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A SIMPLE CONSTRUCTION OF WERNER MEASURE FROM
CHORDAL SLE8/3

ROBERT O. BAUER

Abstract. We give a direct construction of the conformally in-
variant measure on self-avoiding loops in Riemann surfaces (Wer-
ner measure) from chordal SLE8/3. We give a new proof of

uniqueness of the measure and use Schramm’s formula to con-
struct a measure on boundary bubbles encircling an interior point.

After establishing covariance properties for this bubble measure,

we apply these properties to obtain a measure on loops by inte-
grating measures on boundary bubbles. We calculate the distri-
bution of the conformal radius of boundary bubbles encircling an

interior point and deduce from it explicit upper and lower bounds
for the loop measure.

1. Introduction

In [22], Wendelin Werner established existence and uniqueness of a natural
measure on the set of self-avoiding loops on Riemann surfaces. In this paper,
we call this measure Werner measure. The statement that it is a “natural”
measure refers to how the measure on loops in a Riemann surface S is related
to the measure on loops in another surface T . If μS denotes the former
measure and μT the latter, then the following is required:
• (Conformal invariance) If S and T are conformally equivalent and Φ is a

conformal map from S onto T , then μT is the image measure of μS under Φ.
• (Restriction) If S ⊂ T , then μS is the restriction of μT to those loops in T

that stay in S.
The first requirement can be paraphrased as saying that the measures only
depend on the conformal structure and that for each such structure there is
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essentially only one measure, just as conformally equivalent Riemann surfaces
are essentially the same. The second requirement is a very simple consistency
condition. It relates measures for certain surfaces that may or may not be
conformally equivalent. An example for the latter is the case where S is a
ring domain in a torus T . In the construction of Werner measure we outline
below, this will be instrumental in going from simple topologies to more com-
plicated ones. The case where S is conformally equivalent to T is crucial for
the uniqueness of Werner measure. To explain why, suppose S is properly
contained in (i.e., not equal to) T . This can only occur if S and T are sim-
ply connected hyperbolic Riemann surfaces, for example if T is the unit disk
U = {|z| < 1} and S is a simply connected proper subdomain. Now there are
two ways to obtain μS from μT —one by conformal invariance, the other by
restriction—and these have to agree, giving a condition on μT . As S ranges
over all simply connected subdomains, we get many such conditions and it is
not at all obvious that even one measure exists that satisfies them all.

However, once one such measure is found, any multiple of this measure
by a scalar λ > 0 gives another such measure. Thus uniqueness refers here
always to uniqueness up to a multiplicative constant. Also, for the measure
to be of interest we need to exclude degenerate cases, where the measure is
either identically zero or infinite on all sets of interest. A useful notion of
nondegeneracy is the following: If S is a proper simply connected subdomain
of U containing 0, and � denotes a self-avoiding loop, then

(1) 0 < μU(� surrounds 0 but does not stay in S) < ∞.

Restriction and conformal invariance then immediately imply that the total
mass |μS | is infinite for any Riemann surface S. Indeed, by conformal invari-
ance,

μU
(
� surrounds 0 but does not stay in

{
|z| < 2−1

})
= μ{ |z|<2−n }(

� surrounds 0 but does not stay in
{

|z| < 2−(n+1)
})

for any n ∈ Z+, while, by restriction,

μU(� surrounds 0)

=
∞∑

n=0

μ{ |z|<2−n }(
� surrounds 0 but does not stay in

{
|z| < 2−(n+1)

})
.

If S is an arbitrary Riemann surface, then it contains the conformal image
of U. Whence, by conformal invariance and restriction,

|μS | ≥ |μU| = ∞.

We will later see that while μS is an infinite measure, it is σ-finite.
In this paper, we give new proofs of uniqueness and existence of Werner

measure and give explicit upper and lower bounds for the measure of loops
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that go around an annulus as a function of its modulus. More precisely, we
do the following.

In Section 2, we introduce and define some of the objects we will use and
show that given measures μ〈U 〉 on loops going around ring domains U in a
Riemann surface S, so that two such measures agree on their overlap, there
exists a unique measure μS on loops in S whose restriction to 〈U 〉 agrees with
μ〈U 〉, see Proposition 2. This is a straightforward application of direct sums of
countably many measure spaces. That countably many spaces is enough will
be shown to follow from the second countability of Riemann surfaces. This
argument is not new and is briefly sketched in [22]. We spell it out here for
the sake of completeness and the convenience of the reader.

We show in Section 3 that—up to a multiplicative constant—there can be
at most one measure on self-avoiding loops that is conformally invariant and
satisfies restriction. This is a consequence of an explicit formula for

(2) μU(� surrounds 0 but does not stay in S)

for any simply connected domain S ⊂ U containing 0. This formula was first
derived in [22, Proposition 3] using Loewner’s theory of slit mappings. We give
a new proof which is entirely elementary. First, we derive from the additivity
of measures, conformal invariance, and restriction an explicit formula for

μU
(
� surrounds 0 but does not stay in

{
|z| < e−x

})
, x > 0.

Then we use Taylor’s formula to derive an expression for (2) from it.
In Section 4, we briefly introduce Schramm Loewner evolution (SLE) and

show how chordal SLE8/3 and Schramm’s formula can be used to obtain a
measure on boundary bubbles encircling an interior point. The basic idea is
to condition chordal SLE8/3 in the upper half-plane from x to ∞ to pass to
the right of i and then let x → −∞. We show that the limiting object exists
and that this measure, Bub(i), transforms like a quadratic differential, see
Theorem 6.

Boundary bubbles, which do not have to encircle a given interior point, have
been introduced in [13], see also [12, Section 5.5]. There, boundary bubbles
arise as limits of outer boundaries of Brownian excursions as the excursion
endpoints approach each other. The construction in these references leads to
a σ-finite measure Bub on boundary bubbles. Bub(i) then is the restriction of
Bub (or rather a suitable multiple thereof) to boundary bubbles encircling i.
However, we do not use this relationship in this paper. Instead, we exhibit
a Bessel-type process θt on [0, π] which serves as driving function for the
Loewner equation. If θ0 > 0, we get chordal SLE8/3 conditioned to pass to
the right of i, if θ0 = 0, we get boundary bubbles encircling i.

The original construction of the conformally invariant restriction measure
on self-avoiding loops in [22] is based on a conformally invariant measure on
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Brownian loops that had been introduced and studied in [15]. By consider-
ing outer boundaries of Brownian loops, Werner obtains a measure on self-
avoiding loops from it. However, the asymmetry of the construction, between
the inside and the outside, requires an additional argument to check whether
the measure on outer boundaries is invariant under inversion relative to an
interior and an exterior point. For this part of the proof, SLE8/3-boundary
bubbles are used in [22].

We integrate over boundary bubbles encircling an interior point in Section 5
to obtain a measure on loops. This idea of obtaining loop measures from
boundary bubble measures goes back to [15], where it is applied to Brownian
bubbles and Brownian loops. Heuristically, the idea is the following: to count
the loops going around the annulus {1 < |z| < ea}, we go along a cross-cut from
the outer boundary component { |z| = ea} to the inner boundary component
{|z| = 1}, and count each loop when we come across it for the first time. When
we encounter a loop for the first time, then the loop is a boundary bubble
(encircling the point 0) if we consider the part of the cross-cut we have already
traversed as part of the boundary of a ring domain. In this way, we can go
from bubble measures to a loop measure.

To express this procedure as a Riemann sum, it is necessary to determine
what the “increments” along the cross-cut are. This boils down to parametriz-
ing the cross-cut. Because the boundary bubble measures Bub(i), Bub and
also the measure on Brownian boundary bubbles all transform like a qua-
dratic differential with respect to certain conformal transformations Φ, the
parametrization must be such that, infinitesimally, the change in parameter
when the cross-cut is mapped by Φ is given by dt = Φ′(x)2 ds. Here x is the
boundary point where the cross-cut emerges. This transformation-rule holds
for any parametrization by “conformal invariant,” for example, by conformal
radius, conformal modulus (as in this paper), or half-plane capacity (as in [22]
and [15]). The combination of integrand (Bub(i)) and integrator (ds) then is
conformally invariant.

A natural measure of the size of a boundary bubble encircling an interior
point p is the conformal radius of the interior of the bubble from p. In Sec-
tion 6, we calculate the distribution of the conformal radius, which turns out
to be a simple expression in the Dedekind η-function, see Theorem 12. Finally,
we use the Koebe 1/4 theorem to relate the conformal radius of a boundary
bubble to the modulus of an annulus containing the bubble, in order to obtain
upper and lower bounds for the measure of boundary bubbles going around
an annulus as a function of the modulus, see Corollary 15.

1.1. Further motivation. As the outline above makes clear, this paper
relies heavily on ideas developed in [13], [15], and [22]. A main motivation for
us to write this paper, was to show in a way that is at once simple and self-
contained that for SLE8/3 “chords,” “bubbles,” and “loops” are obtainable,
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one from the other, in a very intuitive way. Concerning simple loops in 2-
dimensional geometries, Werner measure is a central object and it is desirable
to have multiple approaches to its construction. One approach may lend itself
to more easily investigate certain of Werner measure’s aspects than another,
and differing approaches may motivate different further questions. We close
this section by mentioning two conjectures, one which situates Werner measure
in a larger family of loop-measures, and the other which aims to describe
Werner measure as a scaling limit.

In [10], Kontsevich and Suhov conjecture the existence of a 1-parameter
family of locally conformally covariant measures on loops in Riemann surfaces
with values in a certain determinant bundle. The parameter is the central
charge c from conformal field theory. For c = 0, the bundle becomes trivial,
and the measures are ordinary, scalar-valued measures. The parameter in
the Schramm–Loewner evolution corresponding to central charge 0 is κ =
8/3, and the scalar-valued measure is, in fact, given by Werner measure.
It would be very interesting to construct the measures of Kontsevich and
Suhov for other values of c. In this direction, we note that our construction
for boundary bubbles encircling an interior point also works for values of
κ ∈ (0,4]. However, for κ 	= 8/3 the resulting measures no longer transform
like quadratic differentials so that our further construction of loop measures
from bubble measures no longer applies.

Finally, both conformal field theory and Schramm Loewner evolution grew
out of the desire to better describe and explain the behavior exhibited by
2-dimensional systems of statistical mechanics at criticality. Concerning the
measure under consideration in this paper, it is conjectured to arise as the
scaling limit of a certain model of random self-avoiding polygons on a regular
lattice. To be specific, a self-avoiding polygon (SAP) of length 2n on the
lattice Z2 is a finite sequence ω = (ω0, ω1, . . . , ω2n) of points in Z2 with |ωk+1 −
ωk | = 1, 0 ≤ k < 2n, ω0 = ω2n, and ωj 	= ωk for 0 ≤ j < k < 2n. We call a pair
of consecutive points {ωj , ωj+1} an edge of the polygon. It is known [11], that
if Jn is the number of SAPs of length 2n with ω0 = 0, then

Jn ≈ β2n,

in the sense that limn→∞ lnJn/(2n lnβ) = 1, and where β is the connective
constant of the lattice. If we identify two SAPs ω,ω′ of length 2n if they have
the same set of edges, then each equivalence class [ω] has 4n representatives.
Define a measure μSAP on equivalence classes of SAPs by giving [ω] mass
β−2n. Then the following conjecture for a scaling limit of μSAP is given in
[14, Section 3.4.9] (and also [22, Section 7.1]): If D is a planar domain and N
a positive integer, denote Γ(D,N) the set of all [ω] so that N −1ω is entirely
(including lattice edges) contained in D. Then μSAP on Γ(D,N) converges
weakly (when the curves are rescaled by a factor 1/N ) to λμD , for some scalar
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λ > 0. For example, for all x > 0 we should have

λμD
(
� goes “around”

{
e−x < |z| < 1

})
(3)

= lim
N →∞

μSAP

(
[ω] goes “around”

{
Ne−x < |z| < N

})
.

2. Preliminaries

A Riemann surface is a connected Hausdorff space S together with a col-
lection of charts {Uα, zα} with the following properties: (i) the Uα form an
open covering of S, (ii) each zα is a homeomorphic mapping of Uα onto an
open subset of the complex plane C, (iii) if Uα ∩ Uβ 	= ∅, then zαβ = zβ ◦ z−1

α

is complex analytic on zα(Uα ∩ Uβ).
A loop in a Riemann surface S is a simple closed curve � ⊂ S. More pre-

cisely, a loop is a homeomorphism � from the unit circle S1 into S. We denote
by LS the set of loops in S.

A ring domain in S is a Riemann surface U ⊂ S whose boundary consists
of two components and has genus zero (no handles). In particular, there
exists a conformal map from U onto some annulus {z : R1 < |z| < R2}, where
0 ≤ R1 < R2 ≤ ∞. The number a = logR2/R1 ∈ (0, ∞] is unique and is called
the modulus of the ring domain U . We will write mod(U) = a.

We say a loop � separates the boundary components of a ring domain U
if U \ � consists of two ring domains. We denote by 〈U 〉 the set of all loops
� which separate the boundary components of U . Note that each loop � in a
Riemann surface S separates the boundary components of some ring domain
U in S.

It is a classical result that Riemann surfaces are second countable, [2]. This
has several important consequences. Let S be a Riemann surface, ρ a metric
on S compatible with the complex structure, and define a topology on LS by
taking the sets

B(�, ε) ≡
{

�′ ∈ LS : sup
s∈S1

ρ
(
�(s), �′(s)

)
< ε

}
as a neighborhood basis at � ∈ LS as ε varies over (0, ∞). Because S1 is
compact, this topology on LS depends only on the topology of S and not on
the metric ρ.

Lemma 1. Let S be a Riemann surface.
(i) There exists a countable collection of loops {�n} which is dense in LS .
(ii) There exists a countable collection of ring domains of finite modulus

{Un} such that
⋃

n〈Un〉 = LS .

Proof. Because Riemann surfaces are locally compact and second count-
able, it follows from [4, Satz 31.5] that a Riemann surface S is a Polish space.
Recall that a topological space S is a Polish space if the topology has a count-
able basis and if there exists a complete metric ρ on S which induces the
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topology. The path space of a Polish space is again a Polish space, [21, Sec-
tion 3.4]. Since LS is a subset of the path space of S, it follows that there
exists a countable collection of loops {�n} which is dense in LS .

Consider now the countable collection of ring domains whose boundary
consists of two of the loops from the collection {�n}. We will show that this
collection satisfies (ii): Since both boundary components of each such ring
domain contains more than one point, the region has finite modulus. Next, if
� is a loop in S, then S contains a tubular neighborhood of �, whence � ∈ 〈U 〉
for some ring domain U . Denote U1, U2 the two components of U \ �. By
(i), there exist loops �′, �′ ′ ∈ {�n} such that �′ ∈ 〈U1〉, �′ ′ ∈ 〈U2〉. Then �′, �′ ′

bound a ring domain Ũ and � separates �′, �′ ′. �

From now on, we will ignore the parametrization of a loop. Specifically, we
will identify two loops �, �′ if there exists a homeomorphism ϕ : S1 → S1 such
that �′ = � ◦ ϕ. We will use the same notation, �, for a loop and its equivalence
class, and LS for the set of equivalence classes.

If U,V are ring domains in S and 〈U 〉 ∩ 〈V 〉 	= ∅, then there exists a ring
domain W so that 〈U 〉 ∩ 〈V 〉 = 〈W 〉. In fact, W is the connected component
of U ∩ V whose boundary components are separated by a loop in 〈U 〉 or 〈V 〉.
We will write U ∧ V for this component. If, for convenience, we include the
empty set as a ring domain and set 〈∅ 〉 = ∅, then the collection of sets{

〈U 〉 : U ring domain in S
}

is stable under intersection, and 〈U 〉 ∩ 〈V 〉 = 〈U ∧ V 〉. We write σS for the
σ-algebra of subsets of LS generated by this collection. If U is a ring domain,
then the collection of sets{

〈V 〉 : V ring domain in U such that 〈V 〉 ⊂ 〈U 〉
}

is also stable under intersection. We write σ〈U 〉 for the σ-algebra of subsets of
〈U 〉 generated by this collection. Note that the σ-algebra σU is strictly bigger
than σ〈U 〉.

We recall that any σ-finite measure on σS is uniquely determined by its
values on {〈U 〉 : U ring domain in S}.

Proposition 2. Let S be a Riemann surface. Suppose for each ring do-
main of finite modulus U ⊂ S we are given a finite measure μ〈U 〉 on (〈U 〉, σ〈U 〉)
such that

μ〈U 〉(〈W 〉
)

= μ〈V 〉(〈W 〉
)
,

whenever U,V,W are ring domains with W ⊂ U ∩ V . Then there exists a
unique σ-finite measure μS on (LS , σS) such that the restriction of μS to
σ〈U 〉 equals μ〈U 〉.

Proof. By the remark preceding the theorem, the uniqueness of μS is not in
doubt. To prove the existence of a measure μS with the desired properties, let
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{Un} be a sequence of ring domains in S with the properties from Lemma 1.
Define sets Vn, n ∈ Z+ by V1 = 〈U1〉 and

Vn = 〈Un〉 \
(

〈U1〉 ∪ · · · ∪ 〈Un−1〉
)
, n > 1.

Then the collection { Vn} is a partition of the loop-space LS . Define the trace
σ-algebras

σn =
{
B ∩ Vn : B ∈ σ〈U 〉}.

We now claim that for each n ∈ Z+, Vn ∈ σ〈Un 〉, and that σS consists of the
sets

⋃
n Vn, where Vn ∈ σn. The first claim is obviously true for n = 1. For

n > 1, we simply note that in that case

Vn =
(

· · ·
((

〈Un〉 \ 〈U1 ∧ Un〉
)

\ 〈U2 ∧ Un〉
)

\ · · ·
)

\ 〈Un−1 ∧ Un〉.

Since 〈Un ∧ Um〉 ∈ σ〈Un 〉 for any n,m, we get Vn ∈ σ〈Un 〉. To prove the second
claim, we note that the collection {

⋃
n Vn : Vn ∈ σn} is a σ-algebra. Further-

more, if U is a ring domain in S, then

〈U 〉 =
⋃
n

(
〈U 〉 ∩ Vn

)
=

⋃
n

(
〈U ∧ Un〉 ∩ Vn

)
.

Since 〈U ∧ Un〉 ∈ σ〈Un 〉, the claim follows.
Thus, we can restrict μ〈Un 〉 to σn and define a measure μS on σS by

(4) μS(V ) =
∑

n

μ〈Un 〉(Vn),

where V =
⋃

n Vn, and Vn ∈ σn.
Finally, we show that this measure has the desired property, that is, that

the restriction of the measure μS defined in (4) to σ〈U 〉 equals μ〈U 〉. To this
end, let U be a ring domain in S. Then

〈U 〉 =
⋃
n

(
〈U 〉 ∩ Vn

)
.

It is easy to see that 〈U 〉 ∩ Vn ∈ σ〈U 〉 ∩ σ〈Un 〉. Thus, by assumption,

μS
(

〈U 〉
)

=
∑

n

μ〈Un 〉(〈U 〉 ∩ Vn

)
=

∑
n

μ〈U 〉(〈U 〉 ∩ Vn

)
= μ〈U 〉(〈U 〉

)
.

�

Suppose now that for each Riemann surface S we are given a nondegen-
erate measure μS on (LS , σS). We say that the family {μS } is a conformal
restriction family if it satisfies the properties we listed at the beginning of the
introduction:
• Conformal invariance. If Φ is a conformal map from a Riemann surface S

onto another surface T , then Φ∗μS = μT .
• Restriction. If S is a Riemann surface contained in the surface T , then

μT �σS = μS .
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Note that it is enough to check these properties on ring domains. That is,
conformal invariance is equivalent to the statement that if U is a ring domain
in T , then μS(〈Φ−1(U)〉) = μT (〈U 〉), while restriction is equivalent to the
statement that if U is a ring domain in S, then μT (〈U 〉) = μS(〈U 〉).

3. Uniqueness

The following result, essentially Proposition 3 from [22], shows that the
combination of conformal invariance and restriction specifies the family. The
proof in [22] proceeds by establishing a semi-group property and then bringing
Loewner’s theory of slit mappings to bear, in particular, that compositions
of slit mappings are dense, in an appropriate sense, in the space of conformal
maps. For an introduction to Loewner’s method, see [16] and Chapter 6 of
[1]. We will give a new proof of uniqueness, which is entirely elementary.

Theorem 3 (Werner [22]). Up to a multiplicative constant, there is at most
one conformal restriction family. In fact, if {μS } is a conformal restriction
family, D′ ⊂ D simply connected planar domains not equal to C, and z ∈ D′,
then

(5) μC
(〈

D \ {z}
〉

\
〈
D′ \ {z}

〉)
= c logΦ′(z),

where Φ is the conformal map from D′ onto D fixing z and with positive
derivative there.

Proof. Suppose {μS } is a conformal restriction family, and denote μ the
restriction of the measure μC to those loops that stay in the unit disk {|z| < 1}
and surround 0, that is, μ = μ〈{0<|z|<1} 〉. Then μ specifies the measure of 〈U 〉
for each annulus U = {r < |z| < 1}, where 0 < r < 1. By conformal invariance
and restriction, this determines all measures μS , cf. Proposition 2. Thus, we
need to show that μ is unique up to a multiplicative constant. To this end,
for a loop � ⊂ C, let �max be the maximum modulus of points on the loop,
and set

p(x, y) = μ
(
�max ∈

[
e−y, e−x

))
,

where 0 ≤ x ≤ y. Note that, by definition of μ, only loops which surround 0
contribute to p(x, y). Then, by additivity of the measure μ,

p(x, y) + p(y, t) = p(x, t),

whenever 0 ≤ x ≤ y ≤ t, and, by scale invariance of μ,

p(x, y) = p(0, y − x)

for 0 ≤ x ≤ y. Furthermore, p(0,0) = μ(∅) = 0, and, because μ is nontrivial,
p(0, x) ∈ (0, ∞) for x ∈ (0, ∞). Thus, the function x ∈ [0, ∞) �→ p(0, x) ∈ [0, ∞)
is additive,

p(0, x) + p(0, y) = p(0, x + y),
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and monotone,
p(0, x) ≤ p(0, y), if x ≤ y.

Hence, p(0, x) = λx with

λ = μ
(
�max ∈

[
e−1,1

))
.

Consider now a simply connected domain D which is a subset of the unit
disk and contains the point 0. Then

μ(� � D) = lim
ε↘0

μ
(
�max ∈ [ε,1), � � D

)
(6)

= lim
ε↘0

(
μ
(
�max ∈ [ε,1)

)
− μ

(
� ⊂ D,�max ∈ [ε,1)

))
.

Denote ΦD the conformal map from D onto the unit disk U = {|z| < 1},
normalized by ΦD(0) = 0 and Φ′

D(0) > 0. By restriction and conformal in-
variance,

μ
(
� ⊂ D,�max ∈ [ε,1)

)
= μ

(
� ⊂ U, � � ΦD

({
|z| < ε

}))
.

If m = min{|ΦD(z)| : |z| = ε}, M = max{ |ΦD(z)| : |z| = ε}, and A � B de-
notes the symmetric difference of two sets A,B, then{

� ⊂ U, � � ΦD

({
|z| < ε

})}
�

{
�max ∈

[
Φ′

D(0)ε,1
)}

(7)

=
{
�max < Φ′

D(0)ε, � � ΦD

({
|z| < ε

})}
∪

{
�max ≥ Φ′

D(0)ε, � ⊂ ΦD

({
|z| < ε

})}
⊂

{
�max ∈

[
m,Φ′

D(0)ε
)}

∪
{
�max ∈

[
Φ′

D(0)ε,M
)}

=
{
�max ∈ [m,M)

}
.

By Taylor’s theorem, both M and m equal Φ′
D(0)ε + o(ε). Using the scale

invariance of μ, it is now easy to see that

(8) μ
(
�max ∈ [m,M)

)
= o(1).

From (6) and (8), we finally get

μ(� � D) = lim
ε↘0

(
μ
(
�max ∈ [ε,1)

)
− μ

(
�max ∈

[
Φ′

D(0)ε,1
))

+ o(1)
)

(9)

= λ logΦ′
D(0).

Equation (5) then follows from conformal invariance.
It remains to show that knowing μ on the events {� � D} for all simply

connected subdomains of the unit disk containing 0 specifies μ(� ⊂ {r < |z| <
1}) for each r ∈ (0,1). So, let r ∈ (0,1) be given. Consider the set of Jordan
arcs a in the closed annulus {r ≤ |z| ≤ 1} whose interior å is contained in the
open annulus {r < |z| < 1} and whose two endpoints lie on different boundary
components of the annulus. We call such an arc a cross-cut. By a separability
argument (like the one above for loops on Riemann surfaces), it is easy to see
that there exists a countable collection of cross-cuts {ak } such that � ∈ 〈{r ≤
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|z| < 1}〉 if and only if � ⊂ U and the intersection of � with ak is nonempty,
for each k. Thus, by countable additivity of the measure μ,

μ
(〈{

r ≤ |z| < 1
}〉)

= lim
N →∞

μ

(
N⋂

n=1

{� ∩ an 	= ∅}
)

.

By the inclusion/exclusion formula, the expression in the limit can be written
using terms of the type μ(

⋃l
k=1{� ∩ ank

	= ∅ }), where 1 ≤ l ≤ N , 1 ≤ nk ≤ N .
Furthermore, if D is the component of U \ (an1 ∪ · · · ∪ anl

) which contains the
point 0, then

l⋃
k=1

{� ∩ ank
	= ∅ } = {� � D}.

Finally, using for example the continuity of x �→ p(0, x), it is easy to see that
μ(〈{r ≤ |z| < 1}〉) = μ(〈{r < |z| < 1} 〉), which concludes our argument. �

Remark 4. The expression for μ(� � D) as a limit is reminiscent of the
definition of reduced extremal distance, see [1, Section 4-14], and reduced
modulus, see [20, Section 3.2]. In fact, our result shows that, up to a fixed
multiplicative constant, μ(� � D) is equal to the reduced modulus of the set
of loops which surround 0, stay in U, but not in D.

4. Boundary bubbles encircling an interior point

We consider chordal SLEκ in the H from x ∈ R to ∞. Following the nota-
tion in [12], let a = 2/κ and for each z ∈ H denote gt(z) the solution to the
chordal Loewner equation

(10) ∂tgt(z) =
a

gt(z) − Ut
, g0(z) = z,

where Ut is a linear Brownian motion with E[U2
t ] = t. The solution exists up to

time Tz = sup{t : mins∈[0,t] |gs(z) − Us| > 0} and if Ht = {z : Tz > t}, then gt

is the conformal map from Ht onto H normalized by gt(z) = z+at/z+o(1/|z|),
z → ∞. Furthermore, with probability 1, the set Kt = H \ Ht is generated by a
curve γ : [0, ∞] → H in the sense that Kt is the complement of the unbounded
component of H \ γ[0, t], see [18]. We call the random curve γ chordal SLEκ

in H from x = U0 to ∞. If κ ≤ 4, then γ is a.s. simple, γ[0, t] = Kt, and
γ(0, ∞) ⊂ H.

Let κ = 8/3, that is, a = 3/4, and denote Px the distribution of the random
curve γ. By a result of Schramm, [19],

(11) Px(γ passes right of i) =
1
2

(
1 +

x√
1 + x2

)
≡ q(x).

It is well known that SLE8/3 satisfies conformal restriction in the sense that if
D is a simply connected subdomain of H containing boundary neighborhoods
of x and ∞ in H, then Px(· |γ ⊂ D) = Φ∗

DPx, where ΦD is a conformal map
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from D onto H fixing x and ∞, and Φ∗
DP denoted the pull-back of the measure

P under ΦD. This property (and γ being an SLE) implies

(12) Px(γ ⊂ D) =
(
Φ′

D(x)Φ′
D(∞)

)5/8
,

where the derivative at z = ∞ is calculated relative to the local parameter
u = −1/z, see [13]. Furthermore, if D,D′ are ring domains in H of the same
modulus containing boundary neighborhoods of ∞ in H, ΦD,D′ the conformal
map from D onto D′ fixing ∞, D containing a boundary neighborhood of x
in H and D′ containing a boundary neighborhood of ΦD,D′ (x) in H, then

(13) Px(γ ∈ D) =
(
Φ′

D,D′ (x)Φ′
D,D′ (∞)

)5/8
PΦD,D′ (x)

(
γ ∈ D′).

Equation (13) was first established by an inclusion/exclusion argument in [6].

Corollary 5. If D is a simply connected subdomain of H containing i
and a boundary neighborhood of ∞ in H, and if ΦD is the conformal map
from D onto H fixing i and ∞, then

(14) lim
x→ − ∞

Px(γ ⊂ D|γ passes right of i) = Φ′
D(∞)2.

If D,D′ ⊂ H are ring domains of the same modulus each containing a bound-
ary neighborhood of ∞ in H and so that i /∈ D, i /∈ D′, and if ΦD,D′ is the
conformal map from D onto D′ fixing ∞, then

(15)
limx→ − ∞ Px(γ ⊂ D|γ passes right of i)
limx→ − ∞ Px(γ ⊂ D′ |γ passes right of i)

= Φ′
D,D′ (∞)2.

Proof. Both identities follow readily from equations (11), (12), and (13).
We sketch the argument for (15). Using (13) and an inclusion/exclusion ar-
gument it follows that

Px(γ ⊂ D,γ passes right of i)

=
(
Φ′(x)Φ′(∞)

)5/8
PΦ(x)

(
γ ⊂ D′, γ passes right of i

)
,

where Φ = ΦD,D′ . Whence, from (11),

Px(γ ⊂ D|γ passes right of i)

=
(
Φ′(x)Φ′(∞)

)5/8
PΦ(x)

(
γ ⊂ D′ |γ passes right of i

)q(Φ(x))
q(x)

.

Equation (15) now follows from

lim
x→ − ∞

(
Φ′(x)Φ′(∞)

)5/8 = 1,

and

lim
x→ − ∞

q(Φ(x))
q(x)

= Φ′(∞)2. �
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Let (gt, t ≥ 0) be the solution to the chordal Loewner equation (10) for SLEκ

and κ ≤ 4, i.e. a ≥ 1/2. With probability 1, i /∈ γ(0, ∞). Thus, xt = �gt(i)
and yt = �gt(i) exist and we may define ft(z) by

ft(z) =
gt(z) − xt

yt
.

Then ft is the conformal map from H \ γ(0, t] onto H fixing ∞ and i. We also
introduce θt ∈ [0, π] via

cotθt =
xt − Ut

yt
.

Then

dxt =
a

yt
sin2 θt cotθt dt,

dyt = − a

yt
sin2 θt dt,

dθt = (1 − 2a)
sin4 θ

y2
t

cotθ dt − sin2 θ

yt
dBt,

here Ut = −Bt, and

∂tft =
sin2 θ

y2
t

(
1 + f2

t

)
· a

ft + cotθt
.

We now change time to s = s(t) such that ds = sin4 θt/y2
t dt. Taking κ =

8/3 (a = 3/4), this leads to the equations

(16) dθt = − 1
2

cotθt dt − dBt =
1
4
(tanθ/2 − cotθ/2)dt − dBt

and

(17) ∂tft(z) =
1 + ft(z)2

sin2 θt

· 3/4
ft(z) + cotθt

, f0(z) = z,

where, by a slight abuse of notation, we used the same symbols for the time-
changed processes. This time-change is familiar. Whereas equation (10) cor-
responds to parametrizing the curve γ by half-plane capacity from infnity,
equation (17) corresponds to parametrizing by conformal radius from i, see
[11]. Indeed,

Υt ≡
∣∣f ′

t(i)
∣∣−1 =

�gt(i)
|g′

t(i)|
is the conformal radius of H \ γ(0, t] from i in the following sense. Denote h
the homography

(18) w �→ h(w) = i(1 + w)/(1 − w),

mapping the unit disk U onto H and sending 0 to i. Define Φ by Φ(w) = Υt ·
(h−1 ◦ ft ◦ h)(w). Then Φ maps the slit disk h−1(H \ γ(0, t]) ⊂ U conformally
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onto {|z| < Υt}, so that Φ(0) = 0 and Φ′(0) = 1. On the other hand, it follows
from (17) that Υt satisfies the ODE

Υ̇t = − 3
2
Υt, Υ0 = 1,

whence

(19) Υt = e− 3
2 t.

We also note that the time-changed process θ is a Legendre process of
index ν = −1, see [8]. It behaves at the boundary points 0 and π like a
Bessel process of dimension 0. In particular, θ is absorbed once it reaches
the boundary and the time of absorption is the conformal radius in i of the
component of H \ γ(0, ∞) that contains i.

Using Girsanov’s theorem, we condition γ to pass to the right of i. Note
that q(x) = sin2(θ/2), if x = − cotθ. Thus, conditioning introduces an ad-
ditional drift term (∂/∂θ) ln sin2 θ/2 = cotθ/2 to the stochastic differential
equation (16), giving

(20) dθt =
1
4
(tanθ/2 + 3cotθ/2)dt − dBt.

The conditioned process is a generalized Legendre process of index (ν,μ) =
(1, −1), and its transition density can be written down explicitly using Jacobi
polynomials, see [8]. Based on the expression for the density it can be shown
that the conditioned process is a Feller process, similar to the proof of the
Feller property for Bessel processes in [17]. The boundary behavior of the
conditioned process at θ = 0 is that of a 4-dimensional Bessel process, at θ = π
it is that of a 0-dimensional Bessel process. In particular, if the conditioned
process starts at θ0 = 0 and τφ = inf{t : θt = φ}, φ ∈ (0, π], then

(21)
∫ τφ

0

sin−2(θt)dt < ∞, a.s.

for any φ ∈ (0, π), see [12].

Theorem 6. Let θt be a process that satisfies the SDE (20) with θ0 = 0
on some probability space (Ω, F , P ). Then the solution ft to the equation (17)
for the driving function θt exists on the interval [0, τπ). Furthermore, there is
a simple curve γ : (0, τπ) → H with

lim
t↘0

γt = lim
t↗τπ

γt = ∞,

such that ft maps H \ γ(0, t] conformally onto H. If we set γ0 = ∞, then
γ[0, τπ) is the boundary of a Jordan domain containing i. Finally, if D ⊂ H
is a simply connected domain that contains i and a boundary neighborhood of
∞ in H, then

(22) P (γ ⊂ D) = Φ′
D(∞)2,
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where ΦD is the conformal map from D onto H fixing i and ∞, and if D,D′

are ring domains in H of the same modulus containing boundary neighborhoods
of ∞ in H and so that i /∈ D, i /∈ D′, then

(23) P (γ ⊂ D) = Φ′
D,D′ (∞)2P

(
γ ⊂ D′),

where ΦD,D′ is the conformal map from D onto D′ fixing ∞.

Proof. The existence of the solution (fs : s ∈ [0, t]) to (17) for t ∈ [0, τπ)
follows from (21). Just as for the chordal Loewner equation (10), there is a
growing, relatively closed set Kt such that ft maps H \ Kt conformally onto H.
It is also clear from (17) that ft(i) = i. For φ ∈ (0, π), write

Kτφ
= Kδ∧τφ

∪ f −1
δ∧τφ

(
fδ∧τφ

(Kτφ
\ Kδ∧τφ

)
)
.

It follows from the flow property that if K̃τφ −δ∧τφ
≡ fδ∧τφ

(Kτπ \ Kδ∧τφ
), and

f̃t is the solution of (17) with driving function θ̃t = θt+δ∧τφ
, then f̃τφ −δ∧τφ

is the conformal map from H \ K̃τφ −δ∧τφ
onto H, that leaves i and ∞ fixed.

From the Markov property of θt it follows that θ̃t is the driving function of
an SLE8/3, started at x = − cot θ̃0, conditioned to pass right of i. Hence, w.p.
1, K̃τφ −δ∧τφ

is given by a simple curve. Then Kτφ
\ Kδ∧τφ

, as the conformal
image of a simple curve, is given by a simple curve, and, letting δ → 0, we
get, w.p. 1, Kτφ

is given by a simple curve.
We denote this curve by γ. To prove (22), consider the bounded martingale

Mδ ≡ P
(
γ ⊂ D|γ[0, δ ∧ τφ]

)
= 1

{
γ(0, δ ∧ τφ) ⊂ D

}
EP

[
1
{
γ[δ ∧ τφ, τπ) ⊂ D

}
|γ[0, δ ∧ τφ]

]
.

Then, a.s., Mδ → M0 = P (γ ⊂ D) as δ → 0. On the other hand, applying the
flow and Markov property as in the preceding paragraph, we have

EP
[
1
{
γ[δ ∧ τφ, τπ) ⊂ D

}
|γ[0, δ ∧ τφ]

]
= Pxδ

(
γ ⊂ fδ∧τφ

(D)
)

=
(
Ψ′

δ(xδ)Ψ′
δ(∞)

)5/8
q
(
Ψδ(xδ)

)
/q(xδ),

where xδ = − cotθδ∧τφ
and Ψδ is the conformal map from fδ∧τφ

(D) onto H
fixing i and ∞. It is straightforward to see that (Ψδ, δ > 0) is a normal
family of conformal maps and Ψδ → ΦD as δ → 0 in the sense of Cartheodory
convergence. It then follows that

Ψ′
δ(xδ)Ψ′

δ(∞) → 1, q
(
Ψδ(xδ)

)
/q(xδ) → Φ′

D(∞)2

as δ → 0. Since, a.s., 1{γ(0, δ ∧ τφ) ⊂ D} → 1 as δ → 0, equation (22) now
follows.

The proof for (23) is analogous and is omitted. �
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We call the curve γ, under P , a boundary bubble attached at ∞ and encir-
cling i, and denote its distribution by Bub(i). Equations (22) and (23) then
say that Bub(i) is a measure on boundary bubbles which transforms like a
quadratic differential.

Remark 7. Using Schramm’s formula for chordal SLEκ we can construct
in the same way a bubble measure for other values of κ ≤ 4. However, for
κ 	= 8/3 this measure does not transform like a quadratic differential. The
method we employ in the next section to construct a loop measure from a
bubble measure thus does not extend to other values of κ.

Remark 8. The use of Schramm’s formula in this section is similar to its
use in [9] to study Brownian bubbles and their expected area.

5. Loop measure

Denote U a ring domain with boundary components C1,C2. A cross-
cut of U from C1 to C2 is a homeomorphism γ : (0, T ) → U for which γ0 ≡
limt↘0 γt and γT ≡ limt↗T γt exist and belong to C1 and C2, respectively.
Then mod(U \ γ[0, t]) is a continuous, strictly decreasing function of t, taking
the value a = mod(U) for t = 0, and 0 for t = T . In particular, we may
parameterize the cross-cut by conformal modulus, so that

mod
(
U \ γ[0, t]

)
= a − t, t ∈ [0, a].

For a ≥ 0, let ρ = ea and set

Ua = H \
{

z :
∣∣∣∣z − i

ρ2 + 1
ρ2 − 1

∣∣∣∣ ≤ 2ρ

ρ2 − 1

}
.

Then z �→ (i + z)/(i − z) maps Ua conformally onto {1 < |z| < ρ}, so that
mod(Ua) = a. Let γ be a cross-cut of Ua starting from ∞, parameterized by
conformal modulus. Let ϕt,a be the conformal map from Ua \ γ[0, t] onto Ua−t

so that ϕt,a(γt) = ∞. We define a measure μa on 〈Ua〉 by

(24) μa =
∫ a

0

ϕ∗
t,a

(
Bub(i) �

{
� ⊂ Ua−t ∪ { ∞}

})
dt.

Theorem 9 (Werner measure). If U is a ring domain in Ua so that 〈U 〉 ⊂
〈Ua〉, then

(25) μa

(
〈U 〉

)
=

∫ mod(U)

0

Bub(i)
(
� ⊂ Ub ∪ { ∞}

)
db.

In particular, the definition of μa is independent of the cross-cut γ used in
(24), μa(〈U 〉) = μa′ (〈U 〉) for any a′ > a, and there exists a unique conformal
restriction family {μS } with μ〈Ua 〉 = μa for each a > 0.
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Proof. Let Ũt = ϕt(U \ γ(0, t]). Then, by definition,

(26) μa

(
〈U 〉

)
=

∫ a

0

Bub(i)
(
� ⊂ Ũt ∪ { ∞}

)
dt.

Note that if U is strictly contained in Ua, then the integrand is nonzero only
for a part of the interval of integration. In fact, without changing the value
of the integral we may restrict the integration to those t for which γt ∈ U and
there exists a loop � ∈ 〈U 〉 so that γ(0, t] ∩ � = ∅. This set of times t consists
of at most countably many open subintervals of (0, a). If (s, s′) is such a
subinterval, then γ(s, s′) is an open Jordan arc in U which begins and ends
on the boundary of U . Except for the last (with respect to the natural time
ordering) of these Jordan arcs they all begin and end on the same boundary
component. The last Jordan arc is a crossing of U .

Suppose now that t is contained in one of these subintervals, say (s, s′). If
b is the conformal modulus of Ũt, denote ψ the conformal map from Ũt onto
Ub, fixing ∞. By (23),

(27) Bub(i)
(
� ⊂ Ũt ∪ {∞}

)
= Bub(i)

(
� ⊂ Ub ∪ {∞}

)
ψ′(∞)2.

Furthermore, for t ∈ (s, s′), b is a strictly decreasing function of t. In fact,

(28) db = −ψ′(∞)2 dt,

as follows from the Loewner equation in doubly connected domains, see [5,
Theorem 3.2]. Equations (26), (27), and (28) now imply (25). The two state-
ments following (25) are immediate consequences of (25), and the existence
of a conformal restriction family follows from Proposition 2. �

Remark 10. As the proof shows, it is the fact that the bubble measure
transform like a quadratic differential which renders the integral in the defini-
tion of μa independent of the choice of cross-cut. A more conceptual argument
is as follows: Quadratic differentials span the cotangent space of the moduli
space, which is 1-dimensional for ring domains. The integration in the defi-
nition of μa is the pairing of a chain (the path in moduli space induced by
the cross-cut) and a co-chain (the pull-back of the measure-valued quadratic
differential given by the bubble measure). This pairing is well-defined and
gives the same value (measure) for all chains in the same homology class. The
cross-cuts of a ring domain induce the same chain in moduli space.

6. The conformal radius of boundary bubbles

Because of (25) it would be of great interest to have an explicit formula
for f(a) ≡ Bub(i)(� ⊂ Ua ∪ { ∞}). Based on physical arguments using the
O(n)-model, Cardy conjectured a formula for the total mass |μa| from which
the desired formula would follow by differentiation [7]. On the other hand,
different mathematical proofs establishing the asymptotics of f as a ↘ 0 have
been given in [22] and [5]. The asymptotics these authors found agree with
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the asymptotics that would follow from Cardy’s formula. In this section, we
compute the distribution of the conformal radius of boundary bubbles under
the measure Bub(i) and deduce upper and lower bounds for f(a) from it.

For a boundary bubble � attached at infinity and encircling i in H, denote
I(�) the interior of the bubble, that is, the component of H \ � containing i,
and r(�) the conformal radius of I(�) from i.

Lemma 11. Let q = e−a. For a boundary bubble � attached at infinity and
encircling i the following holds:
• If r(�) ≥ 4q, then � ⊂ Ua ∪ { ∞}.
• If � ⊂ Ua ∪ {∞}, then r(�) ≥ q.

Proof. Denote f the unique conformal map from I(�) onto H keeping i and
∞ fixed. Then |f ′(i)|(h−1 ◦ f −1 ◦ h) is conformal on the unit disk, fixes 0, and
has derivative 1 there. Thus, by the Koebe 1/4 theorem, the image contains
the disk {|z| < 1/4}. Since r(�) = |f ′(i)| −1, it follows that

h−1
(
I(�)

)
⊃

{
|z| < r(�)/4

}
.

Whence r(�) ≥ 4q implies I(�) ⊃ h({ |z| < q}) and we get the first statement.
The second statement is a consequence of the monotonicity of the conformal

radius: If I(�) ⊂ I(�′), then r(�) ≤ r(�′). �

Theorem 12. For q ∈ (0,1), we have

Bub(i)
({

� : r(�) ≥ q
})

=
∞∏

n=1

(
1 − q

2n
3

)3
.

Proof. Consider the infinitesimal generator L of the conditioned process
θt,

L =
1
2

d2

dθ2
+

[
3
4

cot
θ

2
+

1
4

tan
θ

2

]
d

dθ
.

Its eigenfunctions and eigenvalues are

pn(θ) = P (1,−1)
n (cosθ), λn = − 1

2
n(n + 1), n = 0,1,2, . . . ,

where P
(ν,μ)
n denotes the nth Jacobi polynomial of index (ν,μ), given, for

example, by Rodrigues’ formula

(29) (1 − x)ν(1 + x)μP (ν,μ)
n (x) =

(−1)n

2nn!
dn

dxn

[
(1 − x)n+ν(1 + x)n+μ

]
,

see [3, p. 99]. The eigenfunctions for the adjoint operator L∗ are given by
p∗

n(θ) = pn(θ)2 sin3 θ
2 cos−1 θ

2 , and∫ π

0

pn(θ)p∗
m(θ)dθ =

2n + 2
2n2 + n

δmn.
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It follows readily from (29) that p0(π) = 1 (in fact, p0 ≡ 1), while pn(π) = 0
for all n ≥ 1. Since the conditioned process is absorbed at θ = π, it follows
that the transitiondensity pt(θ, θ′) of the conditional process to go from θ at
time zero to θ′ at time t, does not involve p0 and is given by

(30) pt

(
θ, θ′) =

∞∑
n=1

e−tn(n+1)/2 2n2 + n

2n + 2
pn(θ)p∗

n

(
θ′).

From the definition of Bub(i) from P and (19) it follows that

(31) Bub(i)
({

� : r(�) ≥ q
})

= P

(
exp

(
− 3

2
τπ

)
≥ q

)
,

where, we recall, τπ is the lifetime of the conditioned process θt. As the
conditioned process starts at θ = 0, we need to calculate

P (τπ > t) =
∫ π

0

pt

(
0, θ′)dθ′.

From (29), we get pn(0) = P
(1,−1)
n (1) = n + 1 as well as∫ π

0

p∗
n

(
θ′)dθ′ =

∫ 1

−1

P (1,−1)
n (x)

1 − x

1 + x
dx(32)

=
∫ 1

−1

(−1)n

2nn!
dn

dxn

[
(1 − x)n+1(1 + x)n−1

]
dx

= (−1)n+1 2
n

.

Thus,

P (τπ > t) =
∞∑

n=1

(−1)n−1(2n + 1)e−tn(n+1)/2(33)

= 1 −
∞∏

n=1

(
1 − e−t

)3
,

where the last equality follows from Jacobi’s triple product formula, see [3,
(10.4.9)]. Equations (31) and (33) now imply the theorem. �

Remark 13. Applying Jacobi’s triple product formula we obtain an alter-
native expression for the distribution of the conformal radius,

(34) Bub(i)
({

� : r(�) ≥ q
})

=
∞∑

n=0

(−1)n(2n + 1)qn(n+1)/3.

The Dedekind η-function is given by

η(s) = q1/24
∞∏

n=1

(
1 − qn

)
, |q| < 1,
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where q = e2πis. Thus, we may also write

(35) Bub(i)
({

� : r(�) ≥ q3/2
})

= q−1/8η(s)3.

Corollary 14. We have

(36) Bub(i)
({

� : r(�) ≤ q
})

∼ 3q2/3, as q ↘ 0,

and

(37) Bub(i)
({

� : r(�) ≥ e−a
})

∼
(

3π

a

)3/2

exp
(

− 3π2

4a

)
, as a ↘ 0.

Proof. Equation (36) follows immediately from (34). Next, recall that
η(−1/s) =

√
s
i η(s), see [3, Theorem 10.12.8]. Thus, from (35) we get

(38) Bub(i)
({

� : r(�) ≥ q3/2
})

= q−1/8

(
3π

a

)3/2

e− 3π2
4a

∞∏
n=1

(
1 − e− 6π2n

a

)3
.

�

Corollary 15. For q = e−a ∈ (0,1) we have

(39) Bub(i)
(
� ⊂ Ua ∪ {∞}

)
≤

∞∏
n=1

(
1 − q

2n
3

)3
,

and for q = e−a ∈ (0,1/4), we have

(40)
∞∏

n=1

(
1 − (4q)

2n
3

)3 ≤ Bub(i)
(
� ⊂ Ua ∪ { ∞}

)
.

Proof. The bounds follow from Theorem 12 and Lemma 11. �

Remark 16. We know from [22, Lemma 19] that

Bub(i)
(
� ⊂ Ua ∪ { ∞}

)
∼ c

a2
exp

(
− 5π2

4a

)
, as a ↘ 0

for some constant c > 0. Thus, the probability for a boundary bubble to stay
in a very “thin” annulus of modulus a decays at a faster rate as a ↘ 0 than the
probability that a boundary bubble encircling i encloses a region of conformal
radius e−a. A heuristic indication as to why this is so is the fact that the
slit unit disk {|z| < 1} \ [

√
δ,1) for small δ has conformal radius from 0 of the

order 1 − O(δ). Thus, boundary bubbles in the unit disk of conformal radius
1 − δ can “venture far outside” the annulus {1 − δ < |z| < 1}.
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