-

tion on the Lie algebra (2.11) to admit a corresponding left-invariant para-
contact metric structure. From Table 1 we then deduce all and the ones
Lorentzian Lie groups with Lie algebra (2.11) for which we can have α = 2.
They correspond to case (2) of Theorem 1.1.

As we proved, a unimodular Lie group having Lie algebra (2.11) with α = 2,
admits a left-invariant paracontact metric structure, unique up to isomor-
phism, which permits to express the Lie algebra in the form

[ξ, e] = γϕe, [ξ,ϕe] = βe, [e,ϕe] = −2ξ.
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Calculating h from Lie brackets above, we then obtain

hξ = 0, he = (β − γ)e, hϕe = −(β − γ)ϕe.

Hence, h is diagonal. In particular, h = 0 if and only if β = γ. As special
cases, when β = γ = 2 we get the paraSasakian contact metric structure on
H

3
1(−1), and when β − 2 = 0 = γ a left-invariant paracontact metric structure

on E(1,1), whose associated metric is flat ([3], [13]).
(g4) with α �= β − ε: Proceeding as before, if (G,g) is a Lorentzian Lie group

with unimodular Lie algebra g4 and (ϕ, ξ, η) is a corresponding left-invariant
paracontact metric structure on G, then ξ = e1 by Table 3. So, Kerη is
spanned by {e2, e3} and {ξ, e = e2, ϕe = ±e3} is a ϕ-basis. We express (1.3)
using (2.12) and we obtain

0 = g(ξ, e) = − 1
2
η
(
[ξ,ϕe]

)
, 0 = g(ξ,ϕe) = − 1

2
η
(
[ξ, e]

)
,

1 = g(e, e) = − 1
2
η
(
[e,ϕe]

)
= ∓ 1

2
α.

We again restrict to the case α > 0, without loss of generality. So, α = 2 is a
necessary and sufficient condition for (1.3).

(g4) with α = β − ε: In this case, (G,g) is naturally reductive [6]. Hence,
any vector in its Lie algebra is geodesic. Let now (ϕ, ξ, η) be a left-invariant
paracontact metric structure (ϕ, ξ, η) on G. Then, ξ = ae1 + be2 + ce3 ∈ g4,
with a2 + b2 − c2 = 1. Correspondingly, the paracontact distribution Kerϕ
admits the pseudo-orthonormal basis {E1,E2}, with E2 time-like, where we
put

E1 = − b√
a2 + b2

e1 +
a√

a2 + b2
e2,

E2 =
ac√

a2 + b2
e1 +

bc√
a2 + b2

e2 −
√

a2 + b2e3,

and so, the Lie algebra has a ϕ-basis of the form {ξ, e = E1, ϕe = ±E2}. Using
(2.12), we find

[ξ,E1] = − 1√
a2 + b2

{
αace1 +

(
a2 + b2 + (α + ε)bc

)
e2(4.2)

+
(
(α − ε)

(
a2 + b2

)
− bc

)
e3

}
,

[ξ,E2] =
1√

a2 + b2

{
αbe1 − (α + ε)ae2 + ae3

}
.(4.3)

By (4.2), the compatibility condition (1.3) implies 0 = g(ξ,E1) = ± 1
2η([ξ,E2]),

which holds if and only if either a = 0 or c + εb = 0. We treat these cases
separately.

If a = 0 then ξ = be2 + ce3, e = −e1 and ϕe = ±(ce2 + be3). From (1.3) we
have 0 = g(ξ,ϕe) = ± 1

2η([ξ, e]), which by (4.3) now gives εb+ c = 0. But then,
|ξ|2 = b2 − c2 = 0, which cannot occur.
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Assume now εb+ c = 0. Then, |ξ|2 = a2 = 1 and we can take a = 1. So, ξ =
e1 +b(e2 − εe3), e = E1 = − b√

1+b2
e1 + 1√

1+b2
e2 and ϕe = ±E2 = ± ε√

1+b2
(be1 +

b2e2 − ε(1 + b2)e3). By (2.12), a direct calculation now gives

[ξ,E1] = − 1
1 + b2

E1 +
1

1 + b2

(
ε − α

(
1 + b2

))
E2,

[ξ,E2] =
1

1 + b2

(
εb2 − (α + ε)

(
1 + b2

))
E1 +

1
1 + b2

E2,(4.4)

[E1,E2] = αξ.

Thus, η([ξ, e]) = 0 and compatibility condition (1.3) reduces to 1 = g(e, e) =
(dη)(e,ϕe) = − 1

2η([e,ϕe]) = ± 1
2α. Restricting once again to the case when

α > 0, we then have that α = 2 is a necessary and sufficient condition for
the existence of a left-invariant paracontact metric structure on a Lie group
with unimodular Lie algebra g4, which is described in terms of the ϕ-basis
{ξ, e = E1, ϕe = −E2}.

Unimodular Lie groups with Lie algebra g4 satisfying α = 2 can be deduced
at once from Table 2. They correspond to case (3) of Theorem 1.1.

We proved that a unimodular Lie group, whose Lie algebra is (2.12) with
α = 2, admits a left-invariant paracontact metric structure, unique up to
isometries. This structure is described in terms of a ϕ-basis {ξ, e,ϕe} of
the Lie algebra, such that

[ξ, e] = −e + (β − 2ε)ϕe, [ξ,ϕe] = βe + ϕe, [e,ϕe] = −2ξ.

Hence, tensor h is determined by

hξ = 0, he = εe + ϕe, hϕe = −e − εϕe.

Thus, h �= 0. Moreover, it is easy to check that λ = 0 is the only eigenvalue of h,
associated to a two-dimensional eigenspace. Therefore, h is not diagonalizable
and two-step nilpotent.

Non-unimodular cases. Geodesic vectors on non-unimodular Lorentzian
Lie groups were classified in [6]. However, for non-unimodular Lorentzian Lie
groups, it will suffice to make use of Theorem 2.5, that is, to take into account
the fact that ξ belongs to the unimodular kernel u of the Lie algebra. We treat
non-unimodular Lie groups with Lie algebras (2.13)–(2.15) separately.

(g5): By [8], the unimodular kernel u of the Lie algebra g5 is the space-
like plane spanned by {e1, e2}. Hence, ξ = ae1 + be2, with a2 + b2 = 1. An
easy calculation shows that g5 maintains the same form with respect to the
pseudo-orthonormal basis {ẽ1 = ae1 + be2, ẽ2 = be1 − ae2, e3}. Thus, without
loss of generality, we can take ξ = e1. The paracontact distribution Kerη
then admits {e2, e3} as a pseudo-orthonormal basis, and {ξ, e = e2, ϕe = ±e3}
forms a ϕ-basis. By (2.13) and the paracontact condition (1.3), we have

0 = g(ξ, e) = − 1
2
η[ξ,ϕe] = ± 1

2
α
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and so, α = 0. Moreover, by (2.13) also we have αγ + βδ = 0 and α + δ �= 0.
Hence, α = β = 0 �= δ. Paracontact condition (1.3) now reduces to

1 = g(e, e) = − 1
2
[e,ϕe] = ± 1

2
γ,

that is, γ = ±2. Changing the sign of e3 if needed, we can restrict to the
case when γ > 0 and so, γ = 2. Thus, a non-unimodular Lie group with Lie
algebra g5 admits a left-invariant paracontact metric structure if and only if
α = β = 0 �= δ and γ = 2. This corresponds to case (4) in Theorem 1.1.

The left-invariant paracontact metric structure on a Lie group with non-
unimodular Lie algebra g5, is determined by ξ = e1, η = θ1 and ϕe2 = −e3.
With respect to the ϕ-basis {ξ, e,ϕe}, the Lie algebra is described by

[ξ, e] = [ξ,ϕe] = 0, [e,ϕe] = −2ξ − δe,

from which it follows at once that h = 0.

Remark 4.1. Notice that a non-unimodular Lorentzian Lie group with Lie
algebra g5 satisfying α = β = 0 �= δ, is not symmetric [4].

(g6): This case is quite similar to the previous one, and we shall omit
some details. The unimodular kernel u of g6 is the space-time plane spanned
by {e2, e3} [8]. Making a suitable choice for the basis of u, without loss of
generality we can take ξ = e2. Hence, Kerη admits {e1, e3} as a pseudo-
orthonormal basis, and {ξ, e = e1, ϕe = ±e3} will be a ϕ-basis. Using (2.14)
to calculate the paracontact condition (1.3), we conclude that α = β = 0 �= δ
and γ = (±)2 are necessary and sufficient conditions for the existence of a
left-invariant paracontact metric structure.

It is evident that left-invariant paracontact metric structures on Lie groups
with Lie algebras g5 and g6 are isometric to one another. Thus, they both
correspond to case (4) in Theorem 1.1.

(g7): We know by [8] that the unimodular kernel u of the Lie algebra g7

is the degenerate plane spanned by {e1, u = e2 + e3}. Being ξ a unit vector
belonging to u, we then have ξ = e1 +bu (changing the sign of e1 if needed), for
some real constant b. It is easily seen that g7 maintains the same form (2.15) if
expressed with respect to the pseudo-orthonormal basis e1 + bu, e2, e3. Thus,
without loss of generality, we can take ξ = e1 and Kerη will have {e2, e3}
as a pseudo-orthonormal basis. Consequently, {ξ, e = e2, ϕe = ±e3} will be a
ϕ-basis. By (2.15), we now have

[ξ, e2] = −[ξ, e3] = −αξ − β(e2 + e3), [e2, e3] = γξ + δ(e2 + e3).

Using Lie brackets above to calculate the paracontact condition (1.3), we then
have

0 = g(ξ, e) = − 1
2
η[ξ,ϕe] = ± 1

2
α, 1 = g(e, e) = − 1

2
η[e,ϕe] = ∓ 1

2
γ.
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Therefore, α = 0 and γ = (±)2 are necessary and sufficient conditions for the
existence of left-invariant paracontact metric structures on a Lorentzian Lie
group with Lie algebra g7. Without loss of generality, we restrict to the case
γ > 0. Thus, γ = 2 and we have a ϕ-basis {ξ, e = e2, ϕe = −e3} of g7. This is
case (5) in Theorem 1.1.

For the non-unimodular lie algebra g7, we showed that the left-invariant
paracontact metric structure is determined, up to isometries, by ξ = e1, η = θ1

and ϕe2 = −e3. Expressing the Lie brackets with respect to {ξ, e,ϕe}, we get

[ξ, e] = −[ξ,ϕe] = −βe + βϕe, [e,ϕe] = −2ξ − δe + δϕe,

from which it is easily seen that h = 0.

Remark 4.2. By Theorem 2.2, h = 0 is a necessary and sufficient condi-
tion for a three-dimensional paracontact metric manifold to be paraSasakian.
Thus, from the study above we can deduce at once the following classification
of homogeneous paraSasakian metric three-manifolds.

Theorem 4.3. A simply connected and complete homogeneous para-
Sasakian three-manifold is isometric to one of the following Lie groups G
equipped with a left-invariant paracontact metric structure:

(a) the identity component of O(1,2) or S̃L(2,R), having unimodular Lie al-
gebra g2 with α = 2;

(b) the identity component of O(1,2) or S̃L(2,R), having unimodular Lie al-
gebra g3 with α = 2 and β = γ �= 0.

(c) the Heisenberg group H3, having unimodular Lie algebra g3 with α = 2
and β = γ = 0;

(d) a non-unimodular Lie group, having Lie algebra g5 (or g6) with α = β =
0 �= δ and γ = 2;

(e) a non-unimodular Lie group, having Lie algebra g7 with α = β = 0 �= δ
and γ = 2.

Acknowledgment. The author wishes to express his gratitude to the referee
for his suggestions and the careful revision of the manuscript.

References

[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in
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