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MAPS THAT TAKE GAUSSIAN MEASURES TO GAUSSIAN
MEASURES

DANIEL W. STROOCK

For Don Burkholder, with apologies for what may be abstract nonsense

ABSTRACT. Given a pair of separable, real Banach spaces E and
F and a centered Gaussian measure p on E, one can ask what
sort of Borel measurable maps ® : E — F map u to a centered
Gaussian measure on F. Obviously, a sufficient condition is that
® be linear. On the other hand, linearity is far more than is really
needed. Indeed, it suffices to know that ® has the property that

q)(xl +x2) _ ®(a1) + O(x2)

V2 V2
for W2-almost every (1, x2) € E?. In this article, I will first prove
a structure theorem which shows that any map ® which satisfies

this property arises from a linear map on the Cameron—Martin
space associated with p on F. I will then investigate which linear
maps on the Cameron—Martin space determine a ¢, and finally I
will discuss some of the properties of ® which reflect properties
of the linear map from which it is determined.

1. Abstract Wiener spaces

In this section, I will summarize a few facts about Gaussian measures on
a Banach space. My treatment derives from L. Gross’s theory of abstract
Wiener space. For more details, I refer the reader to [2], [5], or Chapter 8
in [6]. In particular, it is important to know that any non-degenerate, centered
Gaussian measure on a separable, real Banach space can be realized as the
measure in an abstract Wiener space.
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I will call the pair (E, H) a potential abstract Wiener space if H is a real,
separable Hilbert space, F is a real separable Banach space, and H is contin-
uously embedded in F as a dense subspace. The following lemma summarizes
some elementary facts about potential abstract Wiener spaces.

LEMMA 1.1. Let (H, E) be a potential abstract Wiener space. For each x* €
E* there exists a unique hy~ € H with the property that (h,x*) = (h,hy) g
for oll h € H. Moreover, z* € E* — hy« € H is a continuous, one-to-one,
linear map whose range is dense, and, as a map from E* into E, x* ~» hy« is
continuous. Finally, {hy~ : x* € E*} contains an orthonormal basis for H.

Given a potential abstract Wiener space (H, E), the triple (H,E,W) is
called an abstract Wiener space if VW is a Borel probability measure on E
with the property that, for each z* € E*, the random variable z ~ (x,x*)
under W is a centered Gaussian with variance ||h,-|%. Equivalently, the

Fourier transform W of W is given by

W(z*) =EW [eV~T@e] = e for 2 € BX
The Hilbert space H in (H, E,W) is called the Cameron—-Martin space asso-
ciated with W on FE.

Although the uniqueness of W is obvious, its existence is a highly non-
trivial matter. Nonetheless, for each H there always exists an E on which
there is a W for which it is the Cameron—Martin space (i.e., (H,E, W) is an
abstract Wiener space). When N = dim(H) < oo and one thinks of H as RY
with some Hilbert norm, all choices of E can also be identified with RY, and
W is the distribution of

N
(&, n) RN — > " &ihy, under 47,
k=1
where 701 is the standard Gauss measure on R and {h;: 1<k < N} is an
orthonormal basis for H. When dim(H ) = oo, one has the following criterion
for the existence of W.

LEMMA 1.2. Let (H,E) be an infinite dimensional (i.e., dim(H) = 00)
potential abstract Wiener space. Then there exists a W on E for which
(H,E, W) is an abstract Wiener space if there exists an orthonormal basis
{h : k>1} in H for which the series

(o]
(1.1) Zﬁkhk converges in E for ’Y(%I -almost every (&1,...,&k,...) € RZ" .
k=1
Conversely, if (H,E,W) is an abstract Wiener space, then (1.1) holds for
every choice of orthonormal basis, the convergence is in LP(’ygz;E) for every

p€[l,00), and W is the distribution of the series under ’yﬁ.
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Given an abstract Wiener space (H,E,), there is a unique, linear iso-
metric map h € H — Z(h) € L>(W;R), known as the Paley-Wiener map,
such that Z(h,~) = (-,2*) W-almost surely for each z* € E*. Indeed, the ex-
istence and uniqueness of Z follow immediately from the facts that ||hy«|| g is
the L?(W;R)-norm of (-,z*) and that {h,~ : * € E*} is dense in H. More-
over, since (-,2*) is a centered Gaussian random variable under W for each
x* € E*, it follows that Z(h) under W is a centered Gaussian random vari-
able with variance ||h||% for each h € H. Hence, {Z(h): h€ H} is a closed,
centered Gaussian family in L?(W;R).

Recall the (unnormalized) Hermite polynomials H,,,n >0, given by

2 qdn 2
Hn(é.)_( 1)e2d€n 2, €ER

Familiar facts about these polynomials are that

dH,,
(12) (H’maHn)Lz(’yU,l;R) :m'émﬂ and d—f :mH(m_1)+,

and the span of {H,:n >0} is dense in L?*(yp1;R). Now suppose that
(H,E,W) is an abstract Wiener space with dim(H) = oo, choose an or-
thonormal basis {hy : k> 1} in H, and, for a = (aq,...,a,...) € NZ" with
lool] = >"%e ) ak < 00, define

i
k=1
Then

(HOMHB)L2 W;R) = aldy B

where ol =[];2 | ai!. Moreover, because {H,, : n >0} is an orthogonal basis
for L?(70,1;R), one can use the results in Lemma 1.2 to check that {H, : |Jaf <
oo} is an orthogonal basis in L?(W;R). In particular, if

2 .

2000) = span({He s ol =)

then ZM (W) L Z(™(W) for m #n and L2(W;R) = @2, Z™ (W). This is
Wiener’s decomposition of L2(W;R) into spaces of homogeneous chaos. It is
important to recognize that Z(™) (W) does not depend on the particular choice
of orthonormal basis {hy : k> 1} in terms of which it is defined. In particular,
ZO (W) consists of the W-almost surely constant elements of L?(W;R) and
ZOW)={Z(h): he H}.

Now choose {z} : k> 1} C E* so that {hg : k> 1} is an orthonormal basis
for H when hy = hy:, and use this basis and the choice of (-,x}) to represent
Z(hi) to define the H,’s. Clearly, each ¢ from the span of the Hy’s is a
polynomial in variable {(,2}) : ay, # 0}, and therefore dpp = L o(z+thi)|e=o
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exists and is a polynomial function of the same variables as . Moreover, from
(1.2) one sees that if p € Z(™ (W) for some n > 1, then dpp € Z*~V (W) and

(1.3) Z”alcSOHQL?(W;R) :”HS"”QL?(W;R)-

k=1
Hence, for each n > 1, 0 admits a unique continuous extension as a linear map
from Z(™ (W) into Z(™~1 (W) for which (1.3) continues to hold. Similarly, for
h € H, there is a linear map 9, on the span of the H,’s with the properties that
Onp = pey(h,hi) Ok when h € span({hy, : k>1}) and, for each n > 1, 9,
takes Z(™ (W) into Z("~1 (W) with

(1.4) 10n 21122 iy < nllblF @I vmy  for o € 20V (W),

Hence, for each h € H, 0 has a unique extension to span({Jo, Z™ (W))
as a linear operator with the property that (1.4) holds. Moreover, 95, maps
ZO(W) to 0 and, when n > 1, ZM (W) to Z=D(W).

2. Wiener maps

Given an abstract Wiener space (H, E,W), it is clear that (E?, H2,W?) is
also an abstract Wiener space. Further, if S: E? — F is given by

xr1+ T2
S(l’l,xg) =

\/5 )

then S, IWV2 =W.
Now suppose that (H, E,W) is an abstract Wiener space and that F is a
second real, separable Banach space. A map ®: ' — F'is a Wiener map if
® is Borel measurable and
(2.1) pog_ 2om+Pom
V2

where 7; : E? — E is the projection map 7;(y1,y2) = y; for i € {1,2}. Notice
that if & : £ — F' is a Wiener map, then ®,)V is a centered Gaussian mea-
sure on F'. Indeed, given any y* € E*, the distribution p of (®,y*) will satisfy
the convolution equation p = fhy—1 * My 1, where, for a € R, u, is the distri-

W2-almost surely,

2
bution of x ~» ax under p, and (cf. Exercise 2.3.21 in Chapter 2 of [6]) the
only solutions to this equation are centered Gaussians. Hence, by Fernique’s
theorem,!

(2.2) EY [e’\‘lé”%} < oo for some A € (0,00).

In addition, if ¥: F — F' is a second Borel measurable map which is W-
almost surely equal to @, then W is also a Wiener map, and, more generally, a

1 The statement of Fernique’s theorem to which I am referring asserts that there is a

C < oo such that for each R > 0 there is a A > 0 for which E# [e>“|zu%} < C whenever p is a

centered Gaussian measure on a separable, real Banach space E with p(||z||g > R) < i
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Borel measurable ® is a Wiener map if it is the WW-almost sure limit of Wiener
maps.

In this section, I will investigate the structure of Wiener maps, and, since
there is nothing more to say when dim(H) < oo, I will assume throughout
that dim(H) = oc.

LEMMA 2.1. If p € ZW(W) for some n >0, then po S € ZM(W?) and
O(h,—nyp oS =0 W-almost surely for each h € H.

Proof. Obviously there is nothing to do when n =0, and so I will assume
that n > 1. In addition, since the set of ¢ € Z(™) (W) for which these properties
hold is a closed subspace of L?(W;R), it suffices to prove them when ¢ = H,,
for some « with ||| =n > 1. Further, I will assume that the H,’s are defined
in terms of an orthonormal basis {hy, : k¥ > 1} where, for each k > 1, hy = hy:
for some zj € E*. Thus, H, can be taken to be a polynomial in the variables
{7} s an #0).

That O, —n)yHa o S =0 is essentially trivial. Indeed, for any k > 1, V2 x
Othy,—hg)Ha © S(x1,72) equals

H(;k<<;v1 +\;c§2,w2)> HHaj <<x1 +\/:1:§2,x;>>

J#k

itk
To prove that H, 08 € Z(™ (W?) when ||a|| = n, use the generating function

PGNP
M :ZOHHn(S)

to see that

(252 ) = 3 (1 ) (€01 )

m=0
and from this conclude that

Hoo0S=2"72 Z (g)Hg omHa—pgom € AR (Wz),

BLa
where 3 < o means that 35 < oy, for all k> 1 and (g) =1l (‘;]’:) O

LEMMA 2.2. A Borel measurable ¢ : E — R is a Wiener map if and only
if o =I(h) for some h € H.

Proof. First, suppose that ¢ =Z(h). If h = hy« for some z* € E*, then
@ = (-,z*) W-almost surely and so, because (-,z*) is linear and therefore a
Wiener map, it follows that ¢ is a Wiener map also. To extend the result
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to general h € H, simply remember that the set of R-valued Wiener maps is
closed in L2(W;R).

Now suppose that ¢ is an R-valued Wiener map. Since ¢ is a centered
Gaussian under W, ¢ € L?(W;R). Now let ¢,, denote the orthogonal projec-
tion of ¢ onto Z(™ (W). We will know that ¢ = Z(h) for some h € H once
we know that ¢, =0 for n# 1. Since EVW[¢] =0, ¢o =0. Thus, assume
that n > 2. To show that ¢, =0, I will first show that ¢, is a Wiener map.
Indeed, from ¢ =3""" ¢, we know that ¢ oS =3, 0S. Moreover,
by Lemma 2.1, ¢,, 0 S € Z("™) (W?), and therefore ¢, oS is the projection

of ¢ oS onto Z(™ (W?). At the same time, because o S = M\/g’o” W3-

almost surely, it is clear tha is also the projection of ¢ o S onto
Z™(W?). Hence ¢, 0S5 = M\ép"w W2-almost surely. From this and

Lemma 2.1, it follows that 0 (¢, o m1) = On(¢n 0 m2) W?2-almost surely. But
(@ o) is independent of 9y, (¢, o ) under W2, and therefore they can
be W2-almost surely equal only if d),¢,, is W-almost surely constant. Since
this means that dnp € ZO(W) N ZM=D(W) and n > 2, we now know that
Onpp =0 W-almost surely. In particular, if {hy: k > 1} is an orthonormal
basis in H, then, by (1.3),

t PnOT1+YnoOma
2

0= Z ||8hk90n||2L2(W;R) = n”‘anQL?(W;R)’
k=1

and so ¢, =0 W-almost surely. O

THEOREM 2.3. If ®: E — F is Borel measurable, then ® is a Wiener
map if and only if there is a bounded, linear map A: H — F such that
(®,y*) =T(ATy*) W-almost surely for each y* € F*, where AT : F* — H
is the adjoint of A. Moreover, if A exists, then it is unique, it is continuous
from the weak™ topology on H into the strong topology on F, and, for any
orthonormal basis {hy : k> 1},

o= Z Z(hx)Ahr W-almost surely,

m=1

where the convergence is W-almost sure as well as in LP(W;R) for each p €
[1,00). In particular, if Fy is the closure in F of the range AH of A, then
® € Fy W-almost surely.

Proof. First, suppose that A exists. Then, by Lemma 2.2, for each y* € E*,
(®,y*) is an R-valued Wiener map and therefore

Dom +dom,y*)
V2

W2-almost surely.

(®oS,y") = <
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Hence, since F* is separable in the weak® topology, ® is a Wiener map.
Furthermore, because

(Ah,y*) = (h, ATy") , =BV [Z(WI(ATy")] =BV [Z(h)(®,y")],

it is clear that there is at most one choice of A.

Now suppose that ® is a Wiener map. I begin by constructing the map
AT : F* — H which will be the adjoint of the A for which we are looking.
Namely, given y* € F*, set ¢ = (®,y*). Then, because ® is a Wiener map,
@ is an R-valued Wiener map. Hence, by Lemma 2.2, there exists a neces-
sarily unique ATy* € H such that (®,y*) = Z(ATy*) W-almost surely. By
uniqueness, A" is linear. Furthermore, because, by (2.2), ® € L?(W; F) and

T % T %

1Ay | = 17 (A )

it is clear that AT is bounded from F* into H. In fact, if y — 0 in the
weak™ topology on F*, then, because, by the uniform boundedness principle,

C =sup{||y}||r+ : n>1} < oo and therefore [(®,y})| < C||®||F € L>(W;R), it
follows from Lebesgue’s Dominated Convergence theorem that

2= /<<1>,y;>2dw —0.

| 2owigy < 197 - 191 220w

ATy

Hence, AT is continuous from the weak* topology on F* into the strong
topology on H. In particular, this means that if h € H and y** = (AT)Th €
F**, then

Wy )= (R, ATyp) y — 0
when {y : n>1} C F* tends to 0 in the weak* topology. Thus (cf. Theorem 9
on p. 421 of [1]), y** € F, and so (AT)" determines a bounded linear map,
which I will call A, from H into F, and clearly AT is the adjoint of A.

The continuity of A with respect to the weak™® topology on H into to the
strong topology on F' is an immediate consequence of the corresponding conti-
nuity property of AT and the fact that the closed unit ball in F* is weak* com-
pact. To prove the concluding assertion, let {hy : £ > 1} be an orthonormal
basis for H and take F,, to be the o-algebra generated by {Z(hy) : 1 <k <n}.
Then, because ® € LP(W; F) for every p € [1,00) and the W-completion of
Vo, F, contains the Borel field over E, we know that EVV[®|F,] — ® both

Wh-almost surely as well as in LP(W; F') for every p € [1,00). On the other
hand,

(EV[@|F),y")
=EV[(@,y")|Fa] =BV [Z(ATy")|F]
= Z<Ahk,y*>1(hk) = <ZI(hk)Ahk,y*> Wh-almost surely

k=1 k=1
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for each y* € F*. Hence, since the weak* topology on F* is separable,

IR Fa] =D T(hi) Ahg.
k=1

3. A’s which determine Wiener maps

Given a bounded, linear map A : H — F and a Wiener map & : £ — F,
I will say that ® comes from A if (®,y*) = Z(ATy*) W-almost surely for
each y* € F*, in which case I will say that A determines ®. Again because
F* is weak* separable, it is obvious that, up to a set of W-measure 0, A
can determine at most one ®. On the other hand, the problem of deciding
whether a given A determines any ® is much more difficult. Indeed, it turns
out to be tantamount to finding out whether a certain potential abstract
Wiener space can be made into an abstract Wiener space. To explain this,
let Hy = AH be the range of A, turn H, into a Hilbert space with norm
Il |z, determined by ||Ah|| g, = ||h||g when h L Null(A). Next, take F4 to
be the closure of H, in F', and turn F'4 into a Banach space by restricting
|- |l to Fa. Obviously, (Ha,F4) is a potential Wiener space. Moreover,
F} can be identified as the quotient space F*/ ~, where z* ~ y* means that
(y,z*—y*)=0forally € Fu. Finally, if y* € F* and [y*] 4 is the ~-equivalence
class containing 3*, then AATy* is the unique g4 € H, with the property
that (ha,[y*]a) = (9a,ha)u, for all hy € Hy. Thus, (ha)y., = AATyY",
and therefore [|(ha)gy«1,llm. = 1ATy* |-

THEOREM 3.1. Refer to the preceding discussion. Then the following are
equivalent.

(1) A determines a Wiener map ® : E— F.
(2) There is an orthonormal basis {hy : k> 1} in H such that the series

oo
Z@Ah;c converges in F for vgﬁ -almost every (&1,...,&k,...) € RZ"
k=1

(3) There is a Wy on Fa for which (Ha,Fa,Wa) is an abstract Wiener
space.

Moreover, if (1) holds and {hy, : k > 1} is an orthonormal basis in H, then
o= ZI (hx)Ahy  W-almost surely,
k=1

where the series converges in LP(W;Fy4) for every p € [1,00) as well as W-

almost surely. In addition, the W4 in (3) equals the restriction to Fa of
DIV,
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Proof. First suppose that (1) holds, and let {hy, : k> 1} be an orthonormal
basis in H. Then, by the last part of Theorem 2.3, Y7 | Z(hy)Ahy, converges
in F' to ® W-almost surely as well as in LP (W; F)) for every p € [1,00). Hence,
we now know that the concluding assertion is true. Also, because 7%3 is the
Wh-distribution of (Z(h1),...,Z(hk),...), we know that (1) implies (2).

Next suppose that (2) holds, and denote by ® the sum of the series. Then,
because, by Lemma 2.2, each of the summands is a Wiener map, it follows
that @ is also a Wiener map. In addition, for any y* € F™*, WW-almost surely

)= T(h){Ahi,y*) = > T(hi) (hie, ATy") ,, =T(ATy").
k=1 k=1

Hence, (2) implies (1).
Next, suppose that (1), and therefore (2), holds. By (2), ® € F4 W-almost
surely, and so ®, W(F4) = 1. In addition,

EW [V 100 = W [evVTZA V)] = =314 v Ik,

Hence, since |[(ha)y 1, llma = ATy |z, (Ha, Fa,®. W | F4) is an abstract
Wiener space, and so (1) implies (3) and the W4 in (3) equals W [ F

Conversely, if (3) holds, choose an orthonormal basis {hj: k> 1} in H S0)
that, for each k > 1, either Ahy =0 or hy L Null(A), and denote by K the
set {k: hg L Null(A)}. Then {Ahy : k € K} is an orthonormal basis in H 4,
and so ), oy Za(Ahy)Ahy, is Wa-almost surely convergent in Fq, where Z4
is the Paley—Wiener map for (Ha,F4,Wa). Since Ahy =0 for k ¢ K and
{Z4(Ahy) : k € K} under Wy are mutually independent standard normal ran-
dom variables, I have proved that (3) implies (2). O

Obviously, if A: H — F' is a linear map which is bounded with respect
to || - ||g in the sense that ||Ah||p < C|lh||g for some C < oo, then the unique
extension of A as a bounded linear map from F to F' is a Wiener map de-
termined by A. I will now discuss a more interesting source of A’s which
determine Wiener maps. Before stating the main result in this direction,
I recall the following familiar fact (cf. [3] and [4]).

LEMMA 3.2. Let (2, F,P) be a probability space, assume that the ran-
dom variables {X; : i > 1} C L*(P;R) span a Gaussian family, and set C; ; =
EF[X;X;]. Then the joint distribution p on RZ" of {X; : i > 1} under P is ab-
solutely continuous with respect to ’y%j if and only if the matriz ((C;;))i jen+
determines a bounded operator C on (*(ZT;R), Null(C) =0, and > =1(0i—
Ci;)? < co. Equivalently, u < ng if and only if ((Ci;))i jez+ determines a

bounded, non-degenerate operator C' on (*>(Z*;R) such that I — C' is Hilbert—
Schmidt.
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THEOREM 3.3. Let (E,H,Wyg) and (F,G,Wg) be a pair of infinite dimen-
sional abstract Wiener spaces, let A: H — G be a bounded linear map, and
use At G — H to denote its adjoint. If, for some A >0, X[ — AA! is a
Hilbert—Schmidt operator on G, then A determines a Wiener map from E
to F.

Proof. Clearly it suffices to handle the case when A =1 since the general
case reduces to this one when A is replaced by A2 A. Thus, assume that
A=1.

I will first show that there is an orthonormal basis for G such that S =
lim,, o Sy exists in F' Wpg-almost surely when S, = Z;’;lI(ATgi)gi. To
this end, note that, because I — AAT is Hilbert-Schmidt, Null(A") =
Null(AAT) is finite dimensional. Now choose an orthonormal basis for G
{gi:i>1} so that g; € Null(AT) if 1 <i < N = dim(Null(AT)) and g; L
Null(A") if i > N. Obviously, S,, =0if 1 <m < N and

i=N+1
Moreover, because AAT is non-degenerate on Null(A")+ and I — AAT is Hilbert—
Schmidt, Lemma 3.2 says that the joint distribution of {Z(Afg;): i > N}
under Wy is absolutely continuous with respect to the joint distribution
of {J(gi):i> N} under Wg, where J denotes the Paley-Wiener map for
(G,F,W¢). Hence, because Y oo J(9:)gi is We-almost surely convergent in
F, it follows that lim,, .., S, converges Wy-almost surely in F'.

To complete the proof, observe that each S, is a centered, F-valued, Gauss-
ian random variable under Wy, and therefore that S is also. Thus, by Fer-
nique’s theorem, the fact that S,, — S in F' Wpy-almost surely implies that
there exists an € > 0 such that sup,, >, EWi e EHSMH%] < 00, and therefore that
Sm — S in L*(Wpg; F). Now let {hy : k> 1} be an orthonormal basis for
H, and let F,, be the o-algebra generated by {Z(hy): 1<k <n}. Then
EWH [S|F,] = limy,— oo EWVH[S,, | F] in LY (Wy; F). At the same time,

EYH (S|P

_ ZEWH (A1 g5) | Fa) s i(i(mgi,hk)f,z(hkﬁ

k=1

—ZI hi) (Z (Ahg,gi) ng> zn:I hi)Ah, in G as m — 0.
=1 k=1

Hence,

IEWH [S|Fn) Z (hg)Ahyr,  Wpy-almost surely,
k=

and therefore Y} Z(hy)Ahy, converges in F to S Wy-almost surely.
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Now apply Theorem 3.1. O

As the next result makes explicit, in Theorem 3.3 the image ®, Wy of Wy
under ¢ will not be absolutely continuous with respect to Wg unless A = 1.

COROLLARY 3.4. Let (H,E,Wg) and (G,F,Weg) be as in the proceding,
and suppose that A: H — F is a bounded, linear map. Then the following
are equivalent.

(1) A determines a Wiener map ® : E— F and & Wy < We.

(2) A maps H boundedly into G, Null(AT) =0, and I — AAT is Hilbert-
Schmidt on G.

Moreover, if (2), and therefore (1), holds, then J(g) o ® =Z(A'g) Wg-almost

surely for each g € G, where T and J denote the Paley—Wiener maps for

(H,E,Wg) and (G,F,Wg), respectively.

Proof. First, assume that (1) holds. Choose {y}:i> 1} C F"* so that
{gi : i > 1} is an orthonormal basis for G when g; = g,». Because ®. Wy <
Wea and (®,yf) = J(g;) o & Wpy-almost surely, the joint distribution of
{{®,yF) : i > 1} under Wy is absolutely continuous with respect to the joint
distribution of {7 (g;) : i > 1} under W¢. Equivalently, the joint distribution
of {Z(ATy¥):i>1} under Wy is absolutely continuous with respect to fy%j.
Hence, by Lemma 3.2, if Cj ; = (ATy;, ATy?), then the matrix ((Ci;)); jez+
determines a bounded, non-degenerate operator C' on ¢2(Z*;R) and I — C
is Hilbert—Schmidt. Starting from this and taking M =1+ ||[I — C|lgs., it
is easy to check that ||[ATy*||z < M||gy-|l¢ and therefore that there is a
unique bounded, linear A : G — H such that ATgy* = ATy*, and clearly
|Af|lop < M. Since this means that |[(Ah,y*)| < M|h|mllgy |, it follows
that A maps H boundedly into G and that A' is the adjoint of A as a map
from H to G. Furthermore, from the properties of C, it is clear that AAT is
non-degenerate and that I — AAT is Hilbert-Schmidt on H.

Now assume that (2) holds. By Theorem 3.3, we know that A determines a
Wiener map ¢ : F — F. Moreover, in the notation used above, the operator
C is non-degenerate and I — C' is Hilbert—Schmidt. Hence, by Lemma 3.2,
the joint distribution of {Z(ATy}) : i > 1} under Wy is absolutely continuous

with respect to ’ygﬁ, and so the joint distribution of {(®,y): ¢ > 1} under
Wy is absolutely continuous with that of {J(g;): ¢ > 1} under Wg. Since
this means that the distribution of ® under Wy is absolutely continuous with
respect to Wa, Wy < We.

We now know that (1) <= (2). Assume (2) and therefore (1) hold. Given
g € G, choose {y;, : n>1} C F* so that g, = g,- — ¢ in G. Then, J(g,) —
J(g) in L*(Wg;R), and so I may and will assume that 7 (g,) — J(9) Wa-
almost surely, which, by absolute continuity, means that J(g,)o® — J(g)o
® Wpy-almost surely. At the same time, Atg, — Afgin H, and so I may and
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will also assume that Z(Afg,) — Z(ATg) Wy-almost surely. Hence, since
T (gn) o ® = I(Alg,) Wy-almost surely, it follows that J(g) o ® = Z(A'g)
Wyr-almost surely. O

COROLLARY 3.5. Again let (H,E,Wg) and (G,F,Wg) be as in Theo-
rem 3.3, and assume that ® : E — F is a Wiener map for which ® Wy <
We. In addition, let U be a Wiener map from F' into a third real, separable
Banach space K. Then ¥ o ® is a Wiener map from E into K. Moreover, if
® and U are determined by A and B, respectively, then ¥ o ® is determined
by Bo A.

Proof. Because ® Wy < Wg, the set of (z1,22) € E? for which

O(x1) + P(x2) Uod(xy)+ Vod(x)
() V2

has W%{—measure 0. Hence, since

P <£L’1 + 1’2) - (I)(Il) —+ (I)(.%Q)
V2 V2

for W#-almost every (z1,72) € E?, it follows that ¥ o ® is also a Wiener map.

Next, let A: H — F be the bounded, linear map which determines ®.
By Corollary 3.4, A is a bounded map from H to G and J(g) o ® = Z(Afg)
Wy-almost surely for each g € G. Hence, if B: F — K determines W, then,
for any z* € K*,

(Tod,z*)= j(BTz*) od = I(ATBTZ*) Wyr-almost surely.

But ATBT =(BoA)T, and so Bo A determines ¥ o ®. O

COROLLARY 3.6. Let (H,E,Wpg) and (G,F,W¢g) be as in Theorem 3.3,
suppose that ® : E — F is a Wiener map for which ® Wy < Weq, and let
A: H — G be the associated map described in (2) of Corollary 3.4. If A
is non-degenerate and I — At A is Hilbert-Schmidt on H, then there exists a
Wiener map ¥ : F — E such that V. Wg < Wy and U is the inverse of ®
in the sense that U o ®(x) =z for Wy -almost every x € E and o ¥(y) =y
for Wg-almost every y € F.

Proof. 1 begin by showing that A has a bounded inverse A~': G — H
and that I — A71(A~HT is Hilbert-Schmidt on H. Indeed, because A is
non-degenerate and I — AT A is Hilbert-Schmidt, AA" has a pure point spec-
trum {A; : 4> 1} C (0,00) for which 1 is the only possible accumulation point.
Hence, there exists an € > 0 such that \; > ¢ for all ¢ > 1, and therefore A has
a bounded inverse A~': G — H. Furthermore, the Hilbert-Schmidt norm
of [ — A=A )T is

o] 2 o]
Z<1 - %) <e Y (1-\)’ <o,
v i=1

i=1
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and so I — A~1(A~1)T is Hilbert-Schmidt on H.

Given the preceding, Corollary 3.4 says that A~! determines a Wiener map
U : F — FE such that ¥, Ws < Wy, and Corollary 3.5 says that T o @ is a
Wiener map which is determined by A=! o A = I. Hence, by uniqueness, ¥ o ®
is Wp-almost surely equal to the identity map on E. Similarly, ® o ¥ must
be Wg-almost surely equal to the identity map on F'. U
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