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MAPS THAT TAKE GAUSSIAN MEASURES TO GAUSSIAN
MEASURES

DANIEL W. STROOCK

For Don Burkholder, with apologies for what may be abstract nonsense

Abstract. Given a pair of separable, real Banach spaces E and
F and a centered Gaussian measure μ on E, one can ask what

sort of Borel measurable maps Φ : E −→ F map μ to a centered

Gaussian measure on F . Obviously, a sufficient condition is that

Φ be linear. On the other hand, linearity is far more than is really

needed. Indeed, it suffices to know that Φ has the property that

Φ

(
x1 + x2√

2

)
=

Φ(x1) + Φ(x2)√
2

for W 2-almost every (x1, x2) ∈ E2. In this article, I will first prove
a structure theorem which shows that any map Φ which satisfies

this property arises from a linear map on the Cameron–Martin

space associated with μ on E. I will then investigate which linear

maps on the Cameron–Martin space determine a Φ, and finally I

will discuss some of the properties of Φ which reflect properties
of the linear map from which it is determined.

1. Abstract Wiener spaces

In this section, I will summarize a few facts about Gaussian measures on
a Banach space. My treatment derives from L. Gross’s theory of abstract
Wiener space. For more details, I refer the reader to [2], [5], or Chapter 8
in [6]. In particular, it is important to know that any non-degenerate, centered
Gaussian measure on a separable, real Banach space can be realized as the
measure in an abstract Wiener space.

Received May 25, 2010; received in final form November 5, 2010.

2010 Mathematics Subject Classification. 46G12, 60B11.

1343

c©2012 University of Illinois

http://www.ams.org/msc/


1344 D. W. STROOCK

I will call the pair (E,H) a potential abstract Wiener space if H is a real,
separable Hilbert space, E is a real separable Banach space, and H is contin-
uously embedded in E as a dense subspace. The following lemma summarizes
some elementary facts about potential abstract Wiener spaces.

Lemma 1.1. Let (H,E) be a potential abstract Wiener space. For each x∗ ∈
E∗ there exists a unique hx∗ ∈ H with the property that 〈h,x∗ 〉 = (h,hx∗ )H

for all h ∈ H . Moreover, x∗ ∈ E∗ �−→ hx∗ ∈ H is a continuous, one-to-one,
linear map whose range is dense, and, as a map from E∗ into E, x∗ � hx∗ is
continuous. Finally, {hx∗ : x∗ ∈ E∗ } contains an orthonormal basis for H .

Given a potential abstract Wiener space (H,E), the triple (H,E, W ) is
called an abstract Wiener space if W is a Borel probability measure on E
with the property that, for each x∗ ∈ E∗, the random variable x � 〈x,x∗ 〉
under W is a centered Gaussian with variance ‖hx∗ ‖2

H . Equivalently, the
Fourier transform Ŵ of W is given by

Ŵ
(
x∗)

= E
W [

e
√

−1〈x,x∗ 〉] = e− ‖hx∗ ‖2
H

2 for x∗ ∈ E∗.

The Hilbert space H in (H,E, W ) is called the Cameron–Martin space asso-
ciated with W on E.

Although the uniqueness of W is obvious, its existence is a highly non-
trivial matter. Nonetheless, for each H there always exists an E on which
there is a W for which it is the Cameron–Martin space (i.e., (H,E, W ) is an
abstract Wiener space). When N = dim(H) < ∞ and one thinks of H as R

N

with some Hilbert norm, all choices of E can also be identified with R
N , and

W is the distribution of

(ξ1, . . . , ξN ) ∈ R
N −→

N∑
k=1

ξkhk under γN
0,1,

where γ0,1 is the standard Gauss measure on R and {hk : 1 ≤ k ≤ N } is an
orthonormal basis for H . When dim(H) = ∞, one has the following criterion
for the existence of W .

Lemma 1.2. Let (H,E) be an infinite dimensional (i.e., dim(H) = ∞)
potential abstract Wiener space. Then there exists a W on E for which
(H,E, W ) is an abstract Wiener space if there exists an orthonormal basis
{hk : k ≥ 1} in H for which the series

(1.1)
∞∑

k=1

ξkhk converges in E for γZ
+

0,1-almost every (ξ1, . . . , ξk, . . . ) ∈ R
Z
+
.

Conversely, if (H,E, W ) is an abstract Wiener space, then (1.1) holds for
every choice of orthonormal basis, the convergence is in Lp(γZ

+

0,1 ;E) for every
p ∈ [1, ∞), and W is the distribution of the series under γZ

+

0,1 .
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Given an abstract Wiener space (H,E, W ), there is a unique, linear iso-
metric map h ∈ H �−→ I(h) ∈ L2(W ;R), known as the Paley–Wiener map,
such that I(hx∗ ) = 〈·, x∗ 〉 W -almost surely for each x∗ ∈ E∗. Indeed, the ex-
istence and uniqueness of I follow immediately from the facts that ‖hx∗ ‖H is
the L2(W ;R)-norm of 〈·, x∗ 〉 and that {hx∗ : x∗ ∈ E∗ } is dense in H . More-
over, since 〈·, x∗ 〉 is a centered Gaussian random variable under W for each
x∗ ∈ E∗, it follows that I(h) under W is a centered Gaussian random vari-
able with variance ‖h‖2

H for each h ∈ H . Hence, {I(h) : h ∈ H} is a closed,
centered Gaussian family in L2(W ;R).

Recall the (unnormalized) Hermite polynomials Hn, n ≥ 0, given by

Hn(ξ) = (−1)ne
ξ2
2

dn

dξn
e− ξ2

2 , ξ ∈ R.

Familiar facts about these polynomials are that

(1.2) (Hm,Hn)L2(γ0,1;R) = m!δm,n and
dHm

dξ
= mH(m−1)+ ,

and the span of {Hn : n ≥ 0} is dense in L2(γ0,1;R). Now suppose that
(H,E, W ) is an abstract Wiener space with dim(H) = ∞, choose an or-
thonormal basis {hk : k ≥ 1} in H , and, for α = (α1, . . . , αk, . . . ) ∈ N

Z
+

with
‖α‖ =

∑∞
k=1 αk < ∞, define

Hα =
∞∏

k=1

Hαk

(
I(hk)

)
.

Then
(Hα, Hβ)L2(W;R) = α!δα,β ,

where α! =
∏∞

k=1 αk!. Moreover, because {Hn : n ≥ 0} is an orthogonal basis
for L2(γ0,1;R), one can use the results in Lemma 1.2 to check that {Hα : ‖α‖ <
∞} is an orthogonal basis in L2(W ;R). In particular, if

Z(n)(W ) = span
(

{ Hα : ‖α‖ = n}
)L2(W;R)

,

then Z(m)(W ) ⊥ Z(n)(W ) for m �= n and L2(W ;R) =
⊕∞

n=0 Z(n)(W ). This is
Wiener’s decomposition of L2(W ;R) into spaces of homogeneous chaos. It is
important to recognize that Z(n)(W ) does not depend on the particular choice
of orthonormal basis {hk : k ≥ 1} in terms of which it is defined. In particular,
Z(0)(W ) consists of the W -almost surely constant elements of L2(W ;R) and
Z(1)(W ) = {I(h) : h ∈ H}.

Now choose {x∗
k : k ≥ 1} ⊆ E∗ so that {hk : k ≥ 1} is an orthonormal basis

for H when hk = hx∗
k
, and use this basis and the choice of 〈 ·, x∗

k 〉 to represent
I(hk) to define the Hα’s. Clearly, each ϕ from the span of the Hα’s is a
polynomial in variable { 〈·, x∗

k 〉 : αk �= 0}, and therefore ∂kϕ ≡ d
dtϕ(x+ thk)|t=0
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exists and is a polynomial function of the same variables as ϕ. Moreover, from
(1.2) one sees that if ϕ ∈ Z(n)(W ) for some n ≥ 1, then ∂kϕ ∈ Z(n−1)(W ) and

(1.3)
∞∑

k=1

‖∂kϕ‖2
L2(W;R) = n‖ϕ‖2

L2(W;R).

Hence, for each n ≥ 1, ∂k admits a unique continuous extension as a linear map
from Z(n)(W ) into Z(n−1)(W ) for which (1.3) continues to hold. Similarly, for
h ∈ H , there is a linear map ∂h on the span of the Hα’s with the properties that
∂hϕ =

∑∞
k=1(h,hk)H∂kϕ when h ∈ span({hk : k ≥ 1}) and, for each n ≥ 1, ∂h

takes Z(n)(W ) into Z(n−1)(W ) with

(1.4) ‖∂hϕ‖2
L2(W;R) ≤ n‖h‖2

H ‖ϕ‖2
L2(W;R) for ϕ ∈ Z(n)(W ).

Hence, for each h ∈ H , ∂h has a unique extension to span(
⋃∞

n=0 Z(n)(W ))
as a linear operator with the property that (1.4) holds. Moreover, ∂h maps
Z(0)(W ) to 0 and, when n ≥ 1, Z(n)(W ) to Z(n−1)(W ).

2. Wiener maps

Given an abstract Wiener space (H,E, W ), it is clear that (E2,H2, W 2) is
also an abstract Wiener space. Further, if S : E2 −→ E is given by

S(x1, x2) =
x1 + x2√

2
,

then S∗ W 2 = W .
Now suppose that (H,E, W ) is an abstract Wiener space and that F is a

second real, separable Banach space. A map Φ : E −→ F is a Wiener map if
Φ is Borel measurable and

(2.1) Φ ◦ S =
Φ ◦ π1 + Φ ◦ π2√

2
W 2-almost surely,

where πi : E2 −→ E is the projection map πi(y1, y2) = yi for i ∈ {1,2}. Notice
that if Φ : E −→ F is a Wiener map, then Φ∗ W is a centered Gaussian mea-
sure on F . Indeed, given any y∗ ∈ E∗, the distribution μ of 〈Φ, y∗ 〉 will satisfy
the convolution equation μ = μ

2− 1
2

	 μ
2− 1

2
, where, for α ∈ R, μα is the distri-

bution of x � αx under μ, and (cf. Exercise 2.3.21 in Chapter 2 of [6]) the
only solutions to this equation are centered Gaussians. Hence, by Fernique’s
theorem,1

(2.2) E
W [

eλ‖Φ‖2
F
]
< ∞ for some λ ∈ (0, ∞).

In addition, if Ψ : E −→ F is a second Borel measurable map which is W -
almost surely equal to Φ, then Ψ is also a Wiener map, and, more generally, a

1 The statement of Fernique’s theorem to which I am referring asserts that there is a

C < ∞ such that for each R > 0 there is a λ > 0 for which E
μ[eλ‖x‖2

E ] ≤ C whenever μ is a

centered Gaussian measure on a separable, real Banach space E with μ(‖x‖E ≥ R) ≤ 1
4
.
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Borel measurable Φ is a Wiener map if it is the W -almost sure limit of Wiener
maps.

In this section, I will investigate the structure of Wiener maps, and, since
there is nothing more to say when dim(H) < ∞, I will assume throughout
that dim(H) = ∞.

Lemma 2.1. If ϕ ∈ Z(n)(W ) for some n ≥ 0, then ϕ ◦ S ∈ Z(n)(W 2) and
∂(h,−h)ϕ ◦ S = 0 W -almost surely for each h ∈ H .

Proof. Obviously there is nothing to do when n = 0, and so I will assume
that n ≥ 1. In addition, since the set of ϕ ∈ Z(n)(W ) for which these properties
hold is a closed subspace of L2(W ;R), it suffices to prove them when ϕ = Hα

for some α with ‖α‖ = n ≥ 1. Further, I will assume that the Hα’s are defined
in terms of an orthonormal basis {hk : k ≥ 1} where, for each k ≥ 1, hk = hx∗

k

for some x∗
k ∈ E∗. Thus, Hα can be taken to be a polynomial in the variables

{〈·, x∗
k 〉 : αk �= 0}.

That ∂(h,−h)Hα ◦ S = 0 is essentially trivial. Indeed, for any k ≥ 1,
√

2 ×
∂(hk,−hk)Hα ◦ S(x1, x2) equals

H ′
αk

(
〈x1 + x2, x

∗
k 〉√

2

) ∏
j 	=k

Hαj

( 〈x1 + x2, x
∗
j 〉

√
2

)

− H ′
αk

(
〈x1 + x2, x

∗
k 〉√

2

) ∏
j 	=k

Hαj

( 〈x1 + x2, x
∗
j 〉

√
2

)
= 0.

To prove that Hα ◦ S ∈ Z(n)(W 2) when ‖α‖ = n, use the generating function

eλξ− λ2
2 =

∞∑
n=0

λn

n!
Hn(ξ)

to see that

Hn

(
ξ1 + ξ2√

2

)
= 2− n

2

n∑
m=0

(
n

m

)
Hm(ξ1)Hn−m(ξ2),

and from this conclude that

Hα ◦ S = 2− n
2

∑
β≤α

(
α

β

)
Hβ ◦ π1Hα−β ◦ π2 ∈ Z(n)

(
W 2

)
,

where β ≤ α means that βk ≤ αk for all k ≥ 1 and
(
α
β

)
=

∏∞
k=1

(
αk

βk

)
. �

Lemma 2.2. A Borel measurable ϕ : E −→ R is a Wiener map if and only
if ϕ = I(h) for some h ∈ H .

Proof. First, suppose that ϕ = I(h). If h = hx∗ for some x∗ ∈ E∗, then
ϕ = 〈·, x∗ 〉 W -almost surely and so, because 〈·, x∗ 〉 is linear and therefore a
Wiener map, it follows that ϕ is a Wiener map also. To extend the result
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to general h ∈ H , simply remember that the set of R-valued Wiener maps is
closed in L2(W ;R).

Now suppose that ϕ is an R-valued Wiener map. Since ϕ is a centered
Gaussian under W , ϕ ∈ L2(W ;R). Now let ϕn denote the orthogonal projec-
tion of ϕ onto Z(n)(W ). We will know that ϕ = I(h) for some h ∈ H once
we know that ϕn = 0 for n �= 1. Since E

W [ϕ] = 0, ϕ0 = 0. Thus, assume
that n ≥ 2. To show that ϕn = 0, I will first show that ϕn is a Wiener map.
Indeed, from ϕ =

∑∞
m=0 ϕm, we know that ϕ ◦ S =

∑∞
m=0 ϕm ◦ S. Moreover,

by Lemma 2.1, ϕm ◦ S ∈ Z(m)(W 2), and therefore ϕn ◦ S is the projection
of ϕ ◦ S onto Z(n)(W 2). At the same time, because ϕ ◦ S = ϕ◦π1+ϕ◦π2√

2
W 2-

almost surely, it is clear that ϕn ◦π1+ϕn ◦π2√
2

is also the projection of ϕ ◦ S onto

Z(n)(W 2). Hence ϕn ◦ S = ϕn ◦π1+ϕn ◦π2√
2

W 2-almost surely. From this and
Lemma 2.1, it follows that ∂h(ϕn ◦ π1) = ∂h(ϕn ◦ π2) W 2-almost surely. But
∂h(ϕn ◦ π1) is independent of ∂h(ϕn ◦ π2) under W 2, and therefore they can
be W 2-almost surely equal only if ∂hϕn is W -almost surely constant. Since
this means that ∂hϕ ∈ Z(0)(W ) ∩ Z(n−1)(W ) and n ≥ 2, we now know that
∂hϕ = 0 W -almost surely. In particular, if {hk : k ≥ 1} is an orthonormal
basis in H , then, by (1.3),

0 =
∞∑

k=1

‖∂hk
ϕn‖2

L2(W;R) = n‖ϕn‖2
L2(W;R),

and so ϕn = 0 W -almost surely. �

Theorem 2.3. If Φ : E −→ F is Borel measurable, then Φ is a Wiener
map if and only if there is a bounded, linear map A : H −→ F such that
〈Φ, y∗ 〉 = I(A�y∗) W -almost surely for each y∗ ∈ F ∗, where A� : F ∗ −→ H
is the adjoint of A. Moreover, if A exists, then it is unique, it is continuous
from the weak* topology on H into the strong topology on F , and, for any
orthonormal basis {hk : k ≥ 1},

Φ =
∞∑

m=1

I(hk)Ahk W-almost surely,

where the convergence is W -almost sure as well as in Lp(W ;R) for each p ∈
[1, ∞). In particular, if FA is the closure in F of the range AH of A, then
Φ ∈ FA W -almost surely.

Proof. First, suppose that A exists. Then, by Lemma 2.2, for each y∗ ∈ E∗,
〈Φ, y∗ 〉 is an R-valued Wiener map and therefore〈

Φ ◦ S, y∗〉
=

〈Φ ◦ π1 + Φ ◦ π2, y
∗ 〉√

2
W 2-almost surely.
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Hence, since F ∗ is separable in the weak* topology, Φ is a Wiener map.
Furthermore, because〈

Ah,y∗〉
=

(
h,A�y∗)

H
= E

W [
I(h)I

(
A�y∗)]

= E
W [

I(h)
〈
Φ, y∗〉]

,

it is clear that there is at most one choice of A.
Now suppose that Φ is a Wiener map. I begin by constructing the map

A� : F ∗ −→ H which will be the adjoint of the A for which we are looking.
Namely, given y∗ ∈ F ∗, set ϕ = 〈Φ, y∗ 〉. Then, because Φ is a Wiener map,
ϕ is an R-valued Wiener map. Hence, by Lemma 2.2, there exists a neces-
sarily unique A�y∗ ∈ H such that 〈Φ, y∗ 〉 = I(A�y∗) W -almost surely. By
uniqueness, A� is linear. Furthermore, because, by (2.2), Φ ∈ L2(W ;F ) and∥∥A�y∗∥∥

H
=

∥∥I
(
A�y∗)∥∥

L2(W;R)
≤

∥∥y∗∥∥
F ∗ ‖Φ‖L2(W;F ),

it is clear that A� is bounded from F ∗ into H . In fact, if y∗
n −→ 0 in the

weak* topology on F ∗, then, because, by the uniform boundedness principle,
C = sup{‖y∗

n‖F ∗ : n ≥ 1} < ∞ and therefore | 〈Φ, y∗
n〉 | ≤ C‖Φ‖F ∈ L2(W ;R), it

follows from Lebesgue’s Dominated Convergence theorem that∥∥A�y∗
n

∥∥2

H
=

∫ 〈
Φ, y∗

n

〉2
dW −→ 0.

Hence, A� is continuous from the weak* topology on F ∗ into the strong
topology on H . In particular, this means that if h ∈ H and y∗ ∗ = (A�)�h ∈
F ∗ ∗, then 〈

y∗
n, y∗ ∗〉

=
(
h,A�y∗

n

)
H

−→ 0

when {y∗
n : n ≥ 1} ⊆ F ∗ tends to 0 in the weak* topology. Thus (cf. Theorem 9

on p. 421 of [1]), y∗ ∗ ∈ F , and so (A�)� determines a bounded linear map,
which I will call A, from H into F , and clearly A� is the adjoint of A.

The continuity of A with respect to the weak* topology on H into to the
strong topology on F is an immediate consequence of the corresponding conti-
nuity property of A� and the fact that the closed unit ball in F ∗ is weak* com-
pact. To prove the concluding assertion, let {hk : k ≥ 1} be an orthonormal
basis for H and take Fn to be the σ-algebra generated by {I(hk) : 1 ≤ k ≤ n}.
Then, because Φ ∈ Lp(W ;F ) for every p ∈ [1, ∞) and the W -completion of∨∞

n=1 Fn contains the Borel field over E, we know that E
W [Φ| Fn] −→ Φ both

W -almost surely as well as in Lp(W ;F ) for every p ∈ [1, ∞). On the other
hand, 〈

E
W [Φ| Fn], y∗〉
= E

W [〈
Φ, y∗〉

| Fn

]
= E

W [
I
(
A�y∗)

| Fn

]
=

n∑
k=1

〈
Ahk, y∗〉

I(hk) =

〈
n∑

k=1

I(hk)Ahk, y∗

〉
W -almost surely



1350 D. W. STROOCK

for each y∗ ∈ F ∗. Hence, since the weak* topology on F ∗ is separable,

E
W [Φ| Fn] =

n∑
k=1

I(hk)Ahk.
�

3. A’s which determine Wiener maps

Given a bounded, linear map A : H −→ F and a Wiener map Φ : E −→ F ,
I will say that Φ comes from A if 〈Φ, y∗ 〉 = I(A�y∗) W -almost surely for
each y∗ ∈ F ∗, in which case I will say that A determines Φ. Again because
F ∗ is weak* separable, it is obvious that, up to a set of W -measure 0, A
can determine at most one Φ. On the other hand, the problem of deciding
whether a given A determines any Φ is much more difficult. Indeed, it turns
out to be tantamount to finding out whether a certain potential abstract
Wiener space can be made into an abstract Wiener space. To explain this,
let HA = AH be the range of A, turn HA into a Hilbert space with norm
‖ · ‖HA

determined by ‖Ah‖HA
= ‖h‖H when h ⊥ Null(A). Next, take FA to

be the closure of HA in F , and turn FA into a Banach space by restricting
‖ · ‖F to FA. Obviously, (HA, FA) is a potential Wiener space. Moreover,
F ∗

A can be identified as the quotient space F ∗/ ∼, where z∗ ∼ y∗ means that
〈y, z∗ − y∗ 〉 = 0 for all y ∈ FA. Finally, if y∗ ∈ F ∗ and [y∗]A is the ∼-equivalence
class containing y∗, then AA�y∗ is the unique gA ∈ HA with the property
that 〈hA, [y∗]A〉 = (gA, hA)HA

for all hA ∈ HA. Thus, (hA)[y∗]A = AA�y∗,
and therefore ‖(hA)[y∗]A ‖HA

= ‖A�y∗ ‖H .

Theorem 3.1. Refer to the preceding discussion. Then the following are
equivalent.

(1) A determines a Wiener map Φ : E −→ F .
(2) There is an orthonormal basis {hk : k ≥ 1} in H such that the series

∞∑
k=1

ξkAhk converges in F for γZ
+

0,1 -almost every (ξ1, . . . , ξk, . . . ) ∈ R
Z
+
.

(3) There is a WA on FA for which (HA, FA, WA) is an abstract Wiener
space.

Moreover, if (1) holds and {hk : k ≥ 1} is an orthonormal basis in H , then

Φ =
∞∑

k=1

I(hk)Ahk W-almost surely,

where the series converges in Lp(W ;FA) for every p ∈ [1, ∞) as well as W -
almost surely. In addition, the WA in (3) equals the restriction to FA of
Φ∗ W .
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Proof. First suppose that (1) holds, and let {hk : k ≥ 1} be an orthonormal
basis in H . Then, by the last part of Theorem 2.3,

∑∞
k=1 I(hk)Ahk converges

in F to Φ W -almost surely as well as in Lp(W ;F ) for every p ∈ [1, ∞). Hence,
we now know that the concluding assertion is true. Also, because γZ

+

0,1 is the
W -distribution of (I(h1), . . . , I(hk), . . . ), we know that (1) implies (2).

Next suppose that (2) holds, and denote by Φ the sum of the series. Then,
because, by Lemma 2.2, each of the summands is a Wiener map, it follows
that Φ is also a Wiener map. In addition, for any y∗ ∈ F ∗, W -almost surely

〈
Φ, y∗〉

=
∞∑

k=1

I(hk)
〈
Ahk, y∗〉

=
∞∑

k=1

I(hk)
(
hk,A�y∗)

H
= I

(
A�y∗)

.

Hence, (2) implies (1).
Next, suppose that (1), and therefore (2), holds. By (2), Φ ∈ FA W -almost

surely, and so Φ∗ W (FA) = 1. In addition,

E
W [

e
√

−1〈Φ,y∗ 〉] = E
W [

e
√

−1I(A�y∗)
]
= e− 1

2 ‖A�y∗ ‖2
H .

Hence, since ‖(hA)[y∗]A ‖HA
= ‖A�y∗ ‖H , (HA, FA,Φ∗ W � FA) is an abstract

Wiener space, and so (1) implies (3) and the WA in (3) equals Φ∗ W � FA.
Conversely, if (3) holds, choose an orthonormal basis {hk : k ≥ 1} in H so
that, for each k ≥ 1, either Ahk = 0 or hk ⊥ Null(A), and denote by K the
set {k : hk ⊥ Null(A)}. Then {Ahk : k ∈ K } is an orthonormal basis in HA,
and so

∑
k∈K IA(Ahk)Ahk is WA-almost surely convergent in FA, where IA

is the Paley–Wiener map for (HA, FA, WA). Since Ahk = 0 for k /∈ K and
{IA(Ahk) : k ∈ K } under WA are mutually independent standard normal ran-
dom variables, I have proved that (3) implies (2). �

Obviously, if A : H −→ F is a linear map which is bounded with respect
to ‖ · ‖E in the sense that ‖Ah‖F ≤ C‖h‖E for some C < ∞, then the unique
extension of A as a bounded linear map from E to F is a Wiener map de-
termined by A. I will now discuss a more interesting source of A’s which
determine Wiener maps. Before stating the main result in this direction,
I recall the following familiar fact (cf. [3] and [4]).

Lemma 3.2. Let (Ω, F ,P) be a probability space, assume that the ran-
dom variables {Xi : i ≥ 1} ⊆ L2(P;R) span a Gaussian family, and set Ci,j =
E

P[XiXj ]. Then the joint distribution μ on R
Z
+

of {Xi : i ≥ 1} under P is ab-
solutely continuous with respect to γZ

+

0,1 if and only if the matrix ((Ci,j))i,j∈Z+

determines a bounded operator C on 
2(Z+;R), Null(C) = 0, and
∑∞

i,j=1(δi,j −
Ci,j)2 < ∞. Equivalently, μ � γZ

+

0,1 if and only if ((Ci,j))i,j∈Z+ determines a
bounded, non-degenerate operator C on 
2(Z+;R) such that I − C is Hilbert–
Schmidt.
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Theorem 3.3. Let (E,H, WH) and (F,G, WG) be a pair of infinite dimen-
sional abstract Wiener spaces, let A : H −→ G be a bounded linear map, and
use A† : G −→ H to denote its adjoint. If, for some λ > 0, λI − AA† is a
Hilbert–Schmidt operator on G, then A determines a Wiener map from E
to F .

Proof. Clearly it suffices to handle the case when λ = 1 since the general
case reduces to this one when A is replaced by λ− 1

2 A. Thus, assume that
λ = 1.

I will first show that there is an orthonormal basis for G such that S =
limm→∞ Sm exists in F WH -almost surely when Sm =

∑m
i=1 I(A†gi)gi. To

this end, note that, because I − AA† is Hilbert–Schmidt, Null(A†) =
Null(AA†) is finite dimensional. Now choose an orthonormal basis for G
{gi : i ≥ 1} so that gi ∈ Null(A†) if 1 ≤ i ≤ N = dim(Null(A†)) and gi ⊥
Null(A†) if i > N . Obviously, Sm = 0 if 1 ≤ m ≤ N and

Sm =
m∑

i=N+1

I(A†gi)gi if m > N.

Moreover, because AA† is non-degenerate on Null(A†)⊥ and I −AA† is Hilbert–
Schmidt, Lemma 3.2 says that the joint distribution of {I(A†gi) : i > N }
under WH is absolutely continuous with respect to the joint distribution
of {J (gi) : i > N } under WG, where J denotes the Paley–Wiener map for
(G,F, WG). Hence, because

∑∞
i=1 J (gi)gi is WG-almost surely convergent in

F , it follows that limm→∞ Sm converges WH -almost surely in F .
To complete the proof, observe that each Sm is a centered, F -valued, Gauss-

ian random variable under WH , and therefore that S is also. Thus, by Fer-
nique’s theorem, the fact that Sm −→ S in F WH -almost surely implies that
there exists an ε > 0 such that supm≥1 EWH [eε‖Sm ‖2

F ] < ∞, and therefore that
Sm −→ S in L1(WH ;F ). Now let {hk : k ≥ 1} be an orthonormal basis for
H , and let Fn be the σ-algebra generated by {I(hk) : 1 ≤ k ≤ n}. Then
E

WH [S| Fn] = limm→∞ E
WH [Sm| Fn] in L1(WH ;F ). At the same time,

E
WH [Sm| Fn]

=
m∑

i=1

E
WH

[
I
(
A†gi

)
| Fn

]
gi =

m∑
i=1

(
n∑

k=1

(
A†gi, hk

)
H

I(hk)

)

=
n∑

k=1

I(hk)

(
m∑

i=1

(Ahk, gi)Ggi

)
−→

n∑
k=1

I(hk)Ahk in G as m → ∞.

Hence,

E
WH [S| Fn] =

n∑
k=1

I(hk)Ahk WH -almost surely,

and therefore
∑n

k=1 I(hk)Ahk converges in F to S WH -almost surely.
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Now apply Theorem 3.1. �

As the next result makes explicit, in Theorem 3.3 the image Φ∗ WH of WH

under Φ will not be absolutely continuous with respect to WG unless λ = 1.

Corollary 3.4. Let (H,E, WH) and (G,F, WG) be as in the proceding,
and suppose that A : H −→ F is a bounded, linear map. Then the following
are equivalent.
(1) A determines a Wiener map Φ : E −→ F and Φ∗ WH � WG.
(2) A maps H boundedly into G, Null(A†) = 0, and I − AA† is Hilbert–

Schmidt on G.
Moreover, if (2), and therefore (1), holds, then J (g) ◦ Φ = I(A†g) WH -almost
surely for each g ∈ G, where I and J denote the Paley–Wiener maps for
(H,E, WH) and (G,F, WG), respectively.

Proof. First, assume that (1) holds. Choose {y∗
i : i ≥ 1} ⊆ F ∗ so that

{gi : i ≥ 1} is an orthonormal basis for G when gi = gy∗
i
. Because Φ∗ WH �

WG and 〈Φ, y∗
i 〉 = J (gi) ◦ Φ WH -almost surely, the joint distribution of

{〈Φ, y∗
i 〉 : i ≥ 1} under WH is absolutely continuous with respect to the joint

distribution of {J (gi) : i ≥ 1} under WG. Equivalently, the joint distribution
of {I(A�y∗

i ) : i ≥ 1} under WH is absolutely continuous with respect to γZ
+

0,1 .
Hence, by Lemma 3.2, if Ci,j = 〈A�y∗

i ,A�y∗
j 〉, then the matrix ((Ci,j))i,j∈Z+

determines a bounded, non-degenerate operator C on 
2(Z+;R) and I − C
is Hilbert–Schmidt. Starting from this and taking M = 1 + ‖I − C‖H.S., it
is easy to check that ‖A�y∗ ‖H ≤ M ‖gy∗ ‖G and therefore that there is a
unique bounded, linear A† : G −→ H such that A†gy∗ = A�y∗, and clearly
‖A† ‖op ≤ M . Since this means that | 〈Ah,y∗ 〉| ≤ M ‖h‖H ‖gy∗ ‖G, it follows
that A maps H boundedly into G and that A† is the adjoint of A as a map
from H to G. Furthermore, from the properties of C, it is clear that AA† is
non-degenerate and that I − AA† is Hilbert–Schmidt on H .

Now assume that (2) holds. By Theorem 3.3, we know that A determines a
Wiener map Φ : E −→ F . Moreover, in the notation used above, the operator
C is non-degenerate and I − C is Hilbert–Schmidt. Hence, by Lemma 3.2,
the joint distribution of { I(A�y∗

i ) : i ≥ 1} under WH is absolutely continuous
with respect to γZ

+

0,1 , and so the joint distribution of {〈Φ, y∗
i 〉 : i ≥ 1} under

WH is absolutely continuous with that of { J (gi) : i ≥ 1} under WG. Since
this means that the distribution of Φ under WH is absolutely continuous with
respect to WG, Φ∗ WH � WG.

We now know that (1) ⇐⇒ (2). Assume (2) and therefore (1) hold. Given
g ∈ G, choose {y∗

n : n ≥ 1} ⊆ F ∗ so that gn ≡ gy∗
n

−→ g in G. Then, J (gn) −→
J (g) in L2(WG;R), and so I may and will assume that J (gn) −→ J (g) WG-
almost surely, which, by absolute continuity, means that J (gn) ◦ Φ −→ J (g) ◦
Φ WH -almost surely. At the same time, A†gn −→ A†g in H , and so I may and
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will also assume that I(A†gn) −→ I(A†g) WH -almost surely. Hence, since
J (gn) ◦ Φ = I(A†gn) WH -almost surely, it follows that J (g) ◦ Φ = I(A†g)
WH -almost surely. �

Corollary 3.5. Again let (H,E, WH) and (G,F, WG) be as in Theo-
rem 3.3, and assume that Φ : E −→ F is a Wiener map for which Φ∗ WH �
WG. In addition, let Ψ be a Wiener map from F into a third real, separable
Banach space K. Then Ψ ◦ Φ is a Wiener map from E into K. Moreover, if
Φ and Ψ are determined by A and B, respectively, then Ψ ◦ Φ is determined
by B ◦ A.

Proof. Because Φ∗ WH � WG, the set of (x1, x2) ∈ E2 for which

Ψ
(

Φ(x1) + Φ(x2)√
2

)
�= Ψ ◦ Φ(x1) + Ψ ◦ Φ(x2)√

2
has W 2

H -measure 0. Hence, since

Φ
(

x1 + x2√
2

)
=

Φ(x1) + Φ(x2)√
2

for W 2
H -almost every (x1, x2) ∈ E2, it follows that Ψ ◦ Φ is also a Wiener map.

Next, let A : H −→ F be the bounded, linear map which determines Φ.
By Corollary 3.4, A is a bounded map from H to G and J (g) ◦ Φ = I(A†g)
WH -almost surely for each g ∈ G. Hence, if B : F −→ K determines Ψ, then,
for any z∗ ∈ K∗,〈

Ψ ◦ Φ, z∗〉
= J

(
B�z∗)

◦ Φ = I
(
A†B�z∗)

WH -almost surely.

But A†B� = (B ◦ A)�, and so B ◦ A determines Ψ ◦ Φ. �
Corollary 3.6. Let (H,E, WH) and (G,F, WG) be as in Theorem 3.3,

suppose that Φ : E −→ F is a Wiener map for which Φ∗ WH � WG, and let
A : H −→ G be the associated map described in (2) of Corollary 3.4. If A
is non-degenerate and I − A†A is Hilbert–Schmidt on H , then there exists a
Wiener map Ψ : F −→ E such that Ψ∗ WG � WH and Ψ is the inverse of Φ
in the sense that Ψ ◦ Φ(x) = x for WH -almost every x ∈ E and Φ ◦ Ψ(y) = y
for WG-almost every y ∈ F .

Proof. I begin by showing that A has a bounded inverse A−1 : G −→ H
and that I − A−1(A−1)† is Hilbert–Schmidt on H . Indeed, because A is
non-degenerate and I − A†A is Hilbert–Schmidt, AA† has a pure point spec-
trum {λi : i ≥ 1} ⊆ (0, ∞) for which 1 is the only possible accumulation point.
Hence, there exists an ε > 0 such that λi ≥ ε for all i ≥ 1, and therefore A has
a bounded inverse A−1 : G −→ H . Furthermore, the Hilbert–Schmidt norm
of I − A−1(A−1)† is

∞∑
i=1

(
1 − 1

λi

)2

≤ ε−2
∞∑

i=1

(1 − λi)2 < ∞,
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and so I − A−1(A−1)† is Hilbert–Schmidt on H .
Given the preceding, Corollary 3.4 says that A−1 determines a Wiener map

Ψ : F −→ E such that Ψ∗ WG � WH , and Corollary 3.5 says that Ψ ◦ Φ is a
Wiener map which is determined by A−1 ◦ A = I . Hence, by uniqueness, Ψ ◦ Φ
is WH -almost surely equal to the identity map on E. Similarly, Φ ◦ Ψ must
be WG-almost surely equal to the identity map on F . �
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