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THE DEPTH FORMULA FOR MODULES WITH REDUCIBLE
COMPLEXITY

PETTER ANDREAS BERGH AND DAVID A. JORGENSEN

Abstract. We prove that the depth formula holds for Tor-inde-
pendent modules in certain cases over a Cohen–Macaulay local
ring, provided one of the modules has reducible complexity.

1. Introduction

Two finitely generated modules M and N over a local ring A satisfy the
depth formula if

(1) depthM + depthN = depthA + depth(M ⊗A N).

This formula is not at all true in general; an obvious counterexample appears
by taking modules of depth zero over a ring of positive depth. The natural
question is then: for which pairs of modules does the formula hold? The first
systematic treatment of this question was done by Auslander in [Aus], where
he considered the case when one of the modules involved has finite projective
dimension. In this situation, let q be the largest integer such that TorA

q (M,N)
is nonzero. Auslander proved that if either depthTorA

q (M,N) ≤ 1 or q = 0,
then the formula

(2) depthM + depthN = depthA + depthTorA
q (M,N) − q

holds. The case q = 0 is the depth formula.
Auslander’s result indicated that in order to decide which pairs of mod-

ules satisfy the depth formula, one should concentrate on Tor-independent
pairs, that is, modules M and N satisfying TorA

n (M,N) = 0 for n > 0. In
[HuW], Huneke and Wiegand showed that the depth formula holds for such
modules over complete intersections. This (and Auslander’s result) was later
generalized in [ArY] by Araya and Yoshino, who considered the case when
one of the modules involved has finite complete intersection dimension. If
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TorA
n (M,N) = 0 for n � 0, let q be the largest integer such that TorA

q (M,N)
is nonzero. In this situation, Araya and Yoshino proved Auslander’s original
result (2) above if either depthTorA

q (M,N) ≤ 1 or q = 0.
The aim of this paper is to investigate the depth formula (1) for Tor-

independent modules over a local Cohen–Macaulay ring, provided one of the
modules has reducible complexity. In particular, we show that the formula
(1) holds for Tor-independent modules over a Cohen–Macaulay ring if one
module has reducible complexity and is not maximal Cohen–Macaulay, or if
both modules have reducible complexity. Moreover, we prove that the depth
formula holds if one of the modules involved has reducible complexity, and
the other has finite Gorenstein dimension.

In the final section, we show that there exist modules having reducible com-
plexity of any finite complexity, but not finite complete intersection dimension.
Knowing that such modules exist is a critical point of the investigation. Mod-
ules of infinite complete intersection dimension are in a precise sense far from
resembling those modules considered in the original explorations of the for-
mulas (1) and (2). Thus, we show that the depth formula holds in a context
that is fundamentally departed from previous considerations. We know of no
example of finitely generated Tor-independent modules that do not satisfy
the depth formula (1), nor are we aware of a counterexample to Auslander’s
formula (2) when q < ∞, and depthTorR

q (M,N) ≤ 1 or q = 0.

2. Reducible complexity

Throughout the rest of this paper, we assume that all modules encountered
are finitely generated. In this section, we fix a local (meaning commutative
Noetherian local) ring (A,m, k). Under these assumptions, every A-module
M admits a minimal free resolution

· · · → F2 → F1 → F0 → M → 0,

which is unique up to isomorphism. The rank of the free A-module Fn is
the nth Betti number of M ; we denote it by βA

n (M). The complexity of M ,
denoted cxM , is defined as

cxM
def= inf

{
t ∈ N ∪ {0} | ∃a ∈ R such that βA

n (M) ≤ ant−1 for all n � 0
}
.

In other words, the complexity of a module is the polynomial rate of growth
of its Betti sequence. It follows from the definition that cxM = 0 precisely
when M has finite projective dimension, and that cxM = 1 if and only if
the Betti sequence of M is bounded. An arbitrary local ring may have many
modules with infinite complexity; by a theorem of Gulliksen (cf. [Gul]), the
local rings over which all modules have finite complexity are precisely the
complete intersections.

In [Be1], the concept of modules with reducible complexity was introduced.
These are modules which in some sense generalize modules of finite complete
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intersection dimension (see [AGP]), in particular modules over complete in-
tersections. Before we state the definition, we recall the following. Let M
and N be A-modules, and consider an element η ∈ Extt

A(M,N). By choosing
a map fη : Ωt

A(M) → N representing η, we obtain a commutative pushout
diagram

0 Ωt
A(M)

fη

Ft−1 Ωt−1
A (M) 0

0 N Kη Ωt−1
A (M) 0

with exact rows. The module Kη is independent, up to isomorphism, of the
map fη chosen as a representative for η. We now recall the definition of
modules with reducible complexity. Given A-modules X and Y , we denote
the graded A-module

⊕∞
i=0 Exti

A(X,Y ) by Ext∗
A(X,Y ).

Definition. The full subcategory of A-modules consisting of the modules
having reducible complexity is defined inductively as follows:
(i) Every A-module of finite projective dimension has reducible complexity.
(ii) An A-module M of finite positive complexity has reducible complexity if

there exists a homogeneous element η ∈ Ext∗
A(M,M), of positive degree,

such that cxKη < cxM and Kη has reducible complexity.

Thus, an A-module M of finite positive complexity c, say, has reducible
complexity if and only if the following hold: there exist nonnegative integers
n1, . . . , nt, with t ≤ c, and exact sequences (with K0 = M )

η1 : 0 K0 K1 Ωn1
A (K0) 0

...
...

...

ηt : 0 Kt−1 Kt Ωnt

A (Kt−1) 0

in which cxM > cxK1 > · · · > cxKt = 0. We say that these sequences η1, . . . ,
ηt reduce the complexity of M . As shown in [Be1], every module of finite
complete intersection dimension has reducible complexity. In particular, if A
is a complete intersection, then every A-module has this property.

Remark 1. In the original definition in [Be1], the extra requirement
depthM = depthK1 = · · · = depthKt was included. However, as we will
only be working over Cohen–Macaulay rings, this requirement is redundant.
Namely, when A is Cohen–Macaulay and M is any A-module, then the depth
of any syzygy of M is at least the depth of M . Consequently, in a short exact
sequence

0 → M → K → Ωn
A(M) → 0
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the depth of M automatically equals that of K.

3. The depth formula

Let A be a local ring, and let M be an A-module with reducible complexity.
If the complexity of M is positive, then by definition there exist a number t
and short exact sequences

ηi : 0 → Ki−1 → Ki → Ω|ηi |−1
A (Ki−1) → 0

for 1 ≤ i ≤ t reducing the complexity of M . We define the upper reducing
degree of M , denoted reddeg∗ M , to be the supremum of the minimal degree
of the cohomological elements ηi, the supremum taken over all such sequences
reducing the complexity of M :

reddeg∗ M
def= sup

{
min{ |η1|, . . . , |ηt| } | η1, . . . , ηt reduces the complexity of M

}
.

If the complexity of M is zero, that is, if M has finite projective dimen-
sion, then we define reddeg∗ M = ∞. Note that the inequality reddeg∗ M ≥ 1
always holds.

We now prove our first result, namely the depth formula in the situation
when the tensor product of the two modules involved has depth zero. In this
result, we also include a generalized version of half of [ArY, Theorem 2.5].

Theorem 3.1. Let A be a Cohen–Macaulay local ring, and let M and
N be nonzero A-modules such that M has reducible complexity. Suppose
that TorA

n (M,N) = 0 for n � 0, and let q be the largest integer such that
TorA

q (M,N) is nonzero. Furthermore, suppose that one of the following holds:

(i) depthTorA
q (M,N) = 0,

(ii) q ≥ 1, depthTorA
q (M,N) ≤ 1 and reddeg∗ M ≥ 2.

Then the formula

depthM + depthN = dimA + depthTorA
q (M,N) − q

holds.

Proof. Part (i) is just [Be1, Theorem 3.4(i)], so we only need to prove (ii).
We do this by induction on the complexity of M , where the case cxM = 0
follows from Auslander’s original result [Aus, Theorem 1.2]. Suppose therefore
the complexity of M is nonzero. Since reddeg∗ M ≥ 2, there exists an exact
sequence

0 → M → K → Ωn
A(M) → 0

with n ≥ 1, in which the complexity of K is at most cxM − 1 and reddeg∗ K ≥ 2.
From this sequence, we see that TorA

q (K,N) is isomorphic to TorA
q (M,N),
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and that TorA
i (K,N) = 0 for i ≥ q + 1. The formula therefore holds with K

replacing M , but since depthK = depthM we are done. �

As mentioned, the proof of this result generalizes the first half of [ArY,
Theorem 2.5]. Namely, if A is a local ring (not necessarily Cohen–Macaulay)
and M is a module of finite complete intersection dimension, then M has
reducible complexity (including the depth condition of Remark 1) by [Be1,
Proposition 2.2(i)], and reddeg∗ M = ∞ by [Be2, Lemma 2.1(ii)].

Next, we show that the depth formula is valid for Tor-independent modules
over a local Cohen–Macaulay ring in the following situation: one of the mod-
ules has reducible complexity, and the other has finite Gorenstein dimension.
Recall therefore that if A is a local ring, then a module M has Gorenstein di-
mension zero if the following hold: the module is reflexive (i.e., the canonical
homomorphism M → HomA(HomA(M,A),A) is bijective), and

Extn
A(M,A) = 0 = Extn

A

(
HomA(M,A),A

)

for all n > 0. The Gorenstein dimension of M is defined to be the infimum of
all nonnegative integers n, such that there exists an exact sequence

0 → Gn → · · · → G0 → M → 0

in which all the Gi have Gorenstein dimension zero. By [AuB, Theorem 4.13],
if M has finite Gorenstein dimension, then it equals depthA − depthM . More-
over, by [AuB, Theorem 4.20], a local ring is Gorenstein precisely when every
module has finite Gorenstein dimension.

Proposition 3.2. Let A be a local Cohen–Macaulay ring, and M and N
be nonzero Tor-independent A-modules. Assume that M is maximal Cohen–
Macaulay and has reducible complexity, and that N has finite Gorenstein di-
mension. Then if depth(M ⊗A N) is nonzero, so is depthN .

Proof. By [CFH, Lemma 2.17], there exists an exact sequence

0 → N → I → X → 0

in which the projective dimension of I is finite and X has Gorenstein di-
mension zero. Then TorA

n (M,I) and TorA
n (M,X) both vanish for n � 0, and

since M is maximal Cohen–Macaulay it follows from [Be1, Theorem 3.3] that
TorA

n (M,I) = 0 = TorA
n (M,X) for n ≥ 1. Hence, the pairs (M,N), (M,I) and

(M,X) are all Tor-independent.
Suppose depthN = 0. Then the depth of I is also zero. Tensoring the

exact sequence with M yields the exact sequence

0 → M ⊗A N → M ⊗A I → M ⊗A X → 0.

By Auslander’s original result, the depth formula holds for the pair (M,I).
Moreover, by [Be1, Theorem 3.4(iii)], the formula also holds for the pair
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(M,X), hence

depthM + depth I = dimA + depth(M ⊗A I)

and
depthM + depthX = dimA + depth(M ⊗A X).

The first of these formulas implies that the depth of M ⊗A I is zero. The
second formula, together with the fact that X is maximal Cohen–Macaulay,
implies that M ⊗A X is maximal Cohen–Macaulay. Therefore, depth(M ⊗A

N) = 0 by the depth lemma. �

We can now prove that the depth formula holds when one module has
reducible complexity, and the other has finite Gorenstein dimension.

Theorem 3.3 (Depth formula—Gorenstein case 1). Let A be a local Co-
hen–Macaulay ring, and M and N be nonzero Tor-independent A-modules. If
M has reducible complexity and N has finite Gorenstein dimension, then

depthM + depthN = dimA + depth(M ⊗A N).

Proof. We prove this result by induction on the depth of the tensor product.
If depth(M ⊗A N) = 0, then the formula holds by Theorem 3.1, so assume
that depth(M ⊗A N) is positive. If M has finite projective dimension, then
the formula holds by Auslander’s original result, hence we assume that the
complexity of M is positive.

Suppose the depth of N is zero. Choose short exact sequences (with
K0 = M )

0 K0 K1 Ωn1
A (K0) 0

...
...

...

0 Kt−1 Kt Ωnt

A (Kt−1) 0

reducing the complexity of M , and note that the pair (Ki,N) is Tor-indepen-
dent for all i. Since the projective dimension of Kt is finite, the depth formula
holds for Kt and N , that is,

depthKt + depthN = dimA + depth(Kt ⊗A N).

Since depthN = 0, we see that Kt, and hence also M , is maximal Cohen–
Macaulay. But this contradicts Proposition 3.2, hence the depth of N must
be positive.

Choose an element x ∈ A which is regular on both N and M ⊗A N . Ten-
soring the exact sequence

0 → N
·x−→ N → N/xN → 0
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with M , we get the exact sequence

0 → TorA
1 (M,N/xN) → M ⊗A N

·x−→ M ⊗A N → M ⊗A N/xN → 0.

We also see that TorA
n (M,N/xN) = 0 for n ≥ 2. However, the element x is

regular on M ⊗A N , hence TorA
1 (M,N/xN) = 0 and (M ⊗A N)/x(M ⊗A N) �

M ⊗A N/xN . The modules M and N/xN are therefore Tor-independent, and
depth(M ⊗A N/xN) = depth(M ⊗A N) − 1. By induction, the depth formula
holds for M and N/xN , giving

depthM + depthN = depthM + depthN/xN + 1
= dimA + depth(M ⊗A N/xN) + 1
= dimA + depth(M ⊗A N).

This concludes the proof. �
Corollary 3.4 (Depth formula—Gorenstein case 2). Let A be a Goren-

stein local ring, and M and N be nonzero Tor-independent A-modules. If M
has reducible complexity, then

depthM + depthN = dimA + depth(M ⊗A N).

Remark. In work in progress by Lars Winther Christensen and the second
author (cf. [ChJ]), the depth formula is proved for modules M and N over
a local ring A under the following assumptions: the module M has finite

Gorenstein dimension, and the Tate homology group T̂or
A

n (M,N) vanishes
for all n ∈ Z.

What can we say if the ring is not necessarily Gorenstein, or, more general,
when we do not assume that one of the modules has finite Gorenstein dimen-
sion? The following result shows that if the ring is Cohen–Macaulay and the
module having reducible complexity is not maximal Cohen–Macaulay, then
the depth formula holds.

Theorem 3.5 (Depth formula—Cohen–Macaulay case 1). Let A be a Co-
hen–Macaulay local ring, and let M and N be nonzero Tor-independent A-
modules. If M has reducible complexity and is not maximal Cohen–Macaulay,
then

depthM + depthN = dimA + depth(M ⊗A N).

Proof. We prove this result by induction on the complexity of M . As
before, if M has finite projective dimension, then the depth formula follows
from Auslander’s original result. We therefore assume that the complexity of
M is positive.

Choose a short exact sequence

0 → M → K → Ωt
A(M) → 0

in Extt
A(M,M), with cxK < cxM and t ≥ 0. Since M and K are Tor-

independent and depthK = depthM , the depth formula holds for these mod-
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ules by induction, i.e.

(†) depthK + depthN = dimA + depth(K ⊗A N).

Therefore, we need only to show that depth(K ⊗A N) = depth(M ⊗A N).
If t = 0, then by tensoring the above exact sequence with N , we obtain the

exact sequence

0 → M ⊗A N → K ⊗A N → M ⊗A N → 0.

In this situation, the equality depth(K ⊗A N) = depth(M ⊗A N) follows from
the depth lemma, and we are done. What remains is therefore the case t ≥ 1.
Moreover, by considering the short exact sequence

(††) 0 → M ⊗A N → K ⊗A N → Ωt
A(M) ⊗A N → 0,

we see that if the depth of M ⊗A N is zero, then so is the depth of K ⊗A N .
In this case we are done, hence we may assume that the depth of M ⊗A N is
positive.

Suppose depth(K ⊗A N) > depth(M ⊗A N). Then depth(Ωt
A(M) ⊗A N) =

depth(M ⊗A N) − 1 by the depth lemma. Now for each i ≥ 1, let

0 → Ωi+1
A (M) → Aβi → Ωi

A(M) → 0

be a projective cover of Ωi
A(M), and note that this sequence stays exact when

we tensor with N . Let s be the largest integer in {0, . . . , t − 1} such that in
the exact sequence

(† † †) 0 → Ωs+1
A (M) ⊗A N → Nβs → Ωs

A(M) ⊗A N → 0

the inequality depth(Ωs+1
A (M) ⊗A N) < depth(Ωs

A(M) ⊗A N) holds. From the
depth lemma applied to this sequence, we see that

depthN = depth
(
Ωs+1

A (M) ⊗A N
)

≤ depth
(
Ωt

A(M) ⊗A N
)

= depth(M ⊗A N) − 1
< depth(K ⊗A N) − 1.

But then from (†), we obtain the contradiction dimA < depthK − 1, and
consequently the inequality depth(K ⊗A N) > depth(M ⊗A N) cannot hold.

Next, suppose that depth(K ⊗A N) < depth(M ⊗A N). Applying the depth
lemma to (††), we see that depth(K ⊗A N) = depth(Ωt

A(M) ⊗A N). Again,
let s be the largest integer in {0, . . . , t − 1} such that depth(Ωs+1

A (M) ⊗A N) <
depth(Ωs

A(M) ⊗A N). Then the depth lemma applied to († † †) gives

depthN = depth
(
Ωs+1

A (M) ⊗A N
)

≤ depth
(
Ωt

A(M) ⊗A N
)

= depth(K ⊗A N).
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From (†), it now follows that K, and hence also M , is maximal Cohen–
Macaulay, a contradiction. This shows that the depth of K ⊗A N equals that
of M ⊗A N . �

Next, we show that if both the Tor-independent modules have reducible
complexity, then the depth formula holds without the assumption that M is
not maximal Cohen–Macaulay.

Theorem 3.6 (Depth formula—Cohen–Macaulay case 2). Let A be a Co-
hen–Macaulay local ring, and let M and N be nonzero Tor-independent A-
modules. If both M and N have reducible complexity, then

depthM + depthN = dimA + depth(M ⊗A N).

Proof. If one of the modules is not maximal Cohen–Macaulay, the result
follows from Theorem 3.5. If not, then the result follows from [Be1, Theo-
rem 3.4(iii)]. �

What happens over a Cohen–Macaulay ring if we only require that one of
the modules has reducible complexity? We end this section with the following
result, showing that, in this situation, if the depth of the tensor product is
nonzero, then so is the depth of the module having reducible complexity.

Proposition 3.7. Let A be a Cohen–Macaulay local ring, and let M and N
be nonzero Tor-independent A-modules such that M has reducible complexity.
Then if depth(M ⊗A N) is nonzero, so is depthM .

Proof. If M is maximal Cohen–Macaulay, then the result trivially holds.
If not, then the depth formula holds by Theorem 3.5, that is,

depthM + depthN = dimA + depth(M ⊗A N).

Thus, if the depth of (M ⊗A N) is nonzero, then so is depthM . �

4. Modules with reducible complexity and inifinite complete
intersection dimension

We shall shortly give examples showing that there exist modules having
reducible complexity of any finite complexity, but not finite complete inter-
section dimension. In order to do this, we opt to work with complexes in
the derived category D(A) of A-modules. This is a triangulated category, the
suspension functor Σ being the left shift of a complex together with a sign
change in the differential. Now let

C : · · · → Cn+1 → Cn → Cn−1 → · · ·
be a complex in D(A). Then C is bounded below if Cn = 0 for n � 0, and
bounded above if Cn = 0 for n � 0. The complex is bounded if it is both
bounded below and bounded above. The homology of C, denoted H(C), is the
complex with H(C)n = Hn(C), and with trivial differentials. When H(C) is
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bounded and degreewise finitely generated, then C is said to be homologically
finite. We denote the full subcategory of homologically finite complexes by
Dhf(A).

When C is homologically finite, it has a minimal free resolution (cf. [Rob]).
Thus, there exists a quasi-isomorphism F � C, where F is a bounded below
complex

· · · → Fn+1
dn+1−−−→ Fn

dn−→ Fn−1 → · · ·
of finitely generated free A-modules, and where Imdn ⊆ mFn−1. The minimal
free resolution is unique up to isomorphism, and so for each integer n the
rank of the free module Fn is a well defined invariant of C. Thus, we may
define Betti numbers and complexity for homologically finite complexes, and
also the concept of reducible complexity. A complex C ∈ Dhf(A) is said to
have finite project dimension if it is quasi-isomorphic to a perfect complex.

Definition. The full subcategory of complexes in Dhf(A) having reducible
complexity is defined inductively as follows:

(i) Every homologically finite complex of finite projective dimension has re-
ducible complexity.

(ii) A homologically finite complex C of finite positive complexity has re-
ducible complexity if there exists a triangle

C → Σn C → K → ΣC

with n > 0, such that cxK < cxC and K has reducible complexity.

The Betti numbers (and hence also the complexity) of an A-module M
equal the Betti numbers of M viewed as an element in D(A), that is, as the
stalk complex

· · · → 0 → 0 → M → 0 → 0 → · · ·
with M concentrated in degree zero. Moreover, the module M has reducible
complexity if and only if it has reducible complexity in D(A). To see this, let

η : 0 → M → K → Ωn−1
A (M) → 0

be a short exact sequence, and let F be a free resolution of M . Then η
corresponds to a map F → Σn F in D(A) whose cone is a free resolution of K.
Thus, a sequence of short exact sequences of modules (with K0 = M )

0 K0 K1 Ωn1−1
A (K0) 0

...
...

...

0 Kt−1 Kt Ωnt −1
A (Kt−1) 0
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reducing the complexity of M , corresponds to a sequence of triangles

F (K0) Σn1 F (K0) F (K1) ΣF (K0)

...
...

...
...

F (Kt−1) Σnt F (Kt−1) F (Kt) ΣF (Kt−1)

reducing the complexity of F , with F (Ki) a free resolution of Ki. Conversely,
every such sequence of triangles of free resolutions of Ki gives a sequence of
short exact sequences reducing the complexity of M .

There is more generally a relation between homologically finite complexes
of reducible complexity and modules of reducible complexity. For a complex
C in Dhf(A), we define the supremum of C to be

sup(C) = sup
{
i|Hi(C) �= 0

}
.

Proposition 4.1. Let C ∈ Dhf(A) be a complex with reducible complexity
and n = sup(C). Then the A-module M = Coker(Cn+1 → Cn) has reducible
complexity.

Proof. We may assume that C is a minimal complex of finitely generated
free A-modules. Let F = C≥n. Then F is a minimal free resolution of M .
Moreover, it is easy to check that F has reducible complexity since C has.
Thus, by the discussion above, M has reducible complexity. �

We say that a complex C ∈ Dhf(A) has finite CI-dimension if there exists a
diagram of local ring homomorphisms A → R ← Q with A → R flat and R ← Q
surjective with kernel generated by a regular sequence, such that R ⊗A C has
finite projective dimension as a complex of Q-modules (cf. [S-W]).

There is a connection between finite CI-dimension of a complex and that
of a module.

Proposition 4.2. Let C be in Dhf(A). If Coker(Cn+1 → Cn) has finite
CI-dimension for some n ≥ sup(C), then so does C.

Proof. We may assume that C is a minimal complex of finitely generated
free A-modules. The result is then [S-W, Corollary 3.8]. �

The following is an easy fact whose proof is left as an exercise.

Proposition 4.3. Let 0 → Y → X → ΣnX → 0 be a short exact sequence
of complexes in Dhf(A). Then Y has finite CI dimension if X does.

Construction 4.4. Let k be a field and A(i) be k-algebras for 1 ≤ i ≤ c.
Furthermore, for each 1 ≤ i ≤ c let F (i) be a complex of finitely generated free
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A(i)-modules with F
(i)
j = 0 for j < 0, and possessing a surjective chain map

η(i) : F (i) → ΣniF (i) of degree ni. Then

F = F (1) ⊗k · · · ⊗k F (c)

is a complex of finitely generated free A = A(1) ⊗k · · · ⊗k A(c)-modules with
Fj = 0 for j < 0, and each η(i) induces a surjective chain map η̄(i) : F → ΣniF .
Moreover, the η̄(i) commute with one another.

Let C(η̄(1)) denote the cone of η̄(1). Then since η(1) and η(2) commute with
one another, η̄(2) induces a surjective chain map C(η̄(1)) → Σn2C(η̄(1)). By
abuse of notation, we let C(η̄(2)) denote the cone of this chain map. Induc-
tively we define C(η̄(i)) to be the cone of the surjective chain map on C(η̄(i−1))
induced by η̄(i).

When η
(i)
j is an isomorphism for j ≥ ni, and no such chain map exists of

degree less than ni, we say that F (i) is periodic of period ni.

Proposition 4.5. With the notation above, assume that A is local. Sup-
pose that each F (i) is periodic of period ni, with ηi : F (i) → ΣniF (i) being the
surjective endomorphism defining the periodicity of F (i). Then F has reducible
complexity and complexity c.

Proof. By the discussion above, we have a sequence of triangles

F Σn1 F C
(
η̄(1)

)
ΣF

...
...

...
...

C
(
η̄(c−1)

)
Σnc C

(
η̄(c−1)

)
C

(
η̄(c)

)
ΣC

(
η̄(c−1)

)

Since each chain map induced by η̄(i), 1 ≤ i ≤ c, is onto, the complexity of
each C(η̄(i)) is one less than that of C(η̄(i−1)). �

Assume that each F (i) is periodic. Define for 0 ≤ i ≤ c the complexes

E(i) = F
(1)
<n1

⊗k · · · ⊗k F
(i)
<ni

⊗k F (i+1) ⊗k · · · ⊗k F (c).

The chain maps η(i) induce short exact sequences

(3) 0 → E(i) → E(i−1) → ΣniE(i−1) → 0.

Proposition 4.6. With the notation above, assume that each F (i) is pe-
riodic, ni = 1 for 1 ≤ i ≤ c − 1 and nc > 2. Then the complex F has infinite
CI-dimension.

Proof. By applying Proposition 4.3 inductively to the short exact sequences
(3), E(c−1) has finite CI-dimension if F does. However, if ni = 1 for 1 ≤ i ≤
c − 1 we have

E(c−1) = F
(1)
0 ⊗k · · · ⊗k F

(c−1)
0 ⊗k F (c)
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which is a periodic complex of free A-modules of period nc > 2. It is well
known that complexes of finite CI-dimension and complexity one are periodic
of period ≤ 2. Thus, E(c−1) has infinite CI-dimension, and therefore so does F .

�

The following corollary is the main point of this section. Its proof follows
from the previous results.

Corollary 4.7. Assume that A is local, and that F is defined as in Propo-
sition 4.6, with ni = 1 for 1 ≤ i ≤ c − 1 and nc > 2. Then the A-module
M = Coker(F1 → F0) has reducible complexity c and infinite CI-dimension.

Remark. The hypothesis in 4.5 and 4.7, that A be local, is easy to achieve.
Indeed, one could take each k-algebra A(i) to be local and Artinian. Then
the same holds for A. Examples of complexes F (i) of complexity one, both
periodic of arbitrary period, and aperiodic are well known to exist over local
Artinian rings. See, for example, [GP].

In the spirit of Section 3, one would also like to know that there exist
modules of reducible complexity c and infinite CI-dimension over rings A of
positive dimension. These are easily seen to exist by taking deformations
of examples such as above. For instance, if A is local Artinian and M is
an A-module of reducible complexity c and infinite CI-dimension, then for
indeterminates x1, . . . , xr, let A′ be the ring A[x1, . . . , xr] suitable localized,
and M ′ the A′-module M [x1, . . . , xr] similarly localized. Then M ′ has the
same properties as M , now over the positive dimensional local ring A′. This
same conclusion holds too if one reduces both A′ and M ′ by a regular sequence
in the maximal ideal of A′.
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de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 72, Presses
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