
Illinois Journal of Mathematics
Volume 54, Number 4, Winter 2010, Pages 1329–1341
S 0019-2082

WEAK NONMILD SOLUTIONS TO SOME SPDES

DANIEL CONUS AND DAVAR KHOSHNEVISAN

Abstract. We study the nonlinear stochastic heat equation
driven by space–time white noise in the case that the initial da-
tum u0 is a (possibly signed) measure. In this case, one cannot

obtain a mild random-field solution in the usual sense. We prove

instead that it is possible to establish the existence and unique-
ness of a weak solution with values in a suitable function space.

Our approach is based on a construction of a generalized stochas-
tic convolution via Young-type inequalities.

1. Introduction

Let us consider the nonlinear stochastic heat equation

(1.1)
∂

∂t
ut(x) = (Lut)(x) + σ

(
ut(x)

)
Ẇ (t, x) (t ≥ 0, x ∈ R),

where: (i) L is the generator of a real-valued Lévy process {Xt}t≥0 with Lévy
exponent Ψ, normalized so that EeiξXt = e−tΨ(ξ) for every ξ ∈ R and t ≥ 0;
(ii) σ : R → R is Lipschitz continuous with Lipschitz constant Lipσ ; (iii) Ẇ is
space–time white noise; and (iv) the initial datum u0 is a signed Borel measure
on R.

Equation (1.1) arises in many different contexts; three notable examples
are Bertini and Cancrini [1], Gyöngy and Nualart [16], and Carmona and
Molchanov [7].

In the case that u0 : R → R+ is a bounded measurable function, the theory
of Dalang [11] shows that there exists a unique random-field mild solution
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{ut(x)}t≥0,x∈R provided that

(1.2) Υ(β) :=
1
2π

∫ ∞

− ∞

dξ

β + 2ReΨ(ξ)
< ∞ for some, hence all, β > 0.

In general, Dalang’s Condition (1.2) cannot be improved upon [11], [20].
Dalang’s condition (1.2) implies also that the Lévy process X has transition

functions pt(x) [15, Lemma 8.1]; that is, for all measurable f : R → R+,

(1.3) Ef(Xt) =
∫ ∞

− ∞
pt(z)f(z)dz for all t > 0.

A mild solution in this setting is a random field {ut(x)}t≥0,x∈R that satisfies

(1.4) ut(x) = (Ptu0)(x) +
∫

[0,t]×R

pt−s(y − x)σ
(
us(y)

)
W (dsdy) a.s.

for all t ≥ 0 and x ∈ R, where {Pt}t≥0 denotes the semigroup associated to the
process X , and the stochastic integral is understood as a Walsh martingale-
measure stochastic integral [21]. Notice that (1.4) can be rewritten in the
following form: For all (t, x) ∈ R+ × R,

(1.5) ut(x) = (Ptu0)(x) +
(
p̃ ∗ (σ ◦ u)Ẇ

)
t
(x) a.s.,

where “∗” denotes a space–time type “stochastic convolution” of p̃ with the
martingale measure (σ ◦ u)Ẇ—see (2.1) below—and p̃t(x) := pt(−x) for all
x ∈ R.

In the case that u0 is not a bounded and measurable function, but instead
a (possibly signed) Borel measure on R, the solution u cannot be defined
as a random field, but has to be considered as a process with values in a
certain space of generalized functions. It is also sometimes possible to con-
sider random-field solutions with a measure-valued initial condition; see, for
instance, Mueller [17] who considers the case that L ∝ Δ, σ(u) ∝ uγ , and the
equation is considered on a compact spatial interval up to a possible explosion
time (when γ > 1).

When u0 is a (possibly signed) Borel measure on R, the stochastic convo-
lution in (1.4) is not well defined in the sense of Walsh. Section 2 below is
devoted to extending the definition of the stochastic convolution of a nonran-
dom process Γ with respect to a martingale measure of the form ZẆ in the
case that Z takes values in a suitable Banach space Bk

β,η of random processes.
The key step of this extension involves developing a kind of “stochastic Young
inequality” (Proposition 2.2). Such an inequality appeared earlier in [10], in a
different context, in order to obtain intermittency properties for equation (1.1)
in the case that u0 is a lower semicontinuous bounded function of compact
support.

In Section 3, we establish the existence and uniqueness of a weak solution
to (1.1). Namely, we prove that Dalang’s condition (1.2) implies that if u0 = μ
is a (possibly signed) Borel measure on R that satisfies a suitable integrability
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condition (3.5), then there exists a unique u ∈ Bk
β,η such that u almost surely

satisfies (1.5) for almost every t ≥ 0 and x ∈ R. This solution is not a random
field. Rather, it takes values in a certain space of generalized functions.

In Section 4, we prove that our condition for existence and uniqueness
is sharp. And in Section 5, we mention briefly examples of initial data u0

that lead to the existence and uniqueness of a weak solution to (1.1), together
with further remarks that explain what happens if we study the 1-dimensional
stochastic wave equation in place of the stochastic heat equation (1.1).

2. Generalized stochastic convolutions

Let Γ : (0, ∞) × R → R be measurable, and Z := {Zt(x)}t>0,x∈R be a pre-
dictable random field in the sense of Walsh [21, p. 292]. Let us define the
stochastic convolution Γ ∗ ZẆ of the process Γ with the noise ZẆ as the
predictable random field

(2.1) (Γ ∗ ZẆ )t(x) :=
∫

[0,t]×R

Γt−s(x − y)Zs(y)W (dsdy).

The preceding is defined as a stochastic integral with respect to the martingale
measure ZẆ in the sense of Walsh [21, Theorem 2.5], and is well defined in
the sense of Walsh [21, Chapter 2] provided that the following condition holds
for all t > 0 and x ∈ R:

(2.2)
∥∥(Γ ∗ ZẆ )t(x)

∥∥2

2
=

∫ t

0

ds

∫ ∞

− ∞
dy

[
Γt−s(x − y)

]2∥∥Zs(y)
∥∥2

2
< ∞,

where, here and throughout the paper, ‖ · ‖k denotes the standard norm on
Lk(P ). That is,

(2.3) ‖X‖k :=
{
E

(
|X|k

)}1/k for all k ∈ [1, ∞) and X ∈ Lk(P).

Let W2 denote the collection of all predictable random fields Z such that:
(i) Zt(x) ∈ L2(P) for all t > 0 and x ∈ R; and (ii) For all 0 < t ≤ τ and x ∈ R,

(2.4)
∫ t

0

ds

∫ ∞

− ∞
dy

[
Γτ −s(x − y)

]2∥∥Zs(y)
∥∥2

2
< ∞.

We may think of the elements of W2 as Walsh-integrable random fields. And
because Condition (2.4) implies (2.2), the preceding discussion tells us that
the stochastic convolution Γ ∗ ZẆ is a well-defined predictable random field
for every Z ∈ W2.

Our present goal is to extend the definition of the stochastic convolution of
Z so that the extended stochastic convolution can be applied to more general
random processes Z. Other extensions of this stochastic convolution have
been developed for other purposes as well [9], [11], [12], [18].

Let us choose and fix a real number k ∈ [2, ∞), and define Lk to be the
collection of all predictable random fields {Zt(x)}t>0,x∈R such that Zt(x) ∈
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Lk(P) for all t > 0 and x ∈ R. Let M(R) be the space of σ-finite Borel
measures on R. For every β > 0, η ∈ M(R), and Z ∈ Lk, define

(2.5) N k
β,η(Z) :=

(∫ ∞

0

e−βt dt sup
z∈R

∫ ∞

− ∞
η(dx)

∥∥Zt(x − z)
∥∥2

k

)1/2

.

Here and throughout, we use implicitly the following observation: If Z,
Z ′ ∈ Lk satisfy N k

β,η(Z − Z ′) = 0, then Z and Z ′ are modifications of one
another. There is an obvious converse as well: If Z and Z ′ are modifications
of one another, then N k

β,η(Z − Z ′) = 0. We omit the elementary proof.
Our next proposition is a “stochastic Young’s inequality,” and plays a key

role in our extension of Walsh-type stochastic convolutions. But first we intro-
duce some notation and recall the following form of Burkholder’s inequality
that will be used here and throughout.

Theorem 2.1 (The Burkholder–Davis–Gundy inequality [2], [3], [4]). Let
{Mt}t≥0 be a continuous martingale. Then, for all k ≥ 1 and for all t > 0
there exists a constant zk such that

(2.6) ‖Mt‖k ≤ zk

∥∥〈M 〉t

∥∥1/2

k/2
,

where 〈M 〉 denotes the quadratic variation of M .

Throughout this paper, we always choose the constant zk of Burkholder’s
inequality to denote the optimal constant in Burkholder’s Lk(P)-inequality
for continuous square-integrable martingales. The precise value of zk involves
the zeros of Hermite polynomials; see Davis [14].

By the Itô isometry, z2 = 1. Carlen and Kree [6, Appendix] have shown
that zk ≤ 2

√
k for all k ≥ 2, and moreover zk = (2 + o(1))

√
k as k → ∞.

We are ready to describe the main result of this section.

Proposition 2.2 (A stochastic Young’s inequality). For every k ∈ [2, ∞),
Z ∈ W2 ∩ Lk, η ∈ M(R), and β > 0,

(2.7) N k
β,η(Γ ∗ ZẆ ) ≤ zk

(∫ ∞

0

e−βt‖Γt‖2
L2(R) dt

)1/2

· N k
β,η(Z).

Remark 2.3. We emphasize that W2 ∩ L2 = W2.

Before we prove Proposition 2.2, let us first describe how it can be used
to extend stochastic convolutions. Proposition 2.2 will be proved after that
extension is described.

Let Bk
β,η denote the completion of W2 ∩ Lk under the norm N k

β,η .1 It
follows then that Bk

β,η is a Banach space of predictable processes (identified
up to evanescence) with norm N k

β,η .

1 The latter is of course a norm on equivalence classes of modifications of random fields

and not on random fields themselves. But we abuse notation as it is standard.
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Proposition 2.2 immediately implies that if

(2.8) Υ(β) :=
∫ ∞

0

e−βt‖Γt‖2
L2(R) dt < ∞,

then Z �→ Γ ∗ ZẆ has a unique extension to all Z ∈ Bk
β,η , and the resulting

extension—written still as Z �→ Γ ∗ ZẆ—defines a bounded linear operator
from Bk

β,η into itself. And the operator norm is at most the square root of the
Dalang integral Υ(β). [In the case that Γt(x) denotes the transition density
of a Lévy process with Lévy exponent Ψ, Plancherel’s theorem implies that
Υ(β) is the same Dalang integral as in (1.2); see (3.1) below as well.]

From now on, we deal solely with this extension of the stochastic convolu-
tion. However, we point out also that there is a great deal of variability in
this extension, as the parameters β > 0, k ∈ [2, ∞), and η ∈ M(R) can take
on many different values.

Let us conclude this section by establishing our stochastic Young’s inequal-
ity.

The proof of Proposition 2.2 relies on an elementary estimate for Walsh-
type stochastic integrals.

Lemma 2.4. For all real numbers t > 0, x ∈ R, and k ∈ [2, ∞), and for
every Z ∈ W2 ∩ Lk,

(2.9)
∥∥(Γ ∗ ZẆ )t(x)

∥∥
k

≤ zk

(∫ t

0

ds

∫ ∞

− ∞
dy

[
Γt−s(x − y)

]2∥∥Zs(y)
∥∥2

k

)1/2

.

Proof. Condition (2.4) implies that if 0 < t ≤ τ , then

(2.10) (Γ ∗ ZẆ )t,τ (x) :=
∫

[0,t]×R

Γτ −s(x − y)Zs(y)W (dsdy)

is well defined and in L2(P). Moreover,

(2.11)
∥∥(Γ ∗ ZẆ )t,τ (x)

∥∥
2
=

(∫ t

0

ds

∫ ∞

− ∞
dy

[
Γτ −s(x − y)

]2∥∥Zs(y)
∥∥2

2

)1/2

.

Walsh’s theory of martingale measures [21, Theorem 2.5] tells us that the sto-
chastic process (0, τ ] � t �→ (Γ ∗ ZẆ )t,τ (x) is a continuous L2(P)-martingale.
Therefore, Burkholder’s inequality (Theorem 2.1) implies that

(2.12)
∥∥(Γ ∗ ZẆ )t,τ (x)

∥∥k

k
≤ zk

k

∥∥∥∥
∫ t

0

ds

∫ ∞

− ∞
dy

[
Γτ −s(x − y)

]2[
Zs(y)

]2
∥∥∥∥

k/2

k/2

.

And it follows from Minkowski’s inequality that ‖(Γ ∗ ZẆ )t,τ (x)‖k is bounded
above by the right-hand side of the inequality (2.9). The lemma follows from
this upon setting τ := t. �
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Proof of Proposition 2.2. The original construction of Walsh implies that
‖(Γ ∗ ZẆ )t(x)‖k defines a Borel-measurable function of (t, x) ∈ (0, ∞) × R.
Indeed, it suffices to verify this measurability assertion in the case that Z is
a simple function in the sense of Walsh [21, p. 292], in which case the said
measurability follows from a direct computation.

We may apply Lemma 2.4 with x − z in place of the variable x, and then
integrate [dη] to obtain∫ ∞

− ∞
η(dx)

∥∥(Γ ∗ ZẆ )t(x − z)
∥∥2

k
(2.13)

≤ z2
k

∫ ∞

− ∞
η(dx)

∫ t

0

ds

∫ ∞

− ∞
dy

[
Γt−s(x − z − y)

]2∥∥Zs(y)
∥∥2

k

= z2
k

∫ ∞

− ∞
η(dx)

∫ t

0

ds

∫ ∞

− ∞
dy

[
Γt−s(y)

]2∥∥Zs(x − z − y)
∥∥2

k

≤ z2
k

∫ t

0

ds‖Γt−s‖2
L2(R) sup

v∈R

∫ ∞

− ∞
η(dx)

∥∥Zs(x − v)
∥∥2

k
.

Or equivalently,

sup
z∈R

∫ ∞

− ∞
η(dx)

∥∥(Γ ∗ ZẆ )t(x − z)
∥∥2

k
(2.14)

≤ z2
k

∫ t

0

ds‖Γt−s‖2
L2(R) sup

z∈R

∫ ∞

− ∞
η(dx)

∥∥Zs(x − z)
∥∥2

k
.

Multiply both sides by exp(−βt), integrate [dt] and use Laplace transforms
properties for convolutions to obtain the result. �

Proposition 2.5. Suppose σ : R → R is Lipschitz continuous and Z,Z∗ ∈
Bk

β,η for some k ∈ [2, ∞), β > 0, and η ∈ M(R). Then,

(2.15) N k
β,η

(
σ ◦ Z − σ ◦ Z∗)

≤ Lipσ · N k
β,η

(
Z − Z∗)

.

Proof. If Z,Z∗ ∈ W2 ∩ Lk, then this is immediate. In the general case, we
proceed by approximation: Let Z1,Z2, . . . ,Z1,∗,Z2,∗, . . . be in W2 ∩ Lk such
that Zn → Z and Zn,∗ → Z∗ in Bk

β,η , as n → ∞. By going to a subsequence,
if necessary, we can (and will!) also assume that

(2.16) N k
β,η

(
Zn − Zn+1

)
+ N k

β,η

(
Zn,∗ − Zn+1,∗)

≤ 2−n for all n ≥ 1.

It follows also that for all n ≥ 1,

(2.17) N k
β,η

(
σ ◦ Zn − σ ◦ Zn+1

)
+ N k

β,η

(
σ ◦ Zn,∗ − σ ◦ Zn+1,∗)

≤ Lipσ · 2−n.

Of course, this implies immediately that σ ◦ Zn and σ ◦ Zn,∗ converge in Bk
β,η .

It suffices to prove that the mentioned limits are respectively σ ◦ Z and σ ◦ Z∗.
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But (2.17) implies that

(2.18)
∫ ∞

0

e−βt dt

∞∑
n=1

sup
z∈R

(∫ ∞

− ∞
η(dx)

∥∥Δn,i
t (x − z)

∥∥2

k

)
< ∞

for all i = 1,2,3,4, where the Δn,i
t (x)’s are defined as follows:

• Δn,1
t (x) := Zn

t (x) − Zn+1
t (x);

• Δn,2
t (x) := Zn,∗

t (x) − Zn+1,∗
t (x);

• Δn,3
t (x) := σ(Zn

t (x)) − σ(Zn+1
t (x)); and

• Δn,4
t (x) := σ(Zn,∗

t (x)) − σ(Zn+1,∗
t (x)).

Because
∑∞

n=1 supz∈R(·) ≥ supz∈R

∑∞
n=1(·) in (2.18), it follows readily that

for almost every pair (t, x) ∈ R+ × R:
• limn→∞ Zn

t (x) = Zt(x) almost surely;
• limn→∞ Zn,∗

t (x) = Z∗
t (x) almost surely;

• limn→∞ σ(Zn
t (x)) = σ(Zt(x)) almost surely; and

• limn→∞ σ(Zn,∗
t (x)) = σ(Z∗

t (x)) almost surely.
(Note the order of the quantifiers!) We proved earlier that limn→∞ σ ◦ Zn

and limn→∞ σ ◦ Zn,∗ exist in Bk
β,η . The preceding shows that those limits are

respectively σ ◦ Z and σ ◦ Z∗. This completes the proof. �

3. Existence and uniqueness

This section is devoted to the statement and proof of the existence and
uniqueness of a weak solution to (1.1). We will make use of the generalized
stochastic convolution developed in Section 2.

Before we proceed further, let us observe that from now on Γt(x) of the pre-
vious section is chosen to be equal to the modified transition functions p̃t(x),
in which case Dalang’s integral can be computed from Plancherel’s formula
as follows:

(3.1) Υ(β) =
∫ ∞

0

e−βt‖pt‖2
L2(R) dt =

1
2π

∫ ∞

− ∞

dξ

β + 2ReΨ(ξ)
.

In particular, the Υ of (2.8) and that of (1.2) are equal in the present setting.
Next, we identify our notion of “solution” to (1.1) in the case that u0 = μ

is a measure.
Suppose first that u0 is a nice function and (1.1) has a mild solution u with

initial datum u0. Then for all t > 0 and x ∈ R,

(3.2) P
{
ut(x) = (Ptu0)(x) +

(
p̃ ∗ (σ ◦ u)Ẇ

)
t
(x)

}
= 1.

Consequently, Fubini’s theorem tells us that every mild solution u to (1.1)
with initial function μ := u0 is a weak solution in the sense that the following
holds with probability one (note the order of the quantifiers!):

(3.3) ut(x) = (Ptμ)(x) +
(
p̃ ∗ (σ ◦ u)Ẇ

)
t
(x) for a.e. (t, x) ∈ R+ × R.
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It is easy to see that the preceding agrees with Walsh’s definition of a weak
solution [21, p. 309].

Now we consider (1.1) in the case that u0 = μ is a possibly-signed Borel
measure on R.

Let us suppose that Dalang’s condition (2.8) holds, and consider an arbi-
trary u ∈ Bk

β,η . Since σ is Lipschitz continuous, it follows that σ ◦ u ∈ Bk
β,η .

Therefore, we can conclude that the stochastic convolution p̃ ∗ (σ ◦ u)Ẇ is a
well-defined mathematical object, as was shown in the previous section. Con-
sequently, we can try to find a solution u to (1.1) with u0 = μ by seeking to
find u ∈ Bk

β,η such that

(3.4) u = P•μ + p̃ ∗ (σ ◦ u)Ẇ ,

where the equality is understood as equality of elements of Bk
β,η . Of course,

we implicitly are assuming that P•μ ∈ Bk
β,η as well. That condition is clearly

satisfied if

(3.5)
∫ ∞

0

e−βs ds sup
z∈R

(∫ ∞

− ∞
η(dx)

∣∣(Psμ)(x − z)
∣∣2) < ∞.

Then, u is a solution of function-space type to (1.1) with u0 = μ. But it has
more structure than that. Indeed, suppose that: (i) (3.5) holds; and (ii) There
exists u ∈ Bk

β,η that satisfies (3.4). Then the preceding discussion shows also
that u is a weak solution to (1.1) in the sense of Walsh [21, p. 309]. And it
would be hopeless to try to prove that such a u is a mild solution, as there is
no natural way to define ut(x) for all t > 0 and x ∈ R.

Throughout the remainder of this section, we choose η ∈ M(R). In the
case that σ(0) �= 0, then we assume additionally that η is a finite measure.

Theorem 3.1. Consider (1.1) subject to u0 = μ, where μ is a signed mea-
sure that satisfies (3.5). If (1.2) holds and

(3.6) Υ(β) <
1

(zkLipσ)2
,

then there exists a solution u ∈ Bk
β,η that satisfies (3.4). Moreover, u is unique

in Bk
β,η ; that is, if there exists another weak solution v that is in Bk

β,η for some
k ≥ 2, then v is a modification of u.

Proof. First, we argue that we can always choose β such that (3.6) holds.
Indeed, Condition (3.5) implies that N k

β,η(P•u0) < ∞ for all β > 0 and
k ∈ [2, ∞). Also, because of Dalang’s condition (1.2), and by the monotone
convergence theorem, limα→∞ Υ(α) = 0. Therefore, we can combine these
two observations to deduce that (3.6) holds for all β large, where 1/0 := ∞.
Throughout the remainder of the proof, we hold fixed a β that satisfies (3.6).

Set u
(0)
t := 0, and iteratively define

(3.7) u(n+1) := P•μ + p̃ ∗
([

σ ◦ u(n)
]
Ẇ

)
.
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These u(n+1)’s are all well defined elements of Bk
β,η . In fact, it follows from

Proposition 2.2 that for all n ≥ 0,

(3.8) N k
β,η

(
u(n+1)

)
≤ N k

β,η(P•μ) + zk

√
Υ(β)N k

β,η

(
σ ◦ u(n)

)
.

And because |σ(z)| ≤ |σ(0)| + Lipσ |z| for all z ∈ R,

N k
β,η

(
u(n+1)

)
(3.9)

≤ N k
β,η(P•μ) + zk

√
Υ(β)

[∣∣σ(0)
∣∣ · N k

β,η(1) + Lipσ · N k
β,η

(
u(n)

)]
,

where 1t(x) := 1 for all t > 0 and x ∈ R. In particular, u(l) ∈ Bk
β,η for all l ≥ 0,

by induction. This is clear if σ(0) = 0; and if σ(0) �= 0, then it is also true
because N k

β,η(1) =
√

η(R)/β < ∞, thanks to the finiteness assumption on η

[for the case σ(0) �= 0]. Moreover, (3.6) and induction together show more;
namely, that supn≥0 N k

β,η(u(n)) < ∞.
A similar computation, this time using also Proposition 2.5, shows that for

all n ≥ 1,

(3.10) N k
β,η

(
u(n+1) − u(n)

)
≤ zkLipσ

√
Υ(β) · N k

β,η

(
u(n) − u(n−1)

)
.

And (3.6) implies that
∑∞

n=0 N k
β,η(u(n+1) − u(n)) < ∞, therefore, {u(n)} ∞

n=0

is a Cauchy sequence in Bk
β,η . Let u := limn→∞ u(n), where the limit takes

place in Bk
β,η . According to Proposition 2.2,

N k
β,η

(
p̃ ∗ u(n)Ẇ − p̃ ∗ uẆ

)
≤ zk

√
Υ(β) · N k

β,η

(
u(n) − u

)
(3.11)

→ 0 as n → ∞.

It follows readily from these remarks that N k
β,η(u − P•μ + p̃ ∗ (σ ◦ u)Ẇ ) = 0.

That is, u satisfies (3.3) for almost all (t, x) ∈ R+ × R; see also (3.4). This
proves the first part of the theorem.

In order to prove the second part, let us suppose that there exists another
“weak solution” v ∈ Bk

β,η . Then, δ := u − v ∈ Bk
β,η and

(3.12) δ = p̃ ∗
(
[σ ◦ u]Ẇ

)
− p̃ ∗

(
[σ ◦ v]Ẇ

)
= p̃ ∗

(
[σ ◦ u − σ ◦ v]Ẇ

)
.

(The second identity follows from the very construction of our stochastic con-
volution, using the fact that Z �→ p̃ ∗ ZẆ is a bounded linear map from Bk

β,η

to itself.) Propositions 2.2 and 2.5 together imply the following:

N k
β,η(δ) ≤ zk

√
Υ(β) · N k

β,η(σ ◦ u − σ ◦ v)(3.13)

≤ zkLipσ

√
Υ(β) · N k

β,η(δ).

Thanks to (3.6), N k
β,η(u − v) = N k

β,η(δ) = 0. This readily implies that u and v
are modifications of one another, as well. �
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4. On Condition (3.6)

Let us consider the measure ηm ∈ M(R) defined by

(4.1) ηm(dx) = e− |x|/m dx,

where m > 0 is fixed. If σ(0) = 0, then we may take m := ∞, whence
η(dx) = dx.

Theorem 4.1. Suppose (1.1) has a solution u ∈
⋂

m>0 B2
β,ηm

with u0 = μ

for a nonvoid signed Borel measure μ on R with |μ|(R) < ∞. Suppose also
that Lσ := infz∈R |σ(z)/z| > 0. Then, β satisfies Υ(β) < L−2

σ .

Proof. Let Mβ be the norm defined by

(4.2) Mβ(Z) :=
(∫ ∞

0

e−βt dt

∫ ∞

− ∞
e− |x|/m dx

∥∥Zt(x)
∥∥2

2

)1/2

.

Notice that Mβ is similar to Nβ,ηm , but is missing a supremum on Z in
the space variable; cf. (2.5). Moreover, Mβ(u) ≤ N 2

β,ηm
(u) < ∞. Note that if

H,Z ∈ B2
β,ηm

with one of them—say H—random and the other one determin-
istic, then we have [Mβ(H + G)]2 = [Mβ(H)]2 + [Mβ(G)]2. This is a direct
computation if H,G ∈ W2; the general case follows from approximation (we
omit the details because the method appears already during the course of the
proof of Proposition 2.5). It follows that

(4.3)
[

Mβ(u)
]2 =

[
Mβ(P•μ)

]2 +
[

Mβ

(
p̃ ∗

(
[σ ◦ u]Ẇ

))]2
.

The method of proof of Proposition 2.5, together with the simple bound,
e− |x|/m ≥ e− |x−y|/m · e− |y|/m, shows also that

(4.4) Mβ

(
p̃ ∗

(
[σ ◦ u]Ẇ

))
≥ Lσ Mβ(p̃ ∗ uẆ ).

But

(4.5) Mβ(p̃ ∗ ZẆ ) =
(∫ ∞

0

e−βt‖pt‖2
L2(R) dt

)1/2

· Mβ(Z).

(Again one proves this first for nice Z’s and then take limits.) Therefore,

(4.6) Mβ

(
p̃ ∗

(
[σ ◦ u]Ẇ

))
≥ Lσ

√
Υ(β) · Mβ(u).

Combine this with (4.3) to find that

(4.7)
[

Mβ(u)
]2 ≥

[
Mβ(P•μ)

]2 + L2
σΥ(β)

[
Mβ(u)

]2
.

Now suppose, to the contrary, that Υ(β) ≥ L−2
σ . Then, it follows that

Mβ(P•μ) = 0 regardless of the value of m; that is, for all m > 0,

(4.8)
∫ ∞

0

e−βt dt

∫ ∞

− ∞
e− |x|/m dx

∣∣(Ptμ)(x)
∣∣2 = 0.
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Let m ↑ ∞ and apply the monotone convergence theorem, and then the
Plancherel theorem, in order to deduce that

0 =
∫ ∞

0

e−βt‖Ptμ‖2
L2(R) dt(4.9)

=
1
2π

∫ ∞

0

e−βt dt

∫ ∞

− ∞
dξe−2tReΨ(ξ)

∣∣μ̂(ξ)
∣∣2

=
1
2π

∫ ∞

− ∞

|μ̂(ξ)|2
β + 2ReΨ(ξ)

dξ.

Since Ψ is never infinite, the preceding implies that μ ≡ 0, which is a contra-
diction. It follows that Υ(β) < L−2

σ . �

Theorem 4.1 implies also that Condition (3.6) is sharp: Consider the case
that Lipσ = Lσ . [This is the case, for instance, for the parabolic Anderson
problem where σ(x) ∝ x, or when σ has sharp linear growth.] Then in this
case Theorem 3.1 and Theorem 4.1 together imply that (3.6) is a necessary
and sufficient condition for the existence of a weak solution to (1.1) that has
values in

⋂
m≥1 Bk

β,ηm
.

5. Examples and remarks

Example 5.1 (A parabolic Anderson model). Let σ(x) = λx. In that
case, the solution u corresponds to the conditional expected density at time
t ≥ 0 of a branching Lévy process starting with distribution u0, given white-
noise random branching. The case that σ(0) = 0 and u0 is a function with
compact support is studied in [10], in which intermittency properties are de-
rived. Here, u0 can be a compactly supported measure (not necessarily a
function). If we let η denote the one-dimensional Lebesgue measure, then
(3.5) becomes

(5.1)
∫ ∞

− ∞

|μ̂(ξ)|2
β + 2ReΨ(ξ)

dξ < ∞.

For instance, if μ = δ0, then condition (5.1) is precisely Dalang’s condition
(1.2), and (1.1) admits a weak solution. In this way, we can now define in
a more standard manner the solution of the parabolic Anderson model with
u0 = δ0, which was studied in Bertini and Cancrini [1].

Remark 5.2 (A nonlinear stochastic wave equation). It is possible to apply
similar techniques to the study of the following nonlinear stochastic wave
equation driven by the Laplacian:

(5.2)
∂2

∂t2
ut(x) = κ2 ∂2

∂x2
ut(x) + σ

(
ut(x)

)
Ẇ (t, x) (t ≥ 0, x ∈ R).
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If the initial conditions u0 and v0 are nice functions, then the solution to (5.2)
can be written as

ut(x) =
(
Γ′

t ∗ u0

)
(x) + (Γt ∗ v0)(x)(5.3)

+
∫

[0,t]×R

Γt−s(y − x)σ
(
us(y)

)
W (dsdy),

where Γ is the fundamental solution of the 1-dimensional wave equation,
namely

(5.4) Γt(x) :=
1
2
1[−κt,κt](x) for t > 0 and x ∈ R,

and Γ′
t denotes the weak spatial derivative of Γt. Then, the existence and

uniqueness of a weak solution to (5.2) in the case that u0 and v0 are (possibly
signed) Borel measures on R can be established using the techniques of this
paper, since the definition of the generalized stochastic convolution applies
as well with the 1-D wave propagator Γ above. The conditions on the initial
conditions have to be adapted to insure that Γ′

t ∗ u0 and Γt ∗ v0 both are
in Bk

β,η , but are similar to (3.5). The details on this are left to the reader,
as the stochastic wave equation in dimension one has been widely studied
already [5], [8], [13], [19], [20], [21], [22].
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